
The Journal of Geometric Analysis (2024) 34:69
https://doi.org/10.1007/s12220-023-01440-5

Facets of High-Dimensional Gaussian Polytopes

Károly J. Böröczky1,2 · Gábor Lugosi3,4,5 ·Matthias Reitzner6

Received: 21 October 2018 / Accepted: 11 September 2023 / Published online: 9 January 2024
© The Author(s) 2024

Abstract
We study the number of facets of the convex hull of n independent standard Gaussian
points inRd . In particular, we are interested in the expected number of facets when the
dimension is allowed to growwith the sample size.We establish an explicit asymptotic
formula that is valid whenever d/n → 0. We also obtain the asymptotic value when
d is close to n.
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1 Introduction

Theconvexhull [X1, . . . , Xn]ofn independent standardGaussian samples X1, . . . , Xn

from R
d is the Gaussian polytope P(d)

n . For fixed dimension d, the face numbers
and intrinsic volumes of P(d)

n as n tends to infinity are well understood by now. For
i = 0 . . . , d and polytope Q, let fi (Q) denote the number of i-faces of Q and let Vi (Q)

denote the i th intrinsic volume of Q. The asymptotic behavior of the expected value
of the number of facets fd−1(P

(d)
n ) as n → ∞ was provided by Rényi and Sulanke

[22] if d = 2, and by Raynaud [21] if d ≥ 3. Namely, they proved that, for any fixed d,

E fd−1(P
(d)
n ) = 2dπ

d−1
2 d− 1

2 (ln n)
d−1
2 (1 + o(1)) (1)

as n → ∞. For i = 0, . . . , d, expected value of Vi (P
(d)
n ) as n → ∞ was computed

by Affentranger [1], and that of fi (P
(d)
n ) was determined Affentranger and Schneider

[2] and Baryshnikov and Vitale [3], see Hug et al. [15] and Fleury [12] for a different
approach. More recently, Kabluchko and Zaporozhets [18, 19] proved explicit expres-
sions for the expected value of Vd(P

(d)
n ) and the number of k-faces fk(P

(d)
n ). Yet these

formulas are complicated and it is not immediate how to deduce asymptotic results
for large n high dimensions d.

After various partial results, including the variance estimates of Calka and Yukich
[6] and Hug and Reitzner [16], central limit theorems were proved for fi (P

(d)
n ) and

Vd(P
(d)
n )byBárány andVu [5], and forVi (P

(d)
n )byBárány andThäle [4]. These results

have been strengthened considerably byGrote and Thäle [14]. The interesting question
whether E fd−1(P

(d)
n ) is an increasing function in n was answered in the positive by

Kabluchko and Thäle [17]. It would be interesting to investigate the monotonicity
behavior of the facet number if n and d increases simultaneously.

The “high-dimensional” regime, that is, when d is allowed to grow with n, is
of interest in numerous applications in statistics, signal processing, and information
theory. The combinatorial structure of P(d)

n , when d tends to infinity and n grows
proportionally with d, was first investigated by Vershik and Sporyshev [23], and later
Donoho and Tanner [11] provided a satisfactory description. For any t > 1, Donoho
and Tanner [11] determined the optimal �(t) ∈ (0, 1) such that if n/d tends to t , then
P(d)
n is essentially �(t)d-neighbourly (if 0 < η < �(t) and 0 ≤ k ≤ ηd, then fk(P

(d)
n )

is asymptotically
( n
k+1

)
). See Donoho [10], Candés et al. [7], Candés and Tao [8, 9],

Mendoza-Smith et al. [20].
In this note, we consider fd−1(P

(d)
n ), the number of facets, when both d and n

tend to infinity. Our main result is the following estimate for the expected number of
facets of the Gaussian polytope. The implied constant in O(·) is always some absolute
constant. We write lln x for ln(ln x).

