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Abstract
In this paper we prove some integral estimates on the minimal growth of the positive
part 1 of subsolutions of quasilinear equations

divA(x, u, Vu) = V]u|P"%u

on complete Riemannian manifolds M, in the non-trivial case u % 0. Here A satis-
fies the structural assumption |A(x, u, Vu)ll’/(f’_l) < k(A(x, u, Vu), Vu) for some
constant k > 0 and for p > 1 the same exponent appearing on the RHS of the equa-
tion, and V is a continuous positive function, possibly decaying at a controlled rate at
infinity. We underline that the equation may be degenerate and that our arguments do
not require any geometric assumption on M beyond completeness of the metric. From
these results we also deduce a Liouville-type theorem for sufficiently slowly growing
solutions.
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1 Introduction

In the recent paper [4] (Lemma 8), the following theorem was established. Let M be a
complete Riemannian manifold (without boundary), A > O aconstantandu € C 2(M).
If the superlevel set Q4 := {x € M : u(x) > 0} is not empty and u satisfies

Au > Ay on Q4 (D

then for any fixed point xo € M we have

1
lim inf — log / ur >0 )
R—+o00 R Bg(x0) +

where u := max{u, 0} is the positive part of u and Bg(x¢) is the geodesic ball of
radius R centered at xo. Indeed, inspection of the proof also shows that there exists a
constant C(A), not depending on M or u, such that

1
liminf — log / ut > C() >0 A3)
R——+00 Br(x0)

and that the optimal value for C (1) is not smaller than %ﬁ. This can be regarded
as a sort of “gap” theorem for subsolutions of Au = Au: if u € C*(M) satisfies

Au > Au on M

then either # < 0O or the positive part of u has to be sufficiently large in an integral
sense (that is, its L2 norm on Bg(x) must grow at least exponentially with respect to
R). In fact, the result from [4] is more general and also covers the case of weighted
Laplacians and locally Lipschitz weak solutions of (1).

In this paper we generalize the above theorem by considering differential inequal-
ities for a wider class of (possibly degenerate) quasilinear elliptic operators in
divergence form, including the p-Laplace operator

Apu = div(|VulP7>Vu), 1< p <+oo,

and also replacing the constant A by a positive continuous function V possibly decaying
at infinity at a controlled rate, namely, not faster than a negative power r (x) ~*, u > 0,
of the distance r(x) = dist(x, o) from some fixed point 0 € M. More precisely, for a
given pair of parameters A > 0 and n > 0 we shall assume that

V> if u=0

lim inf [dist(x, 0)*V(x)] > A forsome o € M if 4 > 0. V)
X—>00
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These conditions are clearly satisfied, for instance, if

A

V) > — M.
@) 2 s or "

Also, in case (> 0 the triangle inequality implies that the validity of (Vj, ;) does not
depend on the choice of the reference base point 0 € M.

To give an example of our main result, we state it in the model case of the p-Laplace
operator. To do so, we have to precise some terminology. For a function u € Wllo’cp (M),
we denote by Q4 := {x € M : u(x) > 0} its positivity set and for a given measurable
function V > 0 we say that u satisfies

Apu > VuP™' weakly on Q @
if
—/ (IVul?~2Vu, Vo) z/ vuP~ly Ve e DY)
M M
where

DY(Qy) i={pe WP(M): ¢>00nM,
o =0and Vg =0ae.on M\ Q4}.

(Note that if |2 | > 0 then the space D™ () of test functions is non-trivial because
it contains at least elements of the form ¢ = u 1, with0 < € C>°(M), so (4) is a
meaningful condition.) In particular, (4) is always satisfied if

Apu > ViulP"u weakly on M 5)

or even if
Apuy > Vufi—1 weakly on M 6)

since Vuy = 1g, Vu almost everywhere on M. Note that (6) is a weaker condition
than (5), as follows from work of Le, [7].

Theorem 1 Let M be a complete Riemannian manifold, p € (1, +0o0), n € [0, p],
A>0,andV : M — (0, +00) a continuous function satisfying (Vy,_ ).

Letu € WlL’Cp(M). If Q4 :={x € M : u(x) > 0} is of positive measure and

Apu > VuP~™' weakly on Q04
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then for any xo € M and q € (p — 1, +00) we have

lim inf Rll,; 1og/BR(X0) ul > io% >0 if el p) ©)
ggfg log R log /BR(xo) u(i =Gep gu=r ®
where Cy and C are explicitely given by
Coe PU=PHDY 0 e i
0 ; 1 1—Pp) Co )

(p— DY

where p' = % is the exponent conjugate to p. Moreover, in case L = p we have

lim lo ul > Co+ 10
R—+00 log R g/l;R(xO) +=50TP (10)

whenever the limit on the LHS exists.

Remark 2 Note that the value C; > p determined by (9) satisfies C; < Co+ p, hence
(10) gives a stronger estimate than (8) when its LHS is well defined.

The constants appearing in (7) and (10) are sharp, that is, for each combination of
values of p, i, A and q it is possible to find M and u for which the equality in (7) or
(10) is attained. This is shown by explicit examples described at the end of Sect. 3. We
don’t know whether the value of C; > p in (9) is sharp or not for the validity of (8).
It seems worth to underline that the case p = 2, ¢ = 2, u = 0 in the above theorem
implies that the optimal value for C(A) in (3)is C(L) = 2V,

Theorem 3 Let M be a complete Riemannian manifold, ;1 € [0,2], A > O and V :
M — (0, +00) a continuous function satisfying (Vi ,.).
Letu € WIL’C2(M). If Qp :={x € M : u(x) > 0} is of positive measure and

Au > Vu  weakly on Q4

then for any xo € M and q € (1, +00) we have

1 g . 2Vq— 1V
m log uy = ———r—
BR(xo)

lim inf |
2

R— 400 R177

v

ifnel0,2)

lim inf log/ ul
R—+o00 IOgR Bg(x0)

v

1+V1+4(@—-Dr>2 ifp=2

and in case . = 2

lim
R—>+o00 log R

log/ ul > 2014 /g — 1W/1)
BR(xo)
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provided the limit exists.

In full generality, in our main theorem we deal with differential inequalities involv-
ing quasilinear differential operators L formally defined by

Lu :=div(A(x, u, Vu)) (1

where A : R x TM — TM is a continuous function (or, more generally, a
Carathéodory-type function as specified in Sect. 2) satisfying

(A(r,5.6).6) 20 and  [A(x,s.6)| < k{A(x.s5.).8)7 T 12)

forallx € M,s € R, & € Ty M with some constant k > 0. If these conditions are
satisfied, we say that the differential operator L defined by (11) is weakly p-coercive
with coercivity constant k. The p-Laplace operator falls in this class since it can be
expressed as in (11) for the choice A(x,s, &) = |€|1P~2&, which fulfills (12) with
k = 1. In analogy with what we did above, we say that a function u € WlLEp (M)
satisfies

Lu> VuP~'  weakly on Q4 := {u > 0}
if
—/ (A(x,u, Vu), Vo) > / VuP~ly Ve e DT(Q).
M M

Theorem 4 Let M be a complete Riemannian manifold, p € (1,+00), u € [0, p]
and ) > 0. Let L be a weakly p-coercive operator as in (11) with coercivity constant
k>0andV : M — (0, +00) a continuous function satisfying (V. .).

Letu € WIL’CP(M). If Qp :={x € M : u(x) > 0} is of positive measure and

Lu>VuP™'  weakly on Q2

then for any xo € M and q € (p — 1, +00) we have

1 C
lim inf - log/ ul > Ou if wel0,p) (13)
R>+00 R1=5 % JByag) 1-7
lim inf log/ ul >C1 ifu=p (14
R—+o00 IOg BRr(x0)

where Co > 0 and C1 > p are determined by

plg —p+DYP AP
Co = ;
(p-DF &

. P -p =c
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with p’ = % Moreover, in case i = p we have

lim lo ul > Co+ 15
R—>+0010gR g/BR(xo) +=%0 p ( )

whenever the limit exists.

We point out that the RHS’s of (14) and (15) both converge to p from above as
A — 0%. Hence, ifu € Wlt’cp (M) satisfies

Lu> VuP™"  weakly on Q4 = {u > 0}

with |24 | # 0 and V a continuous positive function decaying to O faster than r(x) ™7
as x — 00, then on arbitrary manifolds we couldn’t expect the possible validity of an
estimate stronger than

1
lim inf lo 1> p.
R—+o0 log R g/BR “=p

In fact, we are able to prove a weaker growth estimate (with lim inf replaced by lim sup)
holds more generally for any u € WIL’Cp (M) satisfying

Lu > f  weaklyon Q4 (16)

for some measurable function f : M — [0, +o00] such that f > Qonaset E C Q4
of positive measure. Of course, by (16) we mean that

—/ (A(x, u, Vu), Vo) z/ fo VYeeDN(Q). (17)
M M

Note that if (16) holds with f as above then there exists ¢ € DV (2,) for which the
LHS of (17) is strictly positive (this follows by considering a test function of the form
¢ = usy for some 0 < ¢ € C°(M) strictly positive on a portion of E of positive
measure), and then it must also be A(x, u, Vu) # 0 on a subset Ey C Q4 of positive
measure.

