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Abstract
We generalize the notion of calibrated submanifolds to smooth maps and show that
several kinds of smooth maps appearing in the differential geometry are applicable
to our situation. Moreover, we apply this notion to give the lower bound to some
energy functionals of smooth maps in the given homotopy class between Riemannian
manifolds and consider the energy functional which is minimized by the identity maps
on the Riemannian manifolds with special holonomy groups.
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1 Introduction

In this article,we introduce the notion of calibrated geometry for smoothmaps between
Riemannian manifolds and consider the lower bound or the minimizers of several
energy of smooth maps. Let (X , g) and (Y , h) be compact Riemannian manifolds and
f : X → Y be a smooth map. Then the p-energy of f is defined by

Ep( f ) :=
∫

X
|d f |pdμg

for p ≥ 1, where μg is the volume measure of g. A harmonic map is a critical point
of E2 and it is studied well by many researchers in differential geometry. In 1964,
Eells and Sampson [4] have shown that there is a harmonic map f ′ homotopic to f if
the sectional curvature of h is nonpositive. Moreover, Hartman [5] showed that such
harmonic maps minimize E2|[ f ], where [ f ] is the homotopy class represented by f .

In general, harmonic maps need not minimize the energy. For example, although
the identity maps on any Riemannian manifolds are always harmonic, it is known
that there is a family of smooth maps { fε}ε>0 homotopic to the identity map of the
n-sphere Sn with the standard metric such that limε→0 E2( fε) = 0, if n ≥ 3. By the
result shown by White [10], if πl(X) is trivial for all 1 ≤ l ≤ k, then inf Ek |[1X ] = 0,
where 1X is the identity map of X .

One of the motivations of this article is to give the lower bound to the energy
restricting to a given homotopy class [ f ] and the minimizer of them. Such a lower
bound was first obtained by Lichnerowicz [8] in the case of (X , g) and (Y , h) are
Kähler manifolds, then it was shown that any holomorphic maps between Kähler
manifolds minimize E2 in their homotopy classes. Moreover, Croke [3] showed that
the identity map on the real projective space with the standard metric minimize E2 in
its homotopy class, then Croke and Fathi [2] introduced the new homotopy invariant
called the intersection, which gives the lower bound to E2|[ f ] for a given homotopy
class [ f ]. Recently, Hoisington [7] give the lower bound to Ep for an appropriate p
in the case of X is real, complex, or quaternionic projective spaces with the standard
metrics.

In this article, we generalize the notion of calibrated geometry to smooth maps
between smooth manifolds, which give the lower bound to several energies. The
origin of calibrated geometry is the Wirtinger’s inequality for the even-dimensional
subspaces in Hermitian inner product spaces [11], then it refined or generalized by
many researchers. In [6], Harvey and Lawson defined calibrated submanifolds in the
Calabi–Yau, G2 or Spin(7) manifolds which minimize the volume in their homology
classes. Similarly, we define the new class of smooth maps, called calibrated maps,
and show that they minimize the appropriate energy for the given situation. Moreover,
we obtain the next results as applications.

The first application is to obtain the lower bound to p-energy restricting to the given
homotopy class. We assume X is oriented. The pullback of f induces a linear map
[ f ∗]k : Hk(Y ,R) → Hk(X ,R). By fixing basis of Hk(X ,R), Hk(Y ,R), we obtain
the matrix P([ f ∗]k) of [ f ∗]k and put |P([ f ∗]k)| := √

tr(t P([ f ∗]k) · P([ f ∗]k)).
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Smooth Maps Minimizing the Energy Page 3 of 22 9

Theorem 1.1 Let (X , g) and (Y , h) be as above. For any 1 ≤ k ≤ dim X, there is a
positive constant C depending only on k, (X , g), (Y , h) and the basis of Hk(X ,R),
Hk(Y ,R) such that for any f ∈ C∞(X , Y ), we have

Ek( f ) ≥ C |P([ f ∗]k)|.

In particular, if [ f ∗]k is nonzero, then inf(Ek |[ f ]) is positive.

In the above theorem, the compactness of Y is not essential. See Theorem 4.2.
The second application is to show that the identity maps of some Riemannian

manifolds with special holonomy groupsminimize the appropriate energy. As we have
alreadymentioned, the identitymap on the real or complex projective spaceminimizes
E2 in its homotopy class by [3] and [8], respectively. It was shown by Wei [9] that the
identity map on the quaternionic projective space HP

n with the standard metric is an
unstable critical point of Ep for 1 ≤ p < 2+ 4n/(n + 1). Moreover, Hoisington gave
the nontrivial lower bound of Ep|[1HPn ] for p ≥ 4. Here, the quaternionic projective
space is a typical example of quaternionic Kähler manifolds, which are Riemannian
manifolds of dimension 4n whose holonomy group is contained in Sp(n)·Sp(1). Now,
let A be an n × m real-valued matrix and denote by a1, . . . , am ∈ R the nonnegative
eigenvalues of t AA, then put |A|p := (

∑m
i=1 a p/2

i )1/p. Moreover, we define an energy
Ep,q by

Ep,q( f ) :=
∫

X
|d f |qpdμg,

then we have Ep = E2,p.

Theorem 1.2 Let (X , g) be a compact quaternionic Kähler manifold of dimension
4n ≥ 8. Then the identity map of X minimizes E4,4 in its homotopy class.

We can also show the similar theorem in the case of other holonomy groups. If
(X , g) is a compact G2 manifold, then 1X minimizes E3,3|[1X ] and if (X , g) is a
compact Spin(7)manifold, then 1X minimizes E4,4|[1X ] (see Theorem 5.6). Moreover,
it is easy to see that if the identity map minimizes Ep,q , then it also minimizes Ep′,q ′
for all p′ ≥ p and q ′ ≥ q by the Hölder’s inequality. Of course, we can also consider
the case of Kähler, Calabi–Yau, and hyper-Kähler manifolds, respectively; however,
the results in these cases also follow from [8].

