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Abstract
We solve the shifted wave equation

∂2

∂t2
ϕ(x, t) = (�x + ρ2)ϕ(x, t)

on a non-compact simply connected harmonic manifold with mean curvature of the
horospheres 2ρ > 0. We give an explicit representation of the solution as the inverse
dual Abel transform of the spherical means of their initial conditions using the local
injectivity of the Abel transform and symmetry properties of the spherical mean value
operator. Furthermore, we investigate the shifted wave equation using the Fourier
transform on harmonic manifolds of rank one. Additionally, we obtain a result analo-
gous to the classical Paley–Wiener theorem and use it to show an asymptotic Huygens
principle as well as asymptotic equidistribution of the energy of a solution of the
shifted wave equation under assumptions on the Harish–Chandra type c-function.
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1 Introduction

In their paper [1], the authors solved the shiftedwave equation onDamek–Ricci spaces
explicitly. These spaces together with Euclidean and hyperbolic spaces provide all
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known examples of non-compact simply connected harmonic manifolds. A harmonic
manifold is a complete Riemannian manifold (X , g) such that for all p ∈ X the vol-
ume density function in geodesic polar coordinates

√
gi j (p) = θq(p) only depends

on the geodesic distance. The Euclidean and non-flat symmetric spaces of rank one
are harmonic. It was a long-standing conjecture that all harmonic manifolds are of this
type, referred to as the Lichnerowicz conjecture [36]. The conjecture was proven for
compact simply connected spaces by Szabo[45] but shortly after this, in 1992, Damek
and Ricci [18] provided for dimension 7 and higher a class of homogeneous harmonic
spaces that are non-symmetric. These manifolds are called Damek–Ricci spaces. In
2006, Heber [24] showed that all homogeneous non-compact simply connected har-
monic spaces are of the type mentioned above. Since homogeneous spaces have a rich
algebraic structure one can use tools from harmonic analysis, see [29] and [42]. In
[10], the authors showed that certain analytic properties of harmonic spaces can be
obtained without the assumption of homogeneity only assuming purely exponential
volume growth or equivalently rank one condition. Furthermore, in [40], the authors
showed that important properties of the Abel transform and its dual are true for general
non-compact harmonic manifolds. We now use their methods to generalise the results
from [1]. The idea of the proof is identical: We use the symmetries of the mean value
operator to express the solution of the shifted wave equation via the inverse dual Abel
transform of spherical means of its initial conditions.

In Sect. 2, we provide all the generalities on harmonic manifolds needed for this
discussion. In Sect. 3, we recall important properties of the Abel transform and its
dual from [40], and in Sect. 4, we show Ásgeirsson’s mean value theorem for har-
monic manifolds (Lemma 4.1) before solving the shifted wave equation with smooth
compactly supported initial conditions explicitly in Sect. 5 (Theorem 5.1). Up until
this point, we assumed (X , g) to be a simply connected, non-compact and non-flat har-
monic manifold. Starting with Sect. 6 we investigate the shifted wave equation under
the additional assumption that X is of rank one and thereby obtain similar results to
[5]. To conduct this investigation, we will use the Fourier transform on X . For this
purpose, we give a brief overview of the Fourier transform on harmonic manifolds
of rank one and study the action of the Laplacian under Fourier transform. Then in
Sect. 7, we generalise the Paley–Wiener type theorem (Theorem 7.4) from [5] and use
it to obtain bounds on the energy of a solution of the shifted wave equation on X under
assumptions on the initial conditions. In Sect. 8, we improve the Paley–Wiener type
theorem from the previous section by showing an analogous result of the classical
Paley–Wiener theorem on harmonic manifolds of rank one (Theorem 8.1), general-
ising the results from [29] and [3] for symmetric and non-symmetric Damek–Ricci
spaces, respectively. The main idea of the proof of this theorem is to use the Radon
transform from [43] to translate the problem to the real line. We subsequently use
this to obtain an asymptotic Huygens principle (Sect. 9, Theorem 9.2) and asymptotic
equidistribution of energy (Sect. 10, Theorem 10.1). Under the assumption that the
c-function of X has a polynomial holomorphic extension into a strip on the upper
half plane in C with the first pole of multiplicity one. This generalises the results of
symmetric spaces ([13–15, 28, 39]), non-symmetric Damek–Ricci spaces ([5]) and
gives a non-radial version of the results in [21].
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2 Preliminaries

In this Section, we give a brief introduction to non-compact simply connected har-
monic manifolds. For more information, we refer the reader to the surveys [35] and
[33]. Let (X , g) be a non-compact simply connected Riemannian manifold without
conjugate points. Denote by Ck(X) the space of k-times differentiable functions on
X and by Ck

c (X) ⊂ Ck(X) those with compact support. We use the usual conven-
tions for continuous, smooth and analytic functions. Furthermore, for x ∈ X denote
by Ck(X , x) resp. Ck

c (X , x) the functions in Ck(X) resp. Ck
c radial around x i.e.

f ∈ Ck(X , x) (Ck
c (X , x)) if there exists a even function u ∈ Ck

even(R) on R (with
compact support) such that f = u ◦ d(x, ·) where d : X × X → R≥0 is the distance
induced by g. Furthermore, for p ≥ 1, L p(X) refers to the L p-space of X with regard
to the measure induced by the metric and integration over a manifold is always inter-
preted as integration with respect to the canonical measure on this manifold unless
stated otherwise. For p ∈ X and v ∈ SpX denote by cv : R → X the unique unit
speed geodesic with c(0) = p and ċ(0) = v. Define Av to be the Jacobi tensor along
cv with initial conditions Av(0) = 0 and A′

v(0) = id. For details on Jacobi tensors,
see [31]. Then using the transformation formula and the Gauss lemma, the volume of
the sphere of radius r around p is given by

vol S(p, r) =
∫

Sp X
det Av(r) dv. (1)

The second fundamental form of S(p, r) is given by A′
v(r)A

−1
v (r) and the mean

curvature by

νp(r , v) = trace A′
v(r)A

−1
v (r). (2)

Definition 2.1 Let (X , g) be a complete non-compact simply connected manifold
without conjugate points and SX its unit tangent bundle. For v ∈ SX let Av(r)
be the Jacobi tensor with initial conditions Av(0) = 0 and A′

v(0) = id. Then X is said
to be harmonic if and only if there exists a function A : [0,∞) → [0,∞) such that

A(r) = det(Av(r)) ∀v ∈ SX .

Hence the volume growth of a geodesic ball centred at π(v) only depends on its radius.

From (2) one easily concludes that the definition above is equivalent to the mean
curvature of geodesic spheres only depending on the radius. More precisely, the mean
curvature of a geodesic sphere S(x, r) of radius r around a point x ∈ X is given by
A′(r)
A(r) .
Using Av , one can construct the Jacobi tensors Sv,r andUv,r along cv with Sv,r (0) =

id, Sv,r (r) = 0, and Uv,r = Sv,−r .
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Then the stable, respectively, unstable Jacobi tensor is obtained via the limiting
process:

Sv = lim
r→∞ Sv,r

Uv = lim
r→∞Uv,r .

Note that these limits exist [31].
Let v ∈ SpX and cv be the unit speed geodesic with initial direction v. Now

define for x ∈ X the Busemann function bv(x) = limt→∞ bv,t (x), where bt,v(x) =
d(cv(t), x) − t . This limit exists and is a C1,1 function on X , see for instance [30].
The level sets of the Busemann functions, Hs

v := b−1
v (s), are called horospheres, and

in the case that bv ∈ C2(X), their second fundamental form in π(v) = p is given by
U ′

v(0) =: U (v). Hence their mean curvature is given by the trace ofU (v). In the case
of a harmonic manifold, v → traceU (v) is independent of v ∈ SX , hence the mean
curvature of horospheres is constant. Using this notion of stable and unstable Jacobi
tensors, Knieper in [32] generalised the well-known notion of rank for general spaces
of non-positive curvature introduced by Ballmann, Brin and Eberlein [6] to manifolds
without conjugated points.

Define for v ∈ SX , S(v) := S′
v(0) and D(v) = U (v) − S(v). Then

L(v) := ker(D(v))

rank(v) := dimL(v) + 1

rank(X) := min{rank(v) | v ∈ SM}.

Furthermore, Knieper showed that, for a non-compact harmonic manifold, rank(X) =
1 is equivalent to other important notions in geometry, which are stated in Sect. 6.

For f ∈ C2(X), the Laplace–Beltrami operator is defined by

� f := div grad f

and in local coordinates {xi } is given by

� f =
∑

i, j

1√
det g

∂

∂xi

(√
det ggi j

∂

∂x j
f
)
,

where g = (gi j ) is the matrix which defines the metric tensor g : T X×T X → [0,∞)

and (gi j ) its inverse. � is by definition linear on C∞
c (X) and we have

∫

X
−� f (x) · f (x) dx =

∫

X
‖∇ f (x)‖2g dx ∀ f ∈ C∞

c (X),

where ‖·‖g is the norm induced by g. Hence,−� is a non-negative symmetric operator.
Furthermore, −� is formally self adjoint. Hence, by the density of C∞

c (X) in L2(X),
we can extend � to an unbounded self adjoint operator with dense domain in L2(X)
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which in abuse of notation we will again denote by �. The above also implies that
the spectrum of � is contained in the negative half line. From now on, assume that
(X , g) is a non-compact simply connected harmonic manifold with mean curvature
of the horosphere h = 2ρ. In this case, the authors showed in [41] that �bv = h,
and hence, the Busemann functions as well as all eigenfunctions of � are analytic by
elliptic regularity since harmonic manifolds are Einstein, see for instance [50, Sec.
6.8], and therefore analytic by the Kazdan-De Turck theorem [20]. Furthermore, the
authors in [40, Corollary 5.2] showed that the top of the spectrum of � is given by
−ρ2.

Lemma 2.2 ([10], Lemma 3.1) Let f be a C2 function on (X , g) and u a C∞ function
on R. Then we have

�(u ◦ f ) = (u′′ ◦ f )‖grad f ‖2g + (u′ ◦ f )� f .

where ‖·‖2g = g(·, ·).
With Lemma 2.2, we can calculate the spherical and horospherical part of the

Laplacian, by choosing f = dx for some x ∈ X , where dx is the distance function to
x . We obtain with �dx (r) = A′(r)

A(r) ◦ dx (r) using spherical coordinates around x

�(u ◦ dx ) = u′′ ◦ dx + u′ ◦ dx · A′

A
◦ dx . (3)

For the Busemann function f = bv with �bv = h = 2ρ, we obtain using horospher-
ical coordinates

�(u ◦ bv) = u′′ ◦ bv + h · u′ ◦ bv. (4)

From this, we have that the radial part of the Laplacian only depends on the radius
and not on specific points. Therefore, we obtain

Lemma 2.3 Let f : X → C be a C∞(X) function and x ∈ X. Then for the mean
value operators

Mx f (r) := 1

vol(S(x, r))

∫

S(x,r)
f (z) dz

and

Rx ( f )(y) := Mx f (d(x, y))

we have

�Rx f (y) = Rx (� f )(y).
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Especially we have for

L A := d2

dr2
+ A′(r)

A(r)

d

dr

that

L AMx ( f )(r) = Mx (� f )(r).

Proof We can decompose the Laplacian

� f (y) = �S(x,d(x,y)) f (y) + �radial f (y).

Where �S(x,d(x,y)) denotes the Laplacian of S(x, d(x, y)) and �radial is defined by

(�radial f )(cv(r)) = L A( f ◦ cv)(r),

where for v ∈ SX , cv is the geodesic corresponding to the initial conditions cv(0) =
π(v) and ċv(0) = v. Since S(x, d(x, y)) is closed Green’s first identity implies

∫

S(x,d(x,y))
�S(x,d(x,y)) f (z) dz = 0.

Now the radial part of the Laplacian only depends on radial derivatives and the mean
curvature of the geodesic sphere which since X is harmonic also only depends on the
radius. Therefore,

Rx (� f )(y) = Rx (�radial f )(y)

X is harmonic= �radialRx ( f )(y)

= �Rx ( f )(y).

The second part of the Lemma follows now from (3). �

Remark 2.4 Note that X is harmonic if and only if the Laplace operator commutes
with the mean value operator. See for instance [45, Lemma 1.1].

Lemma 2.5 Let x0 ∈ X. Then Rx0 : C∞
c (X) → C∞

c (X , x0) is self adjoint with respect
to the L2-product on X, i.e.

∫

X
(Rx0 f )(x)g(x) dx =

∫

X
f (x)(Rx0g)(x) dx ∀ f , g ∈ C∞

c (X).
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Proof Let f , g ∈ C∞
c (X) and x0 ∈ X . We integrate in geodesic polar coordinates

using equation (1) and the fact that X is harmonic:

∫

X
(Rx0 f )(x)g(x) dx = 1

ωn−1

∫ ∞

0

( ∫

Sx0 X
f (exp(rv)) dv

·
∫

Sx0 X
g(exp(rv)) dv

)
A(r) dr

=
∫

X
f (x)(Rx0g)(x) dx

where ωn−1 = vol Sn−1. �

3 The Abel Transform and Its Dual

Peyerimhoff and Samion discussed the Abel transform and its dual for radial functions
as well as its connection to the radial Fourier transform in [40]. We will use these to
construct a solution to the shifted wave equation. Therefore, we recall the definition
and some imported facts that we will need in the proof of our main theorems. For this
purpose, we need the following version of the Co-area formula.

