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Abstract
Second-order (maximally) superintegrable systems in dimensions two and three are
essentially classified. With increasing dimension, however, the non-linear partial dif-
ferential equations employed in current methods become unmanageable. Here we
propose a new, algebraic-geometric approach to the classification problem—based on
a proof that the classification space for irreducible non-degenerate second-order super-
integrable systems is naturally endowedwith the structure of a quasi-projective variety
with a linear isometry action. On constant curvature manifolds our approach leads to
a single, simple and explicit algebraic equation defining the variety classifying those
superintegrable Hamiltonians that satisfy all relevant integrability conditions gener-
ically. In particular, this includes all non-degenerate superintegrable systems known
to date and shows that our approach is manageable in arbitrary dimension. Our work
establishes the foundations for a complete classification of second-order superinte-
grable systems in arbitrary dimension, derived from the geometry of the classification
space, with many potential applications to related structures such as quadratic sym-
metry algebras and special functions.
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1 Introduction

It is a puzzling happenstance that the fundamental equations of nature admit explicit
analytic solutions, at least for simple models. Think of Schrödinger’s Equation for the
hydrogen atom, for instance: Its explicit solutions describe the shape of the atomic
orbits and explain many of the physical and chemical properties of over a hundred
elements known today. The existence of explicit solutions in this case stems from
a deeper fact—the hydrogen atom is a superintegrable system. The present paper
develops methods to explore such systems systematically and exhaustively in arbitrary
dimension. The focus will be exclusively on second-order maximally superintegrable
systems, and therefore we shall usually omit the designations “second-order” and
“maximal” (these terms are rigorously introduced in Sect. 2).

1.1 What are (Maximally) Superintegrable Systems?

Symmetries are an essential tool in the study of Hamiltonian systems, and super-
integrable systems are the most symmetric of these. The prototypical example of a
superintegrable system is the Kepler system of planetary motion around a central
celestial body. By the nature of the equations of motion, the movement of the planet is
completely determined by its position and momentum given at any fixed point in time.
More abstractly, the movement defines a curve in the six-dimensional phase-space of
position and momentum.

In a conservative central force field, the energy and the angular momentum vec-
tor are conserved under the temporal evolution of the system. The Kepler system
has the remarkable property that it possesses an additional conserved quantity: the
Laplace–Runge–Lenz vector, pointing from the force centre towards the perihelion
of the planetary orbit. Together, these form seven scalar constants of motion. Each of
them defines a function on phase-space and confines the trajectory of the system to
a level set of this function. Since the phase space is six-dimensional, only five out of
them can be functionally independent. Indeed, there are two scalar identities among
them.

The quantum counterpart of the Kepler system is the aforementioned model of the
hydrogen atom. Its conserved quantities are represented by quantum numbers, which
constitute the ordering principle behind the Periodic Table of Elements.

With the Kepler system in mind, a (maximally) superintegrable system is defined
as a Hamiltonian system of arbitrary dimension n possessing the maximal number of
functionally independent constants of motion, which is 2n − 1. The superintegrable
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system is called second-order (or quadratic) if the constants of motion can be chosen
quadratic in the momenta. (Formal definitions will be given below.)

The study of superintegrable systems has a long standing history due to the attractive
possibility of determining almost all important features using algebraicmethods alone.
Beyond this obvious motivation, worthwhile in its own right, there exists also a deeper
aspiration to classify superintegrable systems: They give rise to a large class of special
functions.

1.2 Special Functions and Superintegrable Systems

Since the appearance of the first tables of chords [15], special functions have been ubiq-
uitous in science and technology. Their fundamental role necessitates not only explicit
formulae or the tabulation of a function’s values, but also a thorough documentation
of its properties and interrelations. Traditionally, this has been done in the form of
handbooks, most notably the Bateman Manuscript Project [6, 7], filling five thick
volumes, and the “Abramowitz and Stegun” Handbook of Mathematical Functions
[1], with more than 40,000 citations one of the most cited works in the mathematical
literature [8]. In the dawn of the era of digitisation, the use of sophisticated symbolic
computation engines has overcome the limitations of books and manual calculations,
and handbooks have been replaced by extensive online databases. The most compre-
hensive resources today are the Mathematical Functions Site [79], which comprises
at present more than 300,000 formulae and is steadily growing, and the NIST Digital
Library of Mathematical Functions [63], the online version of the above mentioned
Handbook of Mathematical Functions.

Yet, special functions have always been organised in an ad hoc manner and all
handbooks and databases are mere compilations. Meanwhile, the search for a unified
theory of special functions has continued since the nineteenth century—a theory that
would explain and systematically organise, for a reasonably wide class of special func-
tions, their properties, interrelations, symmetry principles and other related structures
behind the façade of seemingly endless formulae in rows.

A theory aiming to classify special functions may naturally start from some rich
source of such functions. This is where superintegrable systems come into play:
Besides the hypergeometric differential equation, they are a particularly prolific source
of special functions. Notably, it has been shown that superintegrable systems give rise
to hypergeometric orthogonal polynomials [53, 55], to Painlevé transcendants [27,
60], to Jacobi–Dunkl polynomials [23], and to the recently discovered exceptional
polynomials [29, 68].

The present work establishes the foundations for a complete classification of
second-order superintegrable systems. This lays the groundwork for subsequent
research aiming at a unified theory of special functions—a “Periodic Table of Spe-
cial Functions”, so to speak, comprising a wide variety of special functions derived
from a sequence of projective G-varieties whose dimensions and geometric invariants
play the role of the atomic and quantum numbers in the Periodic Table of Elements.
In analogy to the Schrödinger Equation, which provides the basis for a systematic
mathematical description of chemical elements and their properties, we establish a
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single, simple algebraic equation defining these varieties, which provides the basis for
a systematic algebraic-geometric description of special functions and their properties.

1.3 Classification of Superintegable Systems—State-of-the-Art

To date, the most well-developed results on the classification and structure concern
second-order (conformally) superintegrable systems on conformally flat spaces in
dimensions two and three. In particular, such results exist for the Euclidean plane [41,
75], Darboux-Koenigs spaces [46, 48], general 2D spaces [17, 35, 36], degenerate
2D superintegrable systems [45], quantum 2D superintegrable systems [9, 16, 39],
3D flat space [42], 3D conformally flat spaces [13, 37, 38, 40, 42] and for quantum
superintegrable systems on 3D conformally flat spaces [39]. For an overview see [78],
[61] or the comprehensive monograph [43]. Most of the systems were known prior
to their classification and have been constructed under the additional assumption of
separability or multiseparability [34, 51, 52].

Above dimension three, only sporadic families of second-order superintegrable
systems are known, such as the isotropic harmonic oscillator, a generalisation of the
Kepler system [5, 67], respectively the hydrogen atom [62], and the Smorodinsky–
Winternitz systems I [20] and II [44]. 1 Further n-dimensional families can be obtained
from these through orbit degenerations [14], Stäckel transforms [10, 66] or so called
Bôcher contractions [32, 33, 44, 69], induced by İnönü-Wigner contractions of the
isometry group [30].

To summarise, to date complete classification results are only known in dimensions
two and three. Despite the substantial use of computer algebra, an extension of the
classification to higher dimensions is out of the scope of current methods and therefore
one of the most challenging problems in the theory of superintegrability. The main
reason for this is that the number and the complexity of the partial differential equations
used in current approaches grows way too fast with the dimension. In this work we
shall overcome this hindrance and outline a new approach to the classification of
second order superintegrable systems in arbitrary dimension.

1.4 What does“Classification” Actually Mean?

Before one begins to classify superintegrable systems, one should first clarify what is
actually meant by the word “classification”. In its simplest meaning, it stands for an
explicit list of all objects under consideration or, more formally, a bijection with some
explicitly given set—called the classification space. Usually, however, this set carries
much more structure. In the present case of superintegrable systems, for instance, the
classification space can be endowed with at least three natural structures:

Topology: As solutions to a system of partial differential equations, the classification
space inherits a natural topology.

1 We limit ourselves to second-order systems here. If one includes higher order superintegrable systems,
additional families are known, such as the Calogero-Moser system [80] or the Toda lattice [2].
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Group action: The definition of superintegrability is invariant under isometries. We
therefore have a well-defined action of the isometry group G on the classifi-
cation space.

Equivalence relation:Apart from equivalence under isometries, there is a secondwell
known transformation for superintegrable systems, called Stäckel equivalence
[10] or coupling constant metamorphosis [28].

So instead of a bare set, the classification space for superintegrable systems is at least
a topological G-space. This suggests that a classification of superintegrable systems
for a given (pseudo-)Riemannian manifold should be considered as an isomorphism
in the category of topological G-spaces, namely between the classification space and
some explicitly given topological G-space.

More generally, one should first fix a category inwhich to consider the classification
problem for superintegrable systems. A solution then consists of the following:

(i) A proof that the classification space is an object in this category.
(ii) An explicit object in this category.
(iii) An isomorphism between the classification space and this object.

Here we will provide the foundations for a classification of second order superinte-
grable systems in the category of projective G-varieties.