This paper is organized as follows. In Sect. 2, we define the notion of calibrated
maps, which is the analogy of the calibrated submanifolds. In Sect. 3, we explain some
examples of calibrated maps. We show that holomorphic maps between Kähler mani-
folds and the inclusion maps of calibrated submanifolds can be regarded as calibrated
maps.Moreover, we can also show that the fibrationwhose regular fibers are calibrated
submanifolds are calibrated maps. We prove Theorem 1.1 in Sect. 4, and Theorem 1.2
in Sect. 5. In Sect. 6, we compare the homotopy invariant introduced in [2] with the
invariants defined in this paper.
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9 Page 4 of 22 K. Hattori

2 CalibratedMaps

Let X , Y be smooth manifold of dim X = m and dim Y = n. Throughout of this
paper, we suppose X is compact and oriented. We fix a volume form vol ∈ �m(X)

on X , namely, a nowhere vanishing m-form which determines an orientation and a
measure of X . For m-forms v1, v2 ∈ �m(X), there are ϕi ⊂ C∞(X) with vi = ϕivol.
Then we write v1 ≤ v2 if ϕ1(x) ≤ ϕ2(x) for all x ∈ X .

If a map σ : C∞(X , Y ) → L1(X) is given, then we can define an energy
E : C∞(X , Y ) → R by

E( f ) :=
∫

X
σ( f )vol.

Now, f0, f1 ∈ C∞(X , Y ) are said to be homotopic if there is a smooth map
F : [0, 1] × X → Y such that F(0, ·) = f0 and F(1, ·) = f1. By Whitney approxi-
mation theorem, it is equivalent to the existence of the continuous homotopy joining
f0 and f1. For f ∈ C∞(X , Y ), denote by [ f ] ⊂ C∞(X , Y ) the homotopy equivalent
class represented by f . In this paper, we consider the lower bound to E |[ f ] or the
minimum of E |[ f ].

Denote by 1X : X → X , the identity map on X . We define a smooth map
(1X , f ) : X → X × Y by

(1X , f )(x) := (x, f (x)).

The next definition is the analogy of [6].

Definition 2.1 � ∈ �m(X × Y ) is a σ -calibration if d� = 0 and

(1X , f )∗� ≤ σ( f )vol

for any smooth map f : X → Y . Moreover, f is a (σ,�)-calibrated map if

(1X , f )∗� = σ( f )vol.

Theorem 2.2 Let σ be an energy density and � be a σ -calibration.

(i) The constant
∫

X (1X , f )∗� is determined by the homotopy class [ f ]. In other
words,

∫
X (1X , f0)∗� = ∫

X (1X , f1)∗� if [ f0] = [ f1].
(ii) We have inf E |[ f ] ≥ ∫

X (1X , f )∗� for any f ∈ C∞(X , Y ).
(iii) We have E( f ) = ∫

X (1X , f )∗� iff f is (σ,�)-calibrated map. In particular, any
(σ,�)-calibrated map minimizes E in its homotopy class.

Proof (i) If f0, f1 are homotopic, then (1X , f0) and (1X , f1) are homotopic, accord-
ingly (1X , f0)∗� and (1X , f1)∗� represent the same cohomology class by [1,
Corollary 4.1.2].

(ii) follows from the definition of σ -calibration.
(iii) By the point-wise inequality (1X , f )∗� ≤ σ( f )vol, we have E( f ) =∫

X (1X , f )∗� iff (1X , f )∗� = σ( f )vol. 
�
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3 Examples

One of the typical example of the energy of maps is p-energy defined for the smooth
maps betweenRiemannianmanifolds. Let (X , g) and (Y , h) beRiemannianmanifolds
and f : X → Y be a smooth map. Then the pullback f ∗h is a section of T ∗ X ⊗ T ∗ X ,
and we can take the trace trg( f ∗h). For p ≥ 1, put σp( f ) := {trg( f ∗h)}p/2. We
assume that X is oriented and denoted by volg the volume form of g. The p-energy
Ep( f ) is defined by

Ep( f ) :=
∫

X
σp( f )volg.

Now, the differential d fx is an element of T ∗
x X ⊗ T f (x)Y for every x ∈ X . Since

gx and h f (x) induce the natural inner product and the norm on T ∗
x X ⊗ T f (x)Y , then

we may also write σp( f )(x) = |d fx |p.
By the Hölder’s inequality, we have

Ep( f ) ≤ volg(X)1−p/qEq( f )p/q

for 1 ≤ p ≤ q. Thus, we have the following proposition.

Proposition 3.1 Let � ∈ �m(X × Y ) be a σp-calibration. Then

volg(X)−1+p/q
∫

X
(1X , f )∗� ≤ Eq( f )p/q

for any q ≥ p and f ∈ C∞(X , Y ).

3.1 Holomorphic Maps

Here, assume that X , Y are complex manifolds and g, h are Kähler metrics. Let m =
dimC X and n = dimC Y . Then we have the decomposition

T ∗ X ⊗ C = �1,0T ∗ X ⊕ �0,1T ∗ X ,

T Y ⊗ C = T 1,0Y ⊕ T 0,1Y ,

accordingly the derivative d f ∈ 	(T ∗ X ⊗ f ∗T Y ) is decomposed into

d f = (∂ f )1,0 + (∂ f )0,1 + (∂ f )1,0 + (∂ f )0,1

∈ (�1,0T ∗ X ⊗ T 1,0Y ) ⊕ (�1,0T ∗ X ⊗ T 0,1Y )

⊕ (�0,1T ∗ X ⊗ T 1,0Y ) ⊕ (�0,1T ∗ X ⊗ T 0,1Y ).

Since d f is real, we have

(∂ f )1,0 = (∂ f )0,1, (∂ f )0,1 = (∂ f )1,0.

123



9 Page 6 of 22 K. Hattori

Denote by ωg, ωh the Kähler form of g, h, respectively, then the volume form is given
by volg = 1

m!ω
m
g . The following observation was given by Lichnerowicz.

Theorem 3.2 [8] For any smooth map f : X → Y , we have

ωm−1
g ∧ f ∗ωh = (m − 1)!(|(∂ f )1,0|2 − |(∂ f )1,0|2)volg,

|d f |2 = 2|(∂ f )1,0|2 + 2|(∂ f )1,0|2.

