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Abstract
In this paper, we introduce some new weighted maximal operators of the Fejér means
of the Walsh–Fourier series. We prove that for some “optimal” weights, these new
operators indeed are bounded from themartingaleHardy space Hp(G) to the Lebesgue
space L p(G), for 0 < p < 1/2. Moreover, we also prove sharpness of this result. As
a consequence, we obtain some new and well-known results.
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1 Introduction

All symbols used in this introduction can be found in Sect. 2.
In the one-dimensional case, the weak (1,1)-type inequality for the maximal

operator σ ∗ of Fejér means σn with respect to the Walsh system

σ ∗ f := sup
n∈N

|σn f |

can be found in Schipp [21] and Pál, Simon [16] (see also [2]). Fujii [7] and Simon
[23] proved that σ ∗ is bounded from H1 to L1. Weisz [29] generalized this result and
proved the boundedness of σ ∗ from themartingale space Hp to the Lebesgue space L p

for p > 1/2. Simon [22] gave a counterexample, which shows that boundedness does
not hold for 0 < p < 1/2. A counterexample for p = 1/2 was given by Goginava
[10]. Moreover, in [11] (see also [19]) he proved that there exists a martingale F ∈ Hp

(0 < p ≤ 1/2), such that

sup
n∈N

‖σn F‖p = +∞.

Weisz [32] proved that the maximal operator σ ∗ of the Fejér means is bounded from
the Hardy space H1/2 to the space weak − L1/2.

For 0 < p < 1/2 in [26] the weighted maximal operator
∼
σ

∗,p
, defined by

∼
σ

∗,p
F := sup

n∈N
|σn F |

(n + 1)1/p−2 , (1)

was investigated, and it was proved that the following estimate holds:

∥
∥
∥

∼
σ

∗,p
F

∥
∥
∥
p

≤ cp ‖F‖Hp . (2)

Moreover, it was proved that the rate of sequence (nk + 1)1/p−2 given in the denom-
inator of (1) cannot be improved. In the case p = 1/2 analogical results for the

maximal operator
∼
σ

∗
defined by

∼
σ

∗
F := sup

n∈N
|σn F |

log2 (n + 1)

were proved in [25].
To study the convergence of subsequences of Fejér means and their restricted max-

imal operators on the martingale Hardy spaces Hp(G) for 0 < p ≤ 1/2, the central
role is played by the fact that any natural number n ∈ N can be uniquely expressed as

n =
∞
∑

k=0

n j2
j , n j ∈ Z2 ( j ∈ N),
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Fejér Means Page 3 of 17 3

where only a finite number of n j differs from zero and their important characters [n],
|n|, ρ (n), and V (n) are defined by

[n] := min{ j ∈ N, n j �= 0}, |n| := max{ j ∈ N, n j �= 0}, ρ (n) = |n| − [n]

and

V (n) := n0 +
∞
∑

k=1

|nk − nk−1| , for all n ∈ N

Weisz [31] (see also [30]) also proved that for any F ∈ Hp(G) (p > 0), themaximal
operator sup

n∈N
|σ2n F | is bounded from the Hardy space Hp to the Lebesgue space L p.

Persson and Tephnadze [18] generalized this result and proved that if 0 < p ≤ 1/2
and {nk : k ≥ 0} is a sequence of positive integers, such that

sup
k∈N

ρ (nk) ≤ c < ∞, (3)

then the maximal operator σ̃ ∗,�, defined by

σ̃ ∗,�F := sup
k∈N

∣
∣σnk F

∣
∣ , (4)

is bounded from the Hardy space Hp(G) to the space L p(G). Moreover, if 0 < p <

1/2 and {nk : k ≥ 0} is a sequence of positive numbers, such that

sup
k∈N

ρ (nk) = ∞, (5)

then there exists a martingale F ∈ Hp such that

sup
k∈N

∥
∥σnk F

∥
∥
p = ∞.

From these facts, it follows that if 0 < p < 1/2, f ∈ Hp, and {nk : k ≥ 0} is any
sequence of positive numbers, then the maximal operator defined by (4) is bounded
from the Hardy space Hp to the Lebesgue space L p if and only if the condition (3) is
fulfilled.