1.5 First Result: The Classification Space is a Variety

We prove that the kinetic parts of the constants of motion determine a non-degenerate
second-order superintegrable system up to free constants in the potential. Since the
kinetic part is given by a Killing tensor, a non-degenerate superintegrable system
on an n-dimensional manifold M defines a (2n − 1)-dimensional subspace in the
finite dimensional space K(M) of Killing tensors. Hence the classification space can
naturally be identified with a subset in the Grassmannian G2n−1

(K(M)
)
. We then

prove that this subset is actually a subvariety.
Classical theory has always dealt with partial differential equations to solve the

classification problem for superintegrable systems. Our result now shows that these
equations are, at its heart, purely algebraic equations which come disguised as partial
differential equations in an intricate manner. This also indicates that classical tech-
niques are inadequate: Instead of focussing on solving partial differential equations,
one should try to understand the geometry of the classification space using powerful
algebraic-geometric methods, as has been noticed in the review paper [61]:

“The possibility of using methods of algebraic geometry to classify superinte-
grable systems is very promising and suggests a method to extend the analysis in
arbitrary dimension as well as a way to understand the geometry underpinning
superintegrable systems.”

Despite the fact that experts in the field agree that an algebraic-geometric approach is
a promising route to a classification of superintegrable systems in arbitrary dimension,
such a route has never been outlined concretely. The subject of the present work is to
provide exactly this.
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1.6 State-of-the-Art, Revised

In the light of the aforesaid, it should also bementioned that the explicit question about
the nature of the classification space has never been raised in the literature. Most of
the currently known classification results for superintegrable systems mentioned in
Sect. 1.3 consist in writing down lists of normal forms under isometries or Stäckel
transforms [17, 57]. In other words, they study the quotient of the classification space
under these equivalences. Although never proven in general, this quotient turns out to
be finite in all known cases. While passing to the quotient is convenient, as it yields
finite lists of simple normal forms, it destroys most information about the geometry of
the classification space. The latter is studied implicitly only, by considering limits of
superintegrable systems in the form of orbit degenerations and Bôcher contractions.
There exists a characterization by polynomial ideals for non-degenerate systems in
dimension three [12] and on flat two-dimensional space [41, 42], but these do have an
ad hoc nature that does not carry over to higher dimensions.

In summary, the currently known classification of second-order superintegrable
systems should be considered a classification in the category of sets, i.e. in the most
elementary category. The results of the present work entail that the classification
problem for superintegrable systems—in any dimension—should be considered in the
category of projective G-varieties. In this category, the classification problem remains
unsolved, except for non-degenerate systems in the Euclidean plane [58].

1.7 Desiderata

In the present paper, we propose to approach the classification of superintegrable sys-
tems by studying the geometry of the classification space. Abstractly proving that the
classification space is endowed with the structure of a variety is, however, insufficient,
as it does not provide us with explicit and manageable algebraic equations. Ideally,
for a viable approach, we desire the equations to have the following properties:

Explicit: The equations should be written down explicitly.
Concise: There should not be too many equations, and they should be simple.
Generic: The equations should have the same form in any dimension, except for

dimension dependant constants.
Tensorial: The equations should be tensorial, making them independent of coordinate

changes on the base manifold.
Equivariant: The equations should be explicitly equivariant under isometries.
Natural:The equations should naturally arise from the definition of superintegrability

and not, e.g., be derived a posteriori from a known classification.
Algebraic: The equations should be polynomial.
Low-degree: The algebraic equations should have a low polynomial degree.
Solvable: It should be possible to solve the equations in any dimension, at best without

resorting to the (excessive) use of computer algebra.

Note that the equations used in the existing literature to classify superintegrable
systems do not satisfy most of these conditions. Somewhat surprisingly, however, it
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turns out that almost all of them can be satisfied, as we are going to show in the present
work. 2

1.8 Second Result: Explicit Algebraic Equations

We give explicit algebraic equations for the variety classifying those superintegrable
Hamiltonians on constant curvature manifolds (in dimensions n � 3) for which all
necessary integrability conditions are generically satisfied. This variety comprises all
non-degenerate superintegrable systems known to date. We show in Sect. 7 that it
is isomorphic to the variety of cubic forms �i jk xi x j xk on R

n satisfying the simple
algebraic equation

�a
i[ j�k]la = −κgi[ j gk]l , (1.1)

where κ is the (constant) sectional curvature and the brackets denote antisymmetrisa-
tion in j and k.

Furthermore, we show that every superintegrable system in the classification space
gives rise to a torsion-free affine connection which is flat exactly if the above equation
holds. The origin of this connection lies in the fact that one can develop a conformally
invariant notion of superintegrability for which conformal equivalences arise from
Stäckel transforms [59]. This suggests that in the corresponding conformal geom-
etry the Bertrand–Darboux condition gives rise to tractor bundles equipped with
connections parametrised by superintegrable systems. We emphasise that classical
superintegrability theory, although dealing with conformally superintegrable systems
on conformally flat manifolds, has never regarded superintegrability from this geo-
metric perspective.

A reformulation of superintegrability in terms of projective or conformal geometry
is out of the scope of the present publication, as well as a comprehensive solution
of the above equation, a description of the geometry of the corresponding variety, a
derived complete classification of second-order superintegrable systems on constant
curvature manifolds and of related structures such as quadratic symmetry algebras and
hypergeometric orthogonal polynomials. This program will be carried out in future
publications, based on the results in this article.

1.9 What canWe Expect?

The algebraic-geometric approach employed here to the classification of superinte-
grable systems is inspired by a similar approach to the classification of separable
systems developed by the second author [72, 73], which has culminated in a remark-
able isomorphism between the classification space of separable systems (in normal
form) on an n-dimensional sphere and the real Deligne-Mumford-Knudsen moduli
space

M̄0,n+2(R)

2 In dimension two our equations have a slightly different form, but our methods apply as well. The flat
case is treated in [58] and a general formulation will be subject to a forthcoming paper.
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Table 1 Analogies between the classifications of separable and superintegrable systems

Achievement Separable systems Superintegrable systems

Set-theoretical classification for
constant curvature spaces

Arbitrary dimension [31, 50] Dimensions 2, 3 (see Sect. 1.3)

Proof that the classification space is
in general an algebraic variety

[73] Present paper, Theorem 6.4

Explicit algebraic equations for
constant curvature spaces

[70] Present paper, Eq. (1.1)

Algebraic-geometric classification
for the simplest non-trivial example

3-sphere [71] Euclidean plane [58]

Algebraic-geometric classification in
arbitrary dimension

n-sphere [74] Future work

Identification of the corresponding
algebraic variety

Deligne–Mumford moduli spaces Open problem

of stable genus zero curves with n + 2 marked points [74]. Separable and superinte-
grable systems are closely related, suggesting that here as well we may deal with a
renowned variety and prominent geometry.

Most known superintegrable systems are multiseparable, meaning that they con-
tain different separable systems. This might even be true for all known superintegrable
systems in a broader sense of multiseparability, allowing for degenerations with mul-
tiplicities. We therefore expect the classification space for superintegrable systems to
be related to symmetric products of Deligne-Mumford moduli spaces.

The structure of the moduli spaces M̄0,n has revealed an operad structure on the
classification spaces of separable systems on spheres, which provides a simple and
explicit construction of those systems that avoids intricate limit procedures [74]. We
expect similar structures and corresponding constructions for superintegrable systems.

Both classification approaches—to separable as well as superintegrable systems—
are contrasted in more detail in Table 1.

1.10 Perspectives

Our proposed approach will provide—in the truest sense of the word—a variety of
explicit superintegrable systems, i.e.Hamiltonian systems that can be solved exactly by
algebraicmeans. Apart from this immediate result, the actual potential of our approach
lies in the fact that it transfers the classification problem for superintegrable systems
from the domain of calculus to that of algebraic geometry, representation theory and
geometric invariant theory, making it accessible to a whole new range of powerful
methods. This will lead to a series of generalised and induced classifications as well
as universal constructions of many structures related to superintegrable systems, such
as:

• degenerate superintegrable systems
• conformally superintegrable systems
• superintegrable systems on conformal manifolds
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• multiseparable superintegrable systems
• quantum superintegrable systems
• quadratic symmetry algebras and their representations
• special functions arising from superintegrable systems

Let us give an instructive example. It has been observed that second-order superinte-
grable systems in dimension two are in correspondence to hypergeometric orthogonal
polynomials [53, 55]. This correspondence can likely be formulated properly as an
isomorphism in the category of oriented graphs, with one graph being given by the
Askey scheme [3, 4] and the other by a graph whose vertices represent superintegrable
systems and whose edges represent orbit degenerations and Bôcher contractions. In
our approach the Askey scheme will appear as the Hasse diagram of the poset of orbits
and orbit closure inclusions on the classification space. It is interesting to note in this
context that a structure of a glued manifold with corners has been revealed on the
Askey scheme by analysing the limits of hypergeometric orthogonal polynomials [56]
and that any variety naturally carries such a structure as well. We expect our approach
to lead to higher dimensional generalisations of the Askey-Wilson scheme. Indeed,
the generic superintegrable system on the 3-sphere can be related to 2-variableWilson
polynomials [54], and interbasis expansions for the isotropic 3D harmonic oscillator
are linked to bivariate Krawtchouk polynomials [24].

Note that classically, hypergeometric polynomials have always been studied in
families, each parametrised by a number k of complex parameters. What we propose
here is a paradigm shift: Rather than regarding hypergeometric polynomials as many
families, each parametrised by a parameter in a subset of Ck with different k, we
propose to describe them as a single family, parametrised by a parameter in a projective
variety.