Theorem 1.1 Assume P(d)
n is a Gaussian polytope. Then for d ≥ 78 and n ≥ eed, we

have

E fd−1(P
(d)
n ) = 2dπ

d−1
2 d− 1

2 e
d−1
2 lln n

d − d−1
4

lln n
d

ln n
d

+(d−1) θ

ln n
d

+O

(√
de− 1

10 d
)
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with θ = θ(n, d) ∈ [−34, 2].
When n/d tends to infinity as d → ∞, Theorem 1.1 provides the asymptotic formula

E fd−1(P
(d)
n ) =

(
(4π + o(1)) ln

n

d

) d−1
2

.

If n/(ded) → ∞, then we have d
ln n

d
→ 0 and hence

E fd−1(P
(d)
n ) = 2dπ

d−1
2 d− 1

2 e
d−1
2 lln n

d − d−1
4

lln n
d

ln n
d

+o(1)

as d → ∞. In the case when n grows even faster such that (ln n)/(d ln d) → ∞, the
asymptotic formula simplifies to the result (1) of Rényi and Sulanke [22] and Raynaud
[21] for fixed dimension.

Corollary 1.2 Assume P(d)
n is a Gaussian polytope. If (ln n)/(d ln d) → ∞, we have

E fd−1(P
(d)
n ) = 2dπ

d−1
2 d− 1

2 (ln n)
d−1
2 (1 + o(1)) .

There is a (simpler) counterpart of our main results stating the asymptotic behavior
of the expected number of facets of P(d)

n , if n − d is small compared to d, that is, if
n/d tends to one.

Theorem 1.3 Assume P(d)
n is a Gaussian polytope. Then for n − d = o(d), we have

E fd−1(P
(d)
n ) =

(
n

d

)
2−(n−d)+1e

1
π

(n−d)2
d +O

(
(n−d)3

d2

)
+o(1)

as d → ∞.

This complements a result of Affentranger and Schneider [2] stating the number of
k-dimensional faces for k ≤ n − d and n − d fixed,

E fk(P
(d)
n ) =

(
n

k + 1

)
(1 + o(1)) ,

as d → ∞.
In the next section we sketch the basic idea of our approach, leaving the technical

details to later sections. In Sect. 3 we provide asymptotic approximations for the tail
of the normal distribution. In Sect. 4 concentration inequalities are derived for the
β-distribution. Finally, in Sects. 5 and 6, Corollary 1.2 and Theorem 1.3 are proven.

2 Outline of the Argument

For z ∈ R, let

�(y) = 1√
π

y∫

−∞
e−s2 ds, and φ(y) = �′(y) = 1√

π
e−y2 .
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Our proof is based on the approach ofHug,Munsonius, andReitzner [15]. In particular,
[15, Theorem 3.2] states that if n ≥ d + 1 and X1, . . . , Xn are independent standard
Gaussian points in Rd , then

E fd−1([X1, . . . , Xn]) =
(
n

d

)
P(Y /∈ [Y1, . . . ,Yn−d ]) ,

where Y ,Y1, . . . ,Yn−d are independent real-valued random variables with Y
d=

N
(
0, 1

2d

)
and Yi

d= N
(
0, 1

2

)
for i = 1, . . . , n − d. This gives

E fd−1([X1, . . . , Xn]) = 2

(
n

d

) √
d√
π

∞∫

−∞
�(y)n−de−dy2 dy (2)

= 2

(
n

d

)√
d π

d−1
2

∞∫

−∞
�(y)n−dφ(y)d dy . (3)

Note that similar integrals appear in the analysis of the expected number of k-faces
for values of k in the entire range k = 0, . . . , d − 1. In our case, the analysis boils
down to understanding the integral of�(y)n−dφ(y)d over the real line. By substituting
(1 − u) = �(y), we obtain

∞∫

−∞
�(y)n−dφ(y)d dy =

1∫

0

(1 − u)n−dφ(�−1(1 − u))d−1 du .