Theorem 5 Let M be a complete Riemannian manifold, p € (1, +00), L a weakly p-
coercive operator asin (11) and u € WIL’CP (M) such that 24 .= {x € M : u(x) > 0}
has positive measure. If u satisfies

Lu>0  weaklyon Q4
and further

A(x,u,Vu) #0 onaset Egy C Q4 of positive measure (18)
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then for any q € (p — 1, +00)

1
limsup — | u? =4o0. (19)
R—+o00 RP Bgr *

In particular,

1
lim sup log/ ul > p.
R—+oo 10g R Br *

As said, (18) holds if u satisfies (16) for some measurable f : M — [0, +00] with
f not a.e. vanishing on €. Alternatively, (18) is satisfied also when u is not constant
on M and positive somewhere (so that |[2| > 0) and A obeys the following mild
non-degeneracy condition:

A(x,s,6) =0 onlyif £&=0. (20)

Theorem 5 is a consequence of the next Theorem 6, proved in the last part of the paper
where we extend some arguments from [8] to general weakly p-coercive operators L
of the form (11).

Theorem 6 Let M be a complete, non-compact Riemannian manifold, p € (1, +00),
L a weakly p-coercive operator as in (11) and u € WIL’CP (M). If {u > 0} has positive
measure, u satisfies

Lu >0 weakly on {u > 0} 20

and for some q > p — 1 it holds

. o
lim </ ui) s =400 Vr>0, (22)
3B,

R—+o00 J,

then A(x, u, Vu) = 0 almost everywhere on {u > 0}. In particular, if the structural
condition (20) holds, then u is constant on M.

We remark that condition (22) amounts to saying that the function ¢ : (0, +00) —
[0, +o0] given by

1

T p—1
<P(S)=<f M3_> ] Vs >0
d By

is not in L1 ((r, +00)) for any r > 0. In fact, as proved in Lemma 19 below, in the
assumptions of Theorem 6 there exists rg > 0 such that ¢ is finite a.e. on (rg, +00)
and ¢ € L! ((r, R)) forany ro < r < R < 400, so that (22) is satisfied if and only if
@ is not integrable in a neighborhood of +00. Note that in general ¢ may be integrable
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at o0 and still satisfy ¢ = +o00 on (0, ro) for some ry > 0. For instance, for fixed
n € N and p > n, the function

p=n
u(x):=|x|7T -1 onR"
satisfies A ,u = 0 on Q4 = R"\By, and forany ¢ > p — 1

+00 for 0 <s <1
1

pls) = [Csn—l (Sq% _ 1)]_”_] for s > 1

(with C = |9 Bq]) is integrable at +o00: indeed,

1 _@=Dp=D+glp=n)
p(s) ~C rTs (r=1? as s — +00

and (under the assumption p > n) we have —("_1)(’(’;#
q > p — 1. This shows that the clause “Vr > 0 in (22) cannot in general be replaced
by “for some r > 0”.

Note that (22) is a condition about the growth of the integral of u‘i on geodesic
spheres d By. This can be related to the growth of the integral of “3— on balls B;. More
precisely, (22) is implied (see Proposition 1.3 in [8]) by the stronger condition

R/ .\
lim — ds=+400 Vr>0
k=co Jr f}};T Uy

which in turn is satisfied, for instance, when

< —1if and only if

/ ui:O(RP) as R — +o00.
Bg

Since this last condition is exactly the negation of condition (19) above, Theorem 5
follows at once from Theorem 6.
As hinted at the beginning of this Introduction, our main Theorem 4 can be also

H 113 b2 : 1 N
interpreted as a “gap” theorem for functions u € Wlocp

(M) satistying
Lu>V§ul’u on M.

Namely, if u satisfies the above differential inequality, then either u < 0 a.e. on M
or the positive part of ¥ must grow sufficiently fast. As an easy consequence we have
the following Liouville-type result (for its proof it is enough to apply Theorem 4 to
both # and —u). For the sake of simplicity, we only state it in case V is a positive
constant, but the interested reader can immediately generalize it to the case where V
is a function satisfying (Vj,_ ,) for some A > 0 and u € [0, p].
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Theorem7 Let M be a complete Riemannian manifold, p € (1,+00), A > 0 and
L a weakly p-coercive operator as in (11) with coercivity constant k > 0. Let u €
WP (M) satisfy

Lu=Mul’™>u on M.

If for some xo € M and q € (p — 1, +00)
/ lul? < R for all sufficiently large R
Br(x0)

plg=p+0)"/?" 31p

FERTITA then u = 0.

for some constant C <

We conclude this introduction with a few comments on some technical points. First,
in all the results stated above, except for Theorem 6, M is not explicitely assumed to
be non-compact. Indeed, if M is compact (without boundary) and u satisfies

for some measurable f, then necessarily f = 0 and A(x, u, Vu) = 0 a.e. on Q4
(see Lemma 8 in Sect.2). Hence, in the assumptions of Theorems 1, 3, 4 and 5, M
is necessarily non-compact. Secondly, in all our results we do not make additional
regularity assumptions on the subsolutions beside their belonging to the appropriate
Sobolev class Wllo’cp (M). Since we do not know if Sobolev subsolutions of possibly
degenerate equations of the form

divA(x, u, Vu) = V{u|P"%u

are always locally essentially upper bounded (that is, if they necessarily satisfy u €
Ly> (M)), in some of our arguments we have to follow more winding roads using
approximation procedures.

The paper is organized as follows. In Sect. 2 we collect the notation and all relevant
definitions. In Sect. 3 we prove the main Theorem 4 and we provide examples showing
sharpness of the constants in the statements. Section4 is devoted to the proof of
Theorem 6, from which Theorem 5 can be easily deduced (see Corollary 22 and
Remark 23).

Comparison results and the case p = 1 will appear in a forthcoming paper.

We recently learned that on arXiv has just appeared a paper by Bisterzo, Farina and
Pigola [2] which is somehow related to our work, at least where L is the Laplace—
Beltrami operator. However, even in the above overlapping case, the two papers are
different in setting, scope and sharpness of the results.
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2 Definitions and Notation

Throughout this paper, M will always be a connected Riemannian manifold withouth
boundary. We denote by T M its tangent bundle and by (, ) its Riemannian metric. For

any p € (1, +00) we also denote by Wl})’cp (M) the space of Sobolev functions u whose
restrictions to any relatively compact set 2 € M belong to W7 (). This is equivalent
to requiring that u o ¥~ ! € VV]L’CP(I/I(U)) for any local chart v : U € M — R"™,
where m = dim M. We also denote by WC1 "P(M) the subspace of Wli)’cp (M) consisting
of functions with compact support.

We consider quasilinear differential operators L in divergence form weakly defined

on functions u € W7 (M) by
Lu(x) =divA(x, u, Vu) . (23)
Here A : R x TM — T M is a function such that
Ax,s,&)eTyM VxeM,seR, EeTM

and whose local representation A: Y(U) x RxR™ — R™in any chart ¢ : U C
M — R™ satisfies the Carathéodory conditions

° é(y, -, ) is continuous for a.e. y € ¥ (U)
e A(-, s, v) is measurable for every (s, v) € R x R™.

(The representation A is defined by

m

. .9

A(¢(x),s,v):=A<x,s,§ ”la_yi )Ver,seR,v=(v1,...,vm)eR”'
i=1 x

where yl, ..., y"™ are the coordinates induced by .) In particular, these conditions
on A are satisfied whenever A is a continuous function of its arguments. Following
terminology from [5, Definition 2.1], we say that A and the corresponding operator L
given by (23) are weakly- p-coercive for some p € (1, +00) if

(A(x,5.6),6) >0 VxeM,seR, §ecTM (24)

|[A(x,s, &) < k(A(x,s,S),z?)%l VxeM,seR, Ee€T M (25)

for some constant k£ > 0 that we will call the coercivity constant of A. Note that the
above conditions imply that

|A(x,s,6)] <kPIEIP™T VxeM,seR EcTM. (26)

Indeed, this is clearly true when A(x, s, &) = 0; otherwise, by Cauchy—Schwarz
inequality and (25) we have |A(x, s, £)|? < kP|A(x, s, &)|P~1|&|P~!, and then (26)
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follows dividing both sides by |A(x, s, &) [P~ In particular, we have
A(x,s,0)=0 VxeM,seR. 27

On the other hand, in general we do not assume non-degeneracy of A, that is, we do
not assume that A(x, s, &) # 0 when & # 0.
Let A be a weakly p-coercive function for some p € (1, +00). For any given

u e Wl:)’cp (M) and any sp € R we set
Qg i ={x eM:ulx) > so}
and for any non-negative measurable f : M — [0, +00] we say that u satisfies

Lu> f  (weakly) on Qj (28)

—f (A(x,u, Vu), Vo) Z/ fo  YeeDT (R (29)
M M

where

DH () i={p € W' (M): ¢ =00n M,
¢ =0and Vo =0a.e.on M\ Q}.

We remark that our assumptions on A and u imply that |A(x, u, Vu)| € LY / (M), with

loc
p = ﬁ the exponent conjugate to p, and that (A(x, u, Vu), V) is measurable for

each ¢ € D*(QSO) (see for instance [9, Lemma 2.4]). Hence, the LHS of (29) is well
defined and finite for each ¢ € DT (Qj,).