In particular, we have

E2( f ) ≥ 2

(m − 1)!
∫

X
ωm−1

g ∧ f ∗ωh

and the equality holds iff f is holomorphic.

Now, we consider ωm−1
g ∧ ωh ∈ �m(X × Y ). The first two equalities in Theorem

3.2 implies that 2
(m−1)!ω

m−1
g ∧ ωh is a σ2-calibration. Moreover, the second statement

implies that f is a (σ2,
2

(m−1)!ω
m−1
g ∧ωh)-calibratedmap iff f is holomorphic. One can

also see that f is (σ2,− 2
(m−1)!ω

m−1
g ∧ ωh)-calibrated map iff f is anti-holomorphic.

3.2 Calibrated Submanifolds

In this subsection, we see the relation between the calibrated submanifolds in the sense
of [6] and the calibrated maps. We assume (Y n, h) is a Riemannian manifold.

Definition 3.3 [6] For an integer 0 < m < n, ψ ∈ �m(Y ) is a calibration if dψ = 0
and

ψ |V ≤ volh|V

for any y ∈ Y and m-dimensional oriented subspace V ⊂ TyY . Here, h|V is the
inducedmetric onV and volh|V is its volume formwhose orientation is compatiblewith
the one equipped with V . Moreover, an oriented submanifold X ⊂ Y is a calibrated
submanifold if

ψ |Tx X = vol|h|Tx X

for any x ∈ X .

Now, if X is an oriented manifold with a volume form vol ∈ �m(X), then for
every linear map, A : Tx X → TyY can be regarded as an n × m-matrix by taking a
basis e1, . . . , em of Tx X and an orthonormal basis of TyY with volx (e1, . . . , em) = 1.
Then

√
det(t A · A) does not depend on the choice of these basis. Therefore, for f ∈

C∞(X , Y ), we can define the energy density τm( f )(x) := √
det(td fx · d fx ) and the

energy Eτm ( f ) := ∫
X τm( f )vol.
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Smooth Maps Minimizing the Energy Page 7 of 22 9

Proposition 3.4 Let (X , vol) be an oriented manifold equipped with a volume form and
ψ ∈ �m(Y ) be closed. Assume that dimR X = m < n and denote by πY : X ×Y → Y
the natural projection. Then ψ is a calibration iff π∗

Y ψ ∈ �m(X × Y ) is a τm-
calibration. Moreover, for any embedding f : X → Y , the following conditions are
equivalent.

(i) f (X) is a calibrated submanifold, where the orientation of f (X) is determined
such that f preserves the orientation.

(ii) f is a (τm, π∗
Y ψ)-calibrated map.

Proof Note that (1X , f )∗(π∗
Y ψ) = f ∗ψ and τm( f )volg = vol f ∗h . Hence ψ is a

calibration iff π∗
Y ψ ∈ �m(X × Y ) is a τm-calibration. Moreover, suppose that f

is an embedding. Then f is a (τm, π∗
Y ψ)-calibrated map iff f (X) is a calibrated

submanifold. 
�

3.3 Fibrations

Let (Xm, g) be an oriented Riemannian manifold and Y n be a smooth manifold
equipped with a volume form volY ∈ �n(Y ). Here, we suppose n < m and let
ϕ ∈ �m−n be a calibration in the sense of Definition 3.3. Fix an orthonormal basis
of Tx X and a basis e′

1, . . . , e′
n ∈ TyY with volY (e′

1, . . . , e′
n) = 1, we can regard a

linear map A : Tx X → TyY as an m × n-matrix. Then the value of
√
det(A · t A)

does not depend on the choice of above basis. For a smooth map f : X → Y , put
τ̃m,n( f )|x := √

det(d fx · td fx ) and � := volY ∧ ϕ.
Put

Xreg := {x ∈ X | x is a regular point of f }.

Note that Xreg is open in X . If x ∈ Xreg, we have the orthogonal decomposition
Tx X = Ker(d fx ) ⊕ H and d fx |H : H → T f (x)Y is a linear isomorphism. Put y =
f (x) and suppose that f −1(y) is a calibrated submanifold with respect to the suitable
orientation. We say that d fx is orientation preserving if there is a basis v1, . . . , vm of
Tx X such that

v1, . . . , vn ∈ H , volY (d fx (v1), . . . , d fx (vn)) > 0,

vn+1, . . . , vm ∈ Ker(d fx ), ϕx (vn+1, . . . , vm) > 0,

volg(v1, . . . , vm) > 0.

Proposition 3.5 � is a τ̃m,n-calibration. Moreover, a smooth map f : X → Y is a
(τ̃m,n,�)-calibrated map iff

(i) f −1(y) ∩ Xreg is a calibrated submanifold with respect to ϕ and the suitable
orientation for any y ∈ Y ,

(ii) d fx is orientation preserving for any x ∈ Xreg.

123



9 Page 8 of 22 K. Hattori

Proof If x ∈ X is a critical point of f , then we can see

f ∗volY ∧ ϕ|x = τ̃m,n( f )volg|x = 0.

Fix a regular point x and an oriented orthonormal basis e1, . . . , em ∈ Tx X such that
em−n+1, . . . , em ∈ Ker(d fx ). Then we have

f ∗volY ∧ ϕ(e1, . . . , em) = volY (d fx (e1), . . . , d fx (en))ϕ(en+1, . . . , em),

τ̃m,n( f )|x = |volY (d fx (e1), . . . , d fx (en))| .

Sinceϕ is a calibration,wehaveϕ(±en+1, en+2, . . . , em) ≤ 1, hence |ϕ(en+1, . . . , em)| ≤
1. Therefore,

f ∗volY ∧ ϕ(e1, . . . , em) ≤ |volY (d fx (e1), . . . , d fx (em−n))| = τ̃m,n( f )|x ,

which implies that � is a τ̃m,n-calibration.
Next we consider the condition

f ∗volY ∧ ϕ|x = τ̃m,n( f )volg|x ,

where x is a regular value of f . In this case, we have the orthogonal decomposition
Tx X = Ker(d fx ) ⊕ H , where H is an n-dimensional subspace. We can take an
orthonormal basis e1, . . . , em ∈ Tx X such that

e1, . . . , en ∈ H ,

en+1, . . . , em ∈ Ker(d fx ),

a := volY (d fx (e1), . . . , d fx (em−n)) > 0,

volg(e1, . . . , em) > 0.