Clearly, n ≥ d+2 is the nontrivial range.When n/d → ∞, (1−u)n−d is dominating,
and we need to investigate the asymptotic behavior of φ(�−1(1 − u)) as u → 0. We
show that the essential term is precisely 2u. Hence, it makes sense to rewrite the
integral as

2d−1

1∫

0

(1 − u)n−dud−1
(
(2u)−1φ(�−1(1 − u))

)d−1

︸ ︷︷ ︸
=:gd (u)

du .

For x, y > 0, the Beta-function is given by B(x, y) = ∫ 1
0 (1 − u)x−1uy−1du. It is

well known that for k, l ∈ N we have B(k, l) = (k−1)!(l−1)!
(k+l−1)! . A random variable U is

B(x,y) distributed if its density is given by B(x, y)−1(1 − u)x−1uy−1. With this, we
have established the following identity:

Proposition 2.1

E fd−1([X1, . . . , Xn]) = 2dπ
d−1
2 d− 1

2Egd(U ) (4)

123



Facets of High-Dimensional Gaussian Polytopes Page 5 of 16 69

where

gd(u) =
(
(2u)−1φ(�−1(1 − u))

)d−1

and U is a B(n − d + 1, d) random variable.

In Lemma 3.3 below we show that

gd(u) = (ln u−1)−
d−1
2 e

− d−1
4

lln u−1

ln u−1 −(d−1) O(1)
ln u−1

as u → 0. Because the Beta function is concentrated around d
n , see Lemma 4.1 and

Lemma 4.2, this yields

Egd(U ) ≈
(
ln

n

d

) d−1
2

e
− d−1

4
lln n

d
ln n

d
−(d−1) O(1)

ln n
d

which implies our main result.

3 Asymptotics of the8-Function

To estimate �(z), we need a version of Gordon’s inequality [13] for the Mill’s ratio:

Lemma 3.1 For any z > 1 there exists θ ∈ (0, 1), such that

�(z) = 1 − e−z2

2
√

π z

(
1 − θ

2z2

)

Proof It follows by partial integration that

∞∫

z

e−t2 dt =
∞∫

z

2te−t2 1

2t
dt = e−z2

2z
−

∞∫

z

e−t2

2t2
dt = e−z2

2z
− θe−z2

4z3

which yields the lemma. 
�
Lemma 3.2 For any u ∈ (0, e−1] there is a δ = δ(u) ∈ (0, 16) such that

�−1(1 − u) =
√

ln u−1 − 1

2
lln u−1 − ln(2

√
π) + 1

4

lln u−1

ln u−1 + δ

ln u−1 . (5)

Proof It is useful to prove (5) for the transformed variable u = e−t . We define

z(t) =
√

t − 1

2
ln t − ln(2

√
π) + 1

4

ln t

t
+ δ(t)

t
(6)
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which exists for t > 0. In a first step we prove that this is the asymptotic expansion of
z = �−1(1−e−t ) as z, t → ∞with a suitable function δ = δ(t) = O(1). In a second
stepwe show the bound on δ. Observe that z ≥ 1 implies t ≥ ln�(−1)) = −2, 54 . . . .
By Lemma 3.1, for z ≥ 1

e−t = 1 − �(z) = 1

2
√

π z
e−z2

(
1 − θ(z)

2z2

)
(7)

as z → ∞ with some θ(z) ∈ (0, 1), which immediately implies that z = z(t) → ∞
as t → ∞. Equation (7) shows that et ≥ 2

√
π zez

2
and thus

t ≥ ln(2
√

π) + ln z(t) + z(t)2 ≥ z(t)2

for z ≥ 1. The function z = z(t) is the inverse function we are looking for, if it
satisfies

4π z(t)2e−2t = e−2z(t)2
(
1 − θ(z)

2z2

)2

. (8)

We plug (6) into this equation. This leads to

t − 1

2
ln t − ln(2

√
π) + 1

4

ln t

t
+ δ(t)

t
= te− 1

2
ln t
t −2 δ(t)

t

(
1 − O(t−1)

)

= t − 1

2
ln t − 2δ(t) − O(1)

and shows − ln(2
√

π) + o(1) = −2δ(t) − O(1). Thus the function z(t) given by (6)
in fact satisfies (7) and therefore it is the asymptotic expansion of the inverse function.