Theorem 3.1 ([17, p.160]) Let M be a connected Riemannian manifold. Given a C1-
function f : M → R such the gradient grad f never vanishes on M, let St denote the
hypersurface defined by St = {x ∈ M | f (x) = t}, t ∈ R. Then, for any g ∈ C0

c (M),

∫

M
g(x) dx =

∫

R

∫

St

g(y)

‖grad f (y)‖g dy dt .

Let x0 ∈ X and v ∈ Sx0X . Then Hs
v = b−1

v (s) denote the horospheres and N (x) =
− grad bv(x). Then the map


v,s : H0
v → Hs

v

x �→ exp(−sN (x))

is a diffeomorphism and


v : R × H0
v → X


v(s, x) = 
v,s(x) (5)

is anorientationpreservingdiffeomorphism.Furthermore, the Jacobianof
v,s is given
by ehs (see [40, Proposition 3.1]). Hence, for a measurable function f : X → R, we
get

∫

Hs
v

f (z) dz = esh
∫

H0
v

f (
s(z)) dz. (6)
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Definition 3.2 For v ∈ Sx0X and define

j : C∞
even(R) → C∞(X)

( j f )(x) = e−ρbv(x) f (bv(x))

and

a : C∞
even(R) → C∞(X , x0)

by

a( f )(y) = Mx0( j( f )) ◦ d(x0, y).

Thedualwith respect to the L2-inner product ofR and X is called theAbel transform
and is denoted by A. This means that for every g ∈ C∞(X , x0) and f ∈ C∞

even(R),
we have

∫

R

A(g)(s) f (s) ds =
∫

X
g(x)a( f )(x) dx .

Furthermore, the authors in [40] showed in Proposition 3.5 that

Lemma 3.3 For f ∈ C∞
c (X , x0), we have

A( f )(s) = e−ρs
∫

Hs
v

f (z) dz

= eρs
∫

H0
v

f (
v,s(z)) dz.

Furthermore, A( f ) is smooth, has compact support and is even.

Proof Let f ∈ C∞
c (X , x0) and define

g(s) := e−ρs
∫

Hs
v

f (z) dz.

The bottom equality in Lemma 3.3 follows immediately from (6). Therefore, we only
need to show that

∫

R

g(s)h(s) ds =
∫

X
f (x)a(h)(x) dx ∀h ∈ C∞

even(R) (7)
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and that g(s) is even since the smoothness follows after showing the equality from the
smoothness of 
s,v in s. Now we prove (7)

∫

R

g(s)h(s) ds =
∫

R

h(s)e−ρs
∫

Hs
v

f (z) dz ds

=
∫

R

∫

Hs
v

h(bv(z))e
−ρs f (z) dz ds

Co-area formula=
∫

X
f (x)e−ρbv(x)h(bv(x)) dx

=
∫

X
f (x) j(h)(x) dx

=
∫

X
Rx0( f )(x) j(h)(x) dx

Lemma 2.5=
∫

X
f (x)Rx0( j(h))(x) dx

=
∫

X
f (x)a(h)(x) dx .

Let for λ ∈ C, ϕλ,x0 be the eigenfunction of the Laplacian with eigenvalue−(λ2+ρ2)

radial around x0 with ϕλ,x0(x0) = 1. Now evenness follows similar to (7) if we observe
that since the Laplacian commutes with Rx0 and by (4) e(iλ−ρ)bv(x) is for all λ ∈ C a
eigenfunction of � with eigenvalue −(λ2 + ρ2),

Rx0

(
e(iλ−ρ)bv(·)) (x) = ϕλ,x0(x). (8)

Using this and integration in horospherical coordinates yields

∫

R

g(s)eiλs ds =
∫

R

eiλse−ρs
∫

Hs
v

f (z) dz ds

=
∫

R

∫

Hs
v

eiλbv(z)e−ρs f (z) dz ds

horospherical coordinates=
∫

X
f (x)e(iλ−ρ)bv(x) dx

f radial +Lemma 2.5=
∫

X
f (x)Rx0(e

(iλ−ρ)bv(·))(x) dx

(8)=
∫

X
f (x)ϕλ,x0(x) dx .

Now we have that ϕλ,x0 = ϕ−λ,x0 , hence

∫

R

g(s)eiλs ds =
∫

R

g(s)e−iλs ds.
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This in turn implies that

∫

R

eiλs(g(s) − g(−s)) ds = 0 ∀λ ∈ C.

By taking λ ∈ R, this implies that g is even. �
Furthermore, the authors showed in [40, Proposition3.10] that theEuclideanFourier

transform of the Abel transform is equal to the radial Fourier transform, given for a
function radial around x0 with compact support by

f̂ x0(λ) =
∫

X
f (x)ϕλ,x0(x) dx,

where ϕλ,x0 is the radial eigenfunction of the Laplacian around x0 with eigenvalue
−(λ2 + ρ2) and ϕλ,x0(x0) = 1. This means that

f̂ x0(λ) = F(A( f ))(λ), (9)

where F(u)(λ) = ∫
R
eiλsu(s) ds for u : R → R sufficiently regular and decaying is

the Euclidean Fourier transform.

Remark 3.4 ApplyingF−1 to both sides in equation (9) yields that the Abel transform
and thereby its dual are independent of the choice of v ∈ Sx0X . See also Lemma 8.5.

Theorem 3.5 ([40], Theorem 3.8) The dual Abel transform is a topological isomor-
phism between the spaces of smooth even functions on R and smooth radial functions
around x0, where both function spaces are equipped with suitable topologies, see [26,
Chap. II, Sect. 2] for instance.

This fact is going to be exploited to characterise solutions of the shifted wave
equation on X with smooth initial conditions with compact support.

4 Symmetry of theMean Value Operator

From now onwards, we will consider complex-valued functions u : X → C, where
the Laplacian of u is given via the decomposition of u in real and imaginary part
u = u1 + iu2 by �u = �u1 + i�u2. The proof of the following lemma follows the
lines of the proof of Theorem 17 in [27] which in turn follows the proof in [2, p.334].
The lemma below is a generalisation of Ásgeirsson’s mean value theorem to harmonic
manifolds.

Lemma 4.1 Let (X , g) be a non-compact simply connected harmonic manifold, and
u : X × X → C a twice continuous differentiable function with

�1u(x, y) = �2u(x, y) ∀x, y ∈ X ,
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where �i denotes to Laplacian with respect to the i-th variable. Then for each
(x0, y0) ∈ X × X, we have

1

vol(S(x0, r))

1

vol(S(y0), s)

∫

S(x0,r)

∫

S(y0,s)
u(z1, z2) dz2 dz1

= 1

vol(S(x0, s))

1

vol(S(y0, r))

∫

S(x0,s)

∫

S(y0,r)
u(z1, z2) dz2 dz1

for all r , s ≥ 0.

Proof Let (x0, y0) ∈ X × X be arbitrary points define

U (x, y) := 1

vol(S(x0, r))

1

vol(S(y0, s))

∫

S(x0,r)

∫

S(y0,s)
u(z1, z2) dz2 dz1

with r = d(x0, x) and s = d(y0, y). Then U can both be viewed as a function on
X × X and R

+ × R
+, since by definition U (x, y) depends only on r = d(x0, x) and

s = d(y0, y).
Since the Laplacian � commutes with the mean value operator (see Lemma 2.3)

and u is twice continuous differentiable, and therefore, so isU (see [45, p.5]), we have

�1U (x, y) = �1Rx0

(
(z, y) → Ry0(u(z, ·))(y))(x)

= Rx0

(
(z, y) → �1Ry0(u(z, ·))(y))(x)

= Rx0

(
(z, y) → Ry0(�1u(z, ·))(y))(x)

= Rx0

(
(z, y) → Ry0(�2u(z, ·))(y))(x)

= Rx0

(
(z, y) → �2Ry0(u(z, ·))(y))(x)

= �2Rx0

(
(z, y) → Ry0(u(z, ·))(y))(x)

= �2U (x, y).

Then with the representation of the Laplacian in radial coordinates (see(3)), we have

∂2U

∂r2
+ A′(r)

A(r)

∂U

∂r
= ∂2U

∂s2
+ A′(s)

A(s)

∂U

∂s
.

If we set F(r , s) = U (r , s) −U (s, r), we obtain

∂2F

∂r2
+ A′(r)

A(r)

∂F

∂r
−

(∂2F

∂s2
+ A′(s)

A(s)

∂F

∂s

)
= 0, (10)

F(r , s) = − F(s, r). (11)
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33 Page 12 of 54 O. Brammen

Our goal is now to show that F ≡ 0. Since F(r , r) = 0 it is sufficient to show that all
partial derivatives of F vanish. We have

A′(r)∂F
∂r

∂F

∂s
= ∂

∂r

(
A(r)

∂F

∂r

∂F

∂s

)
− A(r)

∂2F

∂2r

∂F

∂s

− A(r)
∂F

∂r

∂2F

∂s∂r
,

and

∂

∂s

(∂F

∂r

)2 = 2
∂F

∂r

∂2F

∂s∂r
,

∂

∂s

(∂F

∂s

)2 = 2
∂F

∂s

∂2F

∂s2
.

Therefore, multiplying (10) by 2A(r) ∂F
∂s , we obtain

−A(r)
∂

∂s

((∂F

∂r

)2 + (∂F

∂s

)2) + 2
∂

∂r

(
A(r)

∂F

∂r

∂F

∂s

)

−2
A′(s)A(r)

A(s)

(∂F

∂s

)2 = 0. (12)

Now set

L1 := A(r)
((∂F

∂r

)2 + (∂F

∂s

)2)

and

L2 := 2
(
A(r)

∂F

∂r

∂F

∂s

)
.

Let C > 0 be arbitrary and consider the line r + s = C . We want to integrate the
formula (12) over the triangle D with oriented boundary ∂D = OMN (see Fig. 1),
where O = (0, 0), M = (C2 , C

2 ) and N = (0,C), using Stokes theorem. With this,
we then show F vanishes on D. For this, we first need the check that the expressions
in (12) have no singularities in D. The critical term is 2 A′(s)A(r)

A(s) . To rule out such a

singularity, let r ≤ s. Since A is monotonously increasing, we have A′(s)A(r)
A(s) ≤ A′(s)

and A′(0) = 1 hence we have no singularity at O . Using Stokes theorem and equation
(12), we get

∫∫

D

2A(r)A′(s)
A(s)

(∂F

∂s

)2
dr ds =

∫∫

D

∂L2

∂r
− ∂L1

∂s
dr ∧ ds

=
∫

D
d(L1dr + L2ds)

=
∫

∂D
L1dr + L2ds. (13)
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Fig. 1 The triangle D with
oriented boundary ∂D = OMN

O

N

M

r

D

We have to break the path along the boundary into the three lines. First consider
the line r = s parameterised by the curve γ1(t) = (t, t) ending at M denoted by OM .
Then we have γ̇1 = (1, 1), and therefore,

∫

OM
L1dr + L2ds =

∫ C/2

0
A(t)

((∂F

∂r
(t, t)

)2 + (∂F

∂s
(t, t)

)2

+ 2
(∂F

∂r
(t, t)

∂F

∂s
(t, t)

))
dt . (14)

Since F(γ1(t)) = F(t, t) = 0 for all t ≥ 0, we have

0 = DF(γ1(t)) · γ̇1(t) = ∂F

∂r
(t, t) + ∂F

∂s
(t, t) ∀t ≥ 0, (15)

hence

(∂F

∂r
(t, t) + ∂F

∂s
(t, t)

)2 = 0.

From this, we conclude that the integral (14) vanishes.
Next, we consider the line ON . We have that A(r) = 0. Therefore, L1 = 0 = L2

on ON and

∫

ON
L1dr + L2ds = 0.

123



33 Page 14 of 54 O. Brammen

Lastly we consider the curve jointing N and M given by γ2(t) = (t,C − t). Then
we have γ̇2(t) = (1,−1) and obtain

∫

MN
L1dr + L2ds =

∫ 0

C/2
2
(
A(t)

∂F

∂r
(t,C − t)

∂F

∂s
(t,C − t)

)

− A(t)
((∂F

∂r
(t,C − t)

)2 + (∂F

∂s
(t,C − t)

)2)
dt

=
∫ C/2

0
A(t)

(∂F

∂r
(t,C − t) − ∂F

∂s
(t,C − t)

)2
dt .

Now we have using (13)

∫ C/2

0
A(t)

(∂F

∂r
(t,C − t) − ∂F

∂s
(t,C − t)

)2
dt

+
∫∫

D

2A(r)A′(s)
A(s)

(∂F

∂r

)2
dr ds = 0.

Since A′(s) ≥ 0 both integrals are non-negative. This implies that

0 = ∂F

∂r
(t,C − t) − ∂F

∂s
(t,C − t) = DF(γ2(t)) · γ̇2(t) ∀t ≥ 0. (16)

Now sinceC > 0 is arbitrary (15) together with (16) implies that all partial derivatives
of F vanish and therefore that F is constant on the left side of the line (t, t). Since
F(r , r) = 0, we conclude F(s, r) = 0 on the left side of the line (t, t). Since F is
antisymmetric, see equation (11), the same holds true for the rest of R

2+ hence the
claim follows. �
Corollary 4.2 Under the conditions and with the notations of the proof of Lemma 4.1,
we have that U (r , 0) = U (0, r) for all r ≥ 0. Hence, we obtain

My0(u(x0, ·))(r) = Mx0(u(·, y0))(r). (17)

With a classical LemmabyWillmore [50, p. 249], one can deduce a near equivalence
in Corollary 4.2.