Then we have

f ∗volY ∧ ϕ(e1, . . . , em) = aϕ(en+1, . . . , em),

τ̃m,n( f )volg(e1, . . . , em) = |a| = a.

Therefore, we have

f ∗volY ∧ ϕ|x = τ̃m,n( f )volg|x
iff ϕ(en+1, . . . , em) = 1. Now we have taken x ∈ Xreg arbitrarily, hence we have

f ∗volY ∧ ϕ = τ̃m,n( f )volg

iff f −1(y) ∩ Xreg is a calibrated submanifold for any y ∈ Y and d fx is orientation
preserving for all x ∈ Xreg. 
�
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Smooth Maps Minimizing the Energy Page 9 of 22 9

3.4 Totally Geodesic Maps Between Tori

Let Tn = R
n/Zn be the n-dimensional torus and we consider smooth maps from

T
m to T

n . Let G = (gi j ) ∈ Mm(R) and H = (hi j ) ∈ Mn(R) be positive symmetric
matrices. Denote by x = (x1, . . . , xm) and y = (y1, . . . , yn) the Cartesian coordinate
on R

m and R
n , respectively, then we have closed 1-forms dxi ∈ �1(Tm) and dyi ∈

�1(Tn). We define the flat Riemannian metrics g = ∑
i, j gi jdxi ⊗ dx j on T

m and

h = ∑
i, j hi jdyi ⊗ dy j on Tn .

For a smooth map f : Tm → T
n , we have the pullback f ∗ : H1(Tn,R) →

H1(Tm,R). Here, since

H1(Tm,Z) = spanZ{[dx1], . . . , [dxm]},
H1(Tn,Z) = spanZ{[dy1], . . . , [dyn]},

there is P = (P j
i ) ∈ Mm,n(Z) such that f ∗[dy j ] = ∑

i P j
i [dxi ]. The matrix P is

determined by the homotopy class of f . Now, let ∗g be the Hodge star operator of g
and put

� :=
∑
i, j,k

h jk P j
i ∗g dxi ∧ dyk ∈ �m(Tm × T

n). (1)

Then we can check that

∫
Tm

(1Tm , f )∗� =
∑

i, j,k,l

h jk P j
i Pk

l

∫
Tm

∗gdxi ∧ dxl

=
∑

i, j,k,l

h jk P j
i Pk

l gilvolg(T
m)

= tr(t PG−1P H)volg(T
m) =: ‖P‖2volg(Tm) ≥ 0.

Consequently, by the positivity of G−1 and H ,
∫
Tm (1Tm , f )∗� = 0 iff P = 0.

Proposition 3.6 Assume that f ∗ : H1(Tn,R) → H1(Tm,R) is not the zero map. Then

(i) ‖P‖−1� is a σ1-calibration,
(ii) f is a (σ1, ‖P‖−1�)-calibrated map if f (x) = Px + a for some a ∈ T

m,
(iii) f minimizes E2 in its homotopy class iff f (x) = Px + a for some a ∈ T

m.

123



9 Page 10 of 22 K. Hattori

Proof We fix x ∈ T
m and put d fx := A = (A j

i ) ∈ Mn,m(R), and show (1Tm , f )∗� ≤
σ1( f )volg at x . Since

(1Tm , f )∗�|x =
∑

i, j,k,l

h jk P j
i Ak

l ∗g dxi ∧ dxl |x

=
⎛
⎝ ∑

i, j,k,l

h jk P j
i Ak

l gil

⎞
⎠ volg|x

=
(
tr(t PG−1AH)

)
volg|x .

Here, by the Cauchy–Schwarz inequality, we have

tr(t PG−1AH) ≤ √‖P‖‖A‖,

and the equality holds iff A = λP for a constant λ ≥ 0. Therefore, we have

(1Tm , f )∗� ≤ ‖P‖σ1( f )volg,

which implies that ‖P‖−1� is a σ1-calibration. Moreover, the equality holds iff
d fx = λx · t P for some λx ≥ 0. Therefore, f (x) = t Px + a for some a ∈ T

m

is a (σ1, ‖P‖−1�)-calibrated map.
For any f ∈ C∞(Tm,Tn), we have

∫
X
(1Tm , f )∗� ≤ ‖P‖

∫
X

σ1( f )volg ≤ ‖P‖
√
volg(Tm)E2( f )

by the Cauchy–Schwartz inequality. Moreover, we have the following equality

∫
X
(1Tm , f )∗� = ‖P‖

√
volg(Tm)E2( f )

iff d fx = λx · t P for some λx ≥ 0 and σ1( f ) is a constant function on T
m . Since

σ1( f )(x) = λx‖P‖, if σ1( f ) is constant, then λx = λ is independent of x . Hence we
may write f (x) = λ · t Px +a for some a ∈ T

m . Moreover, since f ∗ = P on H1(Tn),
we have λ = 1. 
�

In the above proposition, we cannot show that every (σ1, ‖P‖−1�)-calibrated map
is given by f (x) = t Px + a for some a. We can give a counterexample as follows.

Suppose m = n = 1 and let P = 1. If we put f (x) = x + 1
2π sin(2πx), then it

gives a smooth map T
1 → T

1 homotopic to the identity map. Then one can check
that f is a (σ1, ‖P‖−1�)-calibrated map since f ′(x) ≥ 0.

123
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4 The Lower Bound of p-Energy

In this section, we give the lower bound of p-energy in the general situation. Let (X , g)

and (Y , h) be Riemannian manifolds and assume X is compact and oriented. Now we
have the decomposition

�k T ∗
(x,y)(X × Y ) ∼=

k⊕
l=0

�l T ∗
x X ⊗ �k−l T ∗

y Y ,

then denote by �l,k−l(X × Y ) ⊂ �k(X × Y ) the set consisting of smooth sections of
�l T ∗

x X ⊗�k−l T ∗
y Y . For � ∈ �k(X × Y ), let |�(x,y)| be the norm with respect to the

metric g ⊕ h on X × Y .

