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Abstract
Let γ : [0, 1] → S

2 be a non-degenerate curve in R
3, that is to say,

det
(
γ (θ), γ ′(θ), γ ′′(θ)

) �= 0. For each θ ∈ [0, 1], let lθ = span(γ (θ)) and
ρθ : R3 → lθ be the orthogonal projections. We prove an exceptional set estimate. For
anyBorel set A ⊂ R

3 and 0 ≤ s ≤ 1, define Es(A) := {θ ∈ [0, 1] : dim(ρθ (A)) < s}.
We have dim(Es(A)) ≤ max{0, 1 + s−dim(A)

2 }.
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1 Introduction

If γ : [0, 1] → S
2 is a smooth map that satisfies the non-degenerate condition

det
(
γ (θ), γ ′(θ), γ ′′(θ)

) �= 0,

then we call the image of γ a non-degenerate curve, or simply call γ a non-degenerate
curve. A model example for the non-degenerate curve is γ◦ : θ 	→ ( cos θ√

2
, sin θ√

2
, 1√

2
)

(θ ∈ [0, 1]).
In this paper, we study the projections inR3 whose directions are determined by γ .

For each θ ∈ [0, 1], let Vθ ⊂ R
3 be the 2-dimensional subspace that is orthogonal to
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γ (θ) and let lθ ⊂ R
3 be the 1-dimensional subspace spanned by γ (θ). We also define

πθ : R3 → Vθ to be the orthogonal projection onto Vθ , and define ρθ : R3 → lθ to be
the orthogonal projection onto lθ . We use dim X to denote the Hausdorff dimension
of set X . Let us state our main results.

Theorem 1 Suppose A ⊂ R
3 is a Borel set of Hausdorff dimension α. For 0 ≤ s ≤ 1,

define the exceptional set

Es = {θ ∈ [0, 1] : dim(ρθ (A)) < s}. (1)

Then we have

dim(Es) ≤ max{0, 1 + s − α

2
}. (2)

As a corollary, we have

Corollary 1 Suppose A ⊂ R
3 is a Borel set of Hausdorff dimension α. Then we have

dim(ρθ (A)) = min{1, α}, for a.e. θ ∈ [0, 1].

Remark 1 The proof of Theorem 1 relies on the small cap decoupling for the general
cone. We also remark that, for the set of directions determined by the model curve
γ◦, Käenmäki, Orponen and Venieri can prove the exceptional set estimate with upper
bound dim(Es) ≤ α+s

2α when α ≤ 1 (see [1] Theorem 1.3). The novelty of our paper
is that we prove a Falconer-type exceptional set estimate for general non-degenerate
curve, hence Corollary 1.

Remark 2 Pramanik et al. [2] have also recently provedCorollary 1with an exceptional
set estimate of the form dim(Es) ≤ s, compared to (2). Their proof is based on
some incidence estimates for curves in the spirit of Wolff’s circular maximal function
estimate. The estimates in [2] hold for curves that are only C2, which requires a very
different proof from earlier work of Wolff and others on these problems.

Remark 3 It is also an interesting question to ask for the estimate of the set

E = {θ ∈ [0, 1] : H1(ρθ (A)) = 0}

which consists of directions to which the projection of A has zero measure. We notice
that recently Harris [3] proved that

dim({θ ∈ [0, 1] : H1(ρθ (A)) = 0}) ≤ 4 − dim A

3
. (3)

Intuitively, one may think of E as E1 (E1 is defined in (1)). The main result of this
paper (2) yields dim(E1) ≤ 3−dim A

2 which is better than the bound 4−dim A
3 . This

shows that (3) cannot imply (2).
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Nowwebriefly discuss the history of projection theory. Projection theory dates back
toMarstrand [4], who showed that if A is aBorel set inR2, then the projection of A onto
almost every line through the origin has Hausdorff dimensionmin{1, dim A}. This was
generalized to higher dimensions byMattila [5], who showed that if A is a Borel set in
R
n , then the projection of A onto almost every k-plane through the origin hasHausdorff

dimension min{k, dim A}. More recently, Fässler and Orponen [6] started to consider
the projection problems when the direction set is restricted to some submanifold of
Grassmannian. Such problems are known as the restricted projection problem. Fässler
and Orponen made conjectures about restricted projections to lines and planes in R

3

(see Conjecture 1.6 in [6]). In this paper, we give an answer to the conjecture about
the projections to lines.