In [27], it was proved that if F ∈ H1/2, then there exists an absolute constant c,
such that

‖σn F‖H1/2 ≤ cV 2 (n) ‖F‖H1/2 .

Moreover, the rate of sequence V 2 (n) cannot be improved.
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3 Page 4 of 17 D. Baramidze et al.

In [27], it was also proved that if 0 < p < 1/2 and F ∈ Hp, then there exists an
absolute constant cp, depending only on p, such that

‖σn F‖Hp
≤ cp2

ρ(n)(1/p−2) ‖F‖Hp
.

Moreover, if 0 < p < 1/2 and {�n} is any nondecreasing sequence, such that

sup
k∈N

ρ (nk) = ∞, lim
k→∞

2ρ(nk)(1/p−2)

�nk
= ∞,

then there exists a martingale F ∈ Hp, such that

sup
k∈N

∥
∥
∥
∥

σnk F

�nk

∥
∥
∥
∥
weak−L p

= ∞.

Convergence and summability of Fejér means ofWalsh–Fourier series can be found
in [1], [3], [4], [5], [6], [8], [9], [14], [15], [17], [28], and [29].

One main aim of this paper is to generalize the estimate (2) for f ∈ Hp(G),
0 < p < 1/2. Our main idea is to investigate much more general maximal opera-
tors by replacing the weights (n + 1)1/p−2 in (1) by more general “optimal” weights
2ρ(n)(1/p−2)(ϕ(ρ (n))), where ϕ : N+ → R+ is any nonnegative and nondecreasing
function satisfying the condition

∞
∑

n=1

1/ϕ p(n) < c < ∞

and prove that it is bounded from the martingale Hardy space Hp(G) to the Lebesgue
space L p(G), for 0 < p < 1/2. As a consequence, we obtain some new and well-
known results. In particular, we prove that the maximal operator σ̃ ∗,∇ , defined by

σ̃ ∗,∇,εF := sup
n∈N

|σn F |
2ρ(n)(1/p−1) ((ρ (n)))(1+ε)/p

, where 0 < p < 1/2, ε ≥ 0,

is bounded from the Hardy space Hp(G) to the Lebesgue space L p(G) for any ε > 0
but is not bounded from the Hardy space Hp(G) to the Lebesgue space L p(G) when
ε = 0.

This paper is organized as follows: In order not to disturb our discussions later on
some definitions and notations are presented in Sect. 2. The main results and some of
their consequences can be found in Sect. 3. For the proofs of the main results, we need
some auxiliary lemmas, which are presented in Sect. 4. Detailed proofs are given in
Sect. 5.
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2 Definitions and Notations

Let N+ denote the set of positive integers, N := N+ ∪ {0}. Denote by Z2 the discrete
cyclic group of order 2, that is, Z2 := {0, 1}, where the group operation is the modulo
2 addition and every subset is open. The Haar measure on Z2 is given so that the
measure of a singleton is 1/2.

Define the groupG as the complete direct product of the group Z2, with the product
of the discrete topologies of Z2. The elements of G are represented by sequences

x := (x0, x1, . . . , x j , . . .), where xk = 0 ∨ 1.

It is easy to give a base for the neighborhood of x ∈ G:

I0 (x) := G, In(x) := {y ∈ G : y0 = x0, . . . , yn−1 = xn−1}(n ∈ N).

Denote In := In (0), In := G\In and

en := (0, . . . , 0, xn = 1, 0, . . .) ∈ G, for n ∈ N.

Then it is easy to show that

IM =
M−1
⋃

i=0

Ii\Ii+1 =
(
M−2
⋃

k=0

M−1
⋃

l=k+1

Il+1 (ek + el)

)
⋃

(
M−1
⋃

k=0

IM (ek)

)

. (6)

The norms (or quasi-norms) of the spaces L p(G) and weak − L p(G),
(

0 < p

< ∞
)

are, respectively, defined by

‖ f ‖p
p :=

∫

G
| f |p dμ

and

‖ f ‖p
weak−L p(G) := sup

λ>0
λpμ ( f > λ) < +∞.