Lemma 4.1 Let � ∈ �m−k,k(X × Y ) be closed and supx,y |�(x,y)| < ∞. Then there
is a constant C > 0 depending only on �, m, n, k such that C� is a σk-calibration.

Proof Fix x ∈ X and let {e1, . . . , em} and {e′
1, . . . , e′

n} be an orthonormal basis of
Tx X and T f (x)Y , respectively. Put

Im
k :=

{
I = (i1, . . . , ik) ∈ Z

k | 0 ≤ i1 < · · · < ik ≤ m
}

.

For I = (i1, . . . , ik) ∈ Im
k , J = ( j1, . . . , jk) ∈ In

k , we write

eI := ei1 ∧ · · · ∧ eik , e′
J := e′

j1 ∧ · · · ∧ e′
jk .

Then we have

�(x, f (x)) =
∑

I∈Im
k ,J∈In

k

�I J (∗geI ) ∧ e′
J

for some �I J ∈ R and

{
(1X , f )∗�

}
x =

∑
I ,J

�I J (∗geI ) ∧ d f ∗
x e′

J .

If we denote by (d fx )I J the k × k matrix whose (p, q)-component is given by
g(d fx (eiq ), e′

jp
), then we have

(∗geI ) ∧ d f ∗
x e′

J = det((d fx )I J )volg|x ≤ k!|d fx |kvolg|x ,

therefore, we can see

{
(1X , f )∗�

}
x ≤

⎛
⎝∑

I ,J

|�I J |
⎞
⎠ k!|d fx |kvolg|x .
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9 Page 12 of 22 K. Hattori

Since |�x, f (x)|2 = ∑
I ,J |�I ,J |2, we have

(1X , f )∗� ≤ k!(#Im
k )(#In

k ) sup
x,y

|�(x,y)|σk( f )volg,

which implies the assertion. 
�

For f ∈ C∞(X , Y ), denote by [ f ∗]k the pullback Hk(Y ,R) → Hk(X ,R) of f .
For a closed form α ∈ �k(Y ), denote by [α] ∈ Hk(Y ,R) its cohomology class. Put

Hk
bdd(Y ,R) :=

{
[α] ∈ Hk(Y ,R)| α ∈ �k(Y ), dα = 0, sup

y∈Y
h(αy, αy) < ∞

}
.

This is a subspace of Hk(Y ,R), andwe have Hk
bdd(Y ,R) = Hk(Y ,R) if Y is compact.

Denote by [ f ∗]k
bdd the restriction of [ f ∗]k to Hk

bdd(Y ,R). Fixing a basis of Hk(X ,R)

and Hk
bdd(Y ,R), we obtain the matrix P = P([ f ∗]k

bdd) ∈ MN ,d(R) of [ f ∗]k
bdd, where

d = dim Hk
bdd(Y ,R) and N = dim Hk(X ,R). Put |P| := √

tr(t P P), which may
depends on the choice of basis. Here, since d may become infinity, we may have
|P| = ∞.

Theorem 4.2 Let (Xm, g) and (Y n, h) be Riemannian manifolds and X be compact
and oriented. For any 1 ≤ k ≤ m, there is a constant C > 0 depending only on
k, (X , g), and (Y , h) and the basis of Hk(X ,R), Hk

bdd(Y ,R) such that for any f ∈
C∞(X , Y ), we have

Ek( f ) ≥ C |P([ f ∗]k
bdd)|.

In particular, if [ f ∗]k
bdd is a nonzero map, then the infimum of Ek |[ f ] is positive.

Proof Take bounded closed k-forms β1, . . . , βd ∈ �k(Y ) such that {[βl ]}l is a basis
of Hk

bdd(Y ,R).
By the Hodge Theory, Hk(X) is isomorphic to the space of harmonic k-forms as

vector spaces. Therefore, for any basis of Hk(X ,R), there is a corresponding basis
α1, . . . , αN ∈ �k(X) of the space of harmonic k-forms. Let Gi j := ∫

X αi ∧ ∗gα j ,
which is symmetric positive definite.

Define P = (Pi j ) ∈ MN ,d(R) by [ f ∗]k
bdd([β j ]) = ∑

i Pi j [αi ]. If we put

� :=
∑
i, j

Pi jβ j ∧ (∗gαi ),

then every β j ∧ (∗gαi ) is closed and satisfies the assumption of Lemma 4.1, since X
is compact and β j is bounded. Take the constant Ci j > 0 as in Lemma 4.1. Here, Ci j
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Smooth Maps Minimizing the Energy Page 13 of 22 9

is depending only on m, n, k, and αi , β j . Then for any f ∈ C∞(X , Y ), we have

(1X , f )∗
{
β j ∧ (∗gαi )

} ≤ Ci jσk( f )volg,

(1X , f )∗� ≤
∑
i, j

Ci j |Pi j |σk( f )volg

≤
√∑

i, j

C2
i j |P|σk( f )volg,

hence

Ek( f ) ≥
⎛
⎝∑

i, j

C2
i j

⎞
⎠

−1/2

|P|−1
∫

X
(1X , f )∗�.

Moreover, we have

∫
X
(1X , f )∗� =

∑
i, j

∫
X

Pi j f ∗β j ∧ (∗gαi )

=
∑
i, j

∫
X

Pi j

∑
k

Pk jαk ∧ (∗gαi )

=
∑
i, j,k

Pi j Pk j Gki .

If we denote by λ > 0 the minimum eigenvalue of (Gi j )i, j , then we have∑
i, j,k Pi j Pk j Gki ≥ λ|P|2. Hence we obtain

Ek( f ) ≥ λ

⎛
⎝∑

i, j

C2
i j

⎞
⎠

−1/2

|P|.


�
Remark 4.3 Combining the above theorem with Proposition 3.1, we also have the
lower bound of Ep for any p ≥ k.