1.11 Structure of the Paper

After briefly reviewing theory, terminology and notation in Sect. 2, we introduce
the pivotal object of our approach in Sect. 3: A valence three tensor field encoding
all relevant information about a superintegrable system, called the structure tensor.
Sections 4 and 5 are devoted to the integrability conditions that superintegrability
imposes on this tensor. Our first main statement is proven in Sect. 6, namely that a
properly defined classification space forms a quasi-projective variety. In Sect. 7 we
derive explicit algebraic equations for a related variety on constant curvature spaces.
Finally, in Sect. 8 the known n-dimensional families of superintegrable systems on
constant curvature spaces are reviewed from the point of view developed in this paper.

2 Preliminaries

2.1 Superintegrable Systems

An n-dimensional Hamiltonian system is a dynamical system characterised by a
Hamiltonian function H(p,q) on the phase space of positions q = (q1, . . . , qn)
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and momenta p = (p1, . . . , pn). Its temporal evolution is governed by the equations
of motion

ṗ = −∂H

∂q
q̇ = +∂H

∂p
.

A function F(p,q) on the phase space is called a constant of motion or first integral,
if it is constant under this evolution, i.e. if

Ḟ = ∂F

∂q
q̇ + ∂F

∂p
ṗ = ∂F

∂q
∂H

∂p
− ∂F

∂p
∂H

∂q
= 0

or

{F, H} = 0,

where

{F,G} =
n∑

i=1

(
∂F

∂qi
∂G

∂ pi
− ∂G

∂qi
∂F

∂ pi

)

is the canonical Poisson bracket. Such a constant of motion restricts the trajectory
of the system to a hypersurface in phase space. If the system possesses the maximal
number of 2n − 1 functionally independent constants of motion F (0), . . . , F (2n−2),
then its trajectory in phase space is the (unparametrised) curve given as the intersection
of the hypersurfaces F (α)(p,q) = c(α), where the constants c(α) are determined by
the initial conditions. In this case one can solve the equations of motion exactly and
in a purely algebraic way, without having to solve explicitly any differential equation.

Definition 2.1 (i) A maximally superintegrable system is a Hamiltonian system
together with a Poisson algebra generated by 2n − 1 functionally independent
constants of motion F (α),

{F (α), H} = 0, α = 0, 1, . . . , 2n − 2, (2.1a)

one of which is the Hamiltonian itself,

F (0) = H = g + V , (2.1b)

where

g(p,q) =
n∑

i=1

gi j (q)pi p j .

(ii) A constant of motion is second-order if it is of the form

F (α) = K (α) + V (α), (2.2a)
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where

K (α)(p,q) =
n∑

i=1

(K (α))i j (q)pi p j (2.2b)

is quadratic inmomenta and the potentialV (α) = V (α)(q) is a functiondepending
only on positions. A (maximally) superintegrable system is second-order if its
constants of motion F (α) can be chosen to be second-order.

(iii) We call V a superintegrable potential if the Hamiltonian (2.1b) defines a super-
integrable system.

In this article wewill be concerned exclusively with second-order maximally super-
integrable systems and thus omit the terms “second-order” and “maximally” without
further mentioning.

2.2 Bertrand–Darboux Condition

The condition (2.1a) for (2.2) and (2.1b) splits into two parts, which are cubic respec-
tively linear in the momenta p:

{K (α), g} = 0 (2.3a)

{K (α), V } + {V (α), g} = 0 (2.3b)

Definition 2.2 A (second-order) Killing tensor is a symmetric tensor field on a Rie-
mannian manifold satisfying the Killing equation

{K , g} = 0

or, in components,

Ki j,k + K jk,i + Kki, j = 0, (2.4)

where the comma denotes covariant derivatives.

Example 2.3 The metric g is trivially a Killing tensor, since it is covariantly constant.

The metric g allows us to identify symmetric forms and endomorphisms. Interpret-
ing a Killing tensor in this way, as an endomorphism on 1-forms, Eq. (2.3b) can be
written in the form

dV (α) = K (α)dV . (2.5)

It shows that once the Killing tensors K (α) are known, the potentials V (α) can be
recovered from V = V (0) up to an irrelevant constant, provided the integrability
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conditions

d(K (α)dV ) = 0 (2.6)

are satisfied. This eliminates the potentials V (α) for α �= 0 from our equations.

2.3 Generalised Cramer’s Rule

The following generalisation of the well-known Cramer’s Rule will be used in order
to solve the overdetermined system of linear Eqs. (2.6) for V .

Definition 2.4 The Gram Coefficients Gk(A) of a linear map A are defined to be the
coefficients of the polynomial

det(1 + t AA∗) =
∞∑

k=0

Gk(A)tk,

where A∗ denotes the adjoint with respect to an inner product.

Observe that up to sign and order, the Gram Coefficients of A are the coefficients of
the characteristic polynomial of AA∗. In particular, Gk(A) is homogeneous of degree
2k. The following result is a consequence of the Cayley–Hamilton Theorem.

Proposition 2.5 [18] A linear map A on an inner product space has rank r if and only
if

Gr (A) �= 0 = Gr+1(A). (2.7)

In this case, the system of linear equations

Ax = b

has a solution x if and only if

Gr+1(A|b) = 0.

Moreover, the minimal norm solution is given by

x = A†b,

where

A† = 1

Gr (A)

r∑

k=1

Gr−k(A)(−A∗A)k−1A∗. (2.8)

is theMoore-Penrose inverse of A.
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2.4 Young Projectors

We will make extensive use of Young projectors, mainly to make tensor symmetries
explicit and to simplify lengthy tensor expressions. Since here is not the place for
a comprehensive introduction to the representation theory of symmetric and linear
groups, we refer to the literature on this subject, e.g. [21, 22] and content ourselves
with providing only those examples appearing in the present work.

A partition of a positive integer n is a decomposition of n into a sum of ordered
positive integers:

n = λ1 + λ2 + · · · + λr λi ∈ N λ1 � λ2 � · · · � λr > 0.

A Young frame is a visualisation of a partition by consecutive, left-aligned rows of
square boxes, such as

for 9 = 4 + 2 + 2 + 1.

Young frames are used to label irreducible representations of the permutation group Sn
and the induced Weyl representations of GL(n). A Young tableau is a Young frame
filled with distinct objects, in our case tensor index names. Young tableaux are used
to define explicit projectors onto irreducible representations. Let us illustrate this with
a couple of examples used in this article.

A Young tableau consisting of a single row is used to denote complete symmetri-
sation, as in

i j k Si jk = Si jk + Sik j + Ski j + Skji + S jki + S jik .

Similarly, a single column Young tableau denotes complete antisymmetrisation,

i
j
k

Ai jk = Ai jk − Aik j + Aki j − Akji + A jki − A jik .

A general Young tableau denotes the composition of its row symmetrisers and column
antisymmetrisers. By convention, we apply antisymmetrisers first. Operators of this
type are (scalarmultiples of) projectors, calledYoung projectors. TheYoung projectors
used most here are hook symmetrisers, composed of a single row and a single column.
For instance,

j i
k

Ti jk = j i j
k

Ti jk = j i (Ti jk − Tik j ) = Ti jk − Tik j + Tjik − Tjki .

Ifwewant to apply the symmetrisers first,we can use the adjoint operator. For example

j i
k

∗
Ti jk = j

k j i Ti jk = j
k

(Ti jk + Tjik) = Ti jk + Tjik − Tik j − Tki j .
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Next, it is easy to see that tensors of the form

Ri jkl = i j
k l

∗
Ti jkl = i

k
j
l i j k l Ti jkl

are algebraic curvature tensors, i.e. satisfy

(i) antisymmetry: R jikl = −Ri jkl ,
(ii) pair symmetry: Rkli j = Ri jkl ,
(iii) the Bianchi identity: Ri jkl + Rikl j + Ril jk = 0.

We will use a subscript “◦” to indicate a projector onto the completely trace-free part.
For example,

Wi jkl = 1

12
i j
k l

∗

◦
Ri jkl

is the Weyl part in the well known Ricci decomposition

Ri jkl = Wi jkl + 1

4(n − 1)
i k
j l

∗
R̊ikg jl + 1

8n(n − 1)
i k
j l

∗
gikg jl ,

where

R̊i j = 1

2
i j ◦ Ri j = Ri j − R

n
gi j

is the trace-free part of the Ricci tensor Rik = g jl Ri jkl and R = gi j Ri j the scalar
curvature.

We will also use Young tableaux to denote symmetrisations in a subset of a tensor’s
indices, such as in

j
k

Ti jk = Ti jk − Tik j .

3 The Structure Tensor of a Superintegrable System

Let M be a connected Riemannian manifold of dimension n � 3 with metric g and
Levi-Civita connection ∇. For simplicity we will—here and in what follows—denote
covariant derivatives with a comma and the trace-free part of the Hessian of V by

V̊,i j = V,i j − 1

n
�Vgi j . (3.1)

Then, in components, the Bertrand–Darboux condition (2.6) for a Killing tensor K in
a superintegrable system reads

i
j

(
Km

i V̊, jm + Km
i, j V,m

) = 0. (3.2)
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We consider this equation for K = K (α) with α = 0, 1, . . . , 2(n − 1) as a linear
system

Ax = b, (3.3)

where the vector x contains the unknown components of the trace-free Hessian (3.1),
the coefficient matrix A the components of the Killing tensors K (α) and the right hand
side b the components of the second term in the sum (3.2) for each K (α).

