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Abstract
This article is concerned with the stability of triharmonic maps and in particular trihar-
monic hypersurfaces. After deriving a number of general statements on the stability
of triharmonic maps we focus on the stability of triharmonic hypersurfaces in space
forms, where we pay special attention to their normal stability. We show that trihar-
monic hypersurfaces of constant mean curvature in Euclidean space are weakly stable
with respect to normal variations while triharmonic hypersurfaces of constant mean
curvature in hyperbolic space are stable with respect to normal variations. For the case
of a spherical target we show that the normal index of the small proper triharmonic
hypersphere φ : Sm(1/

√
3) ↪→ S

m+1 is equal to one and make some comments on the
normal stability of the proper triharmonic Clifford torus.
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1 Introduction and results

Harmonic maps are a geometric variational problem with rich structure that has many
applications in geometry, analysis and theoretical physics. The geometric setup is
the following. We consider a smooth map φ : M → N between two Riemannian
manifolds (M, g) and (N , h). Then, the energy of φ is defined by

E(φ)(= E1(φ)) = 1

2

∫
M

|dφ|2 dvg . (1.1)
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Its critical points are governed by the vanishing of the so-called tension field τ(φ),
that is

0 = τ(φ) := Trg ∇̄dφ, (1.2)

where ∇̄ represents the connection on the pull-back bundle φ∗T N . Harmonic maps
are precisely the solutions of equation (1.2).

The harmonic map equation (1.2) is a second order semilinear elliptic partial dif-
ferential equation. Due to its second order nature powerful tools such as the maximum
principle help to obtain a deep understanding of both its analytic and geometric
properties, see for example [12] for an overview on harmonic maps.

Another geometric variational problem which received growing attention in recent
years is that of the so-called biharmonic maps. These maps are characterized as the
critical points of the bienergy for maps between two Riemannian manifolds, which is
given by

E2(φ) = 1

2

∫
M

|τ(φ)|2 dvg. (1.3)

Here, the Euler-Lagrange equation is a fourth order semilinear elliptic partial differ-
ential equation and is expressed by means of the vanishing of the bitension field τ2(φ),
that is

0 = τ2(φ) := �̄τ (φ) + Trg R
N (dφ(·), τ (φ))dφ(·). (1.4)

Here, �̄ is the so-called rough Laplacian, i.e., the connection Laplacian on φ∗T N .
For more background and the current status of research on biharmonic maps we refer
to [21] and the recent book [25].

The fact that (1.4) is of fourth order leads to a number of technical difficulties such
that the analysis of biharmonic maps is not as complete as the one of harmonic maps.
A direct inspection of the Euler-Lagrange equation for biharmonic maps (1.4) shows
that every harmonic map automatically solves the equation for biharmonic maps. Due
to this reason one of the major objectives in the analysis of biharmonic maps is to find
non-harmonic solutions which are called proper biharmonic. On the other hand, there
are geometric configurations in which every biharmonic map necessarily needs to be
harmonic: If M is compact and N has non-positive sectional curvature, then every
biharmonic map needs to be harmonic, see [9] for an overview on further results of
this kind. For this reason one usually considers a spherical target when constructing
proper biharmonic maps. Let us mention several results concerning the stability of
biharmonic maps which are closely connected to the main results of this paper. The
indices of various proper biharmonic maps to spheres were calculated in [13, 14, 18]
while the stability of biharmonic hypersurfaces was studied in [24].
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A further higher order generalization of harmonic maps is the notion of triharmonic
maps. Here, the starting point is the trienergy of a map given by

E3(φ) = 1

2

∫
M

|∇̄τ(φ)|2 dvg. (1.5)

The critical points of (1.5) are characterized by the vanishing of the tritension field

0 = τ3(φ) := −�̄2τ(φ) + Trg R
N (∇̄(·)τ (φ), τ (φ))dφ(·)

+ Trg R
N (�̄τ (φ), dφ(·))dφ(·) (1.6)

and are precisely triharmonicmaps. The triharmonicmap equation is a semilinear ellip-
tic partial differential equation of order six, the large number of derivatives gives rise
to further technical difficulties in the mathematical analysis. Again, a direct inspection
of the Euler-Lagrange equation shows that harmonic maps are always a solution of the
equation for triharmonic maps (1.6). Hence, we are again interested in constructing
solutions of (1.6) which are non-harmonic and as in the case of biharmonic maps the
latter are called proper triharmonic. We would like to point out that a harmonic map is
always automatically also triharmonic, but the same is not true for a given biharmonic
map, i.e. a biharmonic map is not automatically triharmonic.

Let us give some motivation why, besides overcoming the technical difficulties, it
should be of great interest to investigate the properties of triharmonic maps. While
biharmonic maps seem to be geometrically restricted in the sense that biharmonic
curves need to have constant curvature or that compact biharmonic hypersurfaces
always seem to have constant mean curvature (in the non-compact case there exist
biharmonic hypersurfaces with non-constant mean curvature, see [26]) these restric-
tions seem no longer in place in the triharmonic case: Recently, in [19] an explicit
triharmonic curve with non-constant geodesic curvature was constructed.

In the following, we will give a non-exhaustive overview on the current status of
research on triharmonic maps. Triharmonic curves of constant curvature in various
ambient geometries have been studied in [19, 27, 28], polyharmonic, and hence in
particular triharmonic, helices in space forms were classified in [8]. The first attempt
of explicitly constructing triharmonic maps in the sphere was carried out in [16] which
was later systematically extended in [20].

Much effort has been paid to the case of triharmonic hypersurfaces. Polyharmonic
hypersurfaces in Riemannian space forms with constant norm of the shape operator
were studied in [22], this analysis was recently extended to the pseudo-Riemannian
case as well [5]. Triharmonic hypersurfaces in space forms which have constant mean
curvature and at most three distinct principal curvatures were classified in [10]. Very
recently, much progress has been made regarding the classification of triharmonic
hypersurfaces in space forms [11]. In particular, it was shown that any triharmonic
hypersurface of constant mean curvature in the hyperbolic space H

m+1 is actually
minimal. Triharmonic surfaces in homogeneous three manifolds (BCV spaces) have
been studied in [23].

123



355 Page 4 of 28 V. Branding

Let us also give some examples of non-existence results for triharmonic maps.
Triharmonic isometric immersions from complete non-compact Riemannian mani-
folds into hyperbolic space have been investigated in [17] and it was shown that such
immersionsmust beminimal whenever a certain energy is finite. For triharmonicmaps
from Euclidean space to Riemannian manifolds a classification result for finite energy
solutions was given in [6, Section 4]. In [7] a classification result for polyharmonic
maps, which can also be applied to the case of triharmonic maps, was established.

The current status of research on higher order variational problems can be found in
[4].

So far, the stability of triharmonic maps has not been investigated systematically.
The first article that took up this direction of research was published in Chinese [29].
According to theMathematical Reviews the author showed that a harmonic map from
a compact Riemannian manifold is a stable triharmonic map and also that if one con-
siders a proper biharmonic map which satisfies a conservation law from a compact
manifold into a manifold of positive sectional curvature, then it is an unstable trihar-
monicmap.Besides that, the second variation formula for polyharmonicmaps between
Riemannian manifolds was derived in [15] which of course includes the triharmonic
case as well.

Now, let φ : M → N be a smooth triharmonic map. The stability of a given tri-
harmonic map is characterized by the second variation of the trienergy of a map
(1.5) evaluated at a critical point which we denote by Hess E3(φ)(V ,W ), where
V ,W ∈ �(φ∗T N ). We say that a triharmonic map φ is stable if

Hess E3(φ)(V , V ) > 0 for all V ∈ �(φ∗T N ), V �= 0

and weakly stable if

Hess E3(φ)(V , V ) ≥ 0 for all V ∈ �(φ∗T N ), V �= 0.

Concerning the stability of arbitrary triharmonicmapsweprove the following result,
which was already obtained in [15, 29] in a different framework.

Theorem 2.5 A harmonic map is always a weakly stable triharmonic map.

Later, we will mostly be concerned with a special class of triharmonic maps which
are triharmonic hypersurfaces in space forms. This particular class of triharmonicmaps
is explicit enough in order to compute or at least estimate their normal stability. By
normal stability we refer to the second variation of the trienergy evaluated on vector
fields which are proportional to the normal of the hypersurface.

The most general result we establish in this manuscript is given by the following:

Theorem 3.5 Any triharmonic hypersurface of constant mean curvature in Euclidean
space is weakly normally stable and any triharmonic hypersurface of constant mean
curvature in hyperbolic space is normally stable.