5 Energy of the Identity Maps

In this section, we consider when the identity map on compact oriented Riemannian
manifold X minimizes the energy. Here, we consider the family of energies. For
Riemannian manifolds (Xm, g), (Y n, h) and points x ∈ X , y ∈ Y , take a linear map
A : Tx X → TyY . Fixing orthonormal basis of Tx X and TyY , we can regard A as an
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9 Page 14 of 22 K. Hattori

n × m-matirx. Denote by a1, . . . , am ∈ R≥0 the eigenvalues of t A · A, then put

|A|p :=
(

m∑
i=1

a p/2
i

)1/p

for p > 0. Then |A|p is independent of the choice of the orthonormal basis of Tx X .
For a smooth map f : X → Y , let

σp,q( f )|x := |d fx |qp,
Ep,q( f ) :=

∫
X

σp,q( f )volg.

Note that σ2,p = σp and E2,p = Ep.
From now onward, we consider (Y , h) = (X , g) and a map f : X → X . Let 1X be

the identity map of X .

Proposition 5.1 If 1X minimizes Ep,q |[1X ], then it also minimizes Ep′,q ′ |[1X ] for any
p′ ≥ p and q ′ ≥ q.

Proof First of all, for any smooth map f , we have

|d fx |p ≤ m1/p−1/p′ |d fx |p′ ,

Ep,q( f ) ≤ mq/p−q/p′
volg(X)1−q/q ′

(∫
X

|d f |q ′
p′volg

)q/q ′

,

by the Hölder’s inequality, which gives Ep′,q ′( f ) ≥ CEp,q( f )q ′/q for some constant
C > 0. Moreover, we have the equality for f = 1X . Therefore, we can see

inf Ep′,q ′ |[1X ] ≥ inf CEq ′/q
p,q |[1X ] = CEp,q(1X )q ′/q = Ep′,q ′(1X ) ≥ inf Ep′,q ′ |[1X ].


�
Proposition 5.2 (cf. [7, Lemma 2.2]) Let (X , g) be a compact oriented Riemannian
manifold of dimension m. Then 1X minimizes E1,m in its homotopy class.

Proof The proof is essentially given by [7, Lemma 2.2]. For any map f : X → X , we
can see

f ∗volg = det(d f )volg ≤ m−mσ1,m( f )volg.

Here, the second inequality follows from the inequality

∑m
i=1 ai

m
≥

(
m∏

i=1

ai

)1/m
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for any ai ≥ 0. Therefore, we can see

E1,m( f ) ≥ mm
∫

X
f ∗volg.

Moreover, the equality holds if f = 1X . 
�
Next we consider the analogy of the above proposition. We assume that X has a

nontrivial parallel k-form.
Denote by g0 the standardmetric onRm , which also induces themetric on�k(Rm)∗.

Let ϕ0 ∈ �k(Rm)∗ and fix an orientation of Rm . For a k-form ϕ and a Riemannian
metric g on an oriented manifold X , we say that (g0, ϕ0) is a local model of (g, ϕ)

if for any x ∈ X there is an orientation preserving isometry I : Rm → Tx X such that
I ∗(ϕ|x ) = ϕ0.

Denote by ∗g0 : �k(Rm)∗ → �m−k(Rm)∗ the Hodge star operator induced by the
standard metric and let volg0 ∈ �m(Rm)∗ be the volume form. First of all, we show
the following proposition for the local model (g0, ϕ0).

Proposition 5.3 Let (g0, ϕ0) be as above. Assume that |ιuϕ0|g0 is independent of u ∈
R

m if |u|g0 = 1. We have

A∗ϕ0 ∧ ∗g0ϕ0 ≤ |ϕ0|2g0
m

|A|kkvolg0

for any A ∈ Mm(R). Moreover, if A = λT for λ ∈ R, T ∈ O(m) and A∗ϕ0 = λ′ϕ0
for some λ′ ≥ 0, then we have the equality.

Proof For any A, we can take oriented orthonormal basis {e1, . . . , em} and e′
1, . . . , e′

m
of (Rm)∗ such that A∗e′

i = ai ei for some ai ∈ R. We put

ϕ0 =
∑

I∈Im
k

FI eI =
∑

I∈Im
k

F ′
I e′

I

for some FI , F ′
I ∈ R. Now, put aI := ai1 · · · aik for I = (i1, . . . , ik) ∈ Im

k . The we
have A∗ϕ0 = ∑

I F ′
I aI eI and

A∗ϕ0 ∧ ∗g0ϕ0 = g0(A∗ϕ0, ϕ0)volg0 =
∑

I

FI F ′
I aIvolg0

≤
∑

I

|FI F ′
I ||aI |volg0 .

If we put {I } := {i1, . . . , ik}, then

|aI | =
(
|ai1 |k · · · |aik |k

)1/k ≤ 1

k

∑
j∈{I }

|a j |k,
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9 Page 16 of 22 K. Hattori

therefore, we obtain

∑
I

|FI F ′
I ||aI | ≤ 1

k

∑
I

|FI F ′
I |

∑
j∈{I }

|a j |k

= 1

k

m∑
j=1

|a j |k
∑

I∈Im
k , j∈{I }

|FI F ′
I |.

Denote by ĝ0 : (Rm)∗ → R
m the isomorphism induced by the metric g0. Put

ϕ1 :=
∑

I∈Im
k

|FI |eI , ϕ2 :=
∑

I∈Im
k

|F ′
I |eI

and define an orthogonal matrix U : Rm → R
m by U ◦ ĝ0(e j ) = ĝ0(e′

j ). Now we can
see

∑
I∈Im

k , j∈{I }
|FI F ′

I | = g0
(
ιĝ0(e j )ϕ1, ιĝ0(e j )ϕ2

)
≤

∣∣∣ιĝ0(e j )ϕ1

∣∣∣
g0

·
∣∣∣ιĝ0(e j )ϕ2

∣∣∣
g0

=
∣∣∣ιĝ0(e j )ϕ0

∣∣∣
g0

·
∣∣∣ιĝ0(e j )(U

∗ϕ0)

∣∣∣
g0

and

∣∣∣ιĝ0(e j )(U
∗ϕ0)

∣∣∣
g0

=
∣∣∣U∗(ιU◦ĝ0(e j )ϕ0)

∣∣∣
g0

=
∣∣∣ιU◦ĝ0(e j )ϕ0

∣∣∣
g0

.