The next lemma justifies our focus on complete, non-compact manifolds in the
introduction and in the following sections.

Lemma 8 Let M be a compact manifold without boundary, p € (1,400) and L a
weakly p-coercive operator as in (23). Ifu € WP (M) satisfies

Lu>f>0 on Q= {u>so}
for some measurable f : M — R and some so € R, then
f=0 and A(x,u,Vu)=0 a.e.on Q. 30)

Proof Considering the test function ¢ = (u — s0)+ € D1 (€2y,) we have

J.

(A(-xsuavu)avu> = _/ (M_SO)+fSO
Q,

S0
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and by the weak coercivity condition (25) we obtain

/ |ACx, u, Vu)| 7T < 0.
Qy
By non-negativity of f and of | - |, this immediately yields (30). O

Lastly, we precise the following terminology. For an open interval / € R we say
that a function F : I — R is piecewise C! if F is continuous on I and there exists a
discrete (possibly empty) set E C I such that

(i) F’ exists and is continuous on / \ E
(ii) VaeE lim,_,- F/'(x) and lim,_ ,- F'(x) existand are finite.

Ifue Wllo’cl7 (M) with u(M) C I and F’ is bounded on I \ E, then by Stampacchia’s
lemma the function v = F(u) is also in Wlf)’cp (M) and

v F'(u)Vu ae.on M\u '(E)
vV =
0 a.e. on u’l(E),

see forinstance Theorem 7.8 in [6]. (Here and in the following statements, “a.e.” always
referes to the m-dimensional Riemannian volume measure of M.) Since Vu = O a.e. on
each level set of u, we can further write

Vv=F'(u)Vu ae.on M.

3 Proof of the Main Theorem

The aim of this section is to prove the main Theorem 13 below, which is slightly
more general than Theorem 4 from the Introduction. To do so, we have to collect
some preliminary lemmas about functions u satisfying Lu > 0 on some superlevel
set Qy, 1= {x € M : u(x) > so}, so € R. Note that for the validity of the following
lemmas it is not necessary to assume that |25 | > 0, that is, so may be a priori larger
than or equal to ess sup,,u (in which case it is clearly true that Lu > 0 on €24, in the
sense of (29), and the thesis of each lemma holds trivially).

Lemma9 Let M be a Riemannian manifold, p > 1 and L a weakly p-coercive
operator as in (23) with coercivity constant k > 0. Let u € le)’cp (M) satisfy

Lu>f>0 on Q:={xeM:ulx)> s} 3D

for some sy € R and some measurable f : M — R. Let F be a non-negative,
non-decreasing, piecewise C' function on (0, +-00). Then for every 0 < n € CX (M)

/ F<w>|Au||Vn|zk*P’/ nF’(w)|Au|P’+/ nFw)f, (32

QA'O QSO Q50
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p

where w = (u — s0)+, Ay := A(x,u, Vu) and p' = Vet

Proof Let 0 <n € C°(M) be given and let
wi= (u—s0)s € WeP(M), A, = Alx, u, Vi)
as in the statement. Let A € C°°(R) be such that
AMs)=0 ifs <1, AMs)=1 if s >2, A>0 onR (33)
and for any ¢ > 0 define A, € C*°(R) by
Ae(s) := A(s/e). (34)
Clearly we have
0<i <1(0400) Ye>0 and A 10 40c) aS € — 0t, 35)
where 1 denotes the indicator function and / denotes monotone convergence from

below. Let & > 0 be fixed and for any ¢ € (0, h/2) let F, j, : R — [0, +00) be given
by

0 if s <0
Fen(s) =12:(s)F(s) if0<s<h
F(h) if s>h.

By our choice of A and our assumptions on F, the function F; j is non-negative, non-
decreasing, piecewise C'! on R (with an additional corner point at s = /) and globally
Lipschitz, so Fe 4 (w) € WP (M) with

VFep(w) = F,,(w)Vu ae.on M.
In particular we have

, Mo (S)F(8) + Ae($)F'(8) > Ae(s)F'(s) ife<s<h

th(s) = .
’ 0 ifs<egors>h.

Set

© = @en = nFep(w).

Wehave 0 < ¢ € WCl "P(M) and by the choice of A, we also have that ¢ vanish outside
{w > 0} = Q4,. So ¢ is an admissible test function for (29) and we have

—/ (A, Vo) z/ fo. (36)
M M
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By direct computation and using that n F (w)A, (w)(A,, Vu) > 0 by our assumptions
on Ag, F, n and A, together with weak p-coercivity (25) of A and Cauchy—Schwarz
inequality we have

(Au, V@) = Fe y(w){ Ay, Vi) + 1 FL, (w)(Ay, Vi)
Fe n(w){Ay, V) + UF/(w)(Au, v14))\6(w)l{e<w<h}
— Fe W) A1V 4+ k™7 0 F (W) Al? he (W) (e <y <) -

v

\Y

We substitute into (36) and rearrange terms to get

J

Using non-negativity of F, F’, f, n, monotonicity of F and (35), by the monotone
convergence theorem we get

Fon(w)|Au|[Vn] = k7 f

{e<w<h}

n/\s(W)F/(W)IAulp/+f nFepn(w)f .

) QSO

lim Fep(w)|Ayl|Vnl =/ F(w)[Ay||Vnl
e—0F } Q
h—>+o0 0 0
lim e (W) F' (W) Ay|? = / nF' (W) Aul?’
e—>0" J{e<w<h} Qs
h—~+o0
lim nFep(w)f = nFw)f
e—~>0" JQ, Qy
h—>+o0 0 0
and then we obtain (85). O

We underline that the LHS of (32) can be further estimated from above via Young’s
inequality in two different ways, both useful in what will follow.

(1) Suppose that F' > 0 on (0, +00). By Holder’s and Young’s inequalities with
conjugate exponents p and p’, for any o > 0 we get

1/
/ F(w)|Au||Vn] < f Mlvﬂl : f F'(w)|Ay|”' V1]
Q ~ g, [F'(w)1r~! 2

S0
oP [F(w)]? oV ,
= — oIVl + —— F'(w)|A, |7 V.
p Jo, [F'w)]? p

1/p'

Qs

(37

Q) If 0 < € C°(M), then applying (32) with n := ¥? € C°(M) we get

2l
o
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and by Young’s inequality we have, again for any o > 0,

[F(w)]” v
F'(w)]p~!

PP
p/ wp‘lF(w)|Au||w|sp“/ P
Q p Ja, [

S0 S0
o

, / YPF (w)|Aul? . (39)
p Q

S0

+

By suitably choosing ¢ in (39) and rearranging terms we deduce the following

Lemma 10 In the assumptions of Lemma 9, if
F'(w)|Ay|" g, € Lip (M) (40)

then for any ¢ > 0 and for any 0 < n € C°(M) we have

kP(p — 1)P~1 F p
(p _1) / [/(w)]_llwp
eb Qy [F'(w)]P
> (1 —s)k—"’/ n"F’(w>|Au|’”+f nPF(w)f . (41)
SO QYO

In particular, (40) holds under one of the following assumptions:

(@) F(s) =0(s)ass — +00
(b) uy € LT (M) and F(s) = O(s"/P) as s — +00, for some r > p

loc

(©) uy € Ly (M).
Proof If ¢ > 0 is given then for o = (sp/)_l/”/k we have

o~ P , pPa?  kP(p— 1Hr—1

P’ p gp~!

and then from (39) we get

kP(p — P! / [F(w)]”
Q

ep—1 [F/(w)]p—l |V7]|p+8k_p,/ on/(w)|Au|p,
SO S

Q’0

> k7 [ n? F'(w)|A,|” + / " F(w)f . “42)
Q Q

50 S0
In the assumption (40) we can rearrange terms to obtain (41). In view of (32) and
since f > 0 on £24,, condition (40) is automatically satisfied if F (w)|Au|IQSO €

LIIOC(M ). In particular this is always the case if F (w)lgzs0 € LﬁC(M ), because then
F(w)|AM|1g2S0 € LIIOC(M) by Holder inequality (recall that u € WIL’C”(M), so |[Ay]| <
kP|VulP~! € Lf’O/C(M)), and condition F(w)lgzs0 € Lﬁ)c(M) is in turn satisfied in
either one of the cases (a), (b) or (c). O
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A case that will be relevant for our subsequent discussion is where uy € quOC(M )
and F(s) = s~ P*! for some g € (p — 1, +00). In this setting the desired inequality
takes the form

kP(p —1)P~!
Ep—lyp—l

/ w‘f|Vn|Pz(1—s>k*P’/ nPw‘f*P|Au|P’+f nw? f
Q Q

S0 S0 S0

where y :=q—p+1 € (0, +00). Note that for p — 1 < g < pwehave) < y <1,
hence F(s) = s9~ P! = s¥ = O(s) and this scenario is covered by alternative (a) in
Lemma 10, while for ¢ > p (and without assuming u, € L. (M)) we cannot refer
to (b) or (c).