The k-th Rademacher function rk (x) is defined by

rk (x) := (−1)xk (x ∈ G, k ∈ N) .

Now, define the Walsh system w := (wn : n ∈ N) on G as follows:

wn(x) := ∞
�
k=0

rnkk (x) = (−1)

|n|∑

k=0
nk xk

(n ∈ N) .
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3 Page 6 of 17 D. Baramidze et al.

The Walsh system is orthonormal and complete in L2 (G) (see [13] and [20]).
If f ∈ L1 (G), we can define the Fourier coefficients, partial sums of Fourier series,

Fejér means, and Dirichlet and Fejér kernels in the usual manner:

f̂ (n) :=
∫

G
f wndμ, (n ∈ N) ,

Sn f :=
n−1
∑

k=0

f̂ (k) wk, (n ∈ N+, S0 f := 0) ,

σn f := 1

n

n
∑

k=1

Sk f ,

Dn :=
n−1
∑

k=0

wk,

Kn := 1

n

n
∑

k=1

Dk, (n ∈ N+) .

Recall that (see [13] and [20]) for any t, n ∈ N,

D2n (x) =
{

2n if x ∈ In,
0 if x /∈ In .

(7)

and

K2n (x) =
⎧

⎨

⎩

2t−1, if x ∈ In (et ) , n > t, x ∈ It\It+1,

(2n + 1) /2, if x ∈ In,
0, otherwise.

(8)

Let

n =
r

∑

i=1

2n
i
, n1 > n2 > · · · > nr ≥ 0

and

n(k) := 2n
k+1 + 2n

k+2 + · · · + 2n
r
.

Then (see [13] and [20]), for any n ∈ N,

nKn =
r

∑

A=1

⎛

⎝

A−1
∏

j=1

w
2n j

⎞

⎠

(

2n
A
K
2nA

+ n(A)D
2nA

)

. (9)
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The σ -algebra, generated by the intervals {In (x) : x ∈ G} will be denoted by ζn
(n ∈ N). Denote by F = (Fn, n ∈ N) a martingale with respect to ζn (n ∈ N) (see
e.g., [30]).

The maximal function F∗ of a martingale F is defined by

F∗ := sup
n∈N

|Fn| .

In the case f ∈ L1 (G) the maximal function f ∗ is given by

f ∗ (x) := sup
n∈N

(
1

μ (In (x))

∣
∣
∣
∣

∫

In(x)
f (u) dμ (u)

∣
∣
∣
∣

)

.

For 0 < p < ∞, the Hardy martingale spaces Hp (G) consist of all martingales
for which

‖F‖Hp := ∥
∥F∗∥∥

p < ∞.

A bounded measurable function a is called a p-atom if there exists a dyadic interval
I such that

supp (a) ⊂ I ,
∫

I
adμ = 0, ‖a‖∞ ≤ μ (I )−1/p .

It is easy to check that for every martingale F = (Fn, n ∈ N) and every k ∈ N the
limit

F̂ (k) := lim
n→∞

∫

G
Fn (x) wk (x) dμ (x)

exists, and it is called the k-th Walsh–Fourier coefficients of F .
If F := (S2n f : n ∈ N) is a regular martingale, generated by f ∈ L1 (G), then (see

e.g., [19], [24], and [30])

F̂ (k) = f̂ (k) , k ∈ N.

3 TheMain Results

Our first main result reads:

Theorem 1 Let 0 < p < 1/2, f ∈ Hp (G), and ϕ : N+ → R be any nonnegative
and nondecreasing function satisfying the condition

∞
∑

n=1

1

ϕ p(n)
< c < ∞. (10)

123



3 Page 8 of 17 D. Baramidze et al.

Then the weighted maximal operator σ̃ ∗,∇ , defined by

σ̃ ∗,∇F := sup
n∈N

|σn F |
2ρ(n)(1/p−2)ϕ(ρ (n))

,

is bounded from the Hardy space Hp(G) to the Lebesgue space L p(G).