Following the terminology used for minimal and biharmonic hypersurfaces we
define the normal index of a proper triharmonic hypersurface to be the maximal
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dimension of any linear subspace on which the second variation is negative, that
is

Indnor(M → N ) := max{dim L, L ⊂ C∞
0 (M) | Hess E3(φ)( f ν, f ν) < 0,

∀ f ∈ L},

where ν represents the unit normal of the hypersurface.
Concerning the normal stability of the small proper triharmonic hypersphere

S
m(1/

√
3) ↪→ S

m+1 we obtain the following:

Theorem 3.11 Let φ : Sm(1/
√
3) ↪→ S

m+1 be the small proper triharmonic hyper-
sphere. The index characterizing its normal stability is

Indnor
(
S
m(1/

√
3) ↪→ S

m+1) = 1.

Furthermore, inSubsection3.3wemake somecomments onhow to estimate the nor-
mal index of the proper triharmonic generalized Clifford torusφ : Sp(R1)×S

q(R2) →
S
p+q+1, where R2

1 + R2
2 = 1 and R2

1 is determined as the root of a certain third order
polynomial.

Remark 1.1 If one studies the normal indexof the small proper biharmonic hypersphere
φ : Sm(1/

√
2) → S

m+1 one finds, as in the triharmonic case, that its normal index is
equal to one, see [13, 18]. Hence, one may conjecture that the normal index of the
small proper r -harmonic hypersphere φ : Sm(1/

√
r) → S

m+1, see [4, 20] for more
details, also has normal index equal to one.

Throughout this article we will use the following sign conventions: For the
Riemannian curvature tensor field we use

R(X ,Y )Z = [∇X ,∇Y ]Z − ∇[X ,Y ]Z ,

where X ,Y , Z are vector fields.
For the connection Laplacian on φ∗T N we use the geometer’s sign convention,

that is we set �̄ := −Trg(∇̄∇̄ − ∇̄∇). In particular, this implies that the Laplacian
acting on functions has a positive spectrum.

We will make use of the summation convention and tacitly sum over repeated
indices.

This article is organized as follows: In Section 2 we calculate, mostly for the sake
of completeness, the first and second variation of the trienergy for maps between
Riemannian manifolds and then consider the case that the target manifold is a Rie-
mannian space form of constant curvature. The third section then first derives a number
of general statements on the normal stability of triharmonic hypersurfaces. Finally,
we calculate the normal index of the small proper triharmonic hypersphere and make
some comments on the normal index of the proper triharmonic Clifford torus.
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2 Variational Formulas

In this section we recall the first and second variation formula for the trienergy (1.5).
To this end we consider a variation of φ, that is φt : (−ε, ε)×M → N for some small
ε > 0 with variational vector field

∂φt

∂t

∣∣
t=0 = V , (2.1)

where V ∈ �(φ∗T N ). For simplicity, we will always assume that the variational
vector field V is compactly supported such that we can employ integration by parts.
We are choosing a local orthonormal frame field {ei }, i = 1, . . . , dim M tangent to M
around an arbitrary point p ∈ M such that at the point p we have

∇ei e j = 0, i, i = 1, . . . , dim M, ∇∂t ei = 0, i = 1, . . . , dim M .

In the following we will often make use of the following well-known formula

∇̄
∂t

τ(φt ) = − �̄dφt (∂t ) + RN (dφt (∂t ), dφt (ei ))dφt (ei ). (2.2)

First of all, we derive the explicit form of the tritension field τ3(φ).

Proposition 2.1 (First Variation) The critical points of the trienergy (1.5) are given
by

0 = τ3(φ) := −�̄2τ(φ) + RN (∇̄e j τ(φ), τ (φ))dφ(e j )

+ RN (�̄τ (φ), dφ(e j ))dφ(e j ), (2.3)

where {e j }, j = 1, . . . , dim M is a local orthonormal frame field tangent to M.

Proof We consider a variation of the map φ as defined in (2.1) and using (2.2) we find

d

dt
E3(φt ) =

∫
M

〈 ∇̄
∂t

∇̄e j τ(φt ), ∇̄e j τ(φt )〉 dvg

=
∫
M

(〈RN (dφt (∂t ), dφt (e j ))τ (φt ), ∇̄e j τ(φt )〉

+ 〈∇̄e j
∇̄
∂t

τ(φt ), ∇̄e j τ(φt )
)
dvg

=
∫
M

(〈RN (∇̄e j τ(φt ), τ (φt ))dφt (e j ), dφt (∂t )〉 + 〈 ∇̄
∂t

τ(φt ), �̄τ (φt )〉
)
dvg

=
∫
M

(〈RN (∇̄e j τ(φt ), τ (φt ))dφt (e j ), dφt (∂t )〉 + 〈−�̄dφt (∂t ), �̄τ (φt )〉
+ 〈RN (dφt (∂t ), dφt (e j ))dφt (e j ), �̄τ (φt )〉

)
dvg
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=
∫
M

〈dφt (∂t ),−�̄2τ(φt ) + RN (∇̄e j τ(φt ), τ (φt ))dφt (e j )

+ RN (�̄τ (φt ), dφt (e j ))dφt (e j )〉 dvg.

Evaluating at t = 0 completes the proof. ��
In order to compute the second variation of (1.5) we establish the following

commutator formulas.

Lemma 2.2 Consider a variation of the map φ : M → N as defined in (2.1). Then,
the following formulas hold

∇̄
∂t

∇̄Xτ(φt ) = − ∇̄X �̄dφt (∂t ) + ∇̄X
(
RN (dφt (∂t ), dφt (ek))dφt (ek)

)

+ RN (dφt (∂t ), dφt (X))τ (φt ),

∇̄
∂t

�̄τ (φt ) = − RN (dφt (∂t ), dφt (e j ))∇̄e j τ(φt ) − ∇̄e j

(
RN (dφt (∂t ), dφt (e j ))τ (φt )

)

+ �̄
(
RN (dφt (∂t ), dφt (e j ))dφt (e j )

) − �̄2dφt (∂t ),

∇̄
∂t

�̄2τ(φt ) = − RN (dφt (∂t ), dφt (e j ))∇̄e j �̄τ (φt )

− ∇̄e j

(
RN (dφt (∂t ), dφt (e j ))�̄τ (φt )

) + �̄
∇̄
∂t

�̄τ (φt ) (2.4)

for all X ∈ T M.

Proof The first equation follows from (2.2) and using

∇̄
∂t

∇̄Xτ(φt ) = RN (dφt (∂t ), dφt (X))τ (φt ) + ∇̄X
∇̄
∂t

τ(φt ),

where X ∈ T M . The second and third equation follow along the same lines. ��
Proposition 2.3 (Second Variation - rough version) Let φ : M → N be a smooth
triharmonic map and consider a variation of φ as defined in (2.1). Then, the second
variation of the trienergy is given by

d2

dt2
∣∣
t=0E3(φt ) =

∫
M

(
|∇̄�̄V |2 + 〈RN (V , dφ(e j ))∇̄e j �̄τ (φ), V 〉
− 〈RN (V , dφ(e j ))�̄τ (φ), ∇̄e j V 〉
+ 〈RN (V , dφ(e j ))∇̄e j τ(φ), �̄V 〉
+ 〈∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)
, �̄V 〉

− 〈RN (V , dφ(e j ))dφ(e j ), �̄
2V 〉

+ 〈(∇V R
N )(∇̄e j τ(φ), τ (φ))dφ(e j ), V 〉
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− 〈RN (∇̄e j �̄V , τ (φ))dφ(e j ), V 〉
+ 〈RN (∇̄e j

(
RN (V , dφ(ek))dφ(ek)

)
, τ (φ))dφ(e j ), V 〉

+ 〈RN (RN (V , dφ(e j ))τ (φ), τ (φ))dφ(e j ), V 〉
− 〈RN (∇̄e j τ(φ), �̄V )dφ(e j ), V 〉
+ 〈RN (∇̄e j τ(φ), RN (V , dφ(ei ))dφ(ei ))dφ(e j ), V 〉
+ 〈RN (∇̄e j τ(φ), τ (φ))∇̄e j V , V 〉
+ 〈(∇V R

N )(�̄τ (φ), dφ(e j ))dφ(e j ), V 〉
− 〈RN (RN (V , dφ(e j ))∇̄e j τ(φ), dφ(ek))dφ(ek), V 〉
− 〈RN (∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)
, dφ(ek))dφ(ek), V 〉