The desired estimate for δ follows from some more elaborate but elementary cal-
culations. First we prove that δ ≥ 0. By (8) and because ex ≥ 1 + x ,

t − 1

2
ln t − ln(2

√
π) + 1

4

ln t

t
+ δ(t)

t
≥ t

(
1 − 1

2

ln t

t
− 2

δ(t)

t

) (
1 − θ

2t

)2

≥ (t − 1

2
ln t − 2δ(t))

(
1 − θ

t

)

which is equivalent to

δ(t) ≥ ln(2
√

π) − θ − 1−2θ ln t
4t(

2 + 1−2θ
t

) > 0

for t ≥ 1. On the other hand, again by (8),

t ≥
(
t − 1

2
ln t − ln(2

√
π) + 1

4

ln t

t
+ δ(t)

t

)
e
1
2
ln t
t +2 δ(t)

t

123
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and using ex ≥ 1 + x implies

δ(t) ≤ ln(2
√

π) + 2 ln(2
√

π)−1
4

ln t
t + 1

4
(ln t)2

t + 1
8

(ln t)2

t2

2 − (2 ln(2
√

π) − 1) 1t − ln t
t

≤ 16.


�
An asymptotic expansion for φ(�−1(1 − u)) follows immediately:

Lemma 3.3 For any u ∈ (0, e−1] there is a δ = δ(u) ∈ (0, 16) such that

gd(u) =
(
(2u)−1φ(�−1(1 − u))

)d−1 = (ln u−1)
d−1
2 e

− d−1
4

lln u−1

ln u−1 −(d−1) δ

ln u−1 .

4 Concentration of theˇ-Distribution

A basic integral for us is the Beta-integral

B(α, β) =
1∫

0

(1 − x)α−1xβ−1 dx = (α − 1)!(β − 1)!
(α + β − 1)! . (9)

LetU ∼ B(α, β) distributed. ThenEU = β
α+β

and var(U ) = αβ

(α+β)2(α+β+1)
Next we

establish concentration inequalities for a Beta-distributed random variable around its
mean. Observe that ifU ∼ B(α, β), then 1−U ∼ B(β, α). Hence wemay concentrate
on the case α ≥ β.

Lemma 4.1 Let U ∼ B(a+ 1, b+ 1) distributed with a ≥ b and set n = a+ b. Then

P

(

U ≤ b

n
− s

a
1
2 b

1
2

n
3
2

)

≤ 3e3

π

1

s

(
e− 1

6 s
2 − e− 1

6
nb
a

)

+ .

Proof We have to estimate the integral

1

B(a + 1, b + 1)

b−s
√

ab
n

n∫

0

(1 − x)axb dx

For an estimate from above we substitute x = b
n − y

n

√
ab
n .

J− =
b−s

√
ab
n

n∫

0

(1 − x)axb dx

123
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= aa+ 1
2 bb+ 1

2

nn+ 3
2

√
nb
a∫

s

(

1 + y

√
b

an

)a (
1 − y

√
a

bn

)b

dy

It is well known that

ln(1 + x) =
∞∑

k=1

(−1)k−1 x
k

k
≤ x − x2

6
, (10)

for x ∈ (−1, 1]. Since a ≥ b, we have

(

1 + y

√
b

an

)a (
1 − y

√
a

bn

)b

≤ e− 1
6 y

2
,

which implies

J− ≤ aa+ 1
2 bb+ 1

2

nn+ 3
2

√
nb
a∫

s

e− 1
6 y

2
dy

≤ 3aa+ 1
2 bb+ 1

2

nn+ 3
2

1

s

(
e− 1

6 s
2 − e− 1

6
nb
a

)
.