We also state and prove the sharpness of Theorem 1:

Theorem 2 Let 0 < p < 1/2, {nk : k ≥ 0} be a sequence of positive numbers and
ϕ : N+ → R is any nonnegative and nondecreasing function satisfying the condition

∞
∑

n=1

1

ϕ p(n)
= ∞. (11)

Then there exist p-atoms fnk , such that

sup
k∈N

∥
∥
∥
∥
supn∈N

∣
∣σn fnk

∣
∣

2ρ(n)(1/p−2)ϕ(ρ(n))

∥
∥
∥
∥
p

∥
∥ fnk

∥
∥
Hp

= ∞.

As we will point out (see Remark 1) Theorem 1 can be of special interest even if we
restrict it to subsequences.

Corollary 1 Let 0 < p < 1/2, f ∈ Hp (G), ϕ : N+ → R be any nonnegative and
nondecreasing function satisfying the condition (10), and {nk : k ≥ 0} be any sequence
of positive numbers. Then the weighted maximal operator σ̃ ∗,∇ , defined by

σ̃ ∗,∇F := sup
k∈N

∣
∣σnk F

∣
∣

2ρ(nk)(1/p−2)ϕ(ρ (nk))
, (12)

is bounded from the Hardy space Hp(G) to the Lebesgue space L p(G).

If we take ϕ(n) = n(1+ε)/p, for any ε > 0, we get that the condition (10) is
fulfilled. On the other hand, if we take ϕ(n) = n1/p, then the condition (11) holds.
Hence, Theorem 1 and Theorem 2 imply the following sharp result:

Corollary 2 a) Let 0 < p < 1/2 and f ∈ Hp (G). Then the weighted maximal
operator σ̃ ∗,∇,ε, defined by

σ̃ ∗,∇,εF := sup
n∈N

|σn F |
2ρ(n)(1/p−2) (ρ (n))(1+ε)/p

, ε > 0,

is bounded from the Hardy space Hp(G) to the Lebesgue space L p(G).
b) The weighted maximal operator σ̃ ∗,∇,0, defined by

σ̃ ∗,∇,0F := sup
n∈N

|σn F |
2ρ(n)(1/p−2) (ρ (n))1/p

,
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Fejér Means Page 9 of 17 3

is not bounded from the Hardy space Hp(G) to the Lebesgue space L p(G).

Remark 1 Suppose that {nk : k ≥ 0} is a sequence of positive numbers, such that

sup
k∈N

[nk] < c < ∞.

Then

sup
k∈N

ϕ([nk]) < ϕ(c) < ∞,

2ρ(nk )(1/p−2) ∼ 2|nk |(1/p−2) ∼ n1/p−1
k ∼ (nk + 1)1/p−2

and the maximal operator σ̃ ∗,∇ , defined by (12), can be estimated by

σ̃ ∗,∇F ≤ sup
k∈N

∣
∣σnk F

∣
∣

(nk + 1)1/p−2 .

Let

sup
k∈N

[nk] = ∞.

Then we have the following estimation:

sup
k∈N

∣
∣σnk F

∣
∣

(nk + 1)1/p−1 ≤ σ̃ ∗,∇F .

In particular, we find that from Theorem 1, Remark 1, and the theorem proved in
[26] follows immediately the following result:

Corollary 3 Let 0 < p < 1/2, f ∈ Hp (G), and ϕ : N+ → R+ be any nonnegative
and nondecreasing function satisfying the condition (10). Then the weighted maximal
operator σ̃ ∗,∇ , defined by

σ̃ ∗,∇F := sup
n∈N

|σn F |
min{2ρ(n)(1/p−2)ϕ(ρ (n)), (n + 1)1/p−2} ,

is bounded from the Hardy space Hp(G) to the Lebesgue space L p(G).