Then by the assumption, we can see that C =
∣∣∣ιĝ0(e j )ϕ0

∣∣∣
g0

=
∣∣∣ιU◦ĝ0(e j )ϕ0

∣∣∣
g0

is

independent of j , therefore, we have
∑

I∈Im
k , j∈{I } |FI F ′

I | ≤ C2 and

A∗ϕ0 ∧ ∗g0ϕ0 ≤ C2

k

m∑
j=1

|a j |kvolg0 = C2

k
|A|kkvolg0 .

In the above inequalities, we have the equality if A = 1m , then we can determine the
constant C . Moreover, we can also check that the equality holds if A = λT , where
λ ∈ R, T ∈ O(m) and A∗ϕ0 = λ′ϕ0 for some λ′ ≥ 0. 
�

Proposition 5.4 Let (Xm, g) be a compact oriented Riemannian manifold and ϕ ∈
�k(X) be a harmonic form. Assume that there is a local model (g0, ϕ0) of (g, ϕ) and
|ιuϕ0|g0 is independent of u ∈ R

m if |u|g0 = 1. Denote by pri : X × X → X the
projection to i-th component for i = 1, 2. Then � = m|ϕ0|−2

g0 pr
∗
2ϕ ∧ pr∗1(∗gϕ) is

an σk,k-calibration. Moreover, any isometry f : X → X with f ∗ϕ = ϕ is (σk,k,�)-
calibrated.
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Proof � is an σk,k-calibration iff

f ∗ϕ ∧ ∗gϕ ≤ |ϕ0|2g0
m

|d f |kkvolg.

By putting A = d fx and identifying R
m ∼= Tx X , this is equivalent to the inequality

in Proposition 5. Moreover, the equality holds if (d fx )
∗ϕ|x = ϕ|x for all x ∈ X and

d fx is isometry. 
�
Next we have to consider when the assumption for (g0, ϕ0) is satisfied. If G ⊂

SO(m) is a closed subgroup, then the linear action of SO(m) on R
m induces the

action of G on Rm . Similarly, since SO(m) acts on �k(Rm)∗ for all k, G also acts on
them. Here, Rm is irreducible as a G-representation if any subspace W ⊂ R

m which
is closed under the G-action is equal to R

m or {0}. For ϕ0 ∈ �k(Rm)∗, denote by
Stab(ϕ0) ⊂ SO(m) the stabilizer of ϕ0.

Lemma 5.5 Let G be a closed subgroup of SO(m) and assume that Rm is irreducible
as a G-representation. Moreover, assume that G ⊂ Stab(ϕ0). Then |ιuϕ0|g0 is inde-
pendent of u ∈ R

m if |u|g0 = 1.

Proof Define a linear map � : Rm → �k−1(Rm)∗ by �(u) := ιuϕ0, then we can see
� is G-equivariant map since the G-action preserves ϕ0. Since the SO(m)-action on
�k−1(Rm)∗ preserves the inner product, we can see

g0(A�(u), A�(v)) = g0(�(u),�(v))

for any A ∈ G and u, v ∈ R
m . Moreover, the left-hand side is equal to

g0(�(Au),�(Av)) since � is G-equivariant.
Now, let e1, . . . , em be the standard orthonormal basis ofRm and define the symmet-

ric matrix H = (Hi j )i, j by Hi j := g0(�(ei ),�(e j )). Then by the above argument,
we have t AH A = H . Let λ ∈ R be any eigenvalue of H and denote by V (λ) ⊂ R

m the
eigenspace associated with λ. Then we can see that V (λ) is closed under the G-action,
hence we have V (λ) = R

m by the irreducibility, which implies

|�(Au)|2g0 = λ|u|2g0
for all u ∈ R

m and A ∈ G. 
�
Let (Xm, g) be an oriented Riemannian manifold and denote by Holg ⊂ SO(m)

the holonomy group. We consider (X , g, ϕ, G, g0, ϕ0), where ϕ ∈ �k(X) is closed,
(g0, ϕ0) is a local model of (g, ϕ), and G is a closed subgroup of SO(m) such that
Holg ⊂ G ⊂ Stab(ϕ0). The followings are examples.

We can apply Proposition 5.4 and Lemma 5.5 to the above cases and obtain the
following result.

Theorem 5.6 Let (X , g, ϕ) be an oriented compact Riemannian manifold whose geo-
metric structure is one of Table 1 and let � be as in Proposition 5.4. Then the identity
map 1X is a (σk,k,�)-calibrated map. In particular, 1X minimizes Ek,k in its homotopy
class.
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9 Page 18 of 22 K. Hattori

Table 1 Examples of (X , g, ϕ, G, g0, ϕ0)

(X , g, ϕ) m G k

Kähler manifold 2q U (q) 2

quaternionic Kähler manifold 4q ≥ 8 Sp(q) · Sp(1) 4

G2 manifold 7 G2 3

Spin(7) manifold 8 Spin(7) 4

6 Intersection of SmoothMaps

In [2], Croke and Fathi introduced the homotopy invariant of a smoothmap f : X → Y
which gives the lower bound to the 2-energy E2. In this section, we compare our
invariant with the invariant in [2].

First of all, we review the intersection of smooth map introduced in [2]. Let (X , g)

and (Y , h) be Riemannian manifolds and suppose X is compact. Here, we do not
assume X is oriented, and we use the volume measure μg of g instead of the volume
form.

Croke and Fathi defined the following quantity

i f (g, h) = lim
t→∞

1

t

∫
Sg(X)

φt (v)dLioug(v)

for a smooth map f : X → Y and called it the intersection of f . Here, Lioug is

the Liouville measure on the unit tangent bundle Sg(X) and φ
f

t (v) = φt (v) is the
minimum length of all paths in Y homotopic with the fixed endpoints to

s �→ f (γv(s)), 0 ≤ s ≤ t,

where γv is the geodesic from p ∈ X with γ ′
v(0) = v ∈ Sg(X).