2 Projection to One Dimensional Family of Lines

In this section,we proveTheorem1. Theorem1will be a result of an incidence estimate
that we are going to state later. Recall that γ : [0, 1] → S

2 a non-degenerate curve.

Definition 1 For a number δ > 0 and any set X , we use |X |δ to denote the maximal
number of δ-separated points in X .

Definition 2 ((δ, s)-set) Let P ⊂ R
n be a bounded set. Let δ > 0 be a dyadic number,

0 ≤ s ≤ d and C > 1. We say that P is a (δ, s,C)-set if

|P ∩ Br |δ ≤ C(r/δ)s,

for any Br being a ball of radius r with δ ≤ r ≤ 1.
For the purpose of this paper, C is always a fixed large number, say 1010. For

simplicity, we omit C and write the spacing condition as

|P ∩ Br |δ � (r/δ)s,

and call such P a (δ, s)-set.

Let Ht∞ denote the t-dimensional Hausdorff content which is defined as

Ht∞(B) := inf{
∑

i

r(Bi )
t : B ⊂ ∪i Bi }.

We recall the following result (see [6] Lemma 3.13).

Lemma 1 Let δ, s > 0, and B ⊂ R
n with Hs∞(B) := κ > 0. Then there exists a

(δ, s)-set P ⊂ B with cardinality #P � κδ−s .

Next,we state a useful lemmawhose proof can be found in [7, Lemma2].We remark
that this type of argument was previously used by Katz and Tao (see [8, Lemma 7.5]).
The lemma roughly says that given a set X of Hausdorff dimension less than s, then
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we can find a covering of X by squares of dyadic lengths which satisfy a certain s-
dimensional condition. Let us use D2−k to denote the lattice squares of length 2−k in
[0, 1]2.
Lemma 2 Suppose X ⊂ [0, 1]2 with dim X < s. Then for any ε > 0, there exist
dyadic squares C2−k ⊂ D2−k (k > 0) so that

1. X ⊂ ⋃
k>0

⋃
D∈C2−k

D,

2.
∑

k>0
∑

D∈C2−k
r(D)s ≤ ε,

3. C2−k satisfies the s-dimensional condition: For l < k and any D ∈ D2−l , we have
#{D′ ∈ C2−k : D′ ⊂ D} ≤ 2(k−l)s .

Remark 4 Besides [0, 1]2, this lemma holds for other compact metric spaces, for
example [0, 1]n or S2. The proof is exactly the same.

Our main effort will be devoted to the proof of the following theorem.

Theorem 2 Fix 0 < s < 1, and let C1 > 1 be a constant. For each ε > 0, there
exists Cs,ε,C1 depending on s, ε and C1, so that the following holds. Let δ > 0. Let
H ⊂ B3(0, 1) be a union of disjoint δ-balls and we use #H to denote the number
of δ-balls in H. Let 
 be a δ-separated subset of [0, 1] such that 
 is a (δ, t)-
set and #
 ≥ C−1

1 (log δ−1)−2δ−t for some t > 0. Assume for each θ ∈ 
, we
have a collection of δ × 1 × 1-slabs Sθ with normal direction γ (θ). Sθ satisfies the
s-dimensional condition:

1. #Sθ ≤ C1δ
−s ,

2. #{S ∈ Sθ : S ∩ Br } ≤ C1(
r
δ
)s , for any Br being a ball of radius r (δ ≤ r ≤ 1).

We also assume that each δ-ball contained in H intersects≥ C−1
1 | log δ−1|−2#
many

slabs from ∪θSθ . Then

(#
)4#H ≤ Cs,ε,C1δ
−2t−s−2−ε.