If the Killing tensors are analytic, the components of the coefficient matrix A and
hence the Gram coefficientsGk(A) are analytic as well. In particular, on a Riemannian
manifoldM with analytic metric, the rank of A is constant on an open and dense subset
of M by Proposition 2.5.

Definition 3.1 We say a superintegrable system on a Riemannian manifold M has
rank r , if the rank of the coefficient matrix A in (3.3) has rank r on an open and dense
subset of M .

Note that the maximal rank of a superintegrable system is

rmax = n(n + 1)

2
− 1 = (n − 1)(n + 2)

2
. (3.4)

A maximal rank superintegrable system can be characterised more explicitly in terms
of itsKilling tensors as follows.Recall that theRiemannianmetric on the basemanifold
provides an isomorphism between bilinear forms and endomorphisms on the tangent
space, so that we can identify both silently.

Definition 3.2 (i) A set of endomorphisms is irreducible if they do not have a non-
trivial invariant subspace in common.

(ii) A set of endomorphism fields on a Riemannian manifold M is called irreducible,
if they are pointwise irreducible on an open and dense subset of M .

(iii) We call a superintegrable system irreducible, if its Killing tensors form an irre-
ducible set.

Lemma 3.3 A superintegrable system has maximal rank if and only if it is irreducible.

Proof Observe that the first term in the sum (3.2) can be written as a commutator
[K , V̊ ′′] of symmetric endomorphisms, where V̊ ′′ denotes the trace-free part of the
Hessian of V . The kernel of the coefficient matrix A in (3.3) therefore consists of all
trace-free symmetric endomorphisms commuting with all Killing tensors K (α) in the
superintegrable system. Since A has more rows than columns, it has maximal rank if
and only if its kernel is trivial. By Schur’s Lemma this is the case if and only if the
Killing tensors form an irreducible set. 	


As a consequence of Proposition 2.5, we get:

Proposition 3.4 Every irreducible superintegrable system on a Riemannian manifold
M admits a tensor field T with the following properties:
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(i) T is well-defined and smooth on an open and dense subset of M.
(ii) T has degree three and is symmetric and trace-free in its first two indices:

Tjik = Ti jk gi j Ti jk = 0 (3.5)

(iii) The superintegrable potential satisfies

V,i j = Ti j
mV,m + 1

n
gi j�V . (3.6)

(iv) T is uniquely determined by the Killing tensors K (α) in the superintegrable
system.

(v) T only depends on the subspace spanned by the Killing tensors K (α), i.e. it is
invariant under linear basis changes

K (α) �→
∑

β

cαβK
(β) c ∈ GL(n)

The components Ti jk of T are given explicitly in terms of the Killing tensors by the
rank r Moore-Penrose inverse, where r = rmax is the maximal rank (3.4), and they are
well-defined over the complement of the set {Gr (A) = 0}.

We remark that equations similar to (3.6) appear in [37], in local coordinates and
for dimension three.

Definition 3.5 We call the tensor Ti jk in Proposition 3.4 the structure tensor of an
irreducible superintegrable system.

Example 3.6 The isotropic harmonic oscillator on flat n-space has a vanishing struc-
ture tensor. It is an irreducible system in the sense of Definition 3.2 and has the
potentials

V (x) = ω2

2
(x − x0)2 + V0

with n + 2 free parameters ω2, x0 and V0 as solutions to (3.6). Note that V can be
linearly parametrised by setting a = −ω2x0 and a0 = 1

2ω
2x20 + V0.

Example 3.7 The special case x0 = 0 is compatible with the squares of the angular
momenta

K (i j) = (xi dx j − x j dxi )2.

In dimension n > 3 these define a non-maximal superintegrable system which is
reducible. Indeed, one easily verifies that K (i j)dV = 0, confirming that dV is a
common eigenvector of the K (i j).

We would like to mention that our methods are inspired by Wilczynski’s series of
papers on the projective differential geometry of surfaces [76, 77].
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4 Superintegrable Potentials

4.1 Prolongation of a Superintegrable Potential

Equation (3.6) expresses the derivative of∇V linearly in∇V and�V , with coefficients
that are determined by the structure tensor. The following Proposition shows that this
equation can be extended by a second one to a system expressing the derivatives of
∇V and �V both linearly in ∇V and �V , with the coefficients determined by the
structure tensor. An extension of such type is called prolongation.

Proposition 4.1 The potential of a superintegrable system with structure tensor Ti jk
satisfies

V,i j = Ti j
mV,m + 1

n gi j�V (4.1a)
n−1
n (�V ),k = qk

mV,m + 1
n tk�V , (4.1b)

with the definitions

t j := Ti j
i (4.2a)

q j
m := Qi j

im, (4.2b)

where

Qi jk
m := Ti j

m
,k + Ti j

l Tlk
m − Ri jk

m . (4.3)

Proof Equation (4.1a) is a copy of Eq. (3.6). Substituting it into its covariant derivative,
we obtain

V,i jk = Ti j
m

,kV,m + Ti j
mV,mk + 1

n gi j (�V ),k

= (
Ti j

m
,k + Ti j

l Tlk
m)

V,m + 1
n

(
Ti jk�V + gi j (�V ),k

)
.

Antisymmetrisation in ( j, k) and application of the Ricci identity yields

Rm
i jkV,m = j

k

[(
Ti j

m
,k + Ti j

l Tlk
m)

V,m + 1
n

(
Ti jk�V + gi j (�V ),k

)]
.

Solving for the last term on the right hand side, we get

1

n
j
k

gi j (�V ),k = − j
k

(
Qi jk

mV,m + 1
n Ti jk�V

)
.

The contraction of this equation in (i, j) now yields (4.1b), since Ti jk and Qi jk
m are

trace-free in (i, j) by definition. 	
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The System (4.1) can be used to express all higher derivatives of ∇V and �V
linearly in ∇V and �V . In particular, all higher derivatives of V in a fixed point are
determined by the values of ∇V and �V in that point. So if V is analytic, they deter-
mine V locally up to a constant. This remains true even if V is not analytic. Therefore,
the space of solutions of the initial partial differential Eq. (3.6) is finite dimensional
with maximal dimension n + 2. This motivates the following generalisation of the
notion of non-degeneracy commonly employed in dimensions two and three [47].

Definition 4.2 We call a superintegrable system non-degenerate, if Eq. (3.6) admits
an (n + 2)-dimensional space of solutions V .

4.2 Integrability Conditions for a Superintegrable Potential

Non-degeneracy is just the condition that assures that the integrability conditions of
the System (4.1) are satisfied generically, i.e. independently of the potential. This
will eliminate the potential V , leaving equations involving only the structure tensor,
respectively the Killing tensors of the superintegrable system.

Proposition 4.3 The following are necessary and sufficient conditions for the existence
and uniqueness of a solution V of the prolongation Eq. (4.1), given the values of V ,
∇V and �V in a fixed point x0 ∈ M:

j
k

(
Ti jk + 1

n−1gi j tk
)

= 0 (4.4a)

j
k

(
Qi jkl + 1

n−1gi j qkl
)

= 0 (4.4b)

k
l

(
qkn,l + Talnqk

a + 1
n−1 tkqln

) = 0. (4.4c)

Proof The system (4.1) allows us towrite all higher derivatives of∇V and�V as linear
combinations of ∇V and �V . Necessary and sufficient integrability conditions are
then obtained by applying this procedure to the left hand sides of the Ricci identities

j
k

V,i jk = Rm
i jkV,m

k
l

(�V ),kl = 0.

This results in

j
k

(
Qi jk

m + 1
n−1gi j qk

m)
V,m + 1

n
j
k

(
Ti jk + 1

n−1gi j tk
)
�V = 0

and, respectively,

k
l

(
qk

n
,l + Tml

nqk
m + 1

n−1 tkql
n)V,n + 1

n
k
l

(
tk,l + qkl

)
�V = 0.
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For a non-degenerate superintegrable potential the coefficients of �V and ∇V must
vanish. In addition to the stated integrability conditions (4.4), this yields the condition

k
l

(
tk,l + qkl

) = 0. (4.5)

The latter is redundant, however, as it can be obtained from (4.4b) via a contraction
over (i, l). 	


In the remainder of this section we cast the above integrability conditions for a
superintegrable potential into the following simpler form.

Proposition 4.4 In dimension n � 3, the integrability conditions (4.4) for a superin-
tegrable potential are equivalent to the algebraic conditions

j i
k

∗

◦
Ti jk = 0 (4.6a)

1

8
i k
j l

∗

◦
T a

ikTajl = Wi jkl (4.6b)

j i
k

∗

◦
Ti j

a Zak = 0 (4.6c)

and the differential condition

k j i
l

(
Ti jk,l + 2

n − 2
gik Z jl

)
= 0 (4.6d)

with

Zi j := T̊i
ab
T̊ jab − (n − 2)(T̊i j

a
t̄a + t̄i t̄ j ) − Ri j , (4.6e)

where T̊i jk and t̄i are the trace-free part and the rescaled non-vanishing trace of the
structure tensor, given in (4.8).

Proof Proposition 4.4 follows from Propositions 4.5, 4.7 and 4.9 below. 	


4.2.1 The 1st Integrability Condition

Wecan solve Eq. (4.4a) right away, because it is linear and does not involve derivatives.