Lemma 11 Let M be a Riemannian manifold, p € (1, 400) and L aweakly p-coercive
operator as in (23) with coercivity constant k > 0. Let u € Wli)’cp (M) satisfy

Lu>f>0 on Q:={xeM:ulx)> s} 43)

for some sy € R and some measurable f : M — R. Let w := (u — s9)+ and
A, = A(x,u, Vu). Then for any g € (p — 1, +00) and for every 0 < n € C°(M)

kP (p —1)P~! _ - : —ptl
e | WV = A ek [ nPwt A [ Pty
eP~Iminfl, yP=1} Jo_ 2, 2,

44)

wherey :=q—p+ 1. Ifuy € LfOC(M), this can be strengthened to

kP (p — P!
ep—1 )/p—l

/ wd|Vn|P = (l—e)yk_”/f n”w‘f"’|Au|1”+/ nPwi=PHf L (45)
QJ S|

0 Q2 0 QA'0

In particular, if us € LS (M) then this holds for any g € (p — 1, 400).

loc
Proof Let0 <n e CX(M),q € (p—1, +00) be given and set F(s) = s¥ fors > 0,
where y := g — p + 1 as in the statement of the Lemma.
Ifp—1<g <pthen0 <y <1 and by Lemma 10 we have the validity of (45)
for any ¢ € (0, 1]. (Note that in this case (44) and (45) coincide.)
If g > p then we proceed by approximating F from below with globally Lipschitz
functions. For any & > 0 let F}, : (0, 4+00) — (0, +00) be defined by

sV if0<s<h
hls if s >h.

Fy(s) = {

Then Fj, is piecewise smooth with a corner point at s = & and satisfies F,(s) = O(s)
as s — +00, so by Lemma 10 we have

kP(p — P! [Fi(w)]? »
e /g T

z(l—e)k”’/./ nPF,;(w)|Au|”’+/ n’ Fp(w)f .

0 )
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By direct computation we have

Flw)|Aul” = ywd P |Aul” Locwen) + h9P)Ay)” Loy ace. on
[Fr))” _ w?
[F) (w)]p~=! = yr-1

Lo<cw<ny + A7 PwPliy-p <w?  on Q

We substitute the second estimate into the previous inequality to obtain

kP(p — P!
5‘[7—_1/ w?|Vn|?

0
z(l—s)k—l”/ n!’F,;(w)|Au|f”+/ n? Fp(w) f
Q

" Q)

and then letting 7 — 400 we get, by the monotone convergence theorem,

kP(p — 1)P~!
Ho= D7 / w!|Vn]?

gp—1
0

> (1 —S)Vk"”/

nPwi=P|A,|P _|_/ 77pwq—p+1f
Q

.YO QTO
proving (44).
If additionally u, € L{ (M), then for any given 0 < n € C (M)

loc

LA IR Iy
/QSO [F’(w)]l’—lwm =yl Sow VP < 400

and from (44) applied for any ¢ € (0, 1) we deduce (since f > 0) that also

/ nPF/(w)|AM|P/ Ey/ nl’wq—P|Au|ﬂ' < 400.
Q

S0 Q S0

Since this holds for any 0 < n € C2°(M) we have that F/(w)lAu|1’/1QS0 € LIIOC(M),

that is, the hypothesis (40) in Lemma 10 is satisfied, and then (45) directly follows
from that lemma. O

We briefly comment on the condition u € L5, (M). If the function A satisfies the
additional coercivity condition

A(x,5,6)| = kal§|P™" VxeM,seR &M (46)

for some constant k > 0 (note that this is the case for the p-Laplacian L = A ) then
subsolutions of Lu = 0 on M are locally essentially bounded above, that is, condition
uy € Lpy (M) is automatically satisfied for any u € WIL’CP(M) satisfying

Lu>0 weaklyon M. (C9))
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More generally, uy € Ly (M) holds for functions u € WIL’C” (M) such that, for some

so € R, the truncation w := (u — s¢)+ satisfies Lw > 0 weakly on M.

Proposition 12 Let M be a Riemannian manifold, p > 1 and L as in (23) a weakly
p-coercive operator for which (46) holds. Let u € Wﬁ)’cp (M) satisfy

L(u—s0)+ >0 weaklyon M (48)

for some sy € R. Then u € L. (M).

Sketch of proof For p > dim M the thesis holds because Wllo’cp (M) € C(M) by (local)
Sobolev embeddings, while for | < p < dim M the statement can be proved by Moser
iteration technique, using the Caccioppoli-type inequality

20 (p — 1P~ 1kpr
y min{l, y =1}

/ IVlP (u = s0)f. = k3 / 0 (u — s0)4 "I Vul?
M M

obtained by (44) (with the choices ¢ = 1/2 and f = 0) and (46), together with the
fact that every point x € M has a relatively compact neighborhood U € M on which
a Sobolev inequality holds. In fact, the Moser technique can be used to prove that

(u —50)4+ € L. (M), from which u € Ly (M) immediately follows. O

Since the argument above is of local nature, clearly it also applies in case (46) is
satisfied with k, : M — (0, +00) a continuous function possibly decaying to zero at
infinity. However, in our analysis we are not assuming coercivity conditions of the form
(46), and in fact we don’t know whether a function u € WIL’C” (M) such that Lu > 0
on some superlevel set {u > so}, with L only satisfying assumptions (24)—(25) from
Sect. 2, is necessarily locally upper bounded.

We are now ready to state and prove the main theorem of this section.

Theorem 13 Let M be a complete Riemannian manifold, p € (1, +00) and L a weakly
p-coercive operator as in (23) with coercivity constant k > 0. Let ». > 0, u € [0, p]
andV : M — (0, +00) be a continuous function satisfying

V=2 ifu=0 “9)
lixn;i(gf [dist(x, 0)*V(x)] = A forsome o € M if ;€ (0, p].
Letu € WIL’CP(M) satisfy, for some 0 < so < esssup,,u,
Lu>VuP™'  on Qg :={x € M : u(x) > so}.
Then for any xo € M and q € (p — 1, +00) we have
_ K

lim inf Plog | w—s0)%>Co>0 if uelo,p) (50)

R—+o00 R ~» Bg

Lim inf logRlog BR(u—SO)'izC1>p ifu=p (51)
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where Cy and C1 are determined by

_plg—p+ DY/l

Co:
’ (p— D"k

1 ’
.o -pt=c.
Moreover, in case u = p we have

1
lim
R—+o0 log R

log/ (u—s0)t =Co+p (52)
Bpg

whenever the limit on the LHS exists.
Remark 14 Note that Co + p > C; > Cp always.

Proof Let us set w := (u — s9)+ and A, := A(x,u,Vu). Let xo € M and g €
(p—1, 4-00) be given. For the sake of brevity, forany R > 0 we shall write Bg to denote

the geodesic ball Bg(xg). Without loss of generality we can assume w? € LlloC (M),

since otherwise f Br w? = +o0 for each sufficiently large R > 0 and the conclusion
is trivial. Note that under this assumption we also have w97 |A,|? /IQSO € LIIOC(M ),
as a consequence of (45) in Lemma 11. Let G, H : (0, 4+00) — [0, +00) be defined
by

G(1) :=/ wi,  H(@) :=/ wi =P A, . (53)
B; onﬁBt

By the previous observation, the functions G and H are well defined, non-decreasing
and absolutely continuous on any compact interval contained in (0, +00). In particular,
they are differentiable a.e. on (0, 4+-00).

Since so > 0, we have u?~! > w”~! on €25,- Then by applying Lemma 9 with the
choices F(s) = s? Pt and f = Vw?~! we have

/ wd P41Vl = kP /
M Qy

forany 0 < n € C°(M), where y := g — p+1 > 0, and applying Young’s inequality
as in (37) we have, for any o > 0,

P A7 + f Viw?  (54)
M

0

1 o? o /
[wrrtiaawn = 2 [ wnwn+ S [ weria e 69
M P Jm p

Q,

Let ¢ € (0, 1) be given. By condition (49) and continuity and (strict) positivity of
V, there exists Rg = Ry(xo, &) > 0 large enough so that

e
\% >_———  foralxe M\ B 56
) = dist(x, xg)* orat x \ Bry (56)
and
. A—e
infV>—— VR>Ry. &9
Br RH*
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Indeed, for ;© = O this is clearly true since V > A everywhere on M by assumption
(49). In case u > 0, note that it is possible to first find 9 > 0 such that

A—¢
Vx) > W forall x e M \ Bro (58)

since from (49) and the triangle inequality we have
lim inf [dist(x, xo)*V(x)] > A,
X—>00

and then for any R > rp we get

)\‘ —
inf V > min Jinf v, 2—2 1 (59)
Br By, R~

From the assumption that V is continuous and strictly positive on M we have
infBrO V > 0, so we can find Ry > ro such that infB,O V>0n- e)/Rg. Then
for any R > Ry the RHS in (59) is just (A — &)/ R", and so (56)—(57) hold for such
Ry.

Let t > R be a value for which G’(¢) and H'(¢) both exist. For any 0 < § < ¢
choose ns € C2°(M) satisfying

@) ns=1 on B;_s,
(i) ns=0 on M\ B,
@) 0<ns=<1 on B\ B

1
@) Vsl <5 +1 on M.