+ 〈RN (�̄
(
RN (V , dφ(e j ))dφ(e j )

)
, dφ(ek))dφ(ek), V 〉

− 〈RN (�̄2V , dφ(e j ))dφ(e j ), V 〉
+ 〈RN (�̄τ (φ), ∇̄e j V )dφ(e j ), V 〉
+ 〈RN (�̄τ (φ), dφ(e j ))∇̄e j V , V 〉

)
dvg. (2.5)

Proof We consider a variation of the map φ as defined in (2.1) and use the first
variational formula derived in Proposition 2.1 as a starting point. Now, we compute

d2

dt2
E3(φt ) = −

∫
M

〈 ∇̄
∂t

�̄2τ(φt ), dφt (∂t )〉 dvg

+
∫
M

〈 ∇̄
∂t

(
RN (∇̄e j τ(φt ), τ (φt ))dφt (e j )

)
, dφt (∂t )〉 dvg

+
∫
M

〈 ∇̄
∂t

(
RN (�̄τ (φt ), dφt (e j ))dφt (e j )

)
, dφt (∂t )〉 dvg

+
∫
M

〈τ3(φt )︸ ︷︷ ︸
=0

,
∇̄
∂t

dφt (∂t )〉 dvg

:=
∫
M

(
A1 + A2 + A3

)
dvg.

We will now calculate all three terms individually. The A1 contribution can be
manipulated as follows

A1 =〈 ∇̄
∂t

�̄2τ(φt ), dφt (∂t )〉
= − 〈RN (dφt (∂t ), dφt (e j ))∇̄e j �̄τ (φt ), dφt (∂t )〉

− 〈∇̄e j

(
RN (dφt (∂t ), dφt (e j ))�̄τ (φt )

)
, dφt (∂t )〉 + 〈�̄ ∇̄

∂t
�̄τ (φt ), dφt (∂t )〉,
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where we used the third equation of (2.4).
In addition, we get

〈 ∇̄
∂t

�̄τ (φt ), �̄dφt (∂t )〉 = − 〈RN (dφt (∂t ), dφt (e j ))∇̄e j τ(φt ), �̄dφt (∂t )〉
− 〈∇̄e j

(
RN (dφt (∂t ), dφt (e j ))τ (φt )

)
, �̄dφt (∂t )〉

+ 〈�̄(
RN (dφt (∂t ), dφt (e j ))dφt (e j )

)
, �̄dφt (∂t )〉

− 〈�̄2dφt (∂t ), �̄dφt (∂t )〉

using the second equation of (2.4).
The second term, A2, can be rewritten as follows

A2 =〈 ∇̄
∂t

(
RN (∇̄e j τ(φt ), τ (φt ))dφt (e j )

)
, dφt (∂t )〉

=〈(∇dφt (∂t )R
N )(∇̄e j τ(φt ), τ (φt ))dφt (e j ), dφt (∂t )〉

+ 〈RN (
∇̄
∂t

∇̄e j τ(φt ), τ (φt ))dφt (e j ), dφt (∂t )〉

+ 〈RN (∇̄e j τ(φt ),
∇̄
∂t

τ(φt ))dφt (e j ), dφt (∂t )〉
+ 〈RN (∇̄e j τ(φt ), τ (φt ))∇̄e j dφt (∂t ), dφt (∂t )〉

=〈(∇dφt (∂t )R
N )(∇̄e j τ(φt ), τ (φt ))dφt (e j ), dφt (∂t )〉

− 〈RN (∇̄e j �̄dφt (∂t ), τ (φt ))dφt (e j ), dφt (∂t )〉
+ 〈RN (∇̄e j

(
RN (dφt (∂t ), dφt (ek))dφt (ek)

)
, τ (φt ))dφt (e j ), dφt (∂t )〉

+ 〈RN (RN (dφt (∂t ), dφt (e j ))τ (φt ), τ (φt ))dφt (e j ), dφt (∂t )〉
− 〈RN (∇̄e j τ(φt ), �̄dφt (∂t ))dφt (e j ), dφt (∂t )〉
+ 〈RN (∇̄e j τ(φt ), R

N (dφt (∂t ), dφt (ei ))dφt (ei ))dφt (e j ), dφt (∂t )〉
+ 〈RN (∇̄e j τ(φt ), τ (φt ))∇̄e j dφt (∂t ), dφt (∂t )〉,

where we used the first equation of (2.4) after the second equals sign and (2.2) in the
final step.

Concerning the A3 term we find

A3 =〈 ∇̄
∂t

(
RN (�̄τ (φt ), dφt (e j ))dφt (e j )

)
, dφt (∂t )〉

=〈(∇dφt (∂t )R
N )(�̄τ (φt ), dφt (e j ))dφt (e j ), dφt (∂t )〉

+ 〈RN (
∇̄
∂t

�̄τ (φt ), dφt (e j ))dφt (e j ), dφt (∂t )〉
+ 〈RN (�̄τ (φt ), ∇̄e j dφt (∂t ))dφt (e j ), dφt (∂t )〉
+ 〈RN (�̄τ (φt ), dφt (e j ))∇̄e j dφt (∂t ), dφt (∂t )〉
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=〈(∇dφt (∂t )R
N )(�̄τ (φt ), dφt (e j ))dφt (e j ), dφt (∂t )〉

− 〈RN (RN (dφt (∂t ), dφt (e j ))∇̄e j τ(φt ), dφt (ek))dφt (ek), dφt (∂t )〉
− 〈RN (∇̄e j

(
RN (dφt (∂t ), dφt (e j ))τ (φt )

)
, dφt (ek))dφt (ek), dφt (∂t )〉

+ 〈RN (�̄
(
RN (dφt (∂t ), dφt (e j ))dφt (e j )

)
, dφt (ek))dφt (ek), dφt (∂t )〉

− 〈RN (�̄2dφt (∂t ), dφt (e j ))dφt (e j ), dφt (∂t )〉
+ 〈RN (�̄τ (φt ), ∇̄e j dφt (∂t ))dφt (e j ), dφt (∂t )〉
+ 〈RN (�̄τ (φt ), dφt (e j ))∇̄e j dφt (∂t ), dφt (∂t )〉,

where we employed the second equation of (2.4) in the second step. Adding up the
different contributions and evaluating at t = 0 then completes the proof. ��

Luckily, many of the terms in (2.5) can be grouped together such that we can obtain
the following simplification:

Proposition 2.4 (Second Variation) Let φ : M → N be a smooth triharmonic map
and consider a variation of φ as defined in (2.1) with V compactly supported. Then,
the second variation of the trienergy (1.5) is given by

d2

dt2
∣∣
t=0E3(φt ) =

∫
M

(∣∣∇̄�̄V − ∇̄(
RN (V , dφ(ek))dφ(ek)

)∣∣2

+ |RN (V , dφ(e j ))τ (φ)|2−2〈RN (V , dφ(e j ))�̄τ (φ),∇̄e j V 〉
+ 2〈RN (V , dφ(e j ))∇̄e j τ(φ), �̄V 〉,
− 2〈RN (V , dφ(ek))dφ(ek), ∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)〉
+ 2〈RN (dφ(e j ), V )∇̄e j τ(φ), RN (V , dφ(ek))dφ(ek)〉
− 2〈RN (∇̄e j �̄V , τ (φ))dφ(e j ), V 〉
+ 〈(∇V R

N )(∇̄e j τ(φ), τ (φ))dφ(e j ), V 〉
+ 〈(∇V R

N )(�̄τ (φ), dφ(e j ))dφ(e j ), V 〉
+ 〈RN (V , dφ(e j ))∇̄e j �̄τ (φ), V 〉
+ 〈RN (�̄τ (φ), dφ(e j ))∇̄e j V , V 〉
+ 〈RN (∇̄e j τ(φ), τ (φ))∇̄e j V , V 〉

)
dvg. (2.6)

Proof First of all, we note that

∫
M
〈∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)
, �̄V 〉 dvg =−

∫
M

〈RN (V , dφ(e j ))τ (φ), ∇̄e j �̄V 〉 dvg

such that

123



On the Normal Stability of Triharmonic Hypersurfaces in Space Forms Page 11 of 28 355

∫
M

(〈∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)
, �̄V 〉 − 〈RN (∇̄e j �̄V , τ (φ))dφ(e j ), V 〉) dvg

= −2
∫
M

〈RN (∇̄e j �̄V , τ (φ))dφ(e j ), V 〉 dvg.