Proposition 4.5 The first integrability condition (4.4a) can bewritten in the form (4.6a)
and is equivalent to the following decomposition of the structure tensor:

Ti jk = T̊i jk + i j
(
t̄i g jk − 1

n
gi j t̄k

)
, (4.7)
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where

T̊i jk = 1

6
i j k ◦ Ti jk (4.8a)

t̄i = n

(n + 2)(n − 1)
Ti j

j (4.8b)

are the trace-free part and the rescaled non-vanishing trace of the structure tensor.
Note that both are uniquely determined by Ti jk and vice versa.

Proof First note that (4.4a) can be written in the form (4.6a) by the definition of the
Young projector.

The structure tensor Ti jk is symmetric in (i, j). According to the Littlewood-
Richardson rule its symmetry class is therefore

⊗ ∼= ⊕ ∼= ◦ ⊕ ⊕
◦

⊕ .

This means that Ti jk can be decomposed into a trace-free and totally symmetric part, a
trace-free part of hook symmetry, and two independent traces. By (4.6a) the trace-free
hook symmetric part vanishes. This implies that the trace-free part T̊i jk of the structure
tensor is totally symmetric. The two remaining trace terms are of the form

i j k gi jσk
j i
k

gi jτk

and their traces σk respectively τk can be determined from (3.5) and (4.2a). 	

Corollary 4.6

(i) The tensor qi j is symmetric: q ji = qi j .
(ii) The tensor ti is the derivative of a function t, i.e. ti = t,i , and similarly for t̄i .

Proof The first statement follows from substituting (4.7) into the definition (4.2b) of
qi j . The second then follows from (4.5). 	


4.2.2 The 2nd Integrability Condition

Proposition 4.7 Assuming the first integrability condition (4.4a), the second integra-
bility condition (4.4b) is equivalent to (4.6b) and (4.6d).

Proof Equation (4.6b) follows directly by antisymmetrising (4.4b) in (i, l). Sym-
metrising instead, we obtain

i j k
l

(
Ti jk,l + 2

n − 2
gik Z jl

)
= 0 (4.9)
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with Zi j given by (4.6e). As in [70, Lemma 6.2], the symmetriser can be written as

1

2
i j · 1

2
k
l

= 1

96
k j i
l

∗
k j i
l

+ 1

96

j i
k
l

j i
k
l

∗
,

making explicit the projectors in the Littlewood-Richardson rule

⊗ ∼= ⊕ .

The last component vanishes, because

j i
k
l

∗(
Ti jk,l + 2

n − 2
gik Z jl

)

= 2
j
k
l

(
− 1

n − 1
gi j tkl + 1

n − 2
(gik Z jl + g jk Zil)

)
= 0,

where we have used (4.4a). The equivalence of (4.6d) and (4.9) now follows from the
fact that PP∗P is proportional to P for any Young projector P . 	

Lemma 4.8 The integrability condition (4.6d) implies

i j
k
l
m

(
Ra

ilmTajk + 2

n − 2
gik Z jl,m

)
= 0. (4.10)

Proof Differentiation and antisymmetrisation of (4.9) yields

i j
k
l
m

(
Ti jk,lm + 2

n − 2
gik Z jl,m

)
= 0.

The statement now follows from applying the Ricci identity to the first term and using
the Bianchi identity. 	


4.2.3 The 3rd Integrability Condition

Proposition 4.9 Assuming the first two integrability conditions (4.4a) and (4.4b), the
third integrability condition (4.4c) is equivalent to (4.6c).

Proof It can be show that, up to trace terms, Eq. (4.4c) is a linear combination of (4.6c),
appropriate contractions of (4.6d) with ta respectively (4.10) with gab as well as the
Ricci identity for tk . Similarly, the trace of (4.4c) is a linear combination of (4.6d),
contracted with T̊i jk , and a contraction of the Ricci identity for tk . 	
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5 Superintegrable Killing Tensors

5.1 Prolongation of a Superintegrable Killing Tensor

For arbitrary second-order Killing tensors Ki j it is well known that all higher covariant
derivatives are determined by the derivatives up to second-order. More precisely, an
explicit but complicated expression for Ki j,klm can be given which is linear in Ki j

and Ki j,k , the coefficients being linear in the Riemannian curvature tensor and its
derivative [81], see also [26]. Let us write this symbolically as

∇3K = (∇R) � K + R � (∇K ), (5.1)

where “�” is a placeholder for some complicated bilinear operation. This defines the
standard prolongation of the Killing equation.

The following proposition shows that a Killing tensor which arises from a super-
integrable system satisfies another, much simpler prolongation, namely that all its
covariant derivatives are already determined by the Killing tensor itself. Symboli-
cally:

∇K = T � K .

This generalizes equations found in [37] for dimension three to arbitrary dimension.

Proposition 5.1 A Killing tensor in a non-degenerate superintegrable system with
structure tensor Ti jk satisfies

Ki j,k = 1

3
j i
k

T a
ji Kak . (5.2)

Proof Substituting (3.6) into (3.2) gives

j
k

(
Ka

j,k − Tjb
aK b

k
)
V,a = 0.

From the definition of non-degeneracy it then follows that

j
k

Ki j,k = j
k

T a
ji Kak . (5.3)

On the other hand, the Killing Eq. (2.4) implies that

Ki j,k = 1

3
j i
k

Ki j,k .

Combining the last two equations proves (5.2). 	
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Lemma 5.2 Any Killing tensor satisfies the following identity

i l j
k

(
Ki j,kl + j l Ra

i jk Kal
) = 0. (5.4)

Proof Using the identities

j k Ki j,k = −1

2
j k K jk,i

j
k

Ra
jki = −1

2
j
k

Ra
i jk,

which follow from a symmetrisation of the Killing equation respectively an antisym-
metrisation of the Bianchi identity, we have

i l j
k

Ki j,kl = i l j
k

(
Ki j,lk + k

l
Ki j,kl

)

= i l j
k

(
−1

2
Kil, jk + i j Ra

ikl Kaj

)

= i l j
k

(
−1

2
Ra

i jk Kal + Ra
ikl Kaj + Ra

jkl Kai

)

= i l j
k

(
Ra

ikl Kaj − Ra
i jk Kal

)

	

Lemma 5.3 Suppose the values of the Killing tensors and of the structure tensors of
two non-degenerate superintegrable systems coincide in a fixed point. Then the values
of the covariant derivatives of the structure tensors also coincide in this point.

Proof Substituting the derivative of (5.3),

j
k

Ki j,kl = j
k

(
T a

ji,l Kak + T a
ji Kak,l

)
,

together with (5.2) into (5.4) yields

i l j
k

(
T a

ji,l Kak + 1

3
T a

ji
k a
l

T b
kaKbl + j l Ra

i jk Kal

)
= 0. (5.5)

Now suppose we have two structure tensors with the same values in a fixed point x0.
Denote their difference by δTi jk . Then the difference of the two copies of the above
equation at x0, obtained for each of the structure tensors, is

i l j
k

δT a
ji,l(x0)Kak(x0) = 0.
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This equation is satisfied by all Killing tensors in the superintegrable system. Observe
that, for fixed i and l, the left hand side is a commutator between δT a

ji,l(x0)
and Ka

k(x0). Hence, if the system is irreducible, we have

i l δT a
ji,l(x0) = gaj
il

for some symmetric tensor 
il . Contracting a and j shows that 
il = 0 and hence

i l δT a
ji,l(x0) = 0.

On the other hand, by (4.9),

i
l

δT a
ji,l(x0) = 0,

implying δT a
ji,l(x0) = 0. This shows that both structure tensors must have the same

derivatives at x0. 	

Proposition 5.4 Suppose the values of the Killing tensors and of the structure tensors
of two non-degenerate superintegrable systems coincide in a fixed point. Then the two
systems have the same Killing tensors and the same structure tensor.

Proof Under the hypothesis of the proposition we conclude that, at the fixed point,
there also coincide the following: the values of the first derivatives of the Killing
tensors by (5.2), of the derivatives of the structure tensor by the preceding lemma and
of the second derivatives of the Killing tensors by the identity

Ki j,kl = 1

3
j i
k

(
T a

ji,l Kak + 1

3
k b
l

T b
ji T

a
kbKal

)
, (5.6)

obtained from substituting (5.2) into its own derivative. Since the values of a Killing
tensor and its first and second derivatives in a single point uniquely determine this
tensor in a neighbourhood of this point, the Killing tensors of both systems coincide.
By definition, their structure tensors then coincide as well. 	


5.2 Integrability Conditions for a Superintegrable Killing Tensor

The integrability conditions for the standard prolongation of a Killing tensor, Eq. (5.1),
are

Ki j,kl − Kkl,i j = 1
2 i j k l i k Kim Rm

kl j

+ i j Kim Rm
jkl − k l Kkm Rm

li j

and a very lengthy expression of the form

(∇2R + R � R) � K + (∇R) � (∇K ) + R � (∇2K ) = 0,
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involving (even in low dimension) several hundreds of terms [81], see also [26].
In contrast, the following proposition shows that the integrability conditions for the
prolongation of a superintegrable Killing tensor, Eq. (5.2), are much simpler.

Proposition 5.5 The following are necessary and sufficient conditions for the existence
and uniqueness of a solution Ki j of the prolongation Eq. (5.2), given the values of Ki j

in a fixed point x0 ∈ M:

k
l

(
Pi jk

ab
,l + Pi jk

pq Ppql
ab − 1

2
i j gai R

b
jkl

)
Kab = 0, (5.7)

where

Pi jk
ab := 1

6
a b j i

k
gak T

b
ji .