Since [Vns| < (1 +8")1p,\ 5, We have

[wrmmi=(5e1) [ wrma4p@00020
M 8 B\B;_s )

and letting § N\, 0 we get

lim sup/ w!|Vns| < G'(1).
M

§—07t

Similarly, we have

limsup/ wi =P AP [Vs| < H'(1) .
Q

§—0F S0
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On the other hand, since ns = 0 on M \ B; and ns — 1p, pointwise as § — 0, by the
dominated convergence theorem and also using (57) we get

. — / _ /
lim nswi=P|A, P =[ wi™P|A, P = H(t)
s=0t Jag, QN5

lim Vnsw? :/ Vw? .
§—0t Jpm B,
Thus, in view of (54)—(55) we have, for any ¢ > 0,
oP o~ P /
—G' () +——H'@®) = / Vw? +yk " H(t) (60)
p p B:

and using (57) to further estimate

/quzk—é‘/ wq:)x—é‘
B, th o Jp, t

we obtain

p A= ,
6w+ T 102 " EGw vk T H®).
p p th

We apply the above reasoning to each value r > R( for which G and H are
simultaneously differentiable to deduce that for any o : (0, +00) — (0, +00)

[o(®)]? G()—l-[ o®)]™* H(t)>A G@t)+ vk~ PH(;) forae.r > Ry
p 14

that is, multiplying everything by p[o ()]~ 7 and recalling that p + p’ = pp’,

P — ph—¢) Y "
()_—<() el H(t)) (61)

G/
OF o )]PP o (1Pir

for a.e. t > Rp. We now consider separately the cases u € [0, p) and u = p.
Case u € [0, p). Assume that i € [0, p). Choosing

1 [ I I
ci=cie=(p—1n (—eny wk'/r
(p—1) oy
02=C2’8—T ()\, 8) ]k P
1

ph—e) _ pyYP(n—e)l/p
T (p=DPk

€3 =C3c =
-
o(t) =cyt »r
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we get
G'(t) + cot" H' (1) > Cgt_% (G(t) + c2t"H(1))  forae.t > Ry.
Let @ : (0, 400) — [0, +00) be defined by
D) =G(t) +crttH().

The function @ is absolutely continuous on each compact subset of (0, +-00) with

Q' (1) = G'(t) + ot H'(t) + peat" " "H(t)  forae. 1 € (0, +00) . (62)
Then, in view of the previous inequality and since pcat*~H (1) > 0, we get

(1) > c3pt PD()  forae.t> Ry. (63)

We have |Q2,,| > 0 because so < esssupy,u, so there exists Ry > Ry such that
G(Rp) > 0.Let R > R be given. By monotonicity of G and since cot* H(t) > 0, we

have ®(¢) > G(t) > G(R;) > Oforall? € [Ry, R].Since [G(R1), +00) > s > logs
is Lipschitz, the function log ® is absolutely continuous on [R, R] with

(1)
d(1)

(log @) (1) = fora.e.t € [Ry, R].

Thus, integrating (63) and using that ®(R;) > G(R;) > 0 we get

1 C3e

C3 ¢ —% —|—10gG(R1)_1—

1—&
log ®(R) > R, " VR>R;. (64)

R
— K K
lp p

Note that dividing both sides by le%, letting R — 400 and then ¢ — 01 we would
obtain

1-£ _ n/r 1P
L log ®(R) > lim ¢35, = rla=p+D :
P e—>0t

lim inf v
(p— D7k

R—+o00 R

which is (formally) weaker than (50) since ®(R) > G(R). To show that the same
inequality holds with log G(R) in place of ®(R), we proceed as follows. Let R > R;
and & > 0 be given. By inequality (45) in Lemma 11 applied with the choice ¢ = %

and with a cut-off function 0 < n € C°(M) satisfying

@ n=1 on Bp,
(@) n=0 on M\ Bryp ,
(iii) 0<n<1 on Bgyy\Br

2
(iv) IVnISZ on M
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we get
kPP (p — 1)P—1ar

S min{l,y71) G(R+h) = h"H(R) (65)

and thus, choosing & = RH/P,

®(R) = G(R) + caR*H(R)
ok (p — P42
y min(1, y =)

pr (1 — 1\P14p
<(1+ ook .(p HP—'4
y min{1, yP~1}

<G(R)+ G(R + R"'P)

) G(R + R*'Py =: C,G(R + R"'P)

where in the last inequality we used monotonicity of G. Then, from (64) we get

&

C3,
logG(R—}-R“/p) > T_E
p

G(R)  c3e 1%

=% R7 VRS> R (66)
i 1 > 1.
Cy 1 »

R 7 +log

Dividing both sides by (R + R*/? )1_% and then letting R — +o00 we get

. . 1ogG(R + RH/P) C cae R =5 e
liminf ———— > lim . = :
R + RH/P 1— %

R—+00 (R + Rp,/p)l—% T Ro+oo 1 — %

that is,

1—- £
lim P 1og G(R) = ¢3¢

R—+00 R]*%

and letting ¢ — 0" we obtain (50).
Case © = p. Assume now that u = p. We first prove (51), and then (52) in the
assumption that its LHS is well defined.
Proof of (51). Choosing
o(t) = cqt™ VP

for a suitable constant c4 = ¢4 ¢ to be suitably selected later, from (61) we get

1 pP— 1 / P()& - 8) 14
G'(t) + Ft"H () > T (G(t) + mt"H(t)) (67)

for a.e. t > Ry. In analogy with the previous case, we aim at using this to deduce an
inequality of the form

®'(t) > cst ' ®(t) forae. t > Ry (68)
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with
®(t) = G(t) +cetP H(t) (69)

for suitable constants ¢s5 = ¢5,, and ¢ = cg . Computing @ and rearranging terms
we see that the desired inequality takes the form

G'(t) + ctPH'(t) = 5t " (G(t) + ctP H (1)) — peet?  H (1)

=c5t7! <G(t) + cq (1 — ?) tpH(t)> (70)
5

so we want to choose c4, c5 and c¢ matching the following relations:

p—1 p(L—¢) ( p) Y
— =C, —p — =0, c6|1l——

7 = -
Ci’l’ cy cs (A —e)kP

Expressing everything in terms of c5 this amounts to

plP(n—e)l/r (p— Dct
U= T o o
cs pP (A —¢)
y c6 (p— 1! Ves — p)
———— ="(es—p) = 2 - (71)
(A —e)kP Ccs pP (A —¢e)P

that is, raising everything to the power 1/p’ in the last relation, we choose ¢s = ¢s5¢
as the unique value in (p, 4-00) satisfying

Py o)/

Up, .. NI/p _
CS (CS p) (p_])l/p/k

(= 03,8)

and then we let ¢4 and cg be defined accordingly by (71). Summarizing, for there
choices of ¢4, ¢5 and cg we have that (67) and (70) coincide, and each of them is
equivalent to (68) for ® defined as in (69). Then choosing R} > R such that G(R;) >
0 and reasoning as in the previous case we see that

log®(R) > c5.logR +1ogG(Ry1) —c5.10gR1 VR >R
and then by applying (65) with 7 = R we obtain
logG(2R) > ¢5.logR +1log G(Ry) —c¢5.logR; —logCy, VR > R;.

Dividing both sides by log(2R) and using that log(2R) ~ log R as R — +00 we get
(after relabeling)

log G(R
Jiminf 28O® o
R—>+o00 logR '
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and then letting ¢ — 0 we get (51).
Proof of (52). Assume that

log G(R)

£ =
R +oo log R

log/ (u—s0)+—

lim
R—+oc0 log R
exists. From (51) we already know that £ > C; > p. If £ = 400 then (52) is trivially

satisfied, so let us assume that £ < 4-00. Let ¢ > 0 be as above and small enough so
that £ — & > p. Then there exists Ry > Ry such that

RP <R *<GR)<R'™ VR>R,. (72)

We recall, from the discussion preceding the treatment of case u < p, that for each
t > R, such that G'(¢) and H’(¢) exist we have (60), that is,

_p/ ,
—H'(1) > / Vw? + yk=P H(t)
B;

o? o
—G'()+
p

for any o > 0. Using the co-area formula twice together with (56) we get

t
/ Vw? 2/ Vw? :/ (/ Vwi de_1> ds
By Bi\Brg, Ry 9 B;
1 —
z/ hoe <f w? dH”’_l) ds
Rz sP 3By

)\’ —
= —G (s)ds
Ry sP

where m = dim M and H is the Hausdoff measure induced by the Riemannian struc-
ture. Substituting into the above inequality and multiplying both sides by po~=P¢~?
we get

1 _ / _ t
G'(1) 4P LH® _G-eop [/ G'(s) Y (t)}
Ry

> ds + ;
24 opp tP oPtpP sP (A —8&)k—P

and then choosing

1 1 1 1
(p— 1w (A —e)m y kP

€l =Cl,e =
p — 1 1
@=ae=—p =y(L—e) k7P
1
pa—e) _ pyPo—el/r
C3 =C3 ¢ =

o T (p-1Dk

o=o()=ct” P
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this yields

G'(t) c3
P +C2H(Z) > ? |:

t G/
f ) g5+ czH(t)] forae. t>Ry.  (73)
Ry sP

Let W : (Ry, +00) — [0, +00) be defined by

t /
() = / G ff) ds + 2 H(1) .
R, §

The function W is absolutely continuous on each compact interval contained in
(R>, 400) and inequality (73) can be restated as

V() > C3t—’8\Il(t) forae.i> Ry. (74)