Using the symmetries of the Riemann curvature tensor we get

−〈RN (V , dφ(e j ))�̄τ (φ), ∇̄e j V 〉 + 〈RN (�̄τ (φ), ∇̄e j V )dφ(e j ), V 〉
= −2〈RN (V , dφ(e j ))�̄τ (φ), ∇̄e j V 〉,

〈RN (V , dφ(e j ))∇̄e j τ(φ), �̄V 〉 − 〈RN (∇̄e j τ(φ), �̄V )dφ(e j ), V 〉
= 2〈RN (V , dφ(e j ))∇̄e j τ(φ), �̄V 〉.

Moreover, we find

〈RN (∇̄e j τ(φ), RN (V , dφ(ei ))dφ(ei ))dφ(e j ), V 〉
− 〈RN (RN (V , dφ(e j ))∇̄e j τ(φ), dφ(ek))dφ(ek), V 〉

= 2〈RN (dφ(e j ), V )∇̄e j τ(φ), RN (V , dφ(ek))dφ(ek)〉.

Once more using the symmetries of the Riemann curvature tensor we obtain

〈RN (RN (V , dφ(e j ))τ (φ), τ (φ))dφ(e j ), V 〉 = |RN (V , dφ(e j ))τ (φ)|2.

By a similar reasoning we get

−〈RN (∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)
, dφ(ek))dφ(ek), V 〉

= −〈RN (V , dφ(ek))dφ(ek), ∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)〉
and also

〈RN (∇̄e j

(
RN (V , dφ(ek))dφ(ek)

)
, τ (φ))dφ(e j ), V 〉

= 〈RN (V , dφ(e j ))τ (φ), ∇̄e j

(
RN (V , dφ(ek))dφ(ek)

)〉.
Hence, using integration by parts we can infer

∫
M

( − 〈RN (∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)
, dφ(ek))dφ(ek), V 〉

+ 〈RN (∇̄e j

(
RN (V , dφ(ek))dφ(ek)

)
, τ (φ))dφ(e j ), V 〉) dvg

= −2
∫
M

〈RN (V , dφ(ek))dφ(ek), ∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)〉 dvg.
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Using both the symmetries of the Riemann curvature tensor and integration by parts
we can deduce

∫
M

〈RN (�̄
(
RN (V , dφ(e j ))dφ(e j )

)
, dφ(ek))dφ(ek), V 〉 dvg

=
∫
M

〈RN (V , dφ(e j ))dφ(e j ), �̄
(
RN (V , dφ(ek))dφ(ek)

)〉 dvg

=
∫
M

|∇̄(
RN (V , dφ(e j ))dφ(e j )

)|2 dvg.

Finally, we note that

−〈RN (V , dφ(e j ))dφ(e j ), �̄
2V 〉 − 〈RN (�̄2V , dφ(e j ))dφ(e j ), V 〉

= −2〈RN (V , dφ(e j ))dφ(e j ), �̄
2V 〉

which allows to complete the square in the first term of (2.6) finishing the proof. ��
A direct application of the previous Proposition is the following result which was

already given in [15, Proposition 3.4], see also [29], using the formula for the second
variation of polyharmonic maps.

Theorem 2.5 A harmonic map is always a weakly stable triharmonic map.

Proof By assumption we have τ(φ) = 0 such that (2.6) simplifies to

d2

dt2
∣∣
t=0E3(φt ) =

∫
M

(∣∣∇̄�̄V − ∇̄(
RN (V , dφ(ek))dφ(ek)

)∣∣2) dvg ≥ 0

which already yields the result. ��

2.1 The SecondVariation Formula for Triharmonic Maps to Space Forms

In order to further simplify the formula for the second variation (2.6) we will now
consider the case that the target manifold has a particular simple geometric structure.
More precisely, we will study the stability of triharmonic maps in the case that the
ambient space is a space form of constant curvature K . Then, the Riemann curvature
tensor acquires the simple form

RN (X ,Y )Z = K (〈Y , Z〉X − 〈X , Z〉Y ), (2.7)

where X ,Y , Z are vector fields on N and K represents the constant curvature of the
space form N .

In the following we will use the notation

Hess E3(φ)(V , V ) := d2

dt2
∣∣
t=0E3(φt )

123



On the Normal Stability of Triharmonic Hypersurfaces in Space Forms Page 13 of 28 355

for a variation of φ that satisfies ∇̄φt
∂t

∣∣
t=0 = V still assuming that the variational vector

field V is compactly supported.

Proposition 2.6 Let φ : M → N be a smooth triharmonic map and assume that N
is a space form of constant curvature K . Then, the second variation of the trienergy
(1.5) simplifies to

Hess E3(φ)(V , V ) =
∫
M

(∣∣∇̄�̄V − ∇̄(
RN (V , dφ(ek))dφ(ek)

)∣∣2

+ K
[
3〈V , �̄τ (φ)〉〈dφ, ∇̄V 〉

− 2〈dφ(e j ), �̄τ (φ)〉〈V , ∇̄e j V 〉
+ 2〈dφ,∇̄τ(φ)〉〈V , �̄V 〉−2〈V,∇̄e j τ(φ)〉〈dφ(e j ),�̄V 〉
− 2〈τ(φ), dφ(e j )〉〈∇̄e j �̄V,V 〉+2〈∇̄�̄V, dφ〉〈τ(φ),V 〉
+ 〈dφ, ∇̄�̄τ (φ)〉|V |2 − 〈V , ∇̄e j �̄τ (φ)〉〈V , dφ(e j )〉
+ 〈τ(φ), ∇̄e j V 〉〈∇̄e j τ(φ), V 〉−〈∇̄τ(φ), ∇̄V 〉〈V , τ (φ)〉
− 〈�̄τ (φ), ∇̄e j V 〉〈dφ(e j ), V 〉]
+ K 2[3|dφ|2|〈V , τ (φ)〉|2 + |〈dφ, τ(φ)〉|2|V |2
− 2|dφ|2|τ(φ)|2|V |2+4|dφ|2〈V , ∇̄ei τ(φ)〉〈V , dφ(ei )〉
+ 4|〈dφ, V 〉|2〈dφ, ∇̄τ(φ)〉 − 4|dφ|2|V |2〈dφ, ∇̄τ(φ)〉
− 2〈dφ(ei ), τ (φ)〉〈V , τ (φ)〉〈V , dφ(ei )〉
− 2|dφ|2〈dφ(ei ), τ (φ)〉〈V , ∇̄ei V 〉
+ 2|dφ|2〈V, dφ(ei )〉〈∇̄ei V, τ (φ)〉+2|τ(φ)|2|〈dφ, V 〉|2
− 4〈V , ∇̄e j τ(φ)〉〈dφ(e j ), dφ(ek)〉〈dφ(ek), V 〉
+ 2〈dφ(ek), V 〉〈dφ(e j ), τ (φ)〉〈dφ(ek), ∇̄e j V 〉
− 2〈dφ(ek), V 〉〈∇̄e j V , τ (φ)〉〈dφ(ek), dφ(e j )〉
− 2〈dφ(ek), V 〉〈dφ(ek), τ (φ)〉〈V , τ (φ)〉]

)
dvg. (2.8)

Proof We make use of (2.6) and the fact that the target manifold N is a space form of
constant curvature K . Due to this assumption the terms involving the derivative of the
curvature tensor in (2.6) drop out.

Now, using (2.7) we find

〈RN (V , dφ(e j ))�̄τ (φ), ∇̄e j V 〉 = K
(〈dφ(e j ), �̄τ (φ)〉〈V , ∇̄e j V 〉

− 〈V , �̄τ (φ)〉〈dφ, ∇̄V 〉),
〈RN (V , dφ(e j ))∇̄e j τ(φ), �̄V 〉 = K

(〈dφ, ∇̄τ(φ)〉〈V , �̄V 〉
− 〈V , ∇̄e j τ(φ)〉〈dφ(e j ), �̄V 〉.
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In addition, we get

〈RN (∇̄e j τ(φ), τ (φ))dφ(e j ), V 〉 =K
(〈τ(φ), dφ(e j )〉〈∇̄e j �̄V , V 〉

− 〈∇̄�̄V , dφ〉〈τ(φ), V 〉),
〈RN (V , dφ(e j ))∇̄e j �̄τ (φ), V 〉 =K

(〈dφ, ∇̄�̄τ (φ)〉|V |2
− 〈V , ∇̄e j �̄τ (φ)〉〈V , dφ(e j )〉

)
,

〈RN (�̄τ (φ), dφ(e j ))∇̄e j V , V 〉 =K
(〈dφ, ∇̄V 〉〈�̄τ (φ), V 〉

− 〈�̄τ (φ), ∇̄e j V 〉〈dφ(e j ), V 〉),
〈RN (∇̄e j τ(φ), τ (φ))∇̄e j V , V 〉 =K

(〈τ(φ), ∇̄e j V 〉〈∇̄e j τ(φ), V 〉
− 〈∇̄τ(φ), ∇̄V 〉〈V , τ (φ)〉).