In the last step we use Stirling’s formula,

√
2π nn+ 1

2 e−n ≤ n! ≤ e nn+ 1
2 e−n,

to see that

aa+ 1
2 bb+ 1

2

nn+ 3
2

≤ e3

π
B(a + 1, b + 1). (11)


�
Lemma 4.2 Let U ∼ B(a + 1, b+ 1) distributed with a ≥ b and set n = a + b. Then
for λ ≥ 2,

P

(
U ≥ λ

b

n

)
≤ e3

π
λbb

1
2 eb+

3
2 e−λ ab

n .

Proof We assume that a ≥ b and thus a ≥ n
2 . We have to estimate the probability

P

(
U ≥ λ

b

n

)
≤ 1

B(a + 1, b + 1)

1∫

λ b
n

(1 − x)axb dx

123
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We substitute x → 1
a x + λ b

n and obtain

1∫

λ b
n

(1 − x)axb dx ≤
∞∫

0

e−x−λ ab
n

(
1

a
x + λ

b

n

)b 1

a
dx

≤ a−(b+1)e−λ ab
n

∞∫

0

e−x
(
x + λ

ab

n

)b

dx .

The use of the binomial formula and the Gamma functions yields

∞∫

0

e−x
(
x + λ

ab

n

)b

dx =
b∑

k=0

(
b

k

) ∞∫

0

e−x xb−k
(

λ
ab

n

)k

dx

=
b∑

k=0

(
b

k

)
(b − k)!

(
λ
ab

n

)k

≤ b

(
λ
ab

n

)b

because b ≤ λ ab
n for a ≥ n

2 ≥ b and λ ≥ 2, and 1
k!

(
λ ab

n

)k
is increasing for k ≤ (

λ ab
n

)
.

Using (11) this gives

P

(
U ≥ λ

b

n

)
≤ e3

π

(
1 + b

a

)a+ 3
2

b
1
2 λbe−λ ab

n

and with (1 + x) ≤ ex the lemma. 
�

5 The Case n− d Large

In this section we combine Lemma 3.3 which gives the asymptotic behavior of gd(u)

as u → 0, with the concentration properties of the Beta function just obtained. We
split our proof in two Lemmata.

Lemma 5.1 For d ≥ d0 = 78 and n ≥ eed we have

Egd(U ) ≤ e
d−1
2 lln( nd )− d−1

4
lln( nd )

ln( nd )
+(d−1) 2

ln( nd ) e
e6
π

√
de− 1

10 d
.

Lemma 5.2 For d ≥ d0 = 78 and n ≥ eed we have

Egd(U ) ≥ e
d−1
2 lln( nd )− d−1

4
lln n

d
ln n

d
−(d−1) 34

ln n
d e− 2e6

π

√
de− 1

10 d
.

123
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These two bounds prove Theorem 1.1. The idea is to split the expectation into the
main term close to d

n and two error terms,

Egd(U ) = Egd(U )1

(
U ≤ e−2 d

n

)

+Egd(U )1

(
U ∈

[
e−2 d

n
, 2

d

n

])

+Egd(U )1

(
U ≥ 2

d

n

)
.

Proof of Lemma 5.2 Recall that U is B(n − d + 1, d)-distributed. Lemma 4.2 with
a = n − d and b = d − 1 shows that

P

(
U ≥ λ

d

n

)
≤ P

(
U ≥ λ

d − 1

n − 1

)
≤ e3

π
λd−1(d − 1)

1
2 e(d−1)+ 3

2 e−λ
(n−d)(d−1)

n−1

because d−1
n−1 < d

n . For λ = 2 this gives

P

(
U ≥ 2

d

n

)
≤ e6

2π

√
de(ln 2−1+2 d

n )d ≤ e6

2π

√
de− 1

10 d (12)

for n ≥ 10d. The probability that U is small is estimated by Lemma 4.1 with s =
(1 − e−2)