Corollary 4.3 Let u : X × X → R be a smooth function such that equation (17) holds
for a small neighbourhood of (x0, y0) ∈ X × X and all small r > 0. Then

�1u(x0, y0) = �2u(x0, y0).

Proof We have by [50, p. 249] for f ∈ C∞(X), x ∈ X and r > 0:

Mx ( f )(r) = f (x) + 1

2n
� f (x)r2 + O(r4) for r → 0,
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where n = dim X . Applying this to u yields

Mx0(u(·, y0))(r) = u(x0, y0) + 1

2n
�1u(x0, y0)r

2 + O(r4) for r → 0,

My0(u(x0, ·))(r) = u(x0, y0) + 1

2n
�2u(x0, y0)r

2 + O(r4) for r → 0,

Since the terms on the left-hand side coincide, we obtain the claim. �

5 The ShiftedWave Equation

In this section, we solve the shifted wave equation:

ϕ : X × R → C

∂2

∂t2
ϕ(x, t) = (�x + ρ2)ϕ(x, t)

on X with initial conditions

ϕ(x, 0) = f (x) ∈ C∞
c (X)

and

∂

∂t

∣∣∣∣
t=0

ϕ(x, t) = g(x) ∈ C∞
c (X),

via the inverse Abel transform. This is analogous to Ásgeirsson characterisation of
the solutions of the wave equation on R

n [2] and generalises work on non-compact
symmetric spaces and Damek–Ricci spaces by [27, 38] and [1], respectively. The
methods used are to a large part identical and rely heavily on [40, Theorem 3.8] and
Corollary 4.2. Where our approach differs is in that we do not have an explicit formula
for the inverse dual Abel transform and hence need to rely on the local injectivity of the
dual Abel transform shown in [40, Theorem 3.8] to obtain the existence of solutions
and that they possess finite speed of propagation.

Theorem 5.1 ϕ : X × R → C is a C∞ solution of the shifted wave equation

∂2

∂t2
ϕ(x, t) = (�x + ρ2)ϕ(x, t)

on X with initial conditions ϕ(x, 0) = f (x) ∈ C∞
c (X) and

∂

∂t

∣∣∣∣
t=0

ϕ(x, t) = g(x) ∈ C∞
c (X)
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33 Page 16 of 54 O. Brammen

if and only if

ϕ(x, t) = (a)−1((Mx f ) ◦ d(x0, ·))(|t |) +
∫ t

0
(a)−1((Mxg) ◦ d(x0, ·))(s) ds,

where a is the dual Abel transform on X based at a point x0 ∈ X.

Proof The proof will be conducted via Theorems 5.3 and 5.7. �

The first step in proving Theorem 5.1 is to show the if part. Hence, we have to show
if a solution to the shifted wave equation with compactly supported initial conditions
exists it is explicitly given by the inverse dual Abel transform of its initial conditions
(Theorem 5.3). In the second step, we show in Theorem 5.7, the existence of solutions
by proving that the function given by the expression in Theorem 5.1 is a solution to
the shifted wave equation with the prescribed initial conditions.

Lemma 5.2 Let x0 ∈ X, v ∈ Sx0X and u : X × R → C be a C2(X × R) function.
Then for the function U : X × X → C defined by U (x, y) = e−ρbv(y)u(x, bv(y)), the
Laplacian �2 of U with respect to the second variable is given by

�2U (x, y) = e−ρbv(y)(
∂2

∂t2
− ρ2)u(x, ·)) ◦ bv(y).

Proof Define h : X × R → C by h(x, t) = e−ρt u(x, t). Then by the representation
of the Laplacian in horospherical coordinates (4), the Laplacian with respect to the
second variable can be expressed by

�2U (x, y) = ( ∂2

∂t2
h(x, ·) + 2ρ

∂

∂t
h(x, ·)) ◦ bv(y). (18)

With

∂

∂t
h(x, t) = −ρe−ρt u(x, t) + e−ρt ∂

∂t
u(x, t),

∂2

∂t2
h(x, t) = ρ2e−ρt u(x, t) − 2ρe−ρt ∂

∂t
u(x, t) + e−ρt ∂2

∂t2
u(x, t).
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We get

∂2

∂t2
h(x, t) + 2ρ

∂

∂t
h(x, t) = ρ2e−ρt u(x, t) − 2ρe−ρt ∂

∂t
u(x, t)

+ e−ρt ∂2

∂t2
u(x, t) − 2ρ2e−ρt u(x, t)

+ 2ρe−ρt ∂

∂t
u(x, t)

= e−ρt( ∂2

∂t2
u(x, t) − ρ2u(x, t)

)

= e−ρt (
∂2

∂t2
− ρ2)u(x, t). (19)

Now plugging (19) into (18) yields the claim. �

Theorem 5.3 Let ϕ : X × R → C be a C∞ solution of the shifted wave equation

∂2

∂t2
ϕ(x, t) = (�x + ρ2)ϕ(x, t)

on X with initial conditions ϕ(x, 0) = f (x) ∈ C∞
c (X) and

∂

∂t

∣∣∣∣
t=0

ϕ(x, t) = g(x) ∈ C∞
c (X).

Then

ϕ(x, t) = (a)−1((Mx f ) ◦ d(x0, ·))(|t |) +
∫ t

0
(a)−1((Mxg) ◦ d(x0, ·))(s) ds,

where a is the dual Abel transform on X based at a point x0 ∈ X.

Proof Let x0 ∈ X and v ∈ Sx0X . First consider a solution to the shifted wave equation
ϕ1(x, t) with initial conditions ϕ1(x, 0) = f (x) and ∂

∂t ϕ1(x, 0) = 0 for all x ∈ X .
Because of the reversibility and uniqueness of solutions of the shifted wave equation,
ϕ1 is even in t . Define the function

1 : X × X → C

by

1(x, y) := e−ρbv(y)ϕ1(x, bv(y)).
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Then since ϕ1(x, t) is a solution of the shifted wave equation, we have

�11(x, y) = e−ρbv(y)�1ϕ1(x, bv(y))

= e−ρbv(y)
((

(
∂2

∂t2
− ρ2)ϕ1(x, ·)

) ◦ bv(y)
)
.

Furthermore, by Lemma 5.2, we have that

�21(x, y) = e−ρbv(y)
(( ∂2

∂t2
− ρ2)ϕ1(x, ·)

) ◦ bv(y)
)
.

Therefore,

�11 = �21.

Now we can apply Corollary 4.2 above and obtain that for every pair x, y ∈ X

a(t �→ ϕ1(x, t))(y) = Mx0(e
−ρbv(·)ϕ1(x, bv(·))) ◦ d(x0, y)

= Mx0(1(x, ·)) ◦ d(x0, y)

= Mx (1(·, x0)) ◦ d(x0, y)

= Mx (e
−ρbv(x0)ϕ1(·, bv(x0)) ◦ d(x0, y)

= Mx ( f ) ◦ d(x0, y),

where a : C∞
even(R) → C∞(X , x0) denotes the dual Abel transform with the choice

of v ∈ Sx0X as above. Hence, by Theorem 3.8 in [40], we get for every t ∈ R and
x ∈ X :

ϕ1(x, t) = a−1(Mx ( f ) ◦ d(x0, ·)
)
(|t |).

Now let ϕ2 be a solution of the shifted wave equation on X with ϕ2(x, 0) = 0 and
∂
∂t ϕ2(x, 0) = g(x) for all x ∈ X . Then the initial conditions imply

∂2

∂t2
ϕ2(x, 0) = (� + ρ2)ϕ2(x, 0) = 0,

hence by the same arguments as above ∂
∂t ϕ2(x, t) is for all x ∈ X a smooth and even

function in t . Define

2(x, y) := e−ρbv(y) ∂

∂t
ϕ2(x, bv(y)).

Since ϕ2 is a solution of the wave equation

�12(x, y) = e−ρbv(y)
(( ∂2

∂t2
− ρ2)

∂

∂t
ϕ2(x, ·)

) ◦ bv(y)
)
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and by Lemma 5.2,

�22(x, y) = e−ρbv(y)
(( ∂2

∂t2
− ρ2)

∂

∂t
ϕ2(x, ·)

) ◦ bv(y)
)
.

Hence,

�12 = �22.

Now we can again apply Corollary 4.2 and obtain that for every pair x, y ∈ X

a(t �→ ∂

∂t
ϕ2(x, t))(y) = Mx0(e

−ρbv(·) ∂

∂t
ϕ2(x, bv(·))) ◦ d(x0, y)

= Mx0(2(x, ·)) ◦ d(x0, y)

= Mx (2(·, x0)) ◦ d(x0, y)

= Mx (e
−ρbv(x0) ∂

∂t
ϕ2(·, bv(x0)) ◦ d(x0, y)

= Mx (g) ◦ d(x0, y).

Now by Theorem 3.8 in [40] and integrating with respect to time, we have for t ∈ R

ϕ2(x, t) =
∫ t

0
a−1(Mx (g) ◦ d(x0, ·))(s) ds.

Since the shifted wave equation is linear, we obtain a solution to the shifted wave
equation with ϕ(x, 0) = f (x) and ∂

∂t ϕ(x, t) = g(x) by ϕ = ϕ1 + ϕ2. This yields the
claim. �
Corollary 5.4 From the characterisation in Theorem 5.3, it follows now that ϕ is a
unique solution to the initial data f , g as above.

Next, we are going to show that a solution of the shifted wave equation has finite
speed of propagation.

Corollary 5.5 Under the assumption of Theorem 5.3, assume that f , g have support
in a geodesic ball of radius R around x0 ∈ X. Then

suppϕ ⊂ {(x, t) ∈ X × R | d(x0, x) ≤ R + |t |}.

Proof By Theorem 5.3, it is sufficient to prove that for h ∈ C∞
c (X) with support

B(x0, R) and d(x0, x) > R + |t |

vx (t) := a−1(Mx (h) ◦ d(x0, ·)
) = 0. (20)
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x x0

R
R + |t|

R

R −

Fig. 2 A sketch for the proof of Corollary 5.5

By the local injectivity of the dual Abel transform [40, proof of Theorem 3.8], we
have that for u : R → R smooth and even

a(u)|B(x0,R) = 0 ⇒ u|[−R,R] = 0. (21)

Now let ε > 0 arbitrary, d(x0, x) > R + |t | and R′ = d(x0, x) − R (Fig. 3). Then
(see Figure 2 for a visualisation)

a(vx )(y)
(20)= Mx (h) ◦ d(x0, y) = 0 ∀y ∈ B(x0, R

′ − ε). (22)

Furthermore, we have R′ = d(x0, x) − R > |t | hence since ε > 0 is arbitrary we
obtain from (21) and (22)

vx (t) = 0.

for all (x, t) ∈ X × R with d(x0, x) > R + |t |. �

Remark 5.6 The finite speed of propagation also follows from the general theory in
[22, Chap. 5] or [46, Chap. 2, Proposition 8.1] by choosing the canonical space-time
structure on R × X . See also [15, Lemma 1.1].

Next, we provide an intrinsic proof of the existence of a solution to the shifted wave
equation without using general existence results mentioned in Remark 5.9 below.
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Fig. 3 Finite propagation speed
of a solution of the shifted wave
equation with initial conditions
supported in B(x0, R0)

supp(ϕ(·, t2)) ⊂ B(x0, R0 + |t1|)

supp(ϕ(·, t4)) ⊂ B(x0, R0 + |t2|)

B(x0, R0)

supp(ϕ(·, t2)) ⊂ B(x0, R0 + |t1|)

supp(ϕ(·, t4)) ⊂ B(x0, R0 + |t2|)

X

R

Theorem 5.7 Let f , g ∈ C∞
c (X). Then the functions

ϕ1(x, t) = a−1(Mx ( f ) ◦ d(x0, ·)
)
(|t |)

and

ϕ2(x, t) =
∫ t

0
a−1(Mx (g) ◦ d(x0, ·))(s) ds

are solutions of the shifted wave equation with the initial condition

ϕ1(x, 0) = f (x)

∂

∂t

∣∣∣∣
t=0

ϕ1(x, t) = 0

and

ϕ2(x, 0) = 0

∂

∂t

∣∣∣∣
t=0

ϕ2(x, t) = g(x)

respectively. Consequently, ϕ = ϕ1 + ϕ2 is a solution of the shifted wave equation
with initial conditions ϕ(x, 0) = f (x) and ∂

∂t

∣∣
t=0 ϕ(x, t) = g(x).

Proof Let T ∈ R. Because f and g have compact support there exists an R0 > 0
such that the support of f and of g is contained in the closed ball B(x0, R0). Now
choose R ≥ |T | + R0. Then by Lemma 5.5, ϕi (x, t) is supported in B(x0, R) for all
|t | ≤ |T |.We choose an orthonormal basis of eigenfunctions of theDirichlet Laplacian
on B(x0, 2R), with respect to the L2 normon B(x0, 2R), {φk}k∈Nwith�φk = −μkφk ,
0 ≤ μ1 ≤ μ2 ≤ · · · < ∞ and μk = (λ2k + ρ2) for some λk ∈ ±i[0, ρ] ∪ R. First we
observe that by Lemma 2.3 for x ∈ B(x0, R)

Mxφk(r) = φk(x)ϕλk (r) ∀r ≤ R (23)
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where ϕλk is a eigenfunction of the operator L A (see Lemma 2.3 for the definition)
with L Aϕλk = −(λ2k + ρ2)ϕλk , ϕλk (0) = 1 and λk ∈ ±i[0, ρ] ∪ R. Now we can
represent f and g by a series in φk :

f (y) =
∞∑

k=0

akφk(y) and g(y) =
∞∑

k=0

bkφk(y),∀y ∈ B(x0, 2R), ak, bk ∈ C.