Moreover, we have

〈RN (dφ(e j ), V )∇̄e j τ(φ), RN (V , dφ(ek))dφ(ek)〉
= K 2(|dφ|2〈V,∇̄e j τ(φ)〉〈dφ(e j ),V 〉−〈V,∇̄e j τ(φ)〉〈dφ(e j ), dφ(ek)〉〈dφ(ek),V 〉

− |dφ|2|V |2〈dφ, ∇̄τ(φ)〉 + |〈dφ, V 〉|2〈dφ, ∇̄τ(φ)〉).
A similar analysis yields

|RN (V , dφ(e j ))τ (φ)|2 = K 2(|〈dφ, τ(φ)〉|2|V |2 + |dφ|2|〈V , τ (φ)〉|2
− 2〈dφ(ei ), τ (φ)〉〈V , τ (φ)〉〈V , dφ(ei )〉

)
.

In order to rewrite the term 〈RN (V , dφ(ek))dφ(ek), ∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)〉
we first calculate

∇̄e j

(
RN (V , dφ(e j ))τ (φ)

) =K
(|τ(φ)|2V + 〈dφ, ∇̄τ(φ)〉V + 〈dφ(e j ), τ (φ)〉∇̄e j V

− 〈∇̄e j V , τ (φ)〉dφ(e j ) − 〈V , ∇̄e j τ(φ)〉dφ(e j )

− 〈V , τ (φ)〉τ(φ)
)
.

Now, we can infer that

〈RN (V , dφ(ek))dφ(ek), ∇̄e j

(
RN (V , dφ(e j ))τ (φ)

)〉
= K 2(|dφ|2|τ(φ)|2|V |2 + |dφ|2|V |2〈dφ, ∇̄τ(φ)〉 + |dφ|2〈dφ(e j ), τ (φ)〉〈V , ∇̄e j V 〉

− |dφ|2〈V , dφ(e j )〉〈∇̄e j V , τ (φ)〉 − |dφ|2〈V , ∇̄e j τ(φ)〉〈V , dφ(e j )〉
− |dφ|2|〈V , τ (φ)〉|2 − |τ(φ)|2|〈dφ, V 〉|2 − |〈dφ, V 〉|2〈dφ, ∇̄τ(φ)〉
− 〈dφ(ek), V 〉〈dφ(e j ), τ (φ)〉〈dφ(ek), ∇̄e j V 〉
+ 〈dφ(ek), V 〉〈∇̄e j V , τ (φ)〉〈dφ(ek), dφ(e j )〉
+ 〈dφ(ek), V 〉〈dφ(ek), dφ(e j )〉〈V , ∇̄e j τ(φ)〉
+ 〈dφ(ek), V 〉〈dφ(ek), τ (φ)〉〈V , τ (φ)〉).
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Adding up the different contributions now completes the proof. ��
Remark 2.7 We could of course also rewrite the first term in (2.8) using the fact that
the target manifold is a space form of constant curvature K . However, as this term
already has a fixed sign it seems most convenient to not further manipulate it at this
stage of the computation.

In the following we will mostly be concerned with the normal stability of trihar-
monic hypersurfaces in space forms by choosing a variational vector field V that
takes values in the normal bundle of the hypersurface. Under this assumption we have
〈V , dφ〉 = 0 such that we get the following simplification of the previous Lemma.

Corollary 2.8 Let φ : M → N be a smooth triharmonic map and assume that N is
a space form of constant curvature K . If we assume that 〈V , dφ〉 = 0 the second
variation of the trienergy (1.5) simplifies to

Hess E3(φ)(V , V ) =
∫
M

(∣∣∇̄�̄V − K ∇̄(|dφ|2V )
∣∣2

+ K
[
3〈V,�̄τ (φ)〉〈dφ,∇̄V 〉−2〈dφ(e j ),�̄τ (φ)〉〈V,∇̄e j V 〉

+ 2〈dφ, ∇̄τ(φ)〉〈V , �̄V 〉−2〈V , ∇̄e j τ(φ)〉〈dφ(e j ), �̄V 〉
− 2〈τ(φ), dφ(e j )〉〈∇̄e j �̄V,V 〉+2〈∇̄�̄V, dφ〉〈τ(φ),V 〉
+ 〈τ(φ), ∇̄e j V 〉〈∇̄e j τ(φ), V 〉 − 〈∇̄τ(φ), ∇̄V 〉〈V , τ (φ)〉
+ 〈dφ, ∇̄�̄τ (φ)〉|V |2]
+ K 2[3|dφ|2|〈V , τ (φ)〉|2
+ |〈dφ, τ(φ)〉|2|V |2 − 2|dφ|2|τ(φ)|2|V |2
− 4|dφ|2|V |2〈dφ, ∇̄τ(φ)〉
− 2|dφ|2〈dφ(e j ), τ (φ)〉〈V , ∇̄e j V 〉]

)
dvg. (2.9)

Proof This follows directly from (2.8) using that 〈dφ, V 〉 = 0. ��

3 The Normal Stability of Triharmonic Hypersurfaces in Space Forms

In this section we apply the formula for the second variation of the trienergy obtained
in the previous section in order to study the normal stability of a particular class of
triharmonic maps.

3.1 The Normal Stability of CMCTriharmonic Hypersurfaces

First, we will derive a number of general statements on the normal stability of proper
triharmonic hypersurfaces. We will only consider the CMC (constant mean curvature)
case as this already comes with many computational difficulties and as all known, at
least up to now, triharmonic hypersurfaces belong to this category.
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In order to perform the computations outlined above, let us recall a number of geo-
metric facts on hypersurfaces Mm in a Riemannian manifold Nm+1. The connections
on Mm and Nm+1 are related by the following formula

∇M
X Y = ∇N

X Y + II(X ,Y ), (3.1)

where II represents the second fundamental form of the hypersurface.
Let ν be the global unit normal of the hypersurface Mm , then its shape operator A

is given by

∇Xν = −A(X), (3.2)

where X is a vector field on M .
The shape operator A and the second fundamental form II are related by

II(X ,Y ) = 〈A(X),Y 〉ν. (3.3)

If φ : Mm → Nm+1 is an isometric immersion the tension field acquires the form
τ(φ) = mHν, where H represents the mean curvature function of the hypersurface.
In addition, we can compute the mean curvature function by H = 1

m Tr A.
In the following lemma we provide without proof three standard facts which we

shall use in this section, see for example [22, Lemma 2.1] or [5, Lemma 4.1].

Lemma 3.1 Letφ : Mm → Nm+1 be a hypersurface in a Riemannianmanifold Nm+1.
In addition, let A be the shape operator and H = 1/m Tr A the mean curvature
function. Then, we have that

(1) (∇A)(·, ·) is symmetric,
(2) 〈(∇A)(·, ·), ·〉 is totally symmetric,
(3) Tr(∇A)(·, ·) = m grad H.

Now, we establish the following Lemma, the first statement was already established
in [22, Lemma 2.2].

Lemma 3.2 Let φ : Mm → Nm+1 be a hypersurface. Suppose that k ∈ C∞(M) and
let ν be the unit normal of the hypersurface. Then, the following identities hold

�̄(kν) =(�k + k|A|2)ν + 2A(grad k) + mk grad H , (3.4)

∇̄X �̄(kν) =(∇X�k + (∇Xk)|A|2 + k∇X |A|2)ν − (�k + k|A|2)A(X)

+ 2(∇X A)(grad k) + 2A(∇X grad k) + 2II(X , A(grad k))

+ m(∇Xk) grad H + mk∇X grad H + mkII(X , grad H), (3.5)

where X represents a vector field on M.

Proof Here, we closely follow the calculations carried out in [22, Lemma 2.2] using
a slightly different notation. We choose a local orthonormal frame {ei }, i = 1, . . . ,m
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that satisfies ∇e j ei = 0 at a fixed point p ∈ M for all i, j = 1, . . . ,m. Now, we
compute

∇̄ei (kν) = (∇ei k)ν + k∇ei ν = (∇ei k)ν − k A(ei )

and differentiating once more we get

∇̄ei ∇̄ei (kν) =(∇ei ∇ei k)ν + ∇ei k∇ei ν − ∇ei k A(ei ) − k
(∇A(ei , ei ) + II(ei , A(ei ))

)
=(∇ei ∇ei k)ν − 2∇ei k A(ei ) − k(∇A(ei , ei )) − k|A(ei )|2ν.