Proof Equation (5.2) can be used to express all higher derivatives of the Killing tensor
linearly in the Killing tensor itself. Explicitly, writing (5.2) as

Ki j,k = Pi jk
abKab (5.8)

and substituting it back into its own derivative, yields

Ki j,kl = Pi jk
ab

,l Kab + Pi jk
cd Kcd,l =

(
Pi jk

ab
,l + Pi jk

cd Pcdl
ab

)
Kab.

This expression must satisfy the Ricci identity

k
l

Ki j,kl = i j Ra
ikl Kaj ,

which is the integrability condition for the existence of a unique local solution to (5.2).
	


The following definition plays the same role for superintegrable Killing tensors as
that of non-degeneracy for superintegrable potentials: It assures that the integrability
conditions (5.7) are generically satisfied, that is, independently of the Killing tensors.

Definition 5.6 We call a non-degenerate superintegrable system abundant if Eq. (5.2)
has n(n + 1)/2 linearly independent solutions.

The following is a specification of Proposition 5.5 for abundant systems.

Corollary 5.7 The following are necessary and sufficient conditions that the space of
solutions Ki j to the prolongationEq. (5.2)assumes themaximal dimension n(n+1)/2:

m n k
l

(
Pi jk

mn
,l + Pi jk

pq Ppql
mn − 1

2
i j gmi Rn

jkl

)
= 0 (5.9)
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Remark 5.8 In dimension two, every superintegrable system is trivially abundant, since
2n−1 = n(n+1)/2 for n = 2. For n = 3we have 2n−1 = 5 and n(n+1)/2 = 6. The
so-called “5 ⇒ 6 Lemma” states that every non-degenerate second-order maximally
superintegrable system on a conformally flat manifold of dimension three is abundant
[37].

5.3 Non-linear Prolongation of the Structure Tensor

Proposition 5.9 The generic integrability conditions (5.9) for an abundant superin-
tegrable system are equivalent, in dimensions n � 3, to the following polynomial
expressions for the derivatives of the structure tensor,

Ti jk,l = T̊i jk,l + i j
(
t̄i,l g jk − 1

n
gi j t̄k,l

)
(5.10a)

T̊i jk,l = 1

18
i j k ◦

[
T̊ a
i j T̊kla + T̊i jk t̄l + 3 T̊i jl t̄k

+
(

4

n − 2
T̊ ab
i T̊ jab − 3 T̊ a

i j t̄a

)
gkl

]
(5.10b)

t̄k,l = 1

3

(
− 2

n − 2
T̊ ab
k T̊lab + 3T̊ a

kl t̄a + 4t̄k t̄l

)

◦

+ 1

n
gkl

(
3n + 2

6(n + 2)(n − 1)
T̊ abcT̊abc − n − 2

6
t̄ a t̄a + 3

2(n − 1)
R

)
(5.10c)

together with the polynomial equations

1

8
i k
j l

∗

◦
T a

ikTajl = Wi jkl = 0 (5.11a)

−1

4
Z̊i j = R̊i j . (5.11b)

Here “◦” denotes the trace-free part, Wi jkl and Ri j are the Weyl respectively the Ricci
tensor of the Riemannian manifold and Zi j is defined in (4.6e).

Proof The generic integrability conditions (5.9) are linear in the derivatives of the
structure tensor. They can be solved for these derivatives, which yields (5.10). Substi-
tuting (5.10) back into (5.9) yields (5.11). 	

Corollary 5.10 Abundant superintegrable systems canonly exist onWeyl flatmanifolds.

Proof In dimension n = 2 any manifold is Weyl flat. For dimensions n � 3, the claim
follows from the theorem above. 	
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Corollary 5.11 The generic integrability conditions (5.9) for a superintegrable Killing
tensor imply the integrability conditions (4.4) for a superintegrable potential.

Proof This follows from Proposition 4.4 after the substitution of (5.10) into
(4.6d). 	


5.4 Integrability Conditions for the Structure Tensor

We now change our point of view and consider (5.10) as a system of partial differential
equations for a tensor Ti jk and ask for necessary and sufficient conditions such a
tensor has to satisfy in a single point, in order to extend to the structure tensor of a
superintegrable system.

Contrary to the prolongations (4.1) for a superintegrable potential and (5.2) for
a Killing tensor in a superintegrable system, the prolongation (5.10) for the struc-
ture tensor is non-linear [11, 25, 49]: Derivatives of Ti jk are expressed as quadratic
polynomials in Ti jk . In all three cases the prolongation equations allow to express
all higher derivatives of the prolonged tensors polynomially in these tensors. But the
second derivatives are not independent. They have to satisfy the Ricci identity, which
becomes a polynomial condition. While this first order condition is sufficient for the
integrability of the prolongation equation in the linear case, higher order integra-
bility conditions arise in the non-linear case: Taking the covariant derivative of any
polynomial condition and replacing derivatives by the prolongation equation gives a
new polynomial condition. This procedure terminates once the newly obtained con-
dition lies in the ideal generated algebraically by all the preceding ones. In this case
the latter form a full set of (finitely many) algebraic integrability conditions for the
prolongation.3

Remark 5.12 The situation we have here is slightly more general, as we seek a solu-
tion to the non-linear prolongation Eq. (5.10) that also satisfies additional algebraic
conditions (5.11) which do not originate from the Ricci identity a priori. Note that
the latter are of degree two in the structure tensor while the first order integrability
conditions are of third degree. This can be achieved by adjoining them to the first order
integrability conditions in the procedure described above.

The following lemma gives the first order integrability conditions in the present
situation.

Lemma 5.13 Assuming (5.11), the Ricci identity for (5.10) reduces to

n + 2

9n

(
T̊ abcT̊abc − (n + 2)(n − 1)t̄ a t̄a − 9R

)
t̄i

= −R,i + 2(5n + 2)

3(n − 2)
T̊ ab
i R̊ab − 2(n2 − 2n + 8)

3(n − 2)
R̊ia t̄

a . (5.12)

3 The same procedure was applied for flat two-dimensional superintegrable systems in [41].
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Proof The Ricci identity for Ti jk reads

l
m

Ti jk,lm = Ra
ilmTajk + Ra

jlmTiak + Ra
klmTi ja

and can be reduced, by the help of (5.10), to a cubic polynomial in Ti jk involving the
curvature tensor. The trace free part of this cubic vanishes by virtue of (5.11), as do
the trace-free parts of its two independent traces. The traces of these traces are both
equivalent to (5.12) using (5.11). 	


In Sect. 7 we will show that for abundant superintegrable systems on constant
curvaturemanifolds the above procedure terminates after the first step. This generalises
the findings in [41] and [12, 13, 42] for dimensions 2 and 3, respectively.

6 The Variety of Superintegrable Systems

By definition, a second-order maximally superintegrable system consists of a (2n−1)-
dimensional subspace in the space K(M) of second-order Killing tensors on the base
manifold M together with a potential function V on M . Forgetting the latter defines a
canonical map

� : S → G2n−1
(K(M)

)
(6.1)

from the set S of non-degenerate second-order maximally superintegrable systems on
M to the corresponding Grassmannian.

Proposition 6.1 Let I ⊂ S be the subset of non-degenerate irreducible superinte-
grable systems. Then �(I) is the subset in G2n−1

(K(M)
)
consisting of spaces of

Killing tensors satisfying the following equations:

(i) the maximal rank condition

Gr (A) �= 0 for r = rmax = (n − 1)(n + 2)

2

on an open and dense subset.
(ii) the generic integrability conditions (4.4) of the prolongation Eq. (4.1) for a

superintegrable potential
(iii) the integrability conditions (5.7) of the prolongation Eq. (5.2) for a Killing tensor

in a superintegrable system

Proof In previous sections we have already seen that the elements in �(I) satisfy all
three conditions: (i) is a consequence of Lemma 3.3 together with (2.7) and (3.4), (ii)
is shown in Proposition 4.3 and (iii) in Proposition 5.5.

Now suppose a subspace of Killing tensors satisfies all three conditions. Condi-
tion (i) assures that the tensor Ti jk , given by the Moore-Penrose inverse (2.8), is
well-defined on an open and dense subset of M . Condition (ii) implies that we can
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integrate Eqs. (4.1) to obtain a linear space of solutions V of dimension n+ 2. Condi-
tion (iii) assures that the Killing tensors all satisfy Eq. (5.2). Together, Eqs.(4.1) and
(5.2) imply the Bertrand–Darboux condition (2.6), assuring the existence of potential
functions V (α) for each Killing tensor K (α) with V (0) = V and K (0) = g.

Note that the corresponding integrals F (α) = K (α) + V (α) define a superintegrable
system only if they are functionally independent. The following lemma shows that
this is generically the case. Therefore, for every space of Killing tensors satisfying all
three conditions we actually find a superintegrable system which, by construction, is
irreducible and non-degenerate and projects to this space under �. 	

Lemma 6.2 Let K (α) be 2n − 1 linearly independent Killing tensors (including the
metric) satisfying the integrability conditions (5.7) for (5.2), and (4.4) for (4.1). Then,
in the linear space of solutions V to Eq. (4.1), those V defining functionally dependent
integrals are confined to an affine subspace with non-empty complement.