Using (23), we obtain for all r ≤ R and x ∈ B(x0, R)

Mx f (r) =
∞∑

k=0

akφk(x)ϕλk (r) and Mxg(r) =
∞∑

k=0

bkφk(x)ϕλk (r).

Applying the inverse dual Abel transform a−1 yields, using that

a−1(ϕλk ◦ d(x0, ·))(|t |) = a−1(ϕλk ,x0)(|t |)
= cos(λk t)

(see [40, Proposition 3.4]) and that a−1 is linear, that

a−1(Mx ( f ) ◦ d(x0, ·)
)
(t) =

∞∑

k=0

akφk(x) cos(λk t) (24)

a−1(Mx (g) ◦ d(x0, ·)
)
(s) =

∞∑

k=0

bkφk(x) cos(λks). (25)

Therefore, if we can show that (24) converges uniformly in x and t , we get

�

∞∑

k=0

akφk(x) cos(λk t) =
∞∑

k=0

ak�φk(x) cos(λk t)

= −
∞∑

k=0

(λ2k + ρ2)akφk(x) cos(λk t)

and

∂2

∂t2

∞∑

k=0

akφk(x) cos(λk t) = −
∞∑

k=0

λ2kakφk(x) cos(λk t).

Hence, ϕ1 solves the shifted wave equation and satisfies the initial conditions
ϕ1(x, 0) = f and ∂

∂t

∣∣
t=0 ϕ1(x, t) = 0 as one sees by (24). Now suppose that (25)
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converges uniformly in x and s. Then by integration, we obtain

ϕ2(x, t) =
∞∑

k=0

bkφk(x) sin(λk t) · 1

λk

where we interpret sin(λ j t) · 1
λ j

= t if λ j = 0. Now applying the Laplacian yields

�ϕ2(x, t) = −
∞∑

k=0

(λ2k + ρ2)bkφk(x) · sin(λk t) 1

λk

and we also get

∂2

∂t2
ϕ2(x, t) = −

∞∑

k=0

λ2kbkφk(x) · sin(λk t) 1

λk
.

Therefore, ϕ2 satisfies the shifted wave equation, with the required initial conditions,
as one can see by (25). Hence, the proof would be complete if we show that (24) and
(25) converge uniformly in both variables. This will follow from Lemma 5.8 below.
Under these assumptions, we have shown that ϕ1 and ϕ2 satisfy the theorem locally on
the ball B(x0, R). If we now take R′ > R and repeat the construction above, we have
by the local infectivity of the dual Abel transform [40, proof of Theorem 3.8] that the
series above coincides on B(x0, R). Therefore, using the finite speed of propagation
of the solution, we can repeat the argument for a series Rn → ∞ (see Figur 3) to
obtain the theorem. �

The lemma that finishes the proof of the theorem above is already contained in the
proof of Theorem 3.8 in [40].

Lemma 5.8 Let x0 ∈ X, R > 0 and f ∈ C∞
c (X) be such that the support of f is

contained in the closed ball B(x0, R) and {φk}k∈N an orthonormal basis of eigenfunc-
tions of the Dirichlet Laplacian on B(x0, R), with respect to the L2 norm on B(x0, r)
with �φk = −μkφk , 0 ≤ μ1 ≤ μ2 ≤ · · · < ∞ and μk = (λ2k + ρ2) for some
λk ∈ ±i[0, ρ] ∪ R. Furthermore, let for ak ∈ C the Fourier decomposition of f be
given by f = ∑∞

k=0 akφk . Then the series

∞∑

k=0

akφk(x)|λk |m

converges uniformly in x ∈ B(x0, R). Consequently, all series in the proof of Theorem
5.7 converge uniformly.

Proof First, we observe that by the Sobolev embedding theorem (see for instance [25,
Chap. 3]) there exists a constant C0 > 0, such that for every function u in the Sobolev
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space H2
2n(B(x0, R)), we have

‖u‖sup ≤ Co
(‖u‖L2(B(x0,R)) + ‖�nu‖L2(B(x0,R))

)
, (26)

where ‖·‖sup is the sup norm on C0(B(x0, R)) and n = dim X . Now since φk is an
orthonormal basis with respect to the L2 norm on B(x0, R), we have

|φk(x)| ≤ ‖φk‖sup
(26)≤ C0(1 + μn

k ), ∀x ∈ B(x0, R).

By Weyl’s law (see for instance [16, p.155]), we obtain that k ∼ μ
n/2
k , meaning that

for k > 0 there is a constant C ≥ 1 such that 1
C ≤ μ

n/2
k
k ≤ C . Therefore, there is a

k0 ∈ N such that for some C1 > 0

C1(1 + μn
k ) ≤ C1k

2 ∀k > k0.

This yields

|φk(x)| ≤ ‖φk‖sup ≤ C1k
2 ∀k > k0. (27)

Now observe that f ∈ C∞
c (X) with support contained in B(x0, R). Hence, � j f ∈

C∞
c (X) for every j ∈ N and has support in B(x0, R). Therefore

� j f =
∞∑

k=0

akμ
j
kφk

converges uniformly on B(x0, R) and� j f ∈ L2(B(x0, R)). This yields since {φk}k∈N
is a orthonormal basis with respect to the L2 norm

∞ > ‖� j f ‖22 =
∞∑

k=0

|ak |2μ2 j
k .

Now μk = λ2k + ρ2, hence

∞ >

∞∑

k=0

|ak |2(λ2k + ρ2)2 j ≥
∞∑

k=0

|ak |2(λk)4 j ∀ j ∈ N. (28)
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With this we obtain for l ∈ N arbitrarily and any x ∈ B(x0, R):

∞∑

k=0

|ak ||φk(x)|λk |m
(27)≤ C1

∞∑

k=0

|ak |k2|λk |m

=C1

∞∑

k=0

|ak |k2|λk |m+l |λk |−l

Cauchy Schwarz≤ C1

( ∞∑

k=0

|ak |2k2|λk |2m+2l
)1/2

·
( ∞∑

k=0

|λk |−2l
)1/2

.

Now using Weyl’s law and μk = λ2k + ρ2, we conclude

C1

( ∞∑

k=0

|ak |2k2|λ|2m+2l
)1/2 ·

( ∞∑

k=0

|λk |−2l
)1/2

≤ C1

( ∞∑

k=0

|ak |2|λk |2(m+l+2n)
)1/2 ·

( ∞∑

k=0

|λk |−2l
)1/2

.

Now with l = n, we have

∞∑

k=0

|ak |2|λk |2(m+4n) (28)
< ∞

and using Weyl’s law there is a constant C2 such that

∞∑

k=0

|λk |−2n ≤ C2 ·
∞∑

k=0

1

k2
< ∞.

This yields the claim. �
Remark 5.9 It also follows from the abstract theory of PDE,s that the solution of the
shifted wave equation exists. See for instance [46, Chap. 2+6], [22, Chap. 5+6], [7,
Chap. 3] and [23]. In their context, one would consider the product manifold R × X
with the canonical space-time structure where the shifted wave equation corresponds
to a lower-order perturbation of the ordinary wave equation.

This closes our investigation of the shifted wave equation on general simply con-
nected, non-compact and non-flat harmonic manifolds. To obtain further results, we
need tools that require us to assume that (X , g) is of rank one or equivalently has
purely exponential volume growth. It should be noted by the reader that all results past
this point require this assumption on (X , g) unless stated otherwise.
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6 The Rank One Case

A non-compact simply connected harmonic manifold X is said to be of purely expo-
nential volume growth if there exists some constants C ≥ 1 and ρ > 0 such that

1

C
≤ A(r)

e2ρr
≤ C .

This property is by [32] equivalent to

• The Geodesic Flow in SX is Anosov with respect to the Sasaki metric
• Gromov Hyperbolicity
• Rank one.

Note that the author in [32] showed that non-positive curvature implies purely expo-
nential volume growth.

From now on, let (X , g) be a non-compact simply connected harmonic manifold of
rank one. The geometric boundary ∂X is defined by equivalence classes of geodesic
rays. Where two rays are equivalent if their distance is bounded. The topology on
∂X is the cone topology with the property that for X = X ∪ ∂X and B1(x) = {v ∈
Tx X | ‖v‖ ≤ 1} the map, prx : B1(x) → X

prx (v) =
{

γv(∞) if ‖v‖ = 1

exp( 1
1−‖v‖v) if ‖v‖ < 1

is a homeomorphism. It turns out that since the geodesic flow is Anosov the Busemann
function only depends on the direction of the ray up to a constant (See [10, Lemma
2.1]). Hence, for x ∈ X and ξ ∈ ∂X being the point at infinity of the geodesic γ , we
can alternatively define the Busemann function Bξ,x : X → R by

Bξ,x (y) = lim
t→∞(d(y, γ (t)) − d(x, γ (t)).

Furthermore, we obtain a cocycle property for x, σ ∈ X and ξ ∈ ∂X :

Bξ,x = Bξ,σ − Bξ,σ (x). (29)

If v ∈ Sσ X defines the unique geodesic ray such that cv(∞) = ξ . Then by the
considerations above, the two representations of the Busemann function are related as
follows:

bv(x) = Bξ,σ (x) ∀x ∈ X .

For a proof of this, see [10, Lemma 2.2]. We conclude that �Bξ,σ = 2ρ, where 2ρ is
themean curvature of the horospheres. Hence, g(y) = e(iλ−ρ)Bξ,x (y) is a eigenfunction
of the Laplacian with g(x) = 1 and �g = −(λ2 + ρ2)g for λ ∈ C. Furthermore, by
pushing forward the canonical probability measure θx induced by the metric of the
Euclidean unit sphere Sx X under prx , we obtain a probability measure μx on ∂X .
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Hence, we have a family of probability measures {μx }x∈X , that are pairwise absolutely
continuous with Radon–Nikodym derivative

dμx

dμy
(ξ) = e−2ρBξ,x (y). (30)

For a detailed proof, see [34, Theorem 1.4].

6.1 Fourier Transform and Plancherel Theorem on Rank One Harmonic Manifolds

The main tool in defining the Fourier transform on rank one harmonic manifolds is the
theory of hypergroups. This was first presented for harmonic manifolds with pinched
negative curvature in [9] and subsequently extended in [10] to rank one harmonic
manifold. Since we refrain from details, we refer the reader to [12] for a thorough
discussion of the topic of hypergroups and their definition. In [10, Sect. 4.2], the
authors showed that the density function A(r) of a harmonic manifold of rank one
satisfies the following conditions

(C1) A is increasing and A(r) → ∞ for r → ∞.
(C2) A′

A is decreasing and ρ = 1
2 lim
r→∞

A′(r)
A(r) > 0.

(C3) For r > 0, A(r) = r2α+1B(r) for some α > − 1
2 and some even C∞ function

B(r) on R with B(0) = 1.
(C4)

G(r) = 1

4

( A′

A
(r)

)2 + 1

2

( A′

A
(r)

)′ − ρ2

is bounded on [r0,∞) for all r0 > 0 and

∫ ∞

r1
r |G(r)| dr < ∞ for some r1 > 0.

Therefore, A(r) defines aChébli-Triméche hypergroup. The structure of the so-defined
hypergroup is related to the second-order differential operator given by the radial part
of the Laplacian:

LA = d2

dr2
+ A′(r)

A(r)

d

dr
. (31)

Let

ϕλ : R
+ → R, λ ∈ [0,∞) ∪ [0, iρ] (32)

be the eigenfunction of L A with

L Aϕλ = −(λ2 + ρ2)ϕλ (33)
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and which admits a smooth extension to zero with ϕλ(0) = 1. Under conditions (C1)-
(C4), it was shown in [11] that there is a complex function c on C \ {0} such that for
the two linear independent solutions of

L Au = −(λ2 + ρ2)u

λ and −λ which are asymptotic to exponential functions, i.e.

±λ(r) = e(±iλ−ρ)r (1 + o(1)) as r → ∞ (34)

we have

ϕλ = c(λ)λ + c(−λ)−λ ∀λ ∈ C \ {0}. (35)

Imposing the additional condition that |α| > 1
2 , the authors in [11] showed that the

c-function does not have zeros on the closed lower half plane. This at first excludes the
case that dim X = 3. This is due to the following consideration used by the authors
in [10] to obtain (C3): Let p ∈ X , n = dim X and v ∈ SpX . The Jacobi tensor Av(r)
along the geodesic cv : R → X with initial conditions Av(0) = 0 and A′

v(0) = id is
given by

D expp(rv)(tw) = Av(r)w(r),

where w ∈ TpX and w(r) ∈ Tcv(r)X is the parallel transport of w along cv . Then
A(r) = det Av(r) is the Jacobian of the map v → exp(rv) = exp ◦(v → rv). Hence,

A(r) = rn−1 det(D expp)rv ∀v ∈ SpX . (36)

Observe that since X is harmonic, B(rv) := det(D expp)rv is independent of the
choice of v, and therefore, B(v) = B(−v). Hence, B can be seen as the restriction of
an even function on R. Therefore, α = (n − 2)/2. To satisfy the condition |α| > 1

2 ,
we therefore need to assume that dim X �= 3. But by [8, 36, 49] and [37], every
non-compact simply connected harmonic manifold with dim X < 6 is a symmetric
space of rank one, hence one can apply the theory by Helgason [29], using Harish–
Chandra’s c-function. We therefore do not need to exclude the case dim X = 3 since
we can default to the theory of Helgason. We can define the radial Fourier transform
by

Definition 6.1 Let f : X → C be radial, i.e. f = u ◦ dσ for some σ ∈ X . The radial
Fourier transform of f is given by

f̂ (λ) := û(λ) =
∫ ∞

0
u(r)ϕλ(r)A(r) dr .