Now, the first claim follows from summing over i and using Lemma 3.1.
Concerning the second equation (3.5), we use the first equation, differentiate with

respect to X and apply both (3.1) and (3.2). ��
In order to study the normal stability of triharmonic hypersurfaces in space forms

of constant curvature K , we will now employ the general formula (2.8) and choose the
section V = f ν with f ∈ C∞

0 (M). Note that this choice of V trivializes the normal
bundle of the hypersurface.

In the following we will make use of the identity

∫
M

|∇̄�̄( f ν) − mK ∇̄( f ν)|2 dvg

=
∫
M

|∇̄�̄( f ν)|2 − 2mK |�̄( f ν)|2 + m2K 2(|∇ f |2 + f 2|A|2) dvg (3.6)

which follows from integration by parts and the definition of the shape operator.

Proposition 3.3 Let φ : Mm → Nm+1 be a smooth CMC triharmonic hypersurface
with unit normal ν and assume that N is a space form of constant curvature K . Then,
the second variation of the trienergy evaluated at V = f ν is given by

Hess E3(φ)( f ν, f ν) =
∫
M

(|∇̄�̄( f ν)|2 − 2mK |�̄( f ν)|2 + 2mHK 〈∇̄�̄V , dφ〉 f
+ m2K 2(|∇ f |2 + |A|2 f 2) + 5m3K 2H2 f 2

− 7m2K |A|2H2 f 2 − 2m2K H2 f � f
)
dvg, (3.7)

where f ∈ C∞
0 (M).

Proof In order to prove the claim we have to evaluate all contributions in (2.9) in the
geometric setup of a hypersurface with constant mean curvature, that is τ(φ) = mHν

with H = const and insert the variational vector field V = f ν. We will explain this
in detail for the third and fourth term of (2.9) and just state the final result for the other
contributions. As before, we choose a local orthonormal frame {ei }, i = 1, . . . ,m that
satisfies ∇e j ei = 0 at a fixed point p ∈ M for all i, j = 1, . . . ,m.
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Using (3.4) with k = 1 we find

�̄τ (φ) =mH�ν = mH |A|2ν,

where we also made use of the assumption H = const . Hence, we get that
〈dφ(X), �̄τ (φ)〉 = 0 for all vector fields X and thus

〈dφ(e j ), �̄τ (φ)〉〈V , ∇̄e j V 〉 = 0.

In addition, we find

〈V , �̄τ (φ)〉︸ ︷︷ ︸
=mH |A|2 f

〈dφ, ∇̄V 〉︸ ︷︷ ︸
=−〈τ(φ),V 〉=−mH f

= −m2|A|2H2 f 2.

Regarding the other terms, for V = f ν, similar computations lead to

〈dφ, ∇̄τ(φ)〉〈V , �̄V 〉 = − m2H2 f (� f + f |A|2),
〈V , ∇̄e j τ(φ)〉〈dφ(e j ), �̄V 〉 =0,

〈dφ, ∇̄�̄τ (φ)〉|V |2 = − m2|A|2H2 f 2,

〈τ(φ), ∇̄e j V 〉〈∇̄e j τ(φ), V 〉 =0,

〈∇̄τ(φ), ∇̄V 〉〈V , τ (φ)〉 =m2H2|A|2 f 2,
|dφ|2|V |2〈dφ, ∇̄τ(φ)〉 = − m3H2 f 2,

〈τ(φ), dφ(e j )〉〈∇̄e j �̄V , V 〉 =0,

〈∇̄�̄V , dφ〉〈τ(φ), V 〉 =m f H〈∇̄�̄V , dφ〉.

Replacing all terms in (2.9) and using the identity (3.6) then completes the proof. ��
An immediate consequence of the above formula are the following facts:

Proposition 3.4 Any minimal hypersurface in a space form of constant curvature K
is a weakly stable triharmonic hypersurface with respect to normal variations.

Proof Using (3.6) in (3.7) together with the assumption H = 0 we find

Hess E3(φ)( f ν, f ν) =
∫
M

(|∇̄�̄( f ν) − mK ∇̄( f ν)|2) dvg ≥ 0, (3.8)

which already completes the proof. ��
Theorem 3.5 Any triharmonic hypersurface of constant mean curvature in Euclidean
space is weakly normally stable and any triharmonic hypersurface of constant mean
curvature in hyperbolic space is normally stable.
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Proof In order to obtain the claim we first derive the estimate

2mHK 〈∇̄�̄V , dφ〉 f ≥ −2m|H ||K ||∇̄�̄V ||dφ|| f |
≥ −|∇̄�̄V |2 − m2H2K 2|dφ|2 f 2
= −|∇̄�̄V |2 − m3H2K 2 f 2,

where we employed Young’s inequality.
Inserting into (3.7) we find

Hess E3(φ)( f ν, f ν) =
∫
M

( − 2mK |�̄( f ν)|2 + m2K 2(|∇ f |2 + |A|2 f 2)

+ 4m3K 2H2 f 2 − 7m2K |A|2H2 f 2 − 2m2K H2|∇ f |2) dvg

≥ 0,

where made use of the assumption K ≤ 0 in the last step completing the proof. ��
We conclude that the only interesting case to study in detail the normal stability

of a triharmonic hypersurface in space forms of constant curvature is in the case of
a spherical target. In order to systematically approach this question we establish the
following

Lemma 3.6 Let φ : Mm → Nm+1 be a hypersurface with constant mean curvature
and |A|2 = const. Let ν be the unit normal of the hypersurface and f ∈ C∞

0 (M).
Then the following formulas hold

|�̄( f ν)|2 =|� f |2 + f 2|A|4 + 2� f f |A|2 + 4|A(grad f )|2, (3.9)

|∇̄�̄( f ν)|2 =|∇� f |2 + | grad f |2|A|4 + 2 grad� f grad f |A|2
+ |� f |2|A|2 + f 2|A|6 + 2 f � f |A|4
+ 4|(∇A)(grad f )|2 + 4|A(∇grad f )|2 + 4|II(ei , A(grad f ))|2
+ 8〈(∇A)(grad f ), A(∇grad f )〉 + 8〈(∇ei A)(grad f ), II(ei , A(grad f ))〉
+ 4 grad� f 〈(∇A)(grad f ), ν〉 + 4|A|2∇ f 〈(∇A)(grad f ), ν〉
+ 4〈II(grad� f , A(grad f )), ν〉 + 4|A|2〈II(grad f , A(grad f )), ν〉
− 4� f A((∇A)(grad f )) − 4 f |A|2A((∇A)(grad f ))

− 4� f 〈A(ei ), A(∇ei grad f )〉 − 4 f |A|2〈A(ei ), A(∇ei grad f )〉.
(3.10)

Proof Using the assumption that the hypersurface has constant mean curvature we
find

�̄( f ν) = (� f + f |A|2)ν + 2A(grad f ),

the first claim now follows from computing the square.
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In order to prove the second claim we employ (3.5) with |A|2 = const and H =
const . Then, for all vector fields X , we find

∇̄X �̄( f ν) =(∇X� f + (∇X f )|A|2)ν − (� f + f |A|2)A(X)

+ 2(∇X A)(grad f ) + 2A(∇X grad f ) + 2II(X , A(grad f )),

where we used the assumption that the hypersurface has constant mean curvature. The
claim now follows from a direct, but lengthy computation. ��

After having established the necessary geometric formulas for triharmonic hyper-
surfaces in Riemannianmanifoldswe also recall a number of results on the spectrumof
theLaplace operator on closedmanifolds.On an arbitrary closedRiemannianmanifold
(M, g) its eigenvalues are discrete, have finite multiplicity and satisfy

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . → ∞.

In the case of the p-dimensional sphere of radius R, that is Sp(R), we know that
the eigenvalues of the Laplacian are given by

λ j = j( j + p − 1)

R2 , j = 0, 1, 2, . . . (3.11)

with multiplicities mλ0 = 1,mλ1 = p + 1 and

mλ j =
(
p + j

j

)
−

(
p + j − 2

j − 2

)
, j = 2, . . .