√
(d−1)(n−1)

n−d ,

P

(
U ≤ e−2 d − 1

n − 1

)
≤ 3e3

π
(1 − e−2)−1

√
n − d

(d − 1)(n − 1)
e− 1

6 (1−e−2)2
(d−1)(n−1)

n−d

≤ e6

2π
e− 1

10 d

for d ≥ 6. Combining both estimates and using

ln(1 − x) ≥ −2x (13)

for x ∈ [0, 1
2 ], we have

P

(
U ∈

[
1

2

d

n
, 2

d

n

])
≥ 1 − e6

2π

√
de− 1

10 d − e6

2π
e− 1

10 d ≥ e− 2e6
π

√
de− 1

10 d (14)

for d ≥ d0 = 78. (Observe that 2e6
π

√
d0e− 1

10 d0 ≤ 1
2 .) In the last step we compute

min
u∈

[
e−2 d

n ,2 d
n

] gd(u) = min
u∈

[
e−2 d

n ,2 d
n

] e
d−1
2 lln u−1− d−1

4
ln ln u−1

ln u−1 −(d−1) δ

ln u−1

123
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≥ e
d−1
2 lln

(
1
2
n
d

)
− d−1

4

lln
(
1
2
n
d

)

ln
(
1
2
n
d

) −(d−1) max δ

ln
(
1
2
n
d

)

for n ≥ eed. Here, note that lln x
ln x is decreasing for x ≥ ee. Now using

lln
(n
d

)
≥ lln

(
1

2

n

d

)
= lln

(n
d

)
+ ln

(

1 − ln 2

ln
( n
d

)

)

≥ lln
(n
d

)
− 2 ln 2

ln
( n
d

) ,

and

1

ln
( 1
2
n
d

) = 1

ln
( n
d

) − ln 2
≤ 1

ln
( n
d

)

(

1 + 2
ln 2

ln
( n
d

)

)

≤ 2
1

ln
( n
d

)

for n ≥ eed, we have

min
u∈

[
e−2 d

n ,2 d
n

] gd(u) ≥ e
d−1
2 lln n

d − d−1
4

lln n
d

ln n
d

−(d−1) δ′
ln n

d

with δ′ = 3 ln 2
2 + 2max δ ∈ [0, 34]. Combining this estimate with (14) we obtain

Egd(U ) ≥ min
u∈

[
e−2 d

n ,2 d
n

] gd(u) E1

(
U ∈

[
e−2 d

n
, 2

d

n

])

≥ e
d−1
2 lln n

d − d−1
4

lln n
d

ln n
d

−(d−1) δ′
ln n

d e− 2e6
π

√
de− 1

10 d

for d ≥ d0 and n ≥ eed.

Proof of Lemma 5.1 As an upper bound we have

Egd(U ) ≤ Egd(U )1

(
U ≤ e−2 d

n

)

+ max
u∈[e−2 d

n ,2 d
n ]
gd(u) P

(
U ∈

[
e−2 d

n
, 2

d

n

])

+ max
u∈

[
2 d
n ,1

] gd(u)

︸ ︷︷ ︸
≤max

u∈
[
d
n ,1

] gd (u)

P

(
U ≥ 2

d

n

)

≤ Egd(U )1

(
U ≤ e−2 d

n

)

+e
d−1
2 lln

(
e2 n

d

)− d−1
4

lln(e2 n
d )

ln(e2 n
d )
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+e
d−1
2 lln( n

d )− d−1
4

lln( n
d )

ln( n
d )

e6

2π

√
de− 1

10 d

since δ ≥ 0, and where the last term follows from (12). For the first term we use that
φ(�−1(·)) is a symmetric and concave function and thus increasing on [0, e−2 d

n ], and
that δ ≥ 0.