Note that in the following we will omit to mention the base point σ unless there is
the possibility of confusion. For f radial around σ ∈ X , we will use σ as a base point
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for the radial Fourier transform unless stated otherwise. Now observe that we obtain
the radial eigenfunctions of the Laplace operator with eigenvalue −(λ2 + ρ2) by

ϕλ,σ (y) = ϕλ ◦ d(σ, y) ∀x, y ∈ X . (37)

Using the results from [11], the authors in [10] showed that there is a constantC0 such
that for f ∈ L1(X) radial, i.e. f = u ◦ dσ for some σ ∈ X and u : [0,∞) → R such
that û ∈ L1((0,∞),C0|c(λ)|−2 dλ), we have

f (y) = C0

∫ ∞

0
f̂ (λ)ϕλ,σ (y)|c(λ)|−2 dλ. (38)

Moreover, the radial Fourier transform extends to an isometry between the space
L2(X , σ ) of L2-radial functions around σ and

L2((0,∞),C0|c(λ)|−2 dλ).

For more details, see [10, Theorem 4.7]. In the same fashion as in the case of the
Helgason Fourier transform on symmetric spaces, we can extend the Fourier transform
to non-radial functions, by using the radial symmetry if the Poisson kernel. Again the
main reference for this is [10].

Definition 6.2 Let σ ∈ X . For f : X → C measurable, the Fourier transform of f
based at σ is given by

f̃ σ (λ, ξ) =
∫

X
f (y)e(−iλ−ρ)Bξ,σ (y) dy

for λ ∈ C, ξ ∈ ∂X , provided the integral above converges.

We note that the cocycle property (29) of the Busemann function implies the fol-
lowing:

Lemma 6.3 Let f ∈ C∞
c (X) and x, σ ∈ X. Then, we have

f̃ x (λ, ξ) = e(iλ+ρ)Bξ,σ (x) f̃ σ (λ, ξ). (39)

Proof Let x, σ ∈ X and f ∈ C∞
c (X). Then, we have for λ ∈ C and ξ ∈ ∂X that

f̃ x (λ, ξ) =
∫

X
f (y)e(−iλ−ρ)Bξ,x (y) dy

(29)=
∫

X
f (y)e(−iλ−ρ)Bξ,σ (y) · e(iλ+ρ)Bξ,σ (x) dy

= e(iλ+ρ)Bξ,σ (x)
∫

X
f (y)e(−iλ−ρ)Bξ,σ (y) dy

= e(iλ+ρ)Bξ,σ (x) f̃ σ (λ, ξ).

�
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Furthermore, the Fourier transform coincides with the radial Fourier transform
on radial functions. For details, see [10, Lemma 5.2]. The inversion formula for the
non-radial Fourier transform follows now from the representation of the radial eigen-
functions via a convex combination of non-radial eigenfunctions, [10, Theorem 5.6],:

ϕλ,σ (y) =
∫

∂X
e(iλ−ρ)Bξ,σ (y) dμσ (ξ) ∀σ ∈ X . (40)

This is analogous to the well-known formula on a rank one symmetric space G/K
and harmonic N A groups. See for the symmetric case [29, Chap. III, Sect. 11] and for
the harmonic N A group [19] and [42]. Using equation (40), the authors obtain

f (x) = C0

∫ ∞

0

∫

∂X
f̃ σ (λ, ξ)e(iλ−ρ)Bξ,σ (x) dμσ (ξ)|c(λ)|−2 dλ, (41)

where C0 is the same constant given in (38). Additionally, the authors obtain a
Plancherel theorem:

Theorem 6.4 ([10]) Let σ ∈ X and f , g ∈ C∞
c (X). Then, we have

∫

X
f (x)g(x) dx = C0

∫ ∞

0

∫

∂X
f̃ σ (λ, ξ)g̃σ (λ, ξ)|c(λ)|−2 dμσ (ξ)dλ

and the Fourier transform extends to an isometry between

L2(X)

and

L2((0,∞) × ∂X ,C0|c(λ)|−2 dμσ (ξ) dλ).

6.2 Wave Equation Under Fourier Transform and Conservation of Energy

Using the Fourier transform, we can obtain the conservation of energy for solutions
of the wave equation similar to the result in [5] for Damek–Ricci spaces. For this, we
first need to study the action of the Laplacian under the Fourier transform.

Lemma 6.5 Let f ∈ L2(X) such that � f ∈ L2(X), where � f is meant in the sense
of distributions i.e. � f is defined by

∫

X
� f (x)g(x) dx :=

∫

X
f (x)�g(x) dx ∀g ∈ C∞

c (x),

and σ ∈ X. Then

�̃ f
σ
(λ, ξ) = −(λ2 + ρ2) f̃ σ (λ, ξ)

for almost every (λ, ξ) ∈ (0,∞) × ∂X.
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Proof Let σ ∈ X . Since C∞
c (X) is dense in L2(X) and by using the Plancherel

theorem, it is sufficient to prove the assertion for f ∈ C∞
c (X). To be more precise,

If f ,� f ∈ L2(X) then there is a sequence fn ∈ C∞
c (X) such that fn → f and

� fn → � f in L2(X). For this, see [44, Corollary 2.5]. Let σ ∈ X . Then the above
implies by the Plancherel theorem that f̃n

σ → f̃ σ and �̃ fn
σ → �̃ f

σ
in L2((0,∞)×

∂X ,C0|c(λ)|−2 dμσ (ξ) dλ). Therefore, we find subsequences such that both converge
point-wise almost everywhere.

Then since the Laplacian is essentially self adjoint and

�e(−iλ−ρ)Bξ,σ (y) = −(λ2 + ρ2)e(−iλ−ρ)Bξ,σ (y) ∀y ∈ X

we have almost everywhere

�̃ fn
σ
(λ, ξ) =

∫

X
� fn(x)e

(−iλ−ρ)Bξ,σ (x) dx

=
∫

X
fn(x)�e(−iλ−ρ)Bξ,σ (x) dx

= −(λ2 + ρ2)

∫

X
fn(x)e

(−iλ−ρ)Bξ,σ (x) dx

= −(λ2 + ρ2) f̃n
σ
(λ, ξ).

Therefore, we have after passing to a subsequence, if necessary, that

−(λ2 + ρ2) f̃ σ (λ, ξ) = lim
n→∞ −(λ2 + ρ2) f̃n

σ
(λ, ξ)

= lim
n→∞ �̃ fn

σ
(λ, ξ)

= �̃ f
σ
(λ, ξ)

almost everywhere. �
Theorem 6.6 Suppose (X , g) is a harmonic manifold of rank one. Let σ ∈ X. Then
the Fourier transform of a C∞ solution to the shifted wave equation ϕ : X × R → C

with initial conditions

ϕ(x, 0) = f (x) ∈ C∞
c (X),

∂

∂t

∣∣∣∣
t=0

ϕ(x, t) = g(x) ∈ C∞
c (X)

is given by

ϕ̃σ ((λ, ξ); t) = f̃ σ (λ, ξ) cos(λt) + g̃σ (λ, ξ)
sin(λt)

λ
.
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Consequently,

ϕ(x, t) = C0

∫ ∞

0

∫

∂X

(
f̃ σ (λ, ξ) cos(λt) + g̃σ (λ, ξ)

sin(λt)

λ

)

·e(iλ−ρ)Bξ,σ (x) dμσ (ξ)|c(λ)|−2 dλ.

Proof Since by Remark 5.6 ϕ(·, t) and all its derivatives in t have compact support
for every t ∈ R, we obtain

∂2

∂t2
ϕ̃σ ((λ, ξ); t) = ∂2

∂t2

∫

X
ϕ(x)e(−iλ−ρ)Bξ,σ (x) dx

=
∫

X

∂2

∂t2
ϕ(x)e(−iλ−ρ)Bξ,σ (x) dx

= ∂̃2

∂t2
ϕ

σ

((λ, ξ); t)
=�̃ϕ

σ
((λ, ξ); t) + ρ2ϕ̃σ ((λ, ξ); t)

Lemma 6.5= − (λ2 − ρ2)ϕ̃σ ((λ, ξ); t) + ρ2ϕ̃σ ((λ, ξ); t)
= − λ2ϕ̃σ ((λ, ξ); t).

Now the shifted wave equation becomes

∂2

∂t2
ϕ̃σ ((λ, ξ); t) = −λ2ϕ̃σ ((λ, ξ); t)
ϕ̃σ ((λ, ξ); 0) = f̃ σ (λ, ξ)

∂

∂t
ϕ̃σ ((λ, ξ); 0) = g̃σ (λ, ξ)

Hence analogous to solving the equation given by the Fourier transform of the wave
equation on R, see [46, Chap. 3, Sect. 5], we obtain

ϕ̃σ ((λ, ξ); t) = f̃ σ (λ, ξ) cos(λt) + g̃σ (λ, ξ)
sin(λt)

λ
,

therefore applying the inverse Fourier transform yields the claim. �
Remark 6.7 While the representation of the solutions of the shifted wave equation
from Theorem 5.3 corresponds to the classical representation of the solutions of the
wave equation on R

n by Ásgeirsson [2], the representation obtained in Theorem 6.6
corresponds to the operator expression for the operator �ρ := � + ρ2:

ϕ(x, t) = cos(
√−�ρ t) f (x) + sin(

√−�ρ t)
√−�ρ

g(x).

123



The Shifted Wave Equation on Non-flat Harmonic Manifolds Page 33 of 54 33

In turn, this again corresponds to the expression of the solution as a power series in
the proof Theorem 5.7.

Definition 6.8 Let ϕ : X × R → C be a solution of the shifted wave equation. We
define its kinetic energy K(ϕ) by

K(ϕ)(t) := 1

2

∫

X

∣∣∣∣
∂

∂t
ϕ(x, t)

∣∣∣∣

2

dx

and its potential energy P(ϕ)(t) by

P(ϕ)(t) := 1

2

∫

X
ϕ(x, t)(−� − ρ2)ϕ(x, t) dx .

The total energy is defined by

E(ϕ)(t) := K(ϕ)(t) + P(ϕ)(t).

Lemma 6.9 Suppose (X , g) is a harmonic manifold of rank one. Let σ ∈ X and
ϕ : X × R → C be a solution to the shifted wave equation with initial conditions

ϕ(x, 0) = f (x) ∈ C∞
c (X)

∂

∂t

∣∣∣∣
t=0

ϕ(x, t) = g(x) ∈ C∞
c (X).

Then, we have

2K(ϕ)(t) =C0

∫ ∞

0

∫

∂X
|−λ f̃ σ (λ, ξ) sin(λt)

+ g̃σ (λ, ξ) cos(λt)|2 dμσ (ξ)|c(λ)|−2 dλ (42)

and

2P(ϕ)(t) =C0

∫ ∞

0

∫

∂X
|λ f̃ σ (λ, ξ) cos(λt)

+ g̃σ (λ, ξ) sin(λt)|2 dμσ (ξ)|c(λ)|−2 dλ. (43)
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Proof Using the Plancherel theorem for the Fourier transform and Theorem 6.6, we
obtain for the kinetic energy

2K(ϕ)(t) =
∫

X

∣∣∣∣
∂

∂t
ϕ(x, t)

∣∣∣∣

2

dx

Plancherel theorem= C0

∫ ∞

0

∫

∂X

∣∣∣∣
∂

∂t
ϕ̃σ (λ, ξ ; t)

∣∣∣∣
2

dμσ (ξ)|c(λ)|−2 dλ

Theorem 6.6= C0

∫ ∞

0

∫

∂X
|−λ f̃ σ (λ, ξ) sin(λt)

+ g̃σ (λ, ξ) cos(λt)|2 dμσ (ξ)|c(λ)|−2 dλ.

For the potential energy, we use the Plancherel theorem for the Fourier transform,
Theorem 6.6 and Lemma 6.5:

2P(ϕ)(t) =
∫

X
ϕ(x, t)(−� − ρ2)ϕ(x, t) dx

Plancherel theorem= C0

∫ ∞

0

∫

∂X
ϕ̃σ (λ, ξ ; t)

· ( − �̃ϕ
σ
(λ, ξ ; t) − ρ̃2ϕ

σ

(λ, ξ ; t)) dμσ (ξ)|c(λ)|−2 dλ

Lemma 6.5= C0

∫ ∞

0

∫

∂X
ϕ̃σ (λ, ξ ; t)

· (
(λ2 + ρ2)ϕ̃σ (λ, ξ ; t) − ρ̃2ϕ

σ

(λ, ξ ; t)) dμσ (ξ)|c(λ)|−2 dλ

Theorem 6.6= C0

∫ ∞

0

∫

∂X
|λ f̃ σ (λ, ξ) cos(λt)

+ g̃σ (λ, ξ) sin(λt)|2 dμσ (ξ)|c(λ)|−2 dλ.