2.1 ı-Discretization of the Projection Problem

We show Theorem 2 implies Theorem 1 in this subsection.

Proof of Theorem 1 assuming Theorem 2 Suppose A ⊂ R
3 is a Borel set of Hausdorff

dimension α. We may assume A ⊂ B3(0, 1). Recall the definition of the exceptional
set

Es = {θ ∈ [0, 1] : dim ρθ (A) < s}.

If dim(Es) = 0, then there is nothing to prove. Therefore, we assume dim(Es) > 0.
Recall the definition of the t-dimensional Hausdorff content is given by

Ht∞(B) := inf{
∑

i

r(Bi )
t : B ⊂ ∪i Bi }.
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A property for the Hausdorff dimension is that

dim(B) = sup{t : Ht∞(B) > 0}.

We choose a < dim(A), t < dim(Es). ThenHt∞(Es) > 0, and by Frostman’s lemma
there exists a probability measure νA supported on A satisfying νA(Br ) � ra for any
Br being a ball of radius r . We only need to prove

a ≤ 2 + s − 2t,

since then we can send a → dim(A) and t → dim(Es). As a and t are fixed, we may
assume Ht∞(Es) ∼ 1 is a constant.

Fix a θ ∈ Es . By definition we have dim ρθ (A) < s. We also fix a small number
ε◦ which we will later send to 0. By Lemma 2, we can find a covering of ρθ (A) by
intervals Iθ = {I }, each of which has length 2− j for some integer j > | log2 ε◦|. We
define Iθ, j := {I ∈ Iθ : r(I ) = 2− j } (Here r(I ) denotes the length of I ). Lemma 2
yields the following properties:

∑

I∈Iθ
r(I )s ≤ 1; (4)

For each j and r -interval Ir ⊂ lθ , we have

#{I ∈ Iθ, j : I ⊂ Ir } � (
r

2− j
)s . (5)

For each θ ∈ Es , we can find such a Iθ . We also define the slab sets Sθ, j :=
{ρ−1

θ (I ) : I ∈ Iθ, j } ∩ B3(0, 1), Sθ := ⋃
j Sθ, j . Each slab in Sθ, j has dimensions

2− j × 1 × 1 and normal direction γ (θ). One easily sees that A ⊂ ⋃
S∈Sθ

S. By
pigeonholing, there exists j(θ) such that

νA
(
A ∩ (∪S∈Sθ, j(θ)

S)
) ≥ 1

10 j(θ)2
νA(A) = 1

10 j(θ)2
. (6)

For each j > | log2 ε◦|, define Es, j := {θ ∈ Es : j(θ) = j}. Then we obtain a
partition of Es :

Es =
⊔

j

Es, j .

By pigeonholing again, there exists j such that

Ht∞(Es, j ) ≥ 1

10 j2
Ht∞(Es) ∼ 1

10 j2
. (7)

In the rest of the poof, we fix this j . We also set δ = 2− j . By Lemma 1, there exists a
(δ, t)-set 
 ⊂ Es, j with cardinality #
 � (log δ−1)−2δ−t .
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Next, we consider the set U := {(x, θ) ∈ A × 
 : x ∈ ∪S∈Sθ, j S}. We also use μ

to denote the counting measure on 
 (note that 
 is a finite set). Define the section of
U :

Ux = {θ : (x, θ) ∈ U }, Uθ := {x : (x, θ) ∈ U }.

By (6) and Fubini, we have

(νA × μ)(U ) ≥ 1

10 j2
μ(
). (8)

This implies

(νA × μ)

({
(x, θ) ∈ U : μ(Ux ) ≥ 1

20 j2
μ(
)

})
≥ 1

20 j2
μ(
), (9)

since

(νA × μ)

({
(x, θ) ∈ U : μ(Ux ) ≤ 1

20 j2
μ(
)

})
≤ 1

20 j2
μ(
). (10)

By (9), we have

νA

({
x ∈ A : μ(Ux ) ≥ 1

20 j2
μ(
)

})
≥ 1

20 j2
. (11)