From Theorem 1 and Theorem 2 follows immediately the following result given in
[18]:

Corollary 4 a) Let 0 < p ≤ 1/2 and (nk, k ∈ N) be a subsequence of positive numbers
such that condition (3) is fulfilled. Then the maximal operator σ̃ ∗,�, defined by (4), is
bounded from the Hardy space Hp(G) to the Lebesgue space L p(G).

b) Let 0 < p < 1 and (nk, k ∈ N) be a subsequence of positive numbers satisfying
the condition (5). Then the maximal operator σ̃ ∗,�, defined by (4), is not bounded
from the Hardy space Hp(G) to the Lebesgue space L p(G).
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4 Auxiliary Results

The dyadic Hardy martingale spaces Hp for 0 < p ≤ 1 have an atomic
characterization. Namely, the following holds (see [19], [24], [30], and [31]):

Lemma 1 A martingale F = (Fn, n ∈ N) belongs to Hp (0 < p ≤ 1) if and only if
there exists a sequence (ak, k ∈ N) of p-atoms and a sequence (μk, k ∈ N) of real
numbers, such that, for every n ∈ N,

∞
∑

k=0

μk S2n ak = Fn,
∞
∑

k=0

|μk |p < ∞. (13)

Moreover,

‖F‖Hp � inf

( ∞
∑

k=0

|μk |p
)1/p

,

where the infimum is taken over all decompositions of F of the form (13).

From this result follows the following important lemma proved by Weisz [30]:

Lemma 2 Suppose that an operator T is σ -sublinear and

∫

I

|Ta|p dμ ≤ cp < ∞, (0 < p ≤ 1)

for every p-atom a, where I denotes the support of the atom. If T is bounded from
L∞ to L∞, then, for 0 < p ≤ 1,

‖T F‖p ≤ cp ‖F‖Hp
.

The proof of the next lemma can be found in Persson and Tephnadze [18]:

Lemma 3 Let n ∈ N, [n] �= |n|, and x ∈ I[n]+1
(

e[n]−1 + e[n]
)

. Then

|nKn(x)| =
∣
∣
∣

(

n − 2|n|) Kn−2|n|(x)
∣
∣
∣ ≥ 22[n]

4
.

We note that if [n] = 0, we have the set I2 (e0).

We also need the following lemma (see [12]):

Lemma 4 Let n ≥ 2M and x ∈ IM (ek + el), k = 0, . . . , M − 1, l = k + 1, . . . , M.
Then

∫

IM
|Kn (x + t)| dμ (t) ≤ c2k+l

22M
.
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5 Proofs of the Theorems

Proof of Theorem 1 Since σn is bounded from L∞ to L∞ by Lemma 2, the proof will
be complete, if we prove that

∫

I

(

sup
n∈N

|σna(x)|
2ρ(n)(1/p−2)ϕ(ρ (n))

)p

dμ ≤ cp < ∞, (14)

for every p-atom a. We may assume that a be an arbitrary p-atom with support I ,
μ (I ) = 2−M , and I = IM . It is easy to see that

σna (x) = 0, when n < 2M .

Therefore, we can suppose that n ≥ 2M . Since ‖a‖∞ ≤ 2M/p, we find that

|σna (x)|
2ρ(n)(1/p−2)ϕ(ρ (n))

≤ 1

2ρ(n)(1/p−2)ϕ(ρ (n))
‖a‖∞

∫

IM
|Kn (x + t)| dμ (t)

≤ 1

2ρ(n)(1/p−2)ϕ(ρ (n))
2M/p

∫

IM
|Kn (x + t)| dμ (t) . (15)

Let x ∈ Il+1 (ek + el) , 0 ≤ k < l < [n] ≤ M . Then x + t ∈ Il+1 (ek + el) and if
we apply (7), (8), and (9), then we get that

Kn (x + t) = 0, for t ∈ IM

and from (15) it follows that

1

2ρ(n)(1/p−2)ϕ(ρ (n))
|σna (x)| = 0. (16)

Let

x ∈ Il+1 (ek + el) , [n] ≤ k < l < M or k < [n] ≤ l < M .