Reasoning as in the previous cases, since W # 0 we reach the conclusion

log W (R) -

lim inf . 75
ngfclxn log R = e 7

We now use this to deduce (52). Let R > R; be given. Applying (65) with h = R,
integrating by parts and then using (72) twice we get

R /
W(R) < / GO 45+ ¢, ECR
R, SP

2 RP
_G(R) G(Ry) R G(s) G(2R)
=r Rg + /2 Sp+lds+C2

G(R) G(Ry) /R the—p_1 G(2R)
< - +p s P~ ds 4+ Cy

RP RY R RP
_G(R) G(Ry)  pR™P  pRT? Lo, GeR
~ Rp Rl " t+e—p Cte—p  RP
_G® pR*  G(R) L, GCR  G(Ry) pRYTETP
="Rr " {+e—p RP 2TRp RY  t4e—p’

Since G is non-decreasing, we have G(R) < G(2R) and then

p

— + (1 + Cz)R_zg) R™PT2G@2R) + 0(1)
t+e—p

V(R) < <
as R — +o00. By (72) we see that R""T2¢G(2R) > 2P R¥* — 400, s0

log [(L +(1+ Cz)R2€> R™Pt2GQ2R) + 0(1)] ~ log(R™PT**G(2R))
L+e—p
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as R — +o0, and then

_logW(R) .. . _log(R"PT?*G(2R))
liminf ——— < liminf
R—+oco logR R—>-+00 log R
1og(G(2R))

= —p 4+ 2¢ + liminf
P R—+oc0  logR

and then, using that log R ~ log(2R), after relabeling we get

log W (R
lim inf 128 Y (R)

. log G(R)
< - 2 1 —_— .
R—>+o00 logR — Pt 8+R1m

—+oo  logR
Substituting this into (75) yields

log G(R)

li —_— > -2
R—]>I—Ii-1c>o R Z@Betp ¢
and then letting ¢ — 0" we finally obtain (52). O

Remark 15 As a byproduct of the previous proof (namely, inequality (66) above), we
showed that if € Wll’p (M) satisfies

ocC
Lu>Vu’™"  on Qy, = {u > so}
withV : M — (0, 400) continuous and matching (49) forsome A > Oand u € [0, p],

then for each ¢ € (0, A) and Ry > 0 large enough (so that (56)—(57) are satisfied) and
for each Ry > Ry such that

I ::/ (u—so)i >0
BRI
we have

R
I
(u—s0)% > CO,S/ TP dr + logC—l YR>R, (76

log/
B

R+RM/P Ry 2
where
coo_Pa-prD G-l K= DAY
0 (p— DIV koo (r —&)min{l, y7 1}

do not depend on u. Inequality (76) only involves the integrals of w = (u — so)‘i on
geodesic balls, so it would still hold for functions u € quOC(M ) that can be approxi-
mated pointwise and in L7 norm on balls B of arbitrary large radii by Sobolev functions

ue WIL’CP (B) satisfying

Li>V0a|’™>i on B.
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For instance, when L = A is the Laplace—Beltrami operator and V = 1, a non-
trivial result concerning local smooth monotone approximation of distributional LlloC
subsolutions of Au = u (namely, Theorem D in [3]) allows to extend the estimate

1
liminf — [ uf >2\g—1
R Jp,

R—+o00

to distributional and not everywhere negative LllOC subsolutions of Au = u.

The following examples are aimed at showing the sharpness of the constant appear-
ingin (50) and (52). Let M be amodel surface, that is, a complete Riemannian manifold
diffeomorphic to R? and radially symmetric around some point o € M so that in global
polar coordinates (r, ) centered at o the metric takes the form

(,)=dr? + g(r)?do?

for a smooth g : (0, +00) — (0, +-00) satisfying g’(0*) = 1 and g (0T) = 0 for
eachk € {0} UN. Let v : [0, +00) — R be smooth and such that

v©P0)=0 VkeN and V(@) >0 Vi>0.

Thenu :=vor € C®(M), |Vu| #0on M \ {0} and for any p > 1 we have
/
Apu = [(p —DHHPR + g—(v/)”_l] or on M\ {o}. a7
8

Case u € [0, p). Let p > 1 and u € [0, p) be given. Consider a, ¢ € R satisfying
c>0, (p—Dc+a=>0 (78)
and set

g=1-2c1].
p
Choose g and v satisfying the above requirements and such that

t for 0 <t <1/2
HOES 8
exp(at’) fort>1

and

v(t) = exp(ctﬂ) fortr>1.

By (77) we have o
Apu=VuP~'  on Q:=M\B (79)
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where

_ -1
V:<(p—1)<1+u)c+a)ﬁpcp : (80)

cprp ri

Letsop > €. Since v is non-decreasing, the set 25, := {u > so} coincides with M \B_to,
where 19 = [(logso)/c]'/# > 1, so in particular Q;, € Q. Also, forany ¢ > p — 1
we have

R R
w—s9)? = / g(s)(w(s) —sg)?ds ~ / exp((a + qc)sﬁ)ds as R — +o0
fo

Br fo

where the asymptotic equivalence between the integrals holds because
g(s)(w(s) —s0)? ~ exp((a + qc)sﬂ) — 400 as s > +00.

(Recall thata+gc > a+ (p—1)c > 0 due to our assumptions on a and c.) Integrating
by parts yields

K R & exp((a +qo)sP)
B _ ds
/lo exp((a + gc)sP)ds = fm EPEY= ds

! (exp((a +qoR?)  exp((a+ qc>r§>>

" (@+qoB RA-T =
1-8 R
B B
- s Pexp((a+qc)s”)ds
@+q08 Jy b
- 1 exp((a + qc)Rﬁ) _ exp((a + qc)t(’)s)
= a+qo)p RF-T &
—B R
1—B)t,
— ﬂ exp((a + qc)sﬂ) ds
(a + C]C)ﬂ 0
hence, rearranging terms and using that g8 € (0, 1], we get
M+0(1)>/Rex ((a + c)sﬂ)ds> M+0(1)
arRP =), T = wpRrT

for R — +o00, with
ar=(a+qop. a=(@+qgp+1-pr".
Passing to logarithms, we obtain

R
log/ (u —so)d ~ log/ exp((a + gc)s?)ds ~ (a + qc)R?
Br 0]
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as R — +o0, that is, multiplying both sides by R ~# and recalling that 8 = 1 — %,

1 - &
lim b log/ (u—s50)t = (a+qec)p.
R—+o00 Rl—; Bg

On the other hand, from (80) we clearly have
lim r()*V(x) =1 with A=p82c""1(p—Dec+a). (81)
X—> 00

Since the p-Laplacian is weakly p-coercive with coercivity constant k = 1, to prove
that estimate (50) is sharp it is enough to show that for any p and ¢ > p — 1 there
exist a and c satisfying (78) and such that

plg—p+ 17

D7 P ((p = De+a)/?. (82)

a+qc=

This can be done by picking any a and ¢ > 0 such that

(p—Da=(q—plp—-1)

since this would yield

a+tqc=p(p—Dct+a)= %c >0
and then
a+qc=(a+qo"@+q0Vr = (%CYW (p((p — De+a)'/r
= ”(q(;_”—wcl“”«p —De+a)'/?

as desired. For instance, a feasible choice for a and ¢ would be the following:

—1
a=-—1 andc:p— if p—1l<g<pp-1
pp—1—gq
a=0 and c=1 ifg=p(p—-1 (83)
-1
a=1 andc:p— if g>pp—1).
qg—pp—-1

Case u = p. Let p > 1 be given, consider a, ¢ € R satisfying (78) and choose g
and v satisfying the general requirements and such that

) = t for 0 <t <1/2
S =) patp for 1 > 1
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and
v(it) =1t fort>1.
By (77) we have
Apu=VuP™' on Q=M\B|
with

y_o T =Deta)
rpP

Let so > 1 be given. Then Q, := {u > s} is contained in {u > 1} = M \ By and for
any g > p — 1 we have

R
log | (u—s0)% ~ log/ s9TPTITICds ~ (a+ p+gc)log R as R — 400

Br S0

that is,

lim log | (u—s0)? =(@+qgc)+p
R—+oo log R Br

and then again to prove sharpness of (52) we need to show that for any p > 1 and
q > p — 1 we can choose a and c satisfying (78) and

plg—p+DYP P (p— e +a)ll?

a+qgc= e

)

but this is precisely what we did in the previous case.

4 TheCaselu >0

In this section we are concerned with lower bounds on the growth of functions u
satisfying the differential inequality Lu > 0 on a non-empty superlevel set. The main
result of this section is Theorem 20 below, corresponding to Theorem 6 from the
Introduction. The starting point in this case is again Lemma 9. For ease of the reader
we point out that in this case it takes the following form.

Lemma 16 Let M be a Riemannian manifold, p € (1, 400) and L aweakly p-coercive
operator as in (23). Let u € Wlt’cp (M) satisfy

Lu>0 on Qg :={xeM:ulx) > sy} (84)
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for some sy € R. Then for any 0 < n € C°(M) and for any non-negative, non-
decreasing, piecewise C' function on (0, +00) we have

/ F(w)IAuIIVnIE/ nF'(w)|A,|” (85)

Q5 Q5
where w := (u — s9)+ and A, ‘= A(x,u, Vu).
The main tool to prove Theorem 20 is the next proposition.