We are ready to apply Theorem 2. Recall δ = 2− j and #
 � (log δ−1)−2δ−t . By
(11) and noting that νA(Bδ) � δa , we can find a δ-separated subset of {x ∈ A : #Ux ≥
1

20 j2
#
} with cardinality � (log δ−1)−2δ−a . We denote the δ-neighborhood of this

set by H , which is a union of δ-balls. For each δ-ball Bδ contained in H , we see that
there are � (log δ−1)−2#
 many slabs from ∪θ∈
Sθ, j that intersect Bδ . We can now
apply Theorem 2 to obtain

(log δ−1)−8δ−a−4t � (#
)4#H ≤ Cs,εδ
−2t−s−2−ε.

Letting ε◦ → 0 (and hence δ → 0) and then ε → 0, we obtain a ≤ 2 + s − 2t . ��

2.2 Proof of Theorem 2

For convenience, we will prove the following version of Theorem 2 after rescaling
x 	→ δ−1x .

Theorem 3 Fix 0 < s < 1, and let C1 > 1 be a constant. For each ε > 0, there
exists Cs,ε,C1 depending on s, ε and C1, so that the following holds. Let δ > 0. Let
H ⊂ B3(0, δ−1) be a union of δ−a many disjoint unit balls. Let 
 be a δ-separated
subset of [0, 1] so that 
 is a (δ, t)-set and #
 ≥ C−1

1 (log δ−1)−2δ−t . Assume for
each θ ∈ 
, we have a collection of 1 × δ−1 × δ−1-slabs Sθ with normal direction
γ (θ). Sθ satisfies the s-dimensional condition:
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1. #Sθ ≤ C1δ
−s ,

2. #{S ∈ Sθ : S ∩ Br } ≤ C1rs , for any Br being a ball of radius r (1 ≤ r ≤ δ−1).

We also assume that each unit ball contained in H intersects ≥ C−1
1 | log δ−1|−2#


many slabs from ∪θTθ . Then

(#
)4#H ≤ Cs,ε,C1δ
−2t−s−2−ε.

We define the cone


 := {rγ (θ) : 1/2 ≤ r ≤ 1, θ ∈ [0, 1]}. (12)

For any large scale R, there is a standard partition of NR−1
 into planks σR−1/2 of
dimensions R−1 × R−1/2 × 1:

NR−1
 =
⋃

σR−1/2 .

Here, the subscript of σR−1/2 denotes its angular size. For any function f and plank
σ = ψR−1/2 , we define fσ := (1σ f̂ )∨ as usual. Themain tool we need is the following
fractal small cap decoupling for the cone 
.

Theorem 4 (fractal small cap decoupling) Suppose Nδ(
) = ⋃
γ , where each γ is a

δ × δ × 1-cap. Given a function g, we say g is t-spacing if suppĝ ⊂ ∪γ∈
gγ , where

g is a set of δ × δ × 1-caps from the partition of Nδ(
) and satisfies:

#{γ ∈ 
g : γ ⊂ σr } � (r/δ)t , for any r2×r×1−plank σr ⊂ Nr2
 (δ1/2 ≤ r ≤ 1).
(13)

If g is t-spacing, then we have

∫

B
δ−1

|g|4 �ε δ−ε−t
∑

γ

∫
|gγ |4. (14)

Small cap decoupling for the cone was studied by the second and third authors in
[9], where they proved amplitude-dependent versions of the wave envelope estimates
(Theorem 1.3) of [10]. Wave envelope estimates are a more refined version of square
function estimates, and sharp small cap decoupling is a straightforward corollary. For
certain choices of conical small caps, the critical L pc exponent is pc = 4 (as is the
case in our Theorem 4). When pc = 4, the sharp small cap decoupling inequalities
follow already from the wave envelope estimates of [10]. A version of this was first
observed in Theorem 3.6 of [11] and was later thoroughly explained in §10 of [9]. To
prove Theorem 4 above, we repeat the derivation of small cap decoupling from the
wave envelope estimates of [10] but incorporate the extra ingredient of t-spacing.