�

Theorem 6.10 Suppose (X , g) is a harmonic manifold of rank one. Let σ ∈ X and
ϕ : X × R → C a solution to the shifted wave equation with initial conditions
f , g ∈ C∞

c (X). Then, the total energy E(ϕ)(t) is independent of t . In particular,

2E(ϕ)(t) =‖λ f̃ σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)

+ ‖g̃σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)
.
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Proof If we look at the terms under the integrals in Lemma 6.9 separately. For the
integrand in (42), we obtain

|−λ f̃ σ (λ, ξ) sin(λt) + g̃σ (λ, ξ) cos(λt)|2
= λ2| f̃ σ (λ, ξ)|2 sin2(λt) + |̃gσ (λ, ξ)|2 cos2(λt)

− λ f̃ σ (λ, ξ) sin(λt) · g̃σ (λ, ξ) cos(λt)

− λ f̃ σ (λ, ξ) sin(λt) · g̃σ (λ, ξ) cos(λt)

and for the integrand in (43):

|λ f̃ σ (λ, ξ) cos(λt) + g̃σ (λ, ξ) sin(λt)|2
= λ2| f̃ σ (λ, ξ)|2 cos2(λt) + |̃gσ (λ, ξ)|2 sin2(λt)

+ λ f̃ σ (λ, ξ) cos(λt) · g̃σ (λ, ξ) sin(λt)

+ λ f̃ σ (λ, ξ) cos(λt) · g̃σ (λ, ξ) sin(λt).

Therefore, we obtain for the sum of the integrands in (42) and (43):

λ2| f̃ σ (λ, ξ)|2 sin2(λt) + |̃gσ (λ, ξ)|2 cos2(λt)
+ λ2| f̃ σ (λ, ξ)|2 cos2(λt) + |̃gσ (λ, ξ)|2 sin2(λt)

= λ2| f̃ σ (λ, ξ)|2 + |̃gσ (λ, ξ)|2.

Therefore, the total energy is given by

2E(ϕ)(t) =‖λ f̃ σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)

+ ‖g̃σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)

and is independent of the time. �
Note that using a different method one can prove the conservation of energy of

solutions of the shifted wave equation on an arbitrarily oriented Riemannian manifold
(see [29, Lemma V.5.12]). However, via this proof, one does not obtain the explicit
expression for the total energy above. Using Theorem 6.10, Green’s identity and the
fact that f has compact support, we obtain that

2E(ϕ) = ‖g‖2L2(X)
+ ‖∇ f ‖2L2(X)

− ρ2‖ f ‖2L2(X)
.

Hence comparing the above with the expression for the energy from Theorem 6.10,
we obtain using the Plancherel theorem and Lemma 6.5

‖∇ f ‖2L2(X)
− ρ2‖ f ‖2L2(X)

= ‖λ f̃ σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)
. (44)
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In the next section, we are going to investigate the term on the right-hand side to obtain
bounds on the energy just using the L2 norms of the initial conditions.

7 A Paley–Wiener Type Theorem on Harmonic Manifolds of Rank One

The classical Paley–Wiener theorem (see for instance [51, p.161]) gives sharp bounds
on the decay of the Fourier transform of a compactly supported function on R

n :

Theorem 7.1 A holomorphic function F : C
n → C is the Fourier transform of a

smooth function with support in the ball {x ∈ R
n | ‖x‖ ≤ R} if and only if for every

N ∈ N>0 there exists a constant CN > 0 such that

|F(λ)| ≤ CN (1 + |λ|)−NeR|Im λ| ∀λ ∈ C.

In this section, we want to show a weaker statement (Theorem 7.4) namely that a
sufficient decay of the derivatives of a function forces their Fourier transform to have
support within a bounded set. Using mainly Lemma 6.5 and the Plancherel theorem,
this is an extension of a Paley–Wiener type theorem from [5] to harmonic manifolds of
rank one. The proof follows the lines in [5] closely with the addition of some details,
but the statement of the Paley–Wiener type theorem is weaker than the one in [5]
since it is still not known if the Fourier transform on harmonic manifolds is surjective.
Furthermore, we use this result to show that the total energy of a solution to the shifted
wave equation with specific initial conditions is bounded by bounds only depending
on the L2 norm of the initial conditions and bounds on the support of the Fourier
transform of the initial conditions. Let g : R

+ × ∂X → C be a measurable function
with respect to the measure C0|c(λ)|−2 dμσ (ξ) dλ. Then, we define

Rg := sup
(λ,ξ)∈supp g

|λ|.

Note that this might be infinite.

Lemma 7.2 Let g be a function on R
+ × ∂X such that (λ, ξ) → λ j g(λ, ξ) belongs

to L2(R+ × ∂X ,C0|c(λ)|−2 dμσ (ξ) dλ) for all integers j . Then,

Rg = lim
j→∞

(
C0

∫ ∞

0

∫

∂X
λ2 j |g(λ, ξ)|2|c(λ)|−2 dμσ (ξ) dλ

)1/(2 j)

Proof First, we assume Rg < ∞. Let 0 < ε < Rg and we get for some δ > 0 that

C0

∫ Rg−ε

0

∫

∂X
λ2 j |g(λ, ξ)|2|c(λ)|−2 dμσ (ξ) dλ ≥ (Rg − ε)2 j+1δ.
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Hence, on one hand,

lim inf
j→∞

(
C0

∫ ∞

0

∫

∂X
λ2 j |g(λ, ξ)|2|c(λ)|−2 dμσ (ξ) dλ

)1/(2 j)

≥ lim inf
j→∞

(
C0

∫ Rg−ε

0

∫

∂X
λ2 j |g(λ, ξ)|2|c(λ)|−2 dμσ (ξ) dλ

)1/(2 j)

≥ Rg − ε.

On the other hand,

lim sup
j→∞

(
C0

∫ ∞

0

∫

∂X
λ2 j |g(λ, ξ)|2|c(λ)|−2 dμσ (ξ) dλ

)1/(2 j)

≤ Rg lim sup
j→∞

‖g‖1/ j
L2(R+×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)

= Rg.

Since ε > 0 is arbitrary this completes the case Rg < ∞. Now suppose Rg = ∞.
Then, for every M > 0, we have,

C0

∫ ∞

M

∫

∂X
λ2 j |g(λ, ξ)|2|c(λ)|−2 dμσ (ξ) dλ > 0

and

lim inf
j→∞

(
C0

∫ ∞

0

∫

∂X
λ2 j |g(λ, ξ)|2|c(λ)|−2 dμσ (ξ) dλ

)1/(2 j)

≥ lim inf
j→∞

(
C0

∫ ∞

M

∫

∂X
λ2 j |g(λ, ξ)|2C0|c(λ)|−2 dμσ (ξ) dλ

)1/(2 j)

≥ M .

�
Definition 7.3 Let R > 0. We define

L2
R(R+ × ∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)

:= {g ∈ L2(R+ × ∂X ,C0|c(λ)|−2 dμσ (ξ) dλ) | Rg = R}

and

PW 2
R(X) := { f ∈ C∞(X) |� j f ∈ L2(X)∀ j ∈ N

and lim
j→∞‖(� + ρ2) j f ‖1/(2 j)2 = R}.
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Theorem 7.4 Let R > 0. Then, if it exists, the inverse Fourier transformof a function in
L2
R(R+×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ) belongs to PW 2

R(X) and the Fourier transform
maps PW 2

R(X)to

L2
R(R+ × ∂X ,C0|c(λ)|−2 dμσ (ξ) dλ).

Proof Let g ∈ L2
R(R+ × ∂X ,C0|c(λ)|−2 dμσ (ξ) dλ) and denote its inverse Fourier

transform with respect to σ ∈ X by f . f is smooth by the Lebesgue’s dominant
convergence theorem and � j f ∈ L2(X) for all j ∈ N since by Lemma 6.5, we have

� j f = (−1) jC0

∫ ∞

0

∫

∂X
(λ2 + ρ2) j f̃ σ (λ, ξ)

·e(iλ−ρ)Bξ,σ (x)|c(λ)|−2 dμσ (ξ) dλ

and g = f̃ σ ∈ L2
R(R+ × ∂X ,C0|c(λ)|−2 dμσ (ξ) dλ) with R = sup(λ,ξ)∈supp g|λ|.

Using the Plancherel theorem, Lemma 6.5 and Lemma 7.2, we have

lim
j→∞‖(� + ρ2) j f ‖1/(2 j)2

= lim
j→∞

(
C0

∫ ∞

0

∫

∂X
λ2 j | f̃ σ (λ, ξ)|2|c(λ)|−2 dμσ (ξ) dλ

)1/(2 j)

= lim
j→∞

(
C0

∫ ∞

0

∫

∂X
λ2 j |g(λ, ξ)|2|c(λ)|−2 dμσ (ξ) dλ

)1/(2 j)

= R.

Now if f ∈ PW 2
R(X), then by the Plancherel theoremandLemma6.5,we have�2 j f̃ σ

is in L2
R(R+ × ∂X ,C0|c(λ)|−2 dμσ (ξ) dλ), and by Lemma 7.2, we have Rg = R. �

Corollary 7.5 Let σ ∈ X and R > 0. Then, for a smooth solution of the shifted wave
equation ϕ : X × R → C with initial conditions

ϕ(x, 0) = f (x) ∈ PW 2
R(X)

∂

∂t

∣∣∣∣
t=0

ϕ(x, t) = g(x) ∈ C∞
c (X)

we have

2E(ϕ)(t) ≤ R2‖ f ‖2L2(X)
+ ‖g‖2L2(X)

.

Furthermore, we obtain

‖∇ f ‖2L2(X)
≤ (R2 + ρ2)‖ f ‖2L2(X)

.
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Proof We have by Theorem 6.10 that

2E(ϕ)(t) =‖λ f̃ σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)

+ ‖g̃σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)

and since f ∈ PW 2
R(X), we obtain

‖λ f̃ σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)

≤ R2‖ f̃ σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)
. (45)

Therefore, applying the Plancherel theorem yields

2E(ϕ)(t) ≤ R2‖ f ‖2L2(X)
+ ‖g‖2L2(X)

.

Now using equation (44), equation (45) and the Plancherel theorem, we conclude

‖∇ f ‖2L2(X)

(44)= ‖λ f̃ σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)
+ ρ2‖ f ‖2L2(X)

(45)≤ R2‖ f̃ σ ‖2L2((0,∞)×∂X ,C0|c(λ)|−2 dμσ (ξ) dλ)
+ ρ2‖ f ‖2L2(X)

Plancherel theorem= R2‖ f ‖2L2(X)
+ ρ2‖ f ‖2L2(X)

=(R2 + ρ2)‖ f ‖2L2(X)
.

�

8 The Paley–Wiener Theorem for Harmonic Manifolds of Rank One

Theorem 8.1 Let f : X → C be a smooth function with compact support in the ball
B(σ, R) for some σ ∈ X and R > 0. Then, the Fourier transform of f based at σ

f̃ σ (λ, ξ) =
∫

X
f (x)e(−iλ−ρ)Bξ,σ (x) dx

is a holomorphic function in λ, and we have

sup
λ∈C, ξ∈∂X

e−R|Im(λ)|(1 + |λ|)N | f̃ σ (λ, ξ)| < ∞ ∀N ∈ N>0.

Theabove is a generalisationofTheorem4.5 in [3] but ourmethoddiffers from theirs
which relies on the homogeneity of Damek–Ricci spaces. Furthermore, the boundary
structure of the Damek–Ricci space N A used consists of the non-compact group N
where we use the geometric boundary which is equivalent to using the one-point
compactification of N , for an explanation of this correspondence see for example [4,
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Sect. 3]. The idea of the proof:We first show that for f ∈ C∞
c (X) the Radon transform

Rσ ( f )(s, ξ), a modification of the one introduced in [43], is smooth in s. Then, we
argue that it vanishes for |s| > R and all ξ ∈ ∂X , if supp f ⊂ B(σ, R). Using
the connection of the Radon transform and the Fourier transform via the Euclidean
Fourier transform, we apply the classical Paley–Wiener theorem to show the claim.
This approach is also used by Helgason to show the Paley–Wiener theorem for non-
compact symmetric space (see [29, p. 278]). We begin by introducing the Radon
transform, a generalisation of the Abel transform to non-radial functions.

8.1 The Radon Transform

We define the Radon transformRσ ( f ) : R × ∂X → C at σ ∈ X for f ∈ C∞
c (X) by

Rσ ( f )(s, ξ) := e−ρs
∫

Hξ,σ (s)
f (z) dz

for all s ∈ R and ξ ∈ ∂X . Note that this definition differs from the one given in [43] by
the factor e−ρs . Furthermore, all signs are swapped compared toRouvière’s work since
he chooses the Busemann function to be defined with the opposite sign to ours. We
choose this factor deliberately to have a direct correspondence to the Fourier transform
via the Euclidean Fourier transform in Lemma 8.5 and obtain the Abel transform on
radial functions.

Lemma 8.2 Let f ∈ C∞
c (X). Then Rσ ( f )(s, ξ) is smooth in s.

Proof In coordinates given by the diffeomorphism (5) and by (6), the regularity of
Rσ ( f )(s, ξ) in s is given by the minimum of the regularity of f and 
s . But since
the Busemann functions and the metric are analytic, 
s is analytic in s. Hence,
Rσ ( f )(s, ξ) is smooth in s. �

The lemma is a version of the projection slice theorem for harmonic manifolds.

Lemma 8.3 Let f ∈ C∞
c (X) have support in the ball B(σ, R) for some σ ∈ X and

R > 0. Then, Rσ ( f )(s, ξ) = 0 for |s| > R and all ξ ∈ ∂X.