Egd(U )1

(
U ≤ e−2 d

n

)

≤ 1

B(n − d + 1, d)

e−2 d
n∫

0

e
d−1
2 lln x−1− d−1

4
lln x−1

ln x−1 (1 − x)n−d xd−1dx

≤ 1

B(n − d + 1, d)
e
d−1
2 lln

(
e2 n

d

)− d−1
4

lln(e2 n
d )

ln(e2 n
d )

(
e−2 d

n

)d−1 ∞∫

0

e−(n−d)xdx

Now the remaining integration is trivial. We use Stirling’s formula (11) to estimate
the Beta-function and obtain

Egd(U )1

(
U ≤ e−2 d

n

)

≤ e3

π

(n − 1)n+ 1
2

(n − d)n−d+ 3
2 (d − 1)d− 1

2

e
d−1
2 lln

(
e2 n

d

)− d−1
4

lln(e2 n
d )

ln(e2 n
d )

(
e−2 d

n

)d−1

≤ e
d−1
2 lln

(
e2 n

d

)− d−1
4

lln(e2 n
d )

ln(e2 n
d )

e5

π
e
(d−1)+ (d−1)

(n−d)

(
3
2

)
+1+ 1

(d−1)
1
2−2d

≤ e
d−1
2 lln

(
e2 n

d

)− d−1
4

lln(e2 n
d )

ln(e2 n
d )

e5

π
e− 1

10 d

e.g. for n ≥ eed and d ≥ 78. Combining our results gives

Egd(U ) ≤ e
d−1
2 lln

(
e2 n

d

)− d−1
4

lln(e2 n
d )

ln(e2 n
d )

e5

π
e− 1

10 d

+e
d−1
2 lln

(
e2 n

d

)− d−1
4

lln(e2 n
d )

ln(e2 n
d )

+e
d−1
2 lln( n

d )− d−1
4

lln( n
d )

ln( n
d )

e6

2π

√
de− 1

10 d

In a similar way as above, we get rid of the involved constant e2 by using

lln
(n
d

)
≤ lln

(
e2

n

d

)
= lln

(n
d

)
+ ln

(
1 + 2

ln( nd )

)
≤ lln

(n
d

)
+ 2

ln( nd )
,
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and

1

ln
(
e2 nd

) = 1

ln( nd )

(
1 + 2

ln( nd )

)−1

≥ 1

ln( nd )

(
1 − 2

ln( nd )

)
.

This yields

Egd(U ) ≤ e
d−1
2 lln( nd )− d−1

4
lln( nd )

ln( nd )
+(d−1)

3
2

ln( nd )

(
1 + e6

π

√
de− 1

10 d
)

(15)


�

6 The Case n− d Small

Finally, it remains to prove Theorem 1.3. The starting point here is again formula (2),
together with the substitution y → y√

d
.

E fd−1([X1, . . . , Xn]) = 2

(
n

d

) √
d√
π

∞∫

−∞
�(y)n−de−dy2 dy

= 2

(
n

d

)
1√
π

∞∫

−∞
�

(
y√
d

)n−d

e−y2 dy (16)

The Taylor expansion of � at y = 0 is given by

�(y) = 1

2
+ 1√

π
y + 1√

π
(−θ1)e

−θ21 y2 = 1

2
+ 1√

π
y(1 − θ2y)

with some θ1, θ2 ∈ R depending on y. Since �(y) is above its tangent at 0 for y > 0
and below it for y < 0, we have 0 ≤ 1 − θ2y ≤ 1. Further,

|θ2| ≤ max
θ1

θ1e
−θ21 = 1√

2e
.

Hence an expression for ln� at y = 0 is given by

ln�(y) = − ln 2 + ln

(
1 + 2√

π
y(1 − θ2y)

)
.