Remark 5 We will actually apply Theorem 4 to a slightly different cone


K−1 = {rγ (θ) : K−1 ≤ r ≤ 1, θ ∈ [0, 1]}. (15)
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15 Page 8 of 13 S. Gan et al.

Compared with 
, we see that 
K−1 is at distance K−1 from the origin, but we still
have a similar fractal small cap decoupling for 
K−1 . Instead of (14), we have

∫

B
δ−1

|g|4 �ε K O(1)δ−ε−t
∑

γ

∫
|gγ |4. (16)

The idea is to partition
K−1 into∼ K many parts, each of which is roughly a cone that
we can applyTheorem4 to.By triangle inequality, it gives (16)with an additional factor
K O(1). It turns out that this factor is not harmful, since we will set K ∼ (log δ−1)O(1)

which can be absorbed into δ−ε.

We postpone the proof of Theorem 4 to the next subsection, and first show how it
implies Theorem 3.

Proof of Theorem 3 assuming Theorem 4 Since the C1 in Theorem 3 is a constant, we
just absorb it to the notation ∼ or � for simplicity. We consider the dual of each
Sθ ∈ Sθ in the frequency space. For each θ ∈ 
, we define τθ to be a tube centered
at the origin that has dimensions δ × δ × 1, and its direction is γ (θ). We see that τθ

is the dual of each Sθ ∈ Sθ . Now, for each Sθ ∈ Sθ , we choose a bump function ψSθ

satisfying the following properties: ψSθ ≥ 1 on Sθ , ψSθ decays rapidly outside Sθ ,
and suppψ̂Sθ ⊂ τθ .

Define functions

fθ =
∑

Sθ∈Sθ

ψSθ and f =
∑

θ∈


fθ .

From our definitions, we see that for any x ∈ H , we have f (x) � (log δ−1)−2#
.
Therefore, we obtain

|H |(#
)4 �
∫

H
| f |4, (17)

where “�" means “� (log δ−1)O(1)".

Next, we will do a high-low decomposition for each τθ .

Definition 3 Let K be a large number which we will choose later. Define the high part
of τθ as

τθ,high := {ξ ∈ τθ : K−1 ≤ |ξ · γ (θ)| ≤ 1}.

Define the low part of τθ as

τθ,low := τθ \ τθ,high = {ξ ∈ τθ : |ξ · γ (θ)| ≤ K−1}.

Wechoose a smooth partition of unity adapted to the covering τθ = τθ,high
⋃

τθ,low

which we denote by ηθ,high, ηθ,low, so that

ηθ,high + ηθ,low = 1
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on τθ . The key observation is that {suppη̂θ,high}θ are at most O(K )-overlapping and
form a canonical covering of Nδ(
K−1). (See the definition of 
K−1 in (15)).

Since supp f̂θ ⊂ τθ , we also obtain a decomposition of fθ

fθ = fθ,high + fθ,low, (18)

where f̂θ,high = ηθ,high f̂θ , f̂θ,low = ηθ,low f̂θ . Similarly, we have a decomposition of
f

f = fhigh + flow, (19)

where fhigh = ∑
θ fθ,high, flow = ∑

θ fθ,low.

Recall that for x ∈ H , we have

(log δ−1)−2#
 � f (x) ≤ | fhigh(x)| + | flow(x)|.

We will show that by properly choosing K , we have

| flow(x)| ≤ C−1(log δ−1)−2#
. (20)

Recall that flow = ∑
θ fθ ∗ η∨

θ,low. Since ηθ,low is a bump function at τθ,low, we see

that η∨
θ,low is an L1-normalized bump function essentially supported in the dual of

τθ,low. Denote the dual of τθ,low by Sθ,K which is a δ−1×δ−1×K -slab whose normal
direction is γ (θ). One actually has

|η∨
θ,low| � 1

|Sθ,K |ψSθ,K .

Here, ψSθ,K is bump function = 1 on Sθ,K and decays rapidly outside Sθ,K . Ignoring
the rapidly decaying tails, we have

| flow(x)| �
∑

θ

1

K
#{Sθ ∈ Sθ : Sθ ∩ B100K (x) �= ∅}.