Proof Let |s| > R. Since the Busemann function is Lipschitz with Lipschitz constant
1, we have that |Bξ,σ (x)| is a lower bound of d(σ, x). Hence, for all x ∈ Hs

ξ,σ we have
that d(σ, x) > R hence f = 0 on Hs

ξ,σ , and therefore,

Rσ ( f )(s, ξ) = e−ρs
∫

Hξ,σ (s)
f (z) dz = 0

for all ξ ∈ ∂X . �
Remark 8.4 Since the gradient of the Busemann function Bξ,σ in σ ∈ X coincides up
to a sign with the initial condition of the unique geodesic emitting from σ and ending
in ξ , the distance from Hs

ξ,σ is given by |s|.
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In the next lemma, the choice of the factor e−ρs will become apparent. A version
without the factor can be found in [43, Proposition 9].

Lemma 8.5 Let F be the Euclidean Fourier transform given for a smooth complex-
valued function u on R with compact support by

F(u)(λ) =
∫ ∞

−∞
e−iλt u(t) dt λ ∈ C.

Then, for f ∈ C∞
c (X), we have

f̃ σ (λ, ξ) = F(Rσ ( f )(·, ξ)
)
(λ).

Proof We have for f ∈ C∞
c (X) using the Co-area formula:

f̃ σ (λ, ξ) =
∫

X
f (x)e−(iλ+p)Bξ,σ (x) dx

=
∫ ∞

−∞

∫

Hs,ξ

f (z)e−(iλ+p)s dz ds

=
∫ ∞

−∞
e−iλse−ps

∫

Hs,ξ

f (z) dz, ds

=
∫ ∞

−∞
e−iλsRσ ( f )(s, ξ) ds

= F(Rσ ( f )(s, ξ))(λ).

Where we get the existence of the Euclidean Fourier transform above from Lemma
8.3. �
Remark 8.6 In [43, Theorem 11], Rouvière uses Lemma 8.5 to prove an inversion
formula for the Radon transform. The idea is to apply the inverse Fourier transform
on X to the result of the lemma.

Proof of Theorem 8.1 First we note that e(−iλ−ρ)Bξ,σ (x) is for all x ∈ X holomorphic
in λ ∈ C and since

f̃ σ (λ, ξ) =
∫

X
f (x)e(−iλ−ρ)Bξ,σ (x) dx,

it is sufficient to show that
∫

X

∣∣∣ f (x)e(−iλ−ρ)Bξ,σ (x)
∣∣∣ dx < ∞ ∀λ ∈ C.

But this is given by the fact that f has compact support. Hence, f̃ σ (λ, ξ) is holomor-
phic in λ ∈ C for all ξ ∈ ∂X by Morera’s theorem. Now by Lemma 8.2,Rσ ( f )(s, ξ)
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is smooth in s and, by Lemma 8.3,Rσ ( f )(s, ξ) has support in [−R, R]. Furthermore,
by Lemma 8.5,

f̃ σ (λ, ξ) = F(Rσ ( f )(s, ξ)
)
(λ).

Hence, by the classical Paley–Wiener theorem (see Theorem 7.1), we have that for
every ξ ∈ ∂X and N ∈ N>0 there exists a constant CN ,ξ > 0 such that

| f̃ σ (λ, ξ)| ≤ CN ,ξ (1 + |λ|)−NeR|Im λ| ∀λ ∈ C.

Now ∂X is compact and f̃ σ (λ, ξ) is continuous in ξ , since the Busemann boundary
and the geometric boundary coincide, hence there exists a CN > 0 such that for all
ξ ∈ ∂X :

| f̃ σ (λ, ξ)| ≤ CN (1 + |λ|)−NeR|Im λ| ∀λ ∈ C.

This yields the claim. �
Proposition 8.7 Let f ∈ C∞

c (X). Then, we have

∫

∂X
f̃ σ (−λ, ξ)e(−iλ−ρ)Bξ,σ (x) dμσ (ξ) =

∫

∂X
f̃ σ (λ, ξ)e(iλ−ρ)Bξ,σ (x) dμσ (ξ).

The proof follows from the following lemma with the relation

ϕ−λ,σ = ϕλ,σ .

Lemma 8.8 Let f ∈ C∞
c (X). Then, we have

f ∗ ϕλ,σ (x) : =
∫

X
f (y) · ϕλ,x (y) dy

=
∫

∂X
f̃ σ (−λ, ξ) · e(−iλ−ρ)Bξ,σ (x) dμσ (ξ).

Proof Recall the relations (30), (39) and (40). Then, we obtain for x, σ ∈ X :

f ∗ ϕλ,σ (x) =
∫

X
f (y) · ϕλ,x (y) dy

(40)=
∫

X
f (y) ·

∫

∂X
e(iλ−ρ)Bξ,x (y) dμx (ξ) dy

=
∫

X

∫

∂X
f (y)e(iλ−ρ)Bξ,x (y) dμx (ξ) dy

=
∫

∂X

∫

X
f (y)e(iλ−ρ)Bξ,x (y) dy dμx (ξ)

=
∫

∂X
f̃ x (−λ, ξ) dμx (ξ)
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(39)=
∫

∂X
f̃ σ (−λ, ξ) · e(−iλ+ρ)Bξ,σ (x) dμx (ξ)

(30)=
∫

∂X
f̃ σ (−λ, ξ) · e(−iλ+ρ)Bξ,σ (x)e−2ρBξ,σ (x) dμσ (ξ)

=
∫

∂X
f̃ σ (−λ, ξ) · e(−iλ−ρ)Bξ,σ (x) dμσ (ξ).

The interchange of integrals is justified by the Fubini-Tonelli theorem and the facts that
f has compact support and ∂X has finite measure (dμσ (ξ) is a probability measure).

�
Corollary 8.9 Let R > 0 and denote by PW 0

R all functions F : C × ∂X → C

holomorphic on C which satisfy

sup
λ∈C, ξ∈∂X

e−R|Im(λ)|(1 + |λ|)N |F(λ, ξ)| < ∞ ∀N ∈ N>0.

and for σ ∈ X:

∫

∂X
F(−λ, ξ) · e(−iλ−ρ)Bξ,σ (x) dμσ (ξ) =

∫

∂X
F(λ, ξ) · e(iλ−ρ)Bξ,σ (x) dμσ (ξ).

Then, the image of C∞
c (X) under the Fourier transform based at σ is contained in

⋃

R≥0

PW 0
R .

9 Huygens’ Principle

In this section, we want to prove an asymptotic Huygens’ principle along the lines of
the proof of [13]. For this we need to make assumptions on the c-function, namely
we need that the function η defined by η(λ)−1 := c(λ)c(λ) on the lower half plane of
C has a holomorphic extension up to Im(λ) = εmax > 0 where it has a singular pole
and is a polynomial with real coefficients up to this point such that η(λ) = λn−1η0(λ)

where all poles of η are also poles of η0 with the same multiplicity. We will call this as
the C-condition. The C-condition is satisfied in the case of symmetric spaces of rank
one and Damek–Ricci spaces whose nilpotent part has a centre of even dimension as
well as on the hyperbolic spaces of odd dimension. For this, see [21]. Formore detail on
the c-function of Damek–Ricci space, see [48], especially Proposition 4.7.13−4.7.15
and Theorem 6.3.4.

Remark 9.1 Note that η(λ) = |c(λ)|−2 and that by [11, Lemma 3.4 and Proposition
3.17] (alternatively one can observe this from (33) combined with (34) and (35)), we
have

c(λ) = c(−λ) ∀λ ∈ R.
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From this, we get that for all λ ∈ R

η(−λ) = (c(−λ)c(−λ))−1 = (c(λ)c(λ))−1 = η(λ)

hence η is even in λ.

Theorem 9.2 Let (X , g) be a non-compact simply connected harmonic manifold of
rank one of dimension bigger than one, such that the c-function satisfies the C-
condition. Let ϕ be a solution of the shifted wave equation with initial conditions
f , g supported in a ball of radius R around σ ∈ X. Let εmax be as above and
0 < ε < εmax < ∞. Then, there is a constant C > 0 such that

|ϕ(x, t)| ≤ C(εmax − ε)−1 · e−ε(|t |−d(x,σ )−R) ∀(x, t) ∈ X × R.

If εmax = ∞, we get

|ϕ(x, t)| ≤ C · e−ε(|t |−d(x,σ )−R) ∀ε > 0,∀(x, t) ∈ X × R.

In particular, we have in this case,

ϕ(x, t) = 0 for |t | − d(x, σ ) ≥ R.

The proof of this statement will be conducted via a series of lemma occupying the
remainder of the section. We will always require the assumptions of the theorem.

Lemma 9.3 Let h : C → C be a function holomorphic on the strip P = {z ∈ C | 0 ≤
Im z ≤ ε} such that there is a C > 0 with |h(z)| ≤ C(1 + |z|)−N for some N > 0 on
P. Then

∫ ∞

−∞
h(z) dz =

∫ ∞

−∞
h(a + iε) da.

Proof Consider the contour in Fig. 4. Let γ1 : [0, 1] → C be given by γ1(s) = r + isε
and γ2 : [0, 1] → C be given by γ2(s) = −r + i(1 − s)ε. Then, by the bounds on h
on the strip P , there are constants C1,C2 > 0 such that

∣∣∣
∫

γ1

h ds
∣∣∣ =

∣∣∣
∫ 1

0
h(r + isε) · iθ ds

∣∣∣ ≤ C1(1 + |r |)−N ,

∣∣∣
∫

γ2

h ds
∣∣∣ =

∣∣∣
∫ 1

0
h(−r + (1 − is)ε) · −iθ ds

∣∣∣ ≤ C2(1 + |r |)−N .

Therefore, since both integrals tend to zero for r → ±∞ and we get the assertion. �
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Re(z)

Im(z)

−r r

r +−r +
γC

γ1

γR

γ2

Fig. 4 Contour of Lemma 9.3, for r → ∞ the integral along γ1 and γ2 vanishes because of the bounds on
h

Lemma 9.4 Let f , g ∈ C∞
c (X). Then the functions

F(λ, x) :=
∫

∂X
f̃ σ (λ, ξ)e(iλ−ρ)Bξ,σ (x)η(λ) dμσ (ξ)

and

G(λ, x) :=
∫

∂X
g̃σ (λ, ξ)e(iλ−ρ)Bξ,σ (x)η(λ) dμσ (ξ)

are even in λ and

∫ ∞

0
F(λ, x) cos(λt) + G(λ, ξ)

sin(λt)

λ
dλ

= 1

2

∫ ∞

−∞
(
F(λ, x) + G(λ, x)

iλ

)
eiλt dλ.

Proof Note that η is even in λ by Remark 9.1, and F(λ, x) and G(λ, x) are also even
in λ by Proposition 8.7. Now using this and

2 cos(λt) = eiλt + e−iλt

we get

∫ ∞

0
F(λ, x) cos(λt) dλ = 1

2

( ∫ ∞

0
F(λ, x)eiλt dλ +

∫ ∞

0
F(λ, x)e−iλt dλ

)

= 1

2

( ∫ ∞

0
F(λ, x)eiλt dλ +

∫ 0

−∞
F(λ, x)eiλt dλ

)

= 1

2

∫ ∞

−∞
F(λ, x)eiλt dλ.
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Since 2i sin(λt) = eiλt − e−iλt and G(λ, x) is even in λ, we obtain

∫ ∞

0
G(λ, x)

sin(λt)

λ
dλ = 1

2i

( ∫ ∞

0
G(λ, x)

eiλt

λ
dλ −

∫ ∞

0
G(λ, x)

e−iλt

λ
dλ

)

= 1

2i

( ∫ ∞

0
G(λ, x)

eiλt

λ
dλ +

∫ 0

−∞
G(λ, x)

eiλt

λ
dλ

)

=1

2

∫ ∞

−∞
G(λ, x)

eiλt

iλ
dλ.

�

By [47, Prop. 6.1.1 and Prop. 6.1.4] and (37), we have the following bounds for the
radial eigenfunctions of the Laplacian:

Lemma 9.5 For all x, σ ∈ X and λ ∈ C, we have

(1) |ϕλ,σ (x)| ≤ ϕi Im(λ),σ (x) ≤ ϕ0,σ (x) · e|Im(λ)|d(σ,x),
(2) |Im(λ)| ≤ ρ ⇒ e(|Im(λ)|−ρ)d(σ,x) ≤ ϕi Im(λ),σ (x) ≤ 1,
(3) |Im(λ)| ≥ ρ ⇒ 1 ≤ ϕi Im(λ),σ (x) ≤ e(|Im(λ)|−ρ)d(σ,x).

Furthermore, we have

ϕi Im(λ),σ (x) ≤ k(1 + d(σ, x))e(|Im(λ)|−ρ)d(σ,x)

for some positive constant k > 0.

Lemma 9.6 Assume the assumptions of the Theorem 9.2. Let f , g ∈ C∞
c (X) with

support in the ball of radius R > 0 around σ ∈ X. Then F and G admit holomorphic
extensions in λ up to εmax and for every N ∈ N we can find a constant CN such that
for all λ ∈ C with 0 ≤ Im λ ≤ ε < εmax and x ∈ X

|F(λ, x)| ≤ CN (εmax − ε)−1(1 + |λ|)−Neεd(x,σ )+Rε

and

|G(λ, x)| ≤ CN (εmax − ε)−1(1 + |λ|)−Neεd(x,σ )+Rε .

Furthermore, if dim X > 1, we have that for every N ∈ N, there is a constant DN

such that

|λ−1G(λ, x)| ≤ DN (εmax − ε)−1(1 + |λ|)−Neεd(x,σ )+Rε .