Proof Suppose the first integrals (2.2) are functionally dependent. This means there
exists a function ϕ : R2n−1 → R, non-zero on an open subset, such that

ϕ(F (0), . . . , F (2n−2)) = 0.

Infinitesimally, this condition reads

2(n−1)∑

α=0

λ(α)dF
(α) = 0,

with

λ(α)(p, x) = ∂ϕ

∂F (α)
(F (α)(p, x)) dF (α) = ∂F (α)

∂xk
dxk + ∂F (α)

∂ pk
dpk,

where (recall that pi = gia pa)

∂F (α)

∂xk
= K (α)

i j,k p
i p j + V (α)

,k
∂F (α)

∂ pk
= 2K (α)

jk p j .

Using (2.5), this can be written as

∑

α

λ(α)

(
K (α)
i j,k p

i p j + K (α)
jk V , j

)
= 0 (6.2a)

∑

α

λ(α)K
(α)
jk p j = 0. (6.2b)

Now, from the Killing Eq. (2.4) and (5.2) we obtain

K (α)
i j,k p

i p j = −2K (α)
k j,i p

i p j = −2

3
j k
i

T a
jk K

(α)
ia pi p j
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= 2

3

(
T a

i j K
(α)
ka − T a

k j K
(α)
ia

)
pi p j .

In the sum over α, the second summand vanishes due to (6.2b),

∑

α

λ(α)K
(α)
i j,k p

i p j = 2

3

∑

α

λ(α)T
a
i j K

(α)
ka pi p j .

Substituted back into (6.2a), we have

∑

α

λ(α)K
(α)
ka

(
2

3
T a

i j p
i p j + V ,a

)
= 0

or

V,a ∈ −2

3
Tai j p

i p j + ker

(∑

α

λ(α)K
(α)

)
. (6.3)

The solution space of (4.1) is parametrised by arbitrary values for V , ∇V and �V at
a fixed point. Therefore (6.3) proves the theorem in case the kernel is not maximal
at some point in phase space. On the other hand, if the kernel above is maximal
for any point in phase-space, then the K (α) are functionally linearly dependent and
thus linearly dependent at some point in phase space. By Proposition 5.5 the K (α)

are determined by their values in a fixed point. Hence they are linearly dependent in
K(M), which contradicts the assumption. 	


The proof of Proposition 6.1 shows that an explicit knowledge of the set�(I) solves
the classification problem for irreducible non-degenerate superintegrable systems.
This motivates the following definition.

Definition 6.3 We call the subset

�(I) ⊂ G2n−1
(K(M)

)
,

given by the conditions in Proposition 6.1, the classification space for irreducible
non-degenerate superintegrable systems.

We are now ready to state our first main result.

Theorem 6.4 The classification space for irreducible non-degenerate superintegrable
systems on a Riemannian manifold M with analytic metric is a quasi-projective sub-
variety in the Grassmannian G2n−1

(K(M)
)
of (2n−1)-dimensional subspaces in the

space K(M) of Killing tensors on M.

Proof It suffices to show that in Proposition 6.1 the conditions (ii) and (iii) as well as
the converse of condition (i) define subvarieties in G2n−1

(K(M)
)
.
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For the moment, let us fix a point x ∈ M . The evaluation K �→ K (x) of a tensor
K at x and the covariant derivative K �→ ∇K are linear operations. Therefore, for
every x , the components of a Killing tensor and its derivatives,

Ki j (x), Ki j,k(x), Ki j,kl(x),

are linear functions on the space K(M) of Killing tensors on M .
The Moore-Penrose inverse A† is rational in the components of A, with homoge-

neous numerator and denominator of degree 2r −1 respectively 2r . Consequently, the
components Ti jk(x) of the structure tensor of an irreducible superintegrable system

are rational functions in the K (α)
i j (x) and the K (α)

i j,k(x) for α = 0, 1, . . . , 2n−2. Hence

the Ti jk(x) are rational functions on the space K(M)2n−1. Similarly, the components

Ti jk,l(x) of the derivative of the structure tensor are rational in K (α)
i j (x), K (α)

i j,k(x) and

K (α)
i j,kl(x), so they as well are rational functions on K(M)2n−1. More precisely, nom-

inator and denominator are homogeneous with the same degree in both cases, which
is 2r for Ti jk(x) and 4r for Ti jk,l(x).

We now show that in Proposition 6.1 the conditions (ii) and (iii) as well as the
converse of condition (i) are given by homogeneous algebraic equations. First note
that a set of Killing tensors has non-maximal rank if and only if

Gr (A) = 0 for r = rmax = (n − 1)(n + 2)

2

holds on all of M . Moreover, Gr (A) is a homogeneous polynomial in the components
of A, i.e. in the K (α)

i j (x). This shows that the converse of condition (i) in Proposition 6.1

is a homogeneous algebraic equation on K(M)2n−1 for every x ∈ M .
Evaluated at x , the integrability conditions (4.4) are polynomial in Ti jk(x) and

Ti jk,l(x), which are rational functions on K(M)2n−1. Consequently, the integrability
conditions (4.4) can be written as homogeneous algebraic equations on K(M)2n−1

for every x ∈ M . By similar arguments the same is true for the integrability condi-
tions (5.7).

To summarise, in Proposition 6.1 the conditions (ii) and (iii) as well as the converse
of condition (i) are given by homogeneous algebraic equations on the spaceK(M)2n−1

for every point x ∈ M . Together, these equations define a quasi-projective subvariety
in the Stiefel manifold V2n−1

(K(M)
)
of (2n − 1)-frames in K(M).

The Bertrand–Darboux equations (2.6) as well as the properties of irreducibility
and non-degeneracy are invariant under linear changes of the basis K (α). Therefore,
the above subvariety is invariant under the action of the general linear group GL2n−1
on V2n−1

(K(M)
)
and descends to a quasi-projective subvariety of the Grassmannian

G2n−1
(K(M)

) ∼= V2n−1
(K(M)

)

GL2n−1
.
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7 Constant Curvature

7.1 Codazzi Tensors of a Superintegrable System

In this section we express the integrability conditions (4.6) on constant curvature man-
ifolds in terms of Codazzi tensors and use their local form to rewrite them as a system
of partial differential equations for two scalar functions—the structure functions of
the superintegrable system.

Definition 7.1 A second-order Codazzi tensor is a symmetric tensor Ci j satisfying

j
k

Ci j,k = 0. (7.1)

Proposition 7.2 For every non-degenerate superintegrable system on a constant cur-
vature manifold of dimension n � 3, there exists a function ζ such that the trace
modification

Ci j = Zi j + ζ gi j (7.2)

of the symmetric tensor (4.6e) is a Codazzi tensor.

Proof On a constant curvature manifold we have

Ri jkl = R

n(n − 1)
(gikg jl − gil g jk),

where R = Rab
ab is the scalar curvature. In this case the curvature term in (4.10)

vanishes due to the first integrability condition (4.4a), so that

i j
k
l
m

Zik,l g jm = 0.

The trace of this equation over ( j, k) yields a conformal Codazzi equation for the
tensor Zi j :

l i
m

∗

◦
Zil,m = 0. (7.3)

Antisymmetrising the covariant derivative of this equation in all indices but i and using
the Ricci identity results in

l i
m
n

∗
gil Zm

a
,an = 0.
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Taking the trace of this equation over (i, n) now shows that the divergence of Zi j is
closed,

l
m

Zm
a
,al = 0,

and hence the differential of some function, more precisely

Zm
a
,a = (n − 1)ζ,m .

Under this condition, the Codazzi equation (7.1) for Ci j reduces to the conformal
Codazzi equation (7.3) for Zi j , which we have already shown to be satisfied. 	

Lemma 7.3 [19]On a constant curvature manifold every second-order Codazzi tensor
Ci j is locally of the form

Ci j = C,i j + R

n(n − 1)
Cgi j ,

for some function C, where R is the scalar curvature. Conversely, every tensor of this
form on a constant curvature manifold is a Codazzi tensor.

Definition 7.4 A third order Codazzi tensor is a totally symmetric tensor Bi jk that
satisfies

k
l

Bi jk,l = 0. (7.4)

Proposition 7.5 For every non-degenerate superintegrable system on a constant cur-
vature manifold of dimension n � 3, the trace modification

Bi jk = Ti jk + 1

n − 1
gi j t,k + 1

2(n − 2)
i j k gi jC,k (7.5)

of the structure tensor is a Codazzi tensor.

Proof First note that the tensor Bi jk is indeed symmetric, due to the first integrability
condition (4.4a). Using the definitions (7.2) of Ci j and (7.5) of Bi jk together with the
fact that

i j k
l

gikg jl = 0,

we check that the Codazzi equation for Bi jk is equivalent to the consequence (4.9) of
the second integrability condition (4.6d):

k
l

Bi jk,l = 1

2
i j k

l

(
Ti jk,l + 2

n − 2
gik Z jl

)
= 0.
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The proof of the following Lemma is analogous to that of Lemma 7.3.

Lemma 7.6 On a constant curvature manifold every third order Codazzi tensor Bi jk
is locally of the form

Bi jk = 1

6
i j k

(
B,i jk + 4R

n(n − 1)
gi j B,k

)

for some function B. Conversely, every tensor of this form on a constant curvature
manifold is a Codazzi tensor.

We can now rewrite the structure tensor and all integrability conditions in terms of
the structure functions B and C .