Theorem 6.1 [2] For a smooth map f : X → Y , the intersection i f (g, h) is homotopy
invariant, that is, i f (g, h) = i f ′(g, h) if [ f ′] = [ f ]. Moreover, for any f , we have

∫
X

σ2( f )dμg ≥ m

V (Sm−1)2μg(X)
i f (g, h)2,

where V (Sm−1) is the volume of the unit sphere Sm−1 in R
m.

First of all, we introduce the variant of i f (g, h) and improve the above theorem.
We put

j f (g, h) := lim
t→∞

1

t2

∫
Sg(X)

φt (v)2dLioug(v).

123



Smooth Maps Minimizing the Energy Page 19 of 22 9

Theorem 6.2 For a smooth map f : X → Y , j f (g, h) is homotopy invariant. More-
over, for any f , we have

∫
X

σ2( f )dμg ≥ m

V (Sm−1)
j f (g, h),

where the equality holds iff the image of the geodesic in X by f minimizes the length
in its homotopy class with the fixed endpoints.

Proof The proof is parallel to that of Theorem 6.1. The homotopy invariance of
j f (g, h) is same as the case of i f (g, h). See the proof of [2, Lemma 1.3].
Next we show the inequality. Here we can see

∫
X

σ2( f )dμg = m

V (Sm−1)

∫
Sg(X)

|d f (v)|2hdLioug(v).

For s ≥ 0, let gs : Sg(X) → Sg(X) be the geodesic flow. Since gs preserves the
Liouville measure, we can see

∫
Sg(X)

|d f (v)|2hdLioug(v) = 1

t

∫
Sg(X)

(∫ t

0
|d f (gsv)|2hds

)
dLioug(v)

= 1

t

∫
Sg(X)

E2( f ◦ γv|[0,t])dLioug(v),

where E2 is the 2-energy of the curves in (Y , h). If L(c) is the length of c, then we
have

E2(c) =
∫ b

a
|c′(s)|2hds ≥ 1

b − a

(∫ b

a
|c′(s)|hds

)2

= 1

b − a
min

c
L(c)2,

therefore
∫

Sg(X)

|d f (v)|2hdLioug(v) ≥ 1

t2

∫
Sg(X)

φt (v)2dLioug(v)

for any t > 0. Consequently, we have the second assertion by considering t → ∞.
Finally, we consider the condition when

∫
Sg(X)

|d f (v)|2hdLioug(v) = lim
t→∞

1

t2

∫
Sg(X)

φt (v)2dLioug(v)

holds. To consider it, we show

lim
t→∞

1

t2

∫
Sg(X)

φt (v)2dLioug(v) = inf
t>0

1

t2

∫
Sg(X)

φt (v)2dLioug(v). (2)
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By [2, Lemma 1.2], we have

φt+t ′(v) ≤ φt ′(gtv) + φt (v)

for any t, t ′ ≥ 0. Then by combining the Cauchy–Schwarz inequality, we have

∫
Sg(X)

φt+t ′(v)2dLioug(v) ≤
∫

Sg(X)

φt ′(gtv)2dLioug(v)

+ 2

√∫
Sg(X)

φt ′(gtv)2dLioug(v)

∫
Sg(X)

φt (v)2dLioug(v)

+
∫

Sg(X)

φt (v)2dLioug(v).

Since the Liouville measure is invariant under the geodesic flow, we can see
∫

Sg(X)
φt ′

(gtv)2dLioug(v) = ∫
Sg(X)

φt ′(v)2dLioug(v), hence

∫
Sg(X)

φt+t ′ (v)2dLioug(v) ≤
(√∫

Sg(X)

φt ′ (v)2dLioug(v) +
√∫

Sg(X)

φt (v)2dLioug(v)

)2

.

If we put

Pt :=
√∫

Sg(X)

φt (v)2dLioug(v),

then we have Pt+t ′ ≤ Pt + Pt ′ , hence

inf
t>0

P(t)

t
= lim

t→∞
P(t)

t
.

Thus, we obtain (2).
Now, suppose

∫
X

σ2( f )dμg = m

V (Sm−1)
j f (g, h).

By the above argument, we can see that f ◦ γv|[0,t] is geodesic for any v ∈ Sg(X) and
t > 0, and L( f ◦ γv|[0,t]) gives the minimum of

{
L(c)| c is homotopic with the fixed endpoints to f ◦ γv|[0,t]

}
.


�
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Remark 6.3 By the Cauchy–Schwarz inequality, we have

j f (g, h) ≥ i f (g, h)2

μg(X)V (Sm−1)
,

therefore, the inequality in Theorem 6.2 implies the inequality in Theorem 6.1.

Next we compute j f (g, h) in the case of flat tori and compare with the lower bound
obtained by Proposition 3.6. Let (Tm, g) and (Tn, h) be as in Sect. 3.4 and take a
coordinate x on Tm and y on T

n as in Sect. 3.4.

Proposition 6.4 Let f : Tm → T
n be a smooth map such that f ∗([dy j ]) =∑

i P j
i [dxi ] for P = (P j

i ) ∈ Mm,n(Z). If we define � by (1) in Sect. 3.4, then
we have

j f (g, h) = V (Sm−1)

m

∫
Tm

(1Tm , f )∗�.

Proof First of all, we can see that f is homotopic to the map given by x �→ Px for
x ∈ T

m , hence it suffices to show the equality by putting f (x) = t Px .
Since the image of the geodesic by f minimizes the length in its homotopy class

with the fixed endpoints, then by Theorem 6.2, we have E2( f ) = m
V (Sm−1)

j f (g, h).
we can compute E2( f ) directly as

E2( f ) =
∫
Tm

|d f |2volg =
∑

i, j,k,l

hi j Pi
k P j

l gklvolg(T
m) = ‖P‖2volg(Tm).

Moreover, by the computation in Sect. 3.4, we have shown that

∫
Tm

(1Tm , f )∗� = ‖P‖2volg(Tm).

Therefore,

∫
Tm

(1Tm , f )∗� = ‖P‖2volg(Tm) = m

V (Sm−1)
j f (g, h).
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