Recalling the condition (2) in Theorem 3, we have

#{Sθ ∈ Sθ : Sθ ∩ B100K (x) �= ∅} � (100K )s .

This implies

| flow(x)| � Ks−1#
.

Since s < 1, by choosing K ∼ (log δ−1)
2

1−s , we obtain (20). This shows that for
s ∈ H , we have

(log δ−1)−2#
 � | f (x)| � | fhigh |.
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15 Page 10 of 13 S. Gan et al.

We define g = fhigh . By remark (5), we actually see that {τθ,high} form a K -
overlapping covering of Nδ(
K ), and we have the decoupling inequality (16). By
(17), we have

|H |δ−4t �
∫

H
| f |4 �

∫

B
δ−1

| fhigh |4.

By (16), it is further bounded by

�ε δ−t−ε
∑

θ

∫
| fθ,high |4 � δ−t−ε

∑

θ

∫
|

∑

Sθ∈Sθ

ψSθ |4.

Since the slabs in Sθ are essentially disjoint, the above expression is bounded by

� δ−t−ε
∑

θ

∫ ∑

Sθ∈Sθ

|ψSθ |4 ∼ δ−t−ε
∑

θ

∑

Sθ∈Sθ

|Sθ | ∼ δ−t−εδ−s−t−1.

This implies (#
)4#H �ε δ2t−s−1−ε. ��

2.3 Proof of Theorem 4

The proof of Theorem 4 is based on an inequality of Guth, Wang and Zhang. Let us
first introduce some notation from their paper [10]. Let 
◦ denote the standard cone
in R3:


◦ := {(r cos θ, r sin θ, r) : 1/2 ≤ r ≤ 1, θ ∈ [0, 2π ]}.

We can partition the δ-neighborhood of 
◦ into δ × δ1/2 × 1-planks � = {σ }:

Nδ(
◦) =
⊔

σ.

More generally, for any dyadic s in the range δ1/2 ≤ s ≤ 1, we can partition the
s2-neighborhood of 
◦ into s2 × s × 1-planks Ts = {τs}:

Ns2(
◦) =
⊔

τs .

For each s and frequency plank τs ∈ Ts , we define the box Uτs in the physical space
to be a rectangle centered at the origin of dimensions δ−1 × δ−1s× δ−1s2 whose edge
of length δ−1 (respectively δ−1s, δ−1s2) is parallel to the edge of τs with length s2

(respectively s, 1). Note that for any σ ∈ �, Uσ is just the dual rectangle of σ . Also,
Uτs is the convex hull of ∪σ⊂τsUσ .

If U is a translated copy of Uτs , then we define SU f by

SU f = ( ∑

σ⊂τs

| fσ |2)1/21U . (21)
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We can think of SU f as the wave envelope of f localized in U in the physical space
and localized in τs in the frequency space. We have the following inequality of Guth,
Wang and Zhang (see [10] Theorem 1.5):

Theorem 5 (Wave envelope estimate) Suppose supp f̂ ⊂ Nδ(
◦). Then

‖ f ‖44 ≤ Cεδ
−ε

∑

δ1/2≤s≤1

∑

τs∈Ts

∑

U‖Uτs

|U |−1‖SU f ‖42. (22)

Although the theorem above is stated for the standard cone 
◦, it is also true for
general cone
 (see (12)). The Appendix of [9] shows how to adapt the inductive proof
of Guth-Wang-Zhang for 
◦ to the case of a general cone 
.

As we did for 
◦, we can also define the δ × δ1/2 × 1-planks � = {σ } and
s2 × s × 1-planks Ts = {τs}, which form a partition of certain neighborhood of 
.
We can similarly define the wave envelope SU f for supp f̂ ⊂ Nδ(
). We have the
following estimate for general cone.