Since |n| ≥ M by using (15) and Lemma 4 we can conclude that

1

2ρ(n)(1/p−2)ϕ(ρ (n))
|σna (x)| ≤ c2M(1/p−2)+k+l

2ρ(n)(1/p−2)ϕ(ρ (n))

= c2[n](1/p−2)2M(1/p−2)+k+l

2|n|(1/p−2)ϕ(ρ (n))

≤ c2M(1/p−2)

2|n|(1/p−2)

2[n](1/p−2)+k+l

ϕ(M − l)

123



3 Page 12 of 17 D. Baramidze et al.

≤ c2M(1/p−2)

2|n|(1/p−2)

2k+l(1/p−1)

ϕ(M − l)

≤ c2k+l(1/p−1)

ϕ(M − l)
. (17)

By applying (16) and (17) for any x ∈ Il+1 (ek + el) , 0 ≤ k < l < M we find
that

sup
n∈N

|σna (x)|
2ρ(n)(1/p−2)ϕ(ρ (n))

≤ c2k+l(1/p−1)

ϕ(M − l)
. (18)

Let x ∈ IM (ek) , 0 ≤ k < M . By using again (15) and Lemma 4 for k = l we can
conclude that

|σna (x)|
2ρ(n)(1/p−2)ϕ(ρ (n))

≤ c2M/p
∫

IM
|Kn (x + t)| dμ (t)

≤ c2M/p 2k

2M
= c2k+M(1/p−1).

and

sup
n∈N

|σna (x)|
2ρ(n)(1/p−2)ϕ(ρ (n))

≤ c2k+M(1/p−1). (19)

By combining (6), (18), and (19), we obtain that

∫

IM

(

sup
n∈N

|σna (x)|
2ρ(n)(1/p−2)ϕ(ρ (n))

)p

dμ (x)

=
M−2
∑

k=0

M−1
∑

l=k+1

∫

Il+1(ek+el )

(

sup
n∈N

|σna (x)|
2ρ(n)(1/p−2)ϕ(ρ (n))

)p

dμ (x)

+
M−1
∑

k=0

∫

IM (ek )

(

sup
n∈N

|σna (x)|
2ρ(n)(1/p−2)ϕ(ρ (n))

)p

dμ (x)

≤ cp

M−2
∑

k=0

M−1
∑

l=k+1

1

2l
2pk+l(1−p)

ϕ p(M − l)
+ cp

M
∑

k=0

1

2M
2pk+M(1−p)

:= I + I I . (20)

Hence,

I ≤ cp

M−2
∑

k=0

2pk
M−1
∑

l=k+1

1

2plϕ p(M − l)
(21)

123



Fejér Means Page 13 of 17 3

= cp

M−2
∑

k=0

2pk
[(k+M)/2]

∑

l=k+1

1

2plϕ p(M − l)
+ cp

M−2
∑

k=0

2pk
M−1
∑

l=[(k+M)/2]+1

1

2plϕ p(M − l)

:= I1 + I2.

By using (10) for I1 we get that

I1 ≤ cp

M−2
∑

k=0

2pk

ϕ p([(M − k)/2])
[(k+M)/2]

∑

l=k+1

1

2pl

≤ cp

M−2
∑

k=0

1

ϕ p([(M − k)/2]) < cp < ∞.

For I2 we find that

I2 ≤ cp

M−2
∑

k=0

2pk
M−1
∑

l=[(k+M)/2]+1

1

2pl
≤ cp

M−2
∑

k=0

2pk
1

2p[(k+M)/2]

≤ cp

M−2
∑

k=0

2pk/2

2pM/2 < cp < ∞.

For I I we can conclude that

I I ≤ cp

M−2
∑

k=0

2pk

2pM
< cp < ∞. (22)

By combining (20)-(22) we conclude that (14) holds so the proof is complete. ��
Proof of Theorem 2 In view of (11) we have that

(nk−1
∑

s=1

1

ϕ p (s)

)1/p

→ ∞, as k → ∞. (23)

Set

fnk (x) = D2nk+1 (x) − D2nk (x) , nk ≥ 3.