Proposition 17 Let M be a complete, non-compact Riemannian manifold, p €
(1, 400) and L a weakly p-coercive operator as in (23). Let u € WIL’C’? (M) satisfy

Lu>0 on Qg :={xeM:ulx)> sy} (86)

for some sy € R.
(a) For any q > p — 1 and for any xo € M and0 <r < R

_ 1-p
, —r-l R 1/(1=p)
/ wi™P|A, [P s—(p. ) / </ wq) ds (87)
B, (xR, min{l, y7} \ J; 9By (x0)

where w := (u — $0)4, Ay = A(x,u,Vu)andy :=q — p + 1.
(b) If uy € Ly, (M) and F is a non-negative, piecewise C! function on (0, +00)
such that F' > 0 everywhere on (0, +00), then

_ I—p
/ S " Fap \"7
F' Ay r — P 1 f / [7 d 38
/B’(""J)”on =D ( r ( QM08 (xg) [F/ ()17~ * (88)

forevery xo € M and 0 < r < R, with w and A, as above.

Remark 18 We remark that the exponents 1 — p and 1/(1 — p) appearing on the RHS’s
of (87) and (88) are negative. With the agreement that 0 = 400 and (4+00)¢ = 0 for
any a € (—o0, 0), the inequalities make sense also in case one or more of the integrals
on the RHS’s are either vanishing or diverging.

Proof Let w and A, be as in the statement. We first prove (b), since the proof of (a)
relies on the same idea coupled with suitable approximation arguments.

Proof of (b). Suppose that u € L% (M) and let F be as in the statement. The
function F satisfies all the requirements in Lemma 16 and therefore

/QF(W)IAMIIVﬂIZ/ nF' (w)|A,|” (89)

50 L4

for any 0 < n € C2°(M). Note that both integrals are finite since F(w), F'(w) €

L*(Qy,) and |A, g, € L (M). Applying Holder inequality with conjugate expo-

loc
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nents p and p’ as in (37) we further obtain

1/p 1/p
! F p !
</ F/(w)lAul”IVm) (/ L)J,IIVnI) 2/ nF'(w)|Ay,|”
Q Q

o [F/)] 2
(90)

where the middle integral is again finite since [F(w)]l’/[F’(w)]l’_1 € L™(Qy,). Let
xp € M be fixed and let us write B for the geodesic ball By(xp), for any s > 0. Let
G, H : (0, +00) — [0, +00) be defined by

S0

G(s) = f F/(w)|Au|p/, H(s) := / M. 91
45, NBy QyyNBy [F'(w)]P~!

Since F/(w)|Au|1”/1g2A,0 € LIIOC(M) and [F(w)]P/[F/(w)]p_llng € L®(M) C
LIIOC(M ), the functions G and H are well defined, non-decreasing and absolutely
continuous on any compact interval contained in (0, +00). In particular, they are dif-
ferentiable a.e. on (0, +00). Let s > 0 be a value for which G’(s) and H’(s) both

exist. For any ¢ > 0 choose n, € C2°(M) satisfying

@) n.=1 on By,
@{i) n.=0 on M\ Bgye,
(i) 0<ne<1  on By B

1
(iv) |Vngl<—-4+1 on M.
€

Then

J

and passing to limits as ¢ — 0" we get

G(s+e)—G(s)

1
F ) Aul[Vne| < (— + 1)f Fw)|Au < (1+¢)
& v0m3s+s\Bs &

S0

lim Sup/ F(w)|AulIVne| < G'(s) € [0, +00).
Q

e—>0t 50

Similarly, we obtain

hmsupf EEAC)
e—0t JQy, [F/(w)]Pil -

and by dominated convergence theorem we also have

lim | neF'(w)A,lP = G(s).
e—07F Q
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Then by (90) we deduce
[H/(s)]p//pG/(s) > [G(s)]”/ forae. s > 0. (92)

Moreover, by the co-area formula we have

H'(s) = / IEACH) =:¢(s) forae. s>0. (93)
QN3 By [F'(w)]P~!

Let0 < r < R be given. If G(r) = 0 then (88) is trivially satisfied. If G(r) > 0 then
by monotonicity of G we have that G(s) > G(r) for all s € [r, R]. Since G'(s) is
finite for a.e. s € [r, R], from (92) and (93) we infer that ¢(s) > O for a.e. s € [r, R]
and then

G/(S) ’
- > [p(s)]7P/P  forae.s €[r,R]. (94)
[G()]P
Since G(s) > G(r) > O forall s € [r, R] and [G(r), +00) > t > t!/17P) is
Lipschitz, the function G'/(1=P) = G s absolutely continuous on [r, R] with

d Ly 1 G
OO = ey

forae.s € [r, R].

Thus, integrating (94) we get (noting that p’/p = 1/(p — 1))

R G/ R
(v =601 — Gy ] = [T 2 s> [Tl s,

Discarding the term containing G (R) and raising everything to 1 — p we get

R I-p
G(r) < (p— 1P~ ( / o (s)]/0=P ds)

that is, (88).

Proof of (a). We observe that the argument developed above can be applied straight-
forwardly, without the assumption u; € L{Y (M), as long as we consider a piecewise
C! function F : (0, +00) — (0, +00) with F’ > 0 such that

[F(w)]”

/ P’ 1 T/ oNp—1
F (lU)|Au| IQSO S LIOC(M) s [F/(w)]p—l

Lo, € Lig(M). (95)

Indeed, if the conditions in (95) are satisfied then all the integrals appearing in (89) and
(90) are finite and the functions G and H defined as in (91) are again finite-valued,
non-decreasing and absolutely continuous on every compact interval contained in
(0, +00).
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Caseqg > p.Sety :=q — p+ 1> 1.Forany h > 0 define F}, by

Sy
— if0<s<h
Fi(s) =1 [y (96)
— 4+ (s—hht ifs>h.
14

Note that Fj, is positive and C on (0, +00) with

sv—1 if0<s<h

=t ifs>h. ©7)

f%(5)=={

We have F ,2 > 0 everywhere on (0, +00) and F;l(w) € L*(RQy,), therefore also
F,;(w)|Au|p/IQSO € LIIOC(M), due to (26) and u € WIL’CP(M). Moreover,

[Fp(w)]? wr tp- . y =1\
T = 1 hY -—n) 1
[F/,(w)]l’—l Q) yP {0<w<h} T w ” (w>h)
wyTr—1 B
< — 5 o + 1 T WP Ly (98)

so0 in particular

p
% 2 S H7I07 € Ligo(M)
h

sincey > landu € WIL’CP (M). Hence, conditions (95) are satisfied for F = Fj, and
we can repeat the argument in the proof of (a) up to obtaining

[on()1P/PG)y(s) = [Ga(s)]”  forae. s >0
with

, [Fn(w)]?
Gi(s) = Fj(w)|Au|”", = / e
n(s) /Q g, FHODIA PO = [ o T

From (98) and recalling that y = ¢ — p + 1 we also have

MIQ < w? on M
[fn(w)lp=1 770

hence

on(s) < @(s) I=/ w? Vs>0.
3B,
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Reasoning again as in the proof of (a) we deduce that either G, (r) = 0 or

Gp(s) = Gp(r) >0 Vs € [r, R]
% = [pn()1"/ 1P = [p()]/1=P forae.s € [r, R].

In any case we get

R 1-p
/ min{w, )~ |AL" = Ga(r) < (p = P ([ [<P(S)]1/(1_P)dS>
B, f

and the conclusion follows by the monotone convergence theorem letting 7 — +o0.

Case p—1 < g < p.Sety := g — p+ 1 asin the previous case and note that
now y € (0, 1). Forany & > 0 let Fj, be defined as in (96). We note that Fj, is positive
and C' on (0, +00) in this case too, with F, h/ > (0 everywhere on (0, +00). Then from
Lemma 16 we get

/ Fr(w)|AullVn| = / nF,w)A? VO<neCOM).  (99)
S5 £
From the expression (96) we see that F, (w) < Cp,,, (1 +w), hence Fj, (w)|A, |IQS0 €
LI]OC (M) by Holder inequality. By (99) this also yields

Fj(w)|Ay|" 1g,, € L (M).
On the other hand, we have

[Fp(w)]P wytp—1 o1 W\ P
[E ()T 2 =Ty Lio<w<ny +h w—h+ ; | P

wy+p—1

IA

o fw—h h\?
7 Lio<w<n) +h” 1( > +;> L=

wyTr—1 Wy —lyP

= o7 To<w<ny + o

Liw=n) (100)

where the inequality in the middle holds because w — h < (w — h)/y on {w > h},
since 0 < y < 1 in this case. From this estimate we get

[Fx ()] he py!
F )T o =M\ 05 0
h 14 V4

wl’} €Ll .(M).

Hence, both conditions in (95) are satisfied. Setting again

[Fr(w)]?
N8, L, (w)]P~!