Theorem 6 (Wave envelope estimate for general cone) Suppose supp f̂ ⊂ Nδ(
).
Then

‖ f ‖44 ≤ Cεδ
−ε

∑

δ1/2≤s≤1

∑

τs∈Ts

∑

U‖Uτs

|U |−1‖SU f ‖42. (23)

We are ready to prove Theorem 4.

Proof of Theorem 4 By pigeonholing, we can assume all the wave packet of gγ have
amplitude ∼ 1, so we have ∫

|gγ |4 ∼
∫

|gγ |2. (24)

Apply Theorem 6 to g, we have

‖g‖44 ≤ Cεδ
−ε

∑

δ1/2≤s≤1

∑

τs∈Ts

∑

U‖Uτs

|U |−1‖SU g‖42.

For fixed s, τs,U ‖ Uτs , let us analyze the quantity ‖SU g‖22 on the right hand side. By
definition,

‖SU g‖22 =
∫

U

∑

σ⊂τs

|gσ |2.

Note that U has dimensions δ−1 × δ−1s × δ−1s2, so its dual U∗ has dimensions
δ × δs−1 × δs−2. We will apply local orthogonality to each fσ on U . Let {β} be a set
of (δs−1)2 × δs−1 × 1-planks that form a finitely overlapping covering of Nδs−1(
).
We see thatU∗ and each β have the same angular size δs−1. For reader’s convenience,
we recall that we have defined three families of planks: {γ : γ ∈ 
g} of dimensions
δ × δ × 1; {β} of dimensions (δs−1)2 × δs−1 × 1; {σ } of dimensions δ × δ1/2 × 1.
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15 Page 12 of 13 S. Gan et al.

Since δ1/2 ≤ s ≤ 1, we have the nested property for these planks: each γ (∈ 
g) is
contained in 100-dilation of some β and each β is contained in 100-dilation of some
σ . We simply denote this relationship by γ ⊂ β, β ⊂ σ . We can write

gσ =
∑

β⊂σ

gβ, gβ =
∑

γ⊂β

gγ .

Choose a smooth bump functionψU atU satisfying: |ψU | � 1U ,ψU decays rapidly
outside U , and ψ̂U is supported in U∗. We have

∫

U
|gσ |2 �

∫
|ψU

∑

β⊂σ

gβ |2.

Since (ψU gβ)∧ ⊂ U∗ + β and by a geometric observation that {U∗ + β}β⊂σ are
finitely overlapping, we have

∫

U
|gσ |2 �

∫ ∑

β⊂σ

|ψU gβ |2 =
∫ ∑

β⊂σ

|ψU

∑

γ⊂β

gγ |2�
∫ ∑

β⊂σ

#{γ ⊂ β}
∑

γ⊂β

|ψU gγ |2.

Summing over σ ⊂ τs , we get

‖SU g‖22 =
∫

U

∑

σ⊂τs

|gσ |2 �
∫ ∑

σ⊂τs

∑

β⊂σ

#{γ ⊂ β}
∑

γ⊂β

|ψU gγ |2 (25)

�
( ∑

σ⊂τs

∑

β⊂σ

#{γ ⊂ β})(sup
β

∑

γ⊂β

|gγ |2)
∫

|ψU |2

(26)

(Since ‖gγ ‖∞ ≤ 1) � #{γ ⊂ τs}#{γ ⊂ β}|U | (27)

(By the t-spacing condition) � (s/δ)t (δs−1/δ)t |U | (28)

= δ−t |U |. (29)

Therefore, we have

∑

U

|U |−1‖SU g‖42 � δ−t
∑

U

‖SU g‖22 = δ−t
∫ ∑

σ⊂τs

|gσ |2 � δ−t
∫ ∑

γ⊂τs

|gγ |2.
(30)

The last inequality is by the L2 orthogonality.
Noting (24), we have

‖g‖44 ≤ Cεδ
−ε−t

∑

δ1/2≤s≤1

∑

γ

∫
|gγ |2 ∼ Cεδ

−ε−t
∑

δ1/2≤s≤1

∑

γ

∫
|gγ |4

� Cεδ
−2ε−t

∑

γ

∫
|gγ |4. (31)

��
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