Proof That F,G are holomorphic up to εmax inλ follows from the fact that all functions
making up those are holomorphic up to this point. Let us begin with the estimate on
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F . The one on G follows in the same manner.

|F(λ, x)| ≤
∣∣∣
∫

∂X
f̃ σ (λ, ξ)e(iλ−ρ)Bξ,σ (x)η(λ) dμσ (ξ)

∣∣∣

≤ sup
Im λ<εmax, ξ∈∂X

| f̃ σ (λ, ξ)η(λ)|
∣∣∣
∫

∂X
e(iλ−ρ)Bξ,σ (x) dμσ (ξ)

∣∣∣.

By Lemma 9.5 (1) and the integral representation of the radial eigenfunctions (40),

∣∣∣
∫

∂X
e(iλ−ρ)Bξ,σ (x) dμσ (ξ)

∣∣∣ = |ϕλ,σ (x)|
≤ |ϕi Im λ(x)|
≤ |ϕ0,σ (x)|e|Im λ|d(x,σ )

≤ e|Im λ|d(x,σ ).

Now using Theorem 8.1, the assumption that η has a singular pole at εmax and is a
polynomial, and since ∂X is compact, we can conclude that for every N ∈ N there is
a constant CN such that for all 0 ≤ Im λ ≤ ε < εmax

|F(λ, x)| ≤ CN (εmax − ε)−1(1 + |λ|)−Neεd(x,σ )+R|Im λ|

≤ CN (εmax − ε)−1(1 + |λ|)−Neεd(x,σ )+Rε .

For the last estimate on |λ−1G(λ, x)|, one only needs to consider that η(λ) =
λn−1η0(λ) where all poles of η are also poles of η0 with the same multiplicity. Hence,
one only needs to exclude the case where dim X = 1. Then, we get using the same
lines as above:

|λ−1G(λ, x)| ≤
∣∣∣
∫

∂X
λ−1g̃σ (λ, ξ)e(iλ−ρ)Bξ,σ (x)η(λ) dμσ (ξ)

∣∣∣

≤ sup
Im λ<εmax, ξ∈∂X

|λ−1g̃σ (λ, ξ)η(λ)|
∣∣∣
∫

∂X
e(iλ−ρ)Bξ,σ (x) dμσ (ξ)

∣∣∣

≤ sup
Im λ<εmax, ξ∈∂X

(
|λn−2g̃σ (λ, ξ)η0(λ)|

·
∣∣∣
∫

∂X
e(iλ−ρ)Bξ,σ (x) dμσ (ξ)

∣∣∣
)

and unsing again the estimate

∣∣∣
∫

∂X
e(iλ−ρ)Bξ,σ (x) dμσ (ξ)

∣∣∣ ≤ e|Im λ|d(x,σ ).
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Hence, we obtain using the same arguments as above that for every N ∈ N there is a
constant DN such that for 0 ≤ Im λ ≤ ε < εmax

|λ−1G(λ, x)| ≤ DN (εmax − ε)−1(1 + |λ|)−Neεd(x,σ )+Rε .

�
Proof Theorem 9.2 First we note that u(x,−t) solves the shifted wave equation with
initial conditions f ,−g. Hence, we only need to consider the case t ≥ 0. Let 0 < ε <

εmax . Then, using Lemma 9.3, we can move the integral defining u from R to R + iε,
hence,

2|ϕ(x, t)| =
∣∣∣C0

∫ ∞

−∞
(
F(λ, x) + G(λ, x

iλ

)
eiλt dλ

∣∣∣

=
∣∣∣C0e

−εt
∫ ∞

−∞
(
F(a + iε, x) + G(a + iε)

i(a + iλ)

)
eiat dλ

∣∣∣,

now using Lemma 9.6, we obtain for N ∈ N a constant CN > 0 such that

2|ϕ(x, t)| ≤ CN (εmax − ε)−1e−ε(t−d(x,σ ))eRε

∫ ∞

−∞
(1 + |λ|)−N dλ.

Since the last integral is bounded we obtain the claim. For the case that the c-function
is an entire function and a polynomial, one notices that we can ignore the them (εmax −
ε)−1 in all the estimates which yield the assertion in this case. �

10 Equidistribution of Energy

Under the same assumptions on the c-function as in the last section, we now want to
prove an asymptotic equidistribution of the energy between the kinetic and potential
energy of a wave on X .

Theorem 10.1 Let (X , g) be a non-compact simply connected harmonic manifold of
rank one, such that the c-function satisfies the C-condition. Let ϕ be a solution of the
shifted wave equation with smooth initial conditions f , g compactly supported within
a ball of radius R around σ ∈ X. Let εmax be as before and 0 < ε < εmax < ∞.
Then, there is a constant C > 0 such that we have for the potential and kinetic energy
P and K

|K(ϕ)(t) − P(ϕ)(t)| ≤ C(εmax − ε)−1(e−2ε(|t |−R)) ∀t ∈ R

and if εmax = ∞, we have

K(ϕ)(t) = P(ϕ)(t) ∀|t | ≥ R.
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The proof is similar to the proof of Theorem 9.2. Let us begin with calculating the
difference between the kinetic and potential energy.

Lemma 10.2 Let ϕ be a solution of the shifted wave equation with initial conditions
f , g ∈ C∞

c (X). Then

2

C0

(
K(ϕ)(t) − P(ϕ)(t)

)
=

∫ ∞

0

∫

∂X

(( − λ2 f̃ σ (λ, ξ) f̃ σ (λ, ξ) + g̃σ (λ, ξ)g̃σ (λ, ξ)
)
cos(2λt)

− (
f̃ σ (λ, ξ)g̃σ (λ, ξ) + g̃σ (λ, ξ) f̃ σ (λ, ξ)

) · λ sin(2λt)
)
dμσ |c(λ)|−2dλ.

Proof Subtracting the integrant in (43) from the integrand in (42) yields

λ2 f̃ σ (λ, ξ) f̃ σ (λ, ξ) sin2(λt)

+ g̃σ (λ, ξ)g̃σ (λ, ξ) cos2(λt)

− 2λ f̃ σ (λ, ξ)g̃σ (λ, ξ) sin(λt) cos(λt)

− 2λg̃σ (λ, ξ) f̃ σ (λ, ξ) sin(λt) cos(λt)

− λ2 f̃ σ (λ, ξ) f̃ σ (λ, ξ) cos2(λt)

− g̃σ (λ, ξ)g̃σ (λ, ξ) sin2(λt).

Now using sin(x) cos(x) = 1
2 sin(2x), we obtain that the above equates to

− λ2 f̃ σ (λ, ξ) f̃ σ (λ, ξ)
(
cos2(λt) − sin2(λt)

)

+ g̃σ (λ, ξ)g̃σ (λ, ξ)
(
cos2(λt) − sin2(λt)

)

− λ
(
f̃ σ (λ, ξ)g̃σ (λ, ξ) + g̃σ (λ, ξ) f̃ σ (λ, ξ)

)
sin(2λt).

Finally the claim follows from cos2(x) − sin2(x) = cos(2x). �

For us to be able to use the same arguments as in Sect. 9, the following lemma is
essential.

Lemma 10.3 Let h1, h2 ∈ C∞
c (X) and σ ∈ X. Then for all λ ∈ R and ξ ∈ ∂X

(1) h̃σ
1 (λ, ξ) = ˜̄h

σ

1 (−λ, ξ).
(2) We have∫

∂X h̃σ
1 (λ, ξ )̃hσ

2 (λ, ξ) dμσ (ξ) = ∫
∂X h̃σ

1 (−λ, ξ )̃hσ
2 (−λ, ξ) dμσ (ξ).
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Proof For the first assertion, we only need to look at the definition of the Fourier
transform:

h̃σ
1 (λ, ξ) =

∫

X
h1(x)e(−iλ−ρ)Bξ,σ (x) dx

=
∫

X
h1(x)e

(iλ−ρ)Bξ,σ (x) dx

= ˜̄h
σ

1 (−λ, ξ).

The second assertion follows now from the first together with Proposition 8.7:

∫

∂X
h̃σ
1 (λ, ξ )̃hσ

2 (λ, ξ) dμσ (ξ)

Def.6.2=
∫

∂X

( ∫

X
h1(x)e

(−iλ−ρ)Bξ,σ (x) dx
)
h̃σ
2 (λ, ξ) dμσ (ξ)

=
∫

∂X

∫

X
h1(x )̃hσ

2 (λ, ξ)e(−iλ−ρ)Bξ,σ (x) dx dμσ (ξ)

=
∫

X

∫

∂X
h1(x )̃hσ

2 (λ, ξ)e(−iλ−ρ)Bξ,σ (x) dμσ (ξ) dx

=
∫

X
h1(x)

∫

∂X
h̃σ
2 (λ, ξ)e(−iλ−ρ)Bξ,σ (x) dμσ (ξ) dx

(Lemma 10.3(i)=
∫

X
h1(x)

∫

∂X

˜̄h
σ

2 (−λ, ξ)e(−iλ−ρ)Bξ,σ (x) dμσ (ξ) dx

Lemma 8.7=
∫

X
h1(x)

∫

∂X

˜̄h
σ

2 (λ, ξ)e(iλ−ρ)Bξ,σ (x) dμσ (ξ) dx

=
∫

X

∫

∂X
h1(x )̃h̄

σ

2 (λ, ξ)e(iλ−ρ)Bξ,σ (x) dμσ (ξ) dx

=
∫

∂X

∫

X
h1(x )̃h̄

σ

2 (λ, ξ)e(iλ−ρ)Bξ,σ (x) dx dμσ (ξ)

=
∫

∂X

˜̄h
σ

2 (λ, ξ)

∫

X
h1(x)e

(iλ−ρ)Bξ,σ (x) dx dμσ (ξ)

Def.6.2=
∫

∂X
h̃σ
1 (−λ, ξ )̃h̄

σ

2 (λ, ξ)(λ, ξ) dμσ (ξ)

10.3(i)=
∫

∂X
h̃σ
1 (−λ, ξ )̃hσ

2 (−λ, ξ) dμσ (ξ).

Here the interchange of integrals is justified by the Fubini-Tonelli theorem and the
facts that h1 and h2 have compact support and ∂X has finite measure (dμσ (ξ) is a
probability measure). �
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Lemma 10.4 Under the conditions of Theorem 10.1, define

A(λ) :=
∫

∂X

( − λ2 f̃ σ (λ, ξ) f̃ σ (λ, ξ) + g̃σ (λ, ξ)g̃σ (λ, ξ)
)
η(λ) dμσ (ξ)

and

B(λ) :=
∫

∂X

(
f̃ σ (λ, ξ)g̃σ (λ, ξ) + g̃σ (λ, ξ) f̃ σ (λ, ξ)

)
η(λ) dμσ (ξ).

Then, for ε < εmax, we have

(1) A(λ) and B(λ) admit a holomorphic extension up to Im λ = ε.
(2) A(λ) and B(λ) are even.
(3) For every N ∈ N there are constants AN and BN such that for every λ ∈ C with

|Im λ| ≤ ε < εmax, we have

(i) |A(λ)| ≤ AN (εmax − ε)−1(1 + |λ|)−Ne2Rε,

(i i) |λB(λ)| ≤ BN (εmax − ε)−1(1 + |λ|)−Ne2Rε .

(4) We have for |Im λ| ≤ ε:

4

C0

(
K(ϕ)(t) − P(ϕ)(t)

)
=

∫ ∞

−∞

(
A(λ) + iλB(λ)

)
e2iλt dλ.

Proof (1) is a direct consequence of the first assertion from Lemma 10.3 and Corollary
8.9. (3) also follows form Corollary 8.9 since the c-function satisfies the C-condition.
If we have that A and B are even, then also (4) follows with the same arguments as
in Lemma 9.4. Therefore, all that remains to show is (2) but this follows immediately
from Lemma 10.3. �

Proof Theorem 10.1 With the same argument as in Theorem 9.2, we can restrict our-
selves to the case t ≥ 0. Let 0 < ε < εmax . Then, we have by using Lemma 9.3 and
shifting the integral to R + iε:

∣∣∣
4

C0

(
K(ϕ)(t) − P(ϕ)(t)

)∣∣∣ =
∣∣∣
∫ ∞

−∞

(
A(λ) + iλB(λ)

)
e2iλt dλ

∣∣∣

=
∣∣∣e−2εt

∫ ∞

−∞

(
A(a + iε) + i(a + iε)B(a + iε)

)
e2iat da

∣∣∣. (46)

Now, by the bounds from Lemma 10.4, for every N ∈ N there is a constant CN , such
that for all λ ∈ C with |Im λ| ≤ ε < εmax (46) is bounded by

CN (εmax − ε)−1e2Rεe−2εt
∫ ∞

−∞
(1 + |λ|)−N dλ ∀t ≥ 0. (47)
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Since the integral in (47) is bounded there is a constant C > 0 such that (46) bounded
by

C(εmax − ε)−1e−2ε(|t |−R) ∀t ≥ 0.

For the case that the c-function is an entire function and a polynomial, one notices
that we can ignore the term (εmax − ε)−1 in all the estimates. Taking the limit ε → ∞
yields the assertion. �

Remark 10.5 Note that the assumption on the pole of η to be of multiplicity one only
affects the term (εmax − ε)−1, so one could restate Theorems 9.2 and 10.1 for η to
have a pole of multiplicity n ∈ N by raising the power to −n. But there are no known
examples for this case, even for c-functions on hypergroups. Hence, we state our
theorems in the realistic setting.
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