It is evident that

f̂nk (i) =
{

1, if i = 2nk , . . . , 2nk+1 − 1,
0, otherwise.
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Then we easily can derive that

Si fnk (x) =
⎧

⎨

⎩

Di (x) − D2nk (x) , if i = 2nk , . . . , 2nk+1 − 1,
fnk (x) , if i ≥ 2nk+1,

0, otherwise.
(24)

Since

Dj+2nk (x) − D2nk (x) = w2nk D j (x), j = 1, 2, .., 2nk , (25)

from (7) it follows that

∥
∥ fnk

∥
∥
Hp

=
∥
∥
∥
∥
sup
n∈N

S2n fnk

∥
∥
∥
∥
p

= ∥
∥D2nk+1 − D2nk

∥
∥
p

= ‖D2nk ‖p = 2nk (1−1/p). (26)

Let qsnk ∈ N be such that 2nk ≤ qsnk ≤ 2nk+1 and [qsnk ] = s, where 0 ≤ s < nk . By
applying (24) we can conclude that

∣
∣
∣σqsnk

fnk (x)
∣
∣
∣ = 1

qsnk

∣
∣
∣
∣
∣
∣

qsnk∑

j=1

S j fnk (x)

∣
∣
∣
∣
∣
∣

= 1

qsnk

∣
∣
∣
∣
∣
∣

qsnk∑

j=2nk+1

S j fnk (x)

∣
∣
∣
∣
∣
∣

= 1

qsnk

∣
∣
∣
∣
∣
∣

qsnk∑

j=2nk+1

(

Dj (x) − D2nk (x)
)

∣
∣
∣
∣
∣
∣

= 1

qsnk

∣
∣
∣
∣
∣
∣

qsnk−2nk
∑

j=1

(

Dj+2nk (x) − D2nk (x)
)

∣
∣
∣
∣
∣
∣

.

According to (25) we obtain that

∣
∣
∣σqsnk

fnk (x)
∣
∣
∣ = 1

qsnk

∣
∣
∣
∣
∣
∣

qsnk−2nk
∑

j=0

Dj (x)

∣
∣
∣
∣
∣
∣

= qsnk − 2nk

qsnk

∣
∣
∣Kqsnk−2nk (x)

∣
∣
∣ .

Let x ∈ Is+1 (es−1 + es). By using Lemma 3 we have that

∣
∣
∣σqsnk

fnk (x)
∣
∣
∣ ≥ c22s

2nk
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and
∣
∣
∣σqsnk

fnk (x)
∣
∣
∣

2
(1/p−2)ρ

(

qsnk

)

ϕ
(

ρ
(

qsnk
))

≥ cp2s/p

2nk(1/p−1)ϕ (nk − s)
.

Hence,

∫

G

⎛

⎜
⎝sup

k∈N

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣σqsnk

fnk (x)
∣
∣
∣

2
(1/p−2)ρ

(

qsnk

)

ϕ
(

ρ
(

qsnk
))

∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎠

p

dμ (x)

≥ 1

2

nk−1
∑

s=0

∫

Is+1(es−1+es )

⎛

⎜
⎝

∣
∣
∣σqnsk

fnk (x)
∣
∣
∣

2
(1/p−2)ρ

(

qsnk

)

ϕ
(

ρ
(

qsnk
))

⎞

⎟
⎠

p

dμ (x)

≥ cp

nk−1
∑

s=0

1

2s
2s

2nk (1−p)ϕ p (nk − s)

≥ cp
2nk(1−p)

nk∑

s=1

1

ϕ p (s)
.

Finally, by using this estimate combined with (23) and (26) we find that

⎛

⎝
∫

G

⎛

⎝supk∈N sup0≤s<nk

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
σqsnk

fnk (x)

∣
∣
∣
∣

2
(1/p−2)ρ

(

qsnk

)

ϕ
(

ρ(qsnk )
)

∣
∣
∣
∣
∣
∣

⎞

⎠

p

dμ (x)

⎞

⎠

1/p

∥
∥ fnk

∥
∥
Hp

≥

(

cp
2nk (1−p)

nk∑

s=1

1
ϕ p(s)

)1/p

2nk (1−1/p)

≥ cp

( nk∑

s=1

1

ϕ p (s)

)1/p

→ ∞, as k → ∞.

The proof is complete. ��
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