Gh(S)Z/ Fl(w)|A,l?, </)h(s)=/
Qg N By Q
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we can repeat once more the general argument to get that either G, (r) = 0 or

Gp(s) > Gu(r) >0 Vs € [r, R]
G, (s)

(G (5] > [pn()]1V/I=P)  forae.s € [r, R]
n(s

and in any case we get

R I=p
/F;i(w>|Au|f”=Gh<r>s(p—l)f"l(/ [q)h(sn”“—f’)ds) . (101)

B,

We now let i — 400 in both sides of (101). By Fatou’s lemma we have

’ ’
liminff Fj(w)|Ayl? 2/ w’ AP Ef wiP AP
h—+00 JQ, B, Q4,NB; 50N Br

(102)
Concerning the RHS of (101), we aim at showing that
R R
lim f [ ()11 =P ds = f [p()]'/ = Pds (103)
h—+o00 J, r
with
1
(s) = — w? .
y? Jos,
From (100) and recalling that y + p — 1 = g we have
1 hy !
0 < gn(s) — —/ w? < f w?. (104)
Y? JoB,n{w<h) Y? JoBn(w=h)

Sincew € WIL’CP (M),fora.e.s € [r, Rlwehave w € L?(dBy) by the co-area formula.
Then, using the monotone convergence theorem on the first integral in (104) together
with the fact that ¥ 1 — 0 as h — 400 (due to y < 1) we get

1
lim @,(s) = —/ w? = ¢(s) forae.s €[r, R]. (105)
h—+0c0 yP

B;

If '/0=P) ¢ L1([r, R]), then by (105) and Fatou’s lemma we have

R R
liminf/ w;i/“_")z/ PV/1=P) — 4 o0
r r

h—+00
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50 (103) holds with both sides equalling +oc. Suppose, instead, that !'/1=P) ¢
L'([r, R]). From the first line in (100) we also deduce the reversed estimate

[Fy(w)1? w7 o
[F};(w)]pfl Qg = yP 1{O<w<h} +h w l{wzh}
wy+p—1 .
= vP 1{O<w<h} + w” wpl{wzh}
> wr Pl — e

where in the second inequality we exploited again the fact that 0 < y < 1. Then, for
every h > 0 we also have ¢;, > y? ¢ and therefore

(p}ll/(l—l’) < y—p/(p—l)(pl/(l—p) on [r, R].
Hence, if gal/ (=) e L1([r, R]) then (103) follows by the dominated convergence

theorem. In any case, from the continuity of [0, +00] > ¢ > t1=P € [0, 400] with
the agreement that 0' =7 = 400 and (+00)! =7 = 0 we get

R I-p R I-p
, Jim (/ [cph(sﬂ”“—”)ds) =<f [<p(s)]1/(1_p)ds) : (106)

By (101), (102) and (106) we obtain the desired conclusion. O
From Proposition 17 we easily deduce the following lemma.

Lemma 19 Let M be a complete, non-compact Riemannian manifold, p € (1, 4-00)
and L a weakly p-coercive operator as in (23). Let u € Wli)’cp (M) satisfy

Lu>0 on Qg :={xeM:ulx)>so} (107)
for some sy € R and also suppose that
A(x,u,Vu) #0  onaset Eg C Qg of positive measure. (108)

Then there exists ro > 0 such that forany g > p — 1

R 1/(1=p)
/ < (u —so)i) ds <400 Vrg<r <R <+400. (109)
r 0By

In particular,
Hmfl(QsO NadB,) >0 forae.r > rg (110)

where H" " denotes the (m — 1)-dimensional Hausdorff measure. Moreover, if u. €
Ly> (M) then also

R 1/(1=p)
0 < / (H’"_I(QSO N aBs)) ds <400 Vrg<r<R<+oo. (I11)
r
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Proof Choose rg > 0 such that |B, N Eg| > O for every r > rg, where Ej is as in
(108). Then, for every r > rg

’ ’
/ WP | Ay P z/ Wi P|A,” > 0
Berso B,NEy

and then applying Proposition 17.(a) we see that the RHS of (87) must be strictly
positive for any R > r, thatis (since 1 — p < 0),

R 1/(1=p)
/ (/ wq> ds <400 VR>r.
r 0By

. /(1—=p) .
In particular, ( /: 9B, wi ) must be finite for a.e. s > r, hence for a.e. s > ro by
arbitrariness of r > rg, and therefore it must be f 9B, w? > 0 for a.e. s > rg, yielding

(110). If uy € Ly5.(M), to prove (111) we start from the two-sided estimate

1
/ (14w,
+esssupg, w)? Jo, nos,

H" 1 (0By) > H" (R, NBy) > q
holding for each s > rp, from which we deduce
1/(1=p) 1/(1-p)
(r'eBo) " = (@ noBy)

1/(1=p)
< (1+esssupBRw)p/(p_1) (/ (l—f—w)p) .
Q

50N By
The function v(r) := H™ ' (9 B,) satisfies
1 o0
v(r) >0 forr>0 and v, - € L5 ((0,+00)) (112)
v

see Proposition 1.6 in [1], so we have

R i 1/(1=p)
/ (H (BBS)> ds>0 VO<r<R

r

and by Proposition 17.(b) applied with the choice f = 1 and F(s) = 1 + s we get

R 1/(1
/ ( (l—l—u))p) ds <4+00 Vrig<r<R.
r d By

Putting together all inequalities above we obtain (111). O

We are now ready for the proof of the main result of this section.
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Theorem 20 Let M be a complete, non-compact Riemannian manifold, p € (1, 400)
and L a weakly p-coercive operator as in (23). Let u € Wll)’cp (M) satisfy

Lu>0 on Qg :={xeM:u(x)> so}

for some sy € R and suppose that for some xo € M and q > p — 1 it holds

1

R 1
lim (/ (u—so)i{) s =400 Vr=0. (113
9B,(x0)

R—+o00 r
Then A(x,u, Vu) = 0 a.e. on Qy,. Thus, if A satisfies the structural condition
A(x,s,&) =0 ifandonlyif & =0. (114)
then either u = c a.e. on M for some constant ¢ > so, or u < sg a.e. on M.

Remark 21 Condition (113) can be stated, more briefly, as

( (u — m)’i) o ¢ L'(4+00)
d By

with this notation meaning that the function ¢ : (0, +00) — [0, +00] given by

__1
o(s) = (/ (u— So)i) T ve =0
3B,

is not in L' ((r, +00)) for any r > 0. The previous Lemma 19 implies that this is a
meaningful condition, since in general only two cases are possible:

(i) ¢ = +oo a.e. on (0, +00), and then 2, has zero measure while condition (113)
is obviously satisfied, or

(ii) there exists rg > 0 such that ¢ < 400 a.e. on (rg, +00) and ¢ € L'((r, R)) for
any rg < r < R < +00, so that (113) is satisfied if and only if ¢ is not integrable
in a neighborhood of +o0.

Concerning case (ii), note that in general ¢ may be integrable at 400 and still satisfy
¢ = 400 on (0, rg) for some ry > O (for instance, on R” this may happen if u satisfies
u < spon By and u(x) > |x|* as x — oo for some a > (p — n)/q), so the clause
“VYr > 0”in (113) cannot in general be replaced by “for some r > 0.

Proof of Theorem 20 Suppose, by contradiction, that A, := A(x, u, Vu) is non-zero
on a set Eg C Qj, of positive measure. Then reasoning as in the proof of Lemma 19
we see that there exists » > 0 such that

/
/ wi P|A P >0
Q5 NB;
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and by Proposition 17 this implies that

R 1/(1=p) min(l. P A\ VAP
/ ( (u — m)‘i) ds < {—y_{ wi™PIA, P
r 3B, (p—D?P QyyNB;

for all R > r, with y = g — p + 1. Since the RHS of this inequality is finite,
letting R — 400 in the LHS we reach the desired contradiction. So, we conclude that
A(x,u,Vu) = 0a.e. on Q.

If A satisfies the non-degeneracy condition (114) then we further deduce that Vu =
0 a.e. on €2, and since the function w = (u — s9)+ € WIL’C” (M) has weak gradient
Vw = lgxo Vu this yields Vw = 0 a.e. on M. By connectedness of M this implies
that w = a a.e. on M for some constanta > 0. Ifa > O thenu = ¢ := 59 + a a.e. on
M (and 24, is of full measure), while if @ = O then u < sp a.e. on M (and 2, has
Zero measure). O

As a consequence of Theorem 20 we have the following Liouville-type theorem.

Corollary 22 Let M be a complete, non-compact Riemannian manifold, p € (1, +00)
and L a weakly p-coercive operator as in (23). Let u € Wli)’cp (M) satisfy

Lu>0 on Qg :={xeM:ulx)> sy}

for some sy € R and suppose that for some xy € M and g > p — 1 it holds

N

R
lim _—
R—+400 J, fo (u —s0)%

Then A(x,u,Vu) = 0, and if A satisfies the structural condition (114) then either
u = c a.e. on M for some ¢ > sg oru < sog a.e. on M.

p—1
) ds =400 Vr>0. (115)

Proof The corollary is a direct consequence of Theorem 20 since (115) implies (113).
For the details, see the proof of Proposition 1.3 in [8] (the parameter § there corresponds
to p — 1 in our setting). O

Remark 23 Note, in particular, that (115) holds if

(u — so)(_{_ = O(RP) as R— 4+ (116)
Bgr

or even if, for some n € N
/ (u — so)’i = O(R”gffl(R)) as R — +o0o. (117)
Br

where

gn(t) = (logt)(loglogt) - - - (loglog---logt) fort>>1.
—

n iterations
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