We need again estimates for the logarithm, namely ln(1 + x) = x − θ3x2 < x with
some θ3 = θ3(x) ≥ 0. In addition, there exists c3 ∈ R such that θ3 < c3 if x is
bounded away from −1, for example, for x ≥ 2�(−1) − 1. This gives

ln�(y) ≤ − ln 2 + 2√
π
y − 2√

π
θ2y

2
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and

ln�(y) = − ln 2 + 2√
π
y(1 − θ2y) − θ3

4

π
y2 (1 − θ2y)

2
︸ ︷︷ ︸

≤1

≥ − ln 2 + 2√
π
y − 2√

π
θ2y

2 − θ3
4

π
y2

with θ3 < c3 for y ≥ −1. Thus the Taylor expansion of ln� at y = 0 is given by

ln�(y) = − ln 2 + 2√
π
y − θ4y

2

with some θ4 = θ4(y) > − 1
2 , and there exists a c4 ∈ R with θ4 ≤ c4 for y ≥ −1. We

plug this into (16) and obtain

∞∫

−∞
�

(
y√
d

)n−d

e−y2 dy = e−(n−d) ln 2

∞∫

−∞
e

2√
π

n−d√
d
y−θ4

n−d
d y2−y2

dy .

Since n−d
d → 0 we assume that 1 + θ4

n−d
d ≥ 1 − 1

2
n−d
d > 0. As an estimate from

above we have

∞∫

−∞
e

2√
π

n−d√
d
y−(1+θ4

n−d
d )y2

dy ≤
∞∫

−∞
e

2√
π

n−d√
d
y−(1− 1

2
n−d
d )y2

dy

= e

4
π

(n−d)2
d

4(1− 1
2
n−d
d )

∞∫

−∞
e
−

( 2√
π

n−d√
d

2
√

(1− 1
2
n−d
d )

−
√

(1− 1
2
n−d
d )y

)2

dy

= e
1
π

(n−d)2
d

(
1+O

(
n−d
d

)) √
π

√(
1 − 1

2
n−d
d

)

= √
πe

1
π

(n−d)2
d +O

(
(n−d)3

d2

)
+O

(
n−d
d

)

. (17)

The estimate from below is slightly more complicated. For y ≥ −√
d there is an upper

bound c4 for θ4. Using this we have

∞∫

−∞
e

2√
π

n−d√
d
y−θ4

n−d
d y2−y2

dy ≥ e
1
π

(n−d)2
d

∞∫

1√
π

n−d√
d

−√
d

e
−

(
1√
π

n−d√
d

−y
)2−c4

n−d
d y2

dy

≥ e
1
π

(n−d)2
d

√
d∫

−∞
e
−y2−c4

n−d
d

(
1√
π

n−d√
d

−y
)2

dy .
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Now we use (a − b)2 ≤ 2a2 + 2b2 which shows that

∞∫

−∞
e

2√
π

n−d√
d
y−θ4

n−d
d y2−y2

dy ≥ e
1
π

(n−d)2
d +O(

(n−d)3

d2
)

√
d∫

−∞
e−(1+2c4 n−d

d )y2 dy

= e
1
π

(n−d)2
d +O

(
(n−d)3

d2

)

1
√

(1 + 2c4 n−d
d )

√
d(1+2c4

n−d
d )∫

−∞
e−y2 dy

≥ e
1
π

(n−d)2
d +O

(
(n−d)3

d2

)
+O

(
n−d
d

)
√
d∫

−∞
e−y2 dy. (18)

Recall the estimate for �(z) from Lemma 3.1,

√
d∫

−∞
e−y2 dy = √

π �(
√
d) ≥ √

π(1 − e−d) = √
πeO(e−d ). (19)

We combine Eqs. (17), (18) and (19) and obtain

∞∫

−∞
e

2√
π

n−d√
d
y−θ4

n−d
d y2−y2

dy = √
πe

1
π

(n−d)2
d +O

(
(n−d)3

d2

)
+O

(
n−d
d

)
+O(e−d )

which yields Theorem 1.3.
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