Now, let (Mi , gi ), i = 1, 2 be two closed Riemannian manifolds. Then, we know
that if λ is an eigenvalue of the Laplacian on (M1, g1) with multiplicity mλ and μ an
eigenvalue of the Laplacian on (M2, g2) with multiplicity mμ, then ν = λ + μ is an
eigenvalue of the Laplacian on M1 × M2. The multiplicity of the eigenvalue ν is the
sum of the products mλmμ of all λ and μ which satisfy ν = λ + μ.

For the general properties of the spectrum of the Laplacian we refer to the book
[3], for more details concerning the Laplace operator in the context of the stability of
CMC hypersurfaces one may consult [2, Section 3].

3.2 The Normal Stability of the Small Triharmonic Hypersphere

As a next step we will investigate the normal stability of proper triharmonic hypersur-
faces in the sphere. There are two well-known examples of such proper triharmonic
hypersurfaces [4, 20], the small hypersphere φ : Sm(1/

√
3) ↪→ S

m+1 and a certain
generalized Clifford torus φ : Sp(R1) × S

q(R2) ↪→ S
p+q+1 with R2

1 + R2
2 = 1, see

Subsection 3.3 for the precise definition.
The following result from [22, p. 356] characterizes proper triharmonic hypersur-

faces which have constant norm of the shape operator.

123



On the Normal Stability of Triharmonic Hypersurfaces in Space Forms Page 21 of 28 355

Proposition 3.7 A hypersurface φ : Mm → Nm+1, where Nm+1 is a space form of
constant curvature K , is triharmonic if

�|A|2 + |A|4 − mK |A|2 − m2K H2 = 0, A(grad |A|2) = 0.

Here, |A|2 represents the norm of the shape operator.

Hence, in the case that |A|2 is constant, the algebraic condition for the hypersurface
being triharmonic is

|A|4 − mK |A|2 − m2K H2 = 0.

It becomes clear that in order to find proper triharmonic hypersurfaces the only inter-
esting case is K = 1 as for K = −1 we would have that |A|2 = 0 corresponding to a
minimal hypersurface.

Moreover, let us also recall the following fact: Consider the inclusion φ : Sm(a) ↪→
S
m+1, then the corresponding shape operator is given by

A = −
√
1 − a2

a
Id . (3.12)

Hence, concerning the small hypersphere φ : Sm(1/
√
3) ↪→ S

m+1 we thus have
|A|2 = 2m and H2 = 2.

With these geometric data we are ready to give the following

Proposition 3.8 Letφ be the proper triharmonic hypersphereφ : Sm(1/
√
3) ↪→ S

m+1.
The quadratic form describing its normal stability is given by

Q(V , V ) =
∫
Sm ( 1√

3
)

(|∇� f |2 + (4m + 16)|� f |2 + 8|∇2 f |2 (3.13)

+ (−3m2 + 16 + 20m)|∇ f |2 − 24m3 f 2
)
dvg,

wherewe chose the variational vector field V = f ν with f ∈ C∞
0 (M)and ν represents

the unit normal of the hypersurface.

Proof We employ (3.7), set K = 1 and use the identities (3.9), (3.10). By (3.12) we
have that ∇A = 0 and |A|2 = 2m. Now, a lengthy, but direct calculation yields

|∇̄�̄( f ν)|2 − 2m|�̄( f ν)|2 =| grad� f |2 + 4m2| grad f |2 + 4m∇� f ∇ f

+ 4|A(∇grad) f |2 + 4|II(ei , A(grad f ))|2
+ 4〈II(grad� f , A(grad f )), ν〉
+ 8m〈II(grad f , A(grad f )), ν〉
− 4� f 〈A(ei ), A(∇ei grad f )〉
− 8m f 〈A(ei ), A(∇ei grad f )〉 − 8m|A(grad f )|2.
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As a next step we replace all terms involving the second fundamental form by the
shape operator using (3.3), that is

|II(ei , A(grad f ))|2 = |〈A(ei ), A(grad f )〉|2,
〈II(grad� f , A(grad f )), ν〉 = 〈A(grad� f ), A(grad f )〉,

〈II(grad f , A(grad f )), ν〉 = |A(grad f )|2.

Now, by setting a = 1√
3
in (3.12) we have for all vector fields X the identity

A(X) = −√
2X

such that we get

|∇̄�̄( f ν)|2 − 2m|�̄( f ν)|2 =|∇� f |2 + 4m2|∇ f |2 + 4m∇� f ∇ f + 8|∇2 f |2
+ 16|∇ f |2 + 8∇� f ∇ f + 8|� f |2 + 16m f � f .

Furthermore, we employ integration by parts

∫
Sm ( 1√

3
)

〈∇̄�̄( f ν), dφ〉 f dvg

= −
∫
Sm ( 1√

3
)

〈�̄( f ν), τ (φ)〉 f dvg −
∫
Sm ( 1√

3
)

〈�̄( f ν), dφ(e j )〉∇e j f dvg

= −
∫
Sm ( 1√

3
)

(� f + |A|2 f )mH f dvg − 2
∫
Sm ( 1√

3
)

〈A(grad f ), dφ(e j )〉∇e j f dvg,

where we used (3.4) in the second step.
Using that A(X) = −√

2X for all vector fields X we can infer

〈A(grad f ), dφ(e j )〉∇e j f = −√
2|∇ f |2.

Hence, we may conclude that

2mH
∫
Sm ( 1√

3
)

〈∇̄�̄( f ν), dφ〉 f dvg = 4(−m2 + m)

∫
Sm ( 1√

3
)

|∇ f |2 dvg

− 8m3
∫
Sm ( 1√

3
)

f 2 dvg.

Finally, replacing H2 = 2 and |A|2 = 2m once more, we obtain for the remaining
terms of (3.7) that
∫
Sm ( 1√

3
)

(
m2(|∇ f |2 + f 2|A|2) + 5m3 f 2H2 − 7m2|A|2H2 f 2 − 2m2H2 f � f

)
dvg
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= −
∫
Sm ( 1√

3
)

(3m2|∇ f |2 + 16m3 f 2) dvg

and combining the previous equations completes the proof. ��
After having fixed the geometric setup for the stability analysis of triharmonic

hypersurfaces in the sphere we now make the following definition.

Definition 3.9 Let φ : Mm → Nm+1 be a proper triharmonic hypersurface. Then, its
normal index is defined to be the maximal dimension of any linear subspace L ⊂
C∞
0 (M) on which Hess E3(φ)( f ν, f ν) is negative, that is

Indnor(M) := max{dim L, L ⊂ C∞
0 (M) | Hess E3(φ)( f ν, f ν) < 0,∀ f ∈ L}. (3.14)

Remark 3.10 We can already read of from (3.13) that the index of the small proper tri-
harmonic hypersphere φ : Sm(1/

√
3) → S

m+1 is at least one: If we choose f = const
corresponding to the eigenfunction of the Laplacian associated with the eigenvalue
zero, the quadratic form (3.13) is negative.

In the following, we will make use of the classic Bochner formula

∫
M

|∇2 f |2 dvg = −
∫
M
RicM (∇ f ,∇ f ) dvg +

∫
M

|� f |2 dvg,

which holds on every closed Riemannian manifolds.
In the case that M = S

m(a) we have RicM = m−1
a2

g such that the above formula
simplifies to

∫
Sm ( 1√

3
)

|∇2 f |2 dvg = −3(m − 1)
∫
Sm ( 1√

3
)

|∇ f |2 dvg +
∫
Sm ( 1√

3
)

|� f |2 dvg.

(3.15)

With these preparations we are now ready to give the following

Theorem 3.11 The normal index of the small proper triharmonic hypersphere
φ : Sm(1/

√
3) ↪→ S

m+1 is equal to one, that is

Indnor(Sm(1/
√
3) ↪→ S

m+1) = 1.

Proof In order to obtain the claim we assume that f is an eigenfunction of the
Laplacian, that is � f = λ f . Now, together with (3.15) we then get from (3.13)
that

Q(V , V ) =
∫
Sm ( 1√

3
)

(
λ3 + 4(m + 6)λ2 + (−3m2 − 4m + 40)λ − 24m3) f 2 dvg.
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Recall that the first non-zero eigenvalue of the Laplace operator on S
m( 1√

3
) is given

by λ1 = 3m, see (3.11), in which case we find

Q(V , V ) =
∫
Sm ( 1√

3
)

(
30m3 + 204m2 + 120m

)
f 2 dvg > 0.

Now, it is easy to see that the above quadratic form will be positive for all higher
eigenvalues of the Laplace operator. As the dimension of the vector space of constant
functions, for which the quadratic form Q(V , V ) is negative, is one-dimensional we
have finished the proof. ��

3.3 The Normal Stability of the Generalized Triharmonic Clifford Torus

There is a second explicit example of a CMC proper triharmonic hypersurface in the
sphere which is given by a certain generalized Clifford torus.

Before turning to the proper triharmonic Clifford torus let us recall the following
facts which hold true for every Clifford torus φ : Sp(R1) × S

q(R2) ↪→ S
p+q+1 with

R2
1 + R2

2 = 1. For X1 ∈ �(TSp(R1)) and X2 ∈ �(TSq(R2)) the corresponding shape
operator satisfies

A(X1) = − R2

R1
X1, A(X2) = R1

R2
X2 (3.16)

such that the following identities hold

H = 1

p + q

( − R2

R1
p + R1

R2
q
)
ν, |A|2 = R2

2

R2
1

p + R2
1

R2
2

q.

For more details on the stability of both minimal and CMC Clifford tori we refer
to [1, 2].

In order to characterize proper triharmonic Clifford tori we recall the following

Theorem 3.12 ( [4, 20]) Let p, q ≥ 1 and assume that the radii R1, R2 satisfy R2
1 +

R2
2 = 1. Then, the generalized Clifford torus φ : Sp(R1) × S

q(R2) ↪→ S
p+q+1 is

proper triharmonic if it is not minimal and if x = R2
1 is a root of the following

polynomial

P(x) = 3(p + q)x3 − (2q + 7p)x2 + 5px − p. (3.17)

It is straightforward to check that q = 0 and x = 1
3 is a root of (3.17) which

corresponds to the small hypersphere studied in the previous section.
For p, q ≥ 1, using some facts on cubic equations it is straightforward to see that

(3.17) has, in general, at least one real root.
In addition, it can be checked directly that in the case p = q the only root of (3.17)

is x = 1
2 corresponding to a minimal Clifford torus, see [4, Remark 2.13]. We already
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know from Theorem 3.5 that such hypersurfaces are normally stable such that we do
not further need to investigate their normal stability.

Luckily, we also have a second way to describe the above hypersurface. In the case
that |A|2 is constant, we know from Proposition 3.7 that the condition for being a
proper triharmonic hypersurface in the sphere is

|A|4 − m|A|2 − m2H2 = 0 (3.18)

which we will employ in the following.

Remark 3.13 Since the shape operator of the generalized Clifford torus (3.16) is no
longer proportional to the identity it becomes substantially more difficult to investigate
its normal stability compared to the case of the small hypersphere. Note that in the
case of the biharmonic generalized Clifford torus this problem does not occur as the
corresponding index, describing the normal stability, only contains the norm of the
shape operator but not the shape operator itself, see [24, Theorem 3.1]. For these
reasons it seems that we are only able to derive an upper bound on the normal index
of the triharmonic generalized Clifford torus.

First, wewill prove the following estimatewhich holds for every proper triharmonic
hypersurface in the sphere.

Proposition 3.14 Let φ : Mm → S
m+1 be a proper CMC triharmonic hypersurface

with constant norm of the shape operator. The quadratic form describing its normal
stability can be estimated as

HessE3(φ)( f ν, f ν) ≥
∫
M

(
|∇� f |2 − 2m|� f |2 − 4|A|2|∇ f ||∇� f |

− 2
√
m|A|2

√
|A|2 − m| f ||� f |

+ (m2 − 10m|A|2)|∇ f |2 + |A|2(7m|A|2 − m2

− 2
√
m|A|2

√
|A|2 − m f 2) − 9|A|4)

)
dvg,

(3.19)

where f ∈ C∞
0 (M) and ν represents the normal of the hypersurface.

Proof From (3.16) we have that ∇A = 0, replacing all terms involving the second
fundamental form using (3.3), equations (3.9) and (3.10) yield

∫
M

(
|∇̄�̄( f ν)|2 − 2m|�̄( f ν)|2 + 2mH〈∇̄�̄( f ν), dφ〉) dvg

=
∫
M

(|∇� f |2 + (3|A|2 − 2m)|� f |2 + (3|A|4 − 4m|A|2)|∇ f |2

+ |A|4(|A|2 − 2m) f 2 − 8m|A(grad f )|2 + 4|A(∇ grad f )|2
+ 4|〈A(ei ), A(grad f )〉|2 + 4〈A(∇� f ), A(grad f )〉
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+ 4|A|2〈A(∇ f ), A(grad f )〉 − 4� f 〈A(ei ), A(∇ei grad f )〉
− 4 f |A|2〈A(ei ), A(∇ei grad f )〉 − 2mH〈dφ(ei ), A(ei )〉 f � f

− 2mH |A|2〈dφ(ei ), A(ei )〉 f 2 + 4mH〈A(∇ei grad f ), dφ(ei )〉 f
)
dvg,

where we also used integration by parts.
As a next step we estimate all terms involving the shape operator such that we get

∫
M

(|∇̄�̄( f ν)|2 − 2m|�̄( f ν)|2 + 2mH〈∇̄�̄( f ν), dφ〉) dvg

≥
∫
M

(
|∇� f |2 + (3|A|2 − 2m)|� f |2 + (3|A|4 − 12m|A|2)|∇ f |2

+ |A|4(|A|2 − 2m) f 2 + 4|A(∇ grad f )|2 + 4|〈A(ei ), A(grad f )〉|2
− 4|〈A(ei ), A(grad f )〉|(|∇� f | + |A|2|∇ f |)
− 4|A(∇ grad f )|(|� f ||A| + | f ||A|3 + m|H ||dφ|| f |)

− 2m|H ||dφ||A|| f ||� f | − 2m|H ||A|3|dφ| f 2
)
dvg.

Note that we have the following estimates

|A(∇ grad f )|2 − |A(∇ grad f )|(|A||� f | + |A|3 f + m|H ||dφ|| f |)

≥ −1

4

(|A||� f | + |A|3| f | + m|H ||dφ|| f |)2

= −3

4
|A|2|� f |2 − 3

4
|A|6 f 2 − 3

4
m3H2 f 2,

where we made use of Young’s inequality.
Once more, we estimate

|〈A(ei ), A(grad f )〉|2 − |〈A(ei ), A(grad f )〉|(|∇� f | + |A|2|∇ f |)

≥ −|A|2|∇ f ||∇� f | − 1

4
|A|4|∇ f |2,

where we again used Young’s inequality. From (3.18) we get H = |A|
√

|A|2−m
m such

that

−2m|H ||dφ||A|| f ||� f | − 2m|H ||A|3|dφ| f 2
= −2

√
m|A|2

√
|A|2 − m| f ||� f | − 2

√
m|A|4

√
|A|2 − m f 2.

By combining these estimates we arrive at

∫
M

(|∇̄�̄( f ν)|2 − 2m|�̄( f ν)|2 + 2mH〈∇̄�̄( f ν), dφ〉) dvg
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≥
∫
M

(|∇� f |2 − 2m|� f |2 + 2|A|2(|A|2 − 6m)|∇ f |2

+ |A|2(3m2 − 5m|A|2 − 2|A|4) f 2 − 4|A|2|∇� f ||∇ f |
− 2

√
m|A|2

√
|A|2 − m| f ||� f | − 2

√
m|A|4

√
|A|2 − m f 2

)
dvg.

The remaining terms in (3.7) can easily be manipulated by using H2 = |A|4
m2 − |A|2

m
such that we get

∫
M

(
m2|∇ f |2 + m2 f 2|A|2 + 5m3 f 2H2 − 7m2|A|2H2 f 2 − 2m2H2 f � f

)
dvg

=
∫
M

(
(m2 − 2|A|4 + 2m|A|2)|∇ f |2 + (−4m2|A|2 + 12m|A|4 − 7|A|6) f 2) dvg.

Combining all terms now completes the proof. ��
Using the estimate (3.19) we can, at least in principal, now give a bound on the

normal index of the proper triharmonic Clifford torus by performing the following
steps:

(1) Fix the dimensions p and q and determine R2
1 via (3.17).

(2) Using the value of R2
1, calculate |A|2 via (3.16) and the eigenvalues of the Laplace

operator as explained after equation (3.11).
(3) Insert this data into (3.19) and determine the first eigenvalue of the Laplace oper-

ator for which (3.19) becomes positive. The multiplicity of this eigenvalue then
determines the normal index of the proper triharmonic Clifford torus.

Although the above algorithm can easily be implemented into a computer algebra
system we do not present any further details as the estimate provided by (3.19) does
not seem to be very accurate.
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