Proposition 7.7 The structure tensor of a superintegrable system on a constant cur-
vature manifold of dimension n � 3 has the decomposition (4.7) with

T̊i jk = 1

6
i j k ◦ B,i jk (7.6a)

n

n − 1
t = �B + 2(n + 1)

n(n − 1)
RB − n + 2

n − 2
C + constant (7.6b)

for two functions B and C, which are unique up to a gauge transformation

B �→ B + δB i j k ◦ δB,i jk = 0 (7.7a)

C �→ C + δC i j ◦ δC,i j = 0 (7.7b)

satisfying the compatibility condition

n + 2

n − 2
δC = �δB + 2(n + 1)

n(n − 1)
RδB + constant. (7.7c)

In particular, we can choose simultaneously

C(x0) = 0 ∇C(x0) = 0 �C(x0) = 0 (7.8a)

B(x0) = 0 ∇B(x0) = 0 ∇∇B(x0) = 0 (7.8b)

in a fixed point x0.

Proof Combining Proposition 7.5 and Lemma 7.6, we get

Ti jk + 1

n − 1
gi j t,k = i j k

(
1

6
B,i jk + 2R

3n(n − 1)
gi j B,k − 1

2(n − 2)
gi jC,k

)
.
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Taking the trace-free part on each side results in (7.6a). Contracting this equation in i
and j yields

n

n − 1
t,k = 1

3

(
B,a

a
k + 2B,ka

a) + 4(n + 2)

3n(n − 1)
RB,k − n + 2

n − 2
C,k .

By the Ricci identity,

B,ka
a − B,a

a
k = B,ak

a − B,a
a
k = Rb

ak
a
B,b = R

n
B,k,

so that

n

n − 1
t,k = B,a

a
k + 2(n + 1)

n(n − 1)
RB,k − n + 2

n − 2
C,k .

This is equivalent to (7.6b) and imposes the constraint (7.7c) on the gauge transforms
(7.7a) and (7.7b).

A flat constant curvature manifold is locally isometric to Euclidean space, so that
(7.7a) and (7.7b) can easily be integrated to give

δC(�r) = 2(n − 2)
(
1
2c2r

2 + �c1�r + c0
)

δB(�r) = 1
4b4r

4 + r2 �b3�r + �r TA�r + �b1�r + b0,

where the b0, b4, c0, c2 are scalar constants, �b1, �b3, �c1 are vectorial constants and A
is a constant symmetric matrix. Imposing (7.7c) with R = 0, we find b4 = c2 and
�b3 = �c1. This shows that we can chose the gauge (7.8) in a single point.

On a non-flat constant curvature manifold, the proof is similar to the flat case. 	

Proposition 7.8 On a manifold of constant curvature κ and dimension n � 3, the
integrability conditions for a superintegrable potential in the form (4.6) are equivalent
to the following equations for the structure functions B and C:

0 = i k
j l

∗

◦
B,ik

a B, jla (7.9a)

C̊,i j =
[
B,i

abB, jab + B,i j
a
(
C − 2(n − 2)κB − �B

)

,a

− 1

n − 2

(
C − (n − 2)κB

)

,i

(
C − (n − 2)κB

)

, j

]

◦
(7.9b)

Proof This follows from substituting (4.7)with (7.6) into (4.6): Eq. (4.6a) is identically
satisfied by Proposition 4.5, Eq. (4.6b) is equivalent to Eqs. (7.9a), (4.6c) is identically
satisfied due to Eqs. (5.11b), (4.6d) is satisfied due to the Codazzi equation for Bi jk
and Eq. (4.6e) is equivalent to (7.9b), using (7.2). 	
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Remark 7.9 Equation (7.9a) can alternatively be written with the (symmetric) Codazzi
tensor Bi jk instead of the covariant derivative B,i jk of the structure function B:

0 = i k
j l

∗

◦
Bik

a B jla .

The reason is that B,i jk is symmetric up to trace terms, so that the only non-trace
terms in the contraction Bika B jla , being of the form B,i jk B,l , do not have Riemann
symmetry. This follows from the Littlewood-Richardson rule

⊗ ∼= ⊕ .

Remark 7.10 Equation (7.9b) can be extended by a second equation expressing the
covariant derivative of the Laplacian �C polynomially in ∇C , where the coefficients
are polynomial in the derivatives of B. Together, theydefine a (non-linear) prolongation
of (7.9b). This leads to higher order integrability conditions for the prolongation of a
superintegrable Killing tensor on a constant curvature manifold.

7.2 Algebraic Superintegrability Conditions for Abundant Systems

Proposition 7.11 The structure tensor of an abundant superintegrable system on a
constant curvature manifold of dimension n � 3 satisfies

i k
j l

∗

◦
T̊ a

ik T̊a jl = 0 (7.10a)

i j ◦
(
T̊ ab
i T̊ jab − (n − 2)(T̊ a

i j t̄a + t̄i t̄ j )
)

= 0 (7.10b)

T̊ abcT̊abc − (n − 1)(n + 2)t̄ a t̄a = 9R (7.10c)

Proof For constant curvature, Eq. (5.11) imply and (7.10a) and (7.10b), while Eq.
(5.12) reads

(
T̊ abcT̊abc − (n + 2)(n − 1)t̄ a t̄a − 9R

)
t̄i = 0,

showing that (7.10c) holds over the support of t̄i . So let us suppose t̄i = 0 in a local
neighbourhood of some point. There the tracefree and trace part of (5.10c) read

(
T̊ ab
i T̊ jab

)

◦ = 0 T̊ abcT̊abc = −9(n + 2)

3n + 2
R (7.11)

123



Superintegrable Systems in Arbitrary Dimension Page 37 of 49 360

and show that (7.10c) holds for R = 0. We therefore suppose R �= 0 from now on.
With the above Eqs. (5.10b) reads

T̊i jk,l = 1

18
i j k

(
T̊ a
i j T̊kla + 18R

(3n + 2)n
gikg jl

)
.

We can use this equation to eliminate all derivatives in the Ricci identity

m
l

T̊i jk,lm = i j k Ra
ilm T̊a jk

to give
R

n(n − 1)
i j k m

l
T̊i jmgkl = 0.

A contraction over (k, l) then shows

RT̊i jm = 0.

For R �= 0 this implies T̊i jk = 0. This means that the structure tensor vanishes, which
is only possible for R = 0 due to (7.11). 	


The following proposition shows that the necessary conditions (7.10) are sufficient
to reconstruct an abundant superintegrable system from the values of its structure
tensor in a single point.

Proposition 7.12 Consider a manifold M of constant curvature and dimension n � 3.
Assume we are provided with the values of a tensor Ti jk in a fixed point x0 ∈ M
such that Ti jk satisfies Conditions (7.10) in x0. Then there exists a solution Ti jk to the
non-linear prolongation Eqs. (5.10), defined almost everywhere in a neighborhood of
x0, where Ti jk also satisfies the algebraic Eqs. (7.10).

Proof Using (5.10), the covariant derivatives of the three algebraic conditions (7.10)
can be written as polynomials in Ti jk . It can be checked that these polynomials lie in
the ideal generated algebraically by (7.10). 	


Let us briefly retrace how an abundant superintegrable system can be reconstructed
from the values of its structure tensor in a single point.

(i) Given a solution Ti jk(x0) to the algebraic integrability conditions (7.10) in a
single point x0, one can solve the prolongation Eq. (5.10) to extend this solution
to a tensor Ti jk(x) satisfying the conditions (7.10) in a neighbourhood of x0
(cf. Proposition 7.12).

(ii) Next, one can solve the prolongation Eq. (5.2) for any initial values Ki j (x0),
yielding an n(n + 1)/2-dimensional space of Killing tensors Ki j (x), as the
corresponding integrability conditions are satisfiedby the prolongationEq. (5.10)
and a subset of the algebraic integrability conditions (7.10) (cf. Proposition 5.9).
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(iii) Then, one can solve the prolongation Eq. (4.1) for any initial values V (x0),
∇V (x0) and�V (x0) to obtain a function V (x), since the integrability conditions
for a superintegrable Killing tensor imply those for a superintegrable potential
(cf. Corollary 5.11).

(iv) As the prolongation Eq. (5.2) for a superintegrable Killing tensor is the obstruc-
tion that a solution to the prolongation equation (4.1) for a superintegrable
potential solves the Bertrand–Darboux equation (2.6), the latter is satisfied as
well. This in turn is the integrability condition for Eq. (2.5). Therefore, one can
solve the latter in order to obtain the individual potentials V (α) that complement
the Killing tensors K (α) to integrals F (α) = K (α) + V (α) of the Hamiltonian
H = F (0) = g + V . For a generic solution V and a generic choice of (2n − 1)
linearly independent Killing tensors, these integrals are functionally independent
and hence form a superintegrable system (cf. Lemma 6.2).

By construction, the superintegrable system thus obtained is non-degenerate, and in
fact abundant. On simply connected constant curvature manifolds the locally defined
Killing tensors extend globally, so the above construction is global in this case.

Corollary 7.13 A superintegrable system on a constant curvature manifold of dimen-
sion n � 3 is abundant if and only if it satisfies the algebraic equations (7.10).

Proof By Proposition 7.11, an abundant superintegrable system satisfies Eqs. (7.10).
Conversely, suppose a superintegrable system satisfies these equations. Then byPropo-
sition 7.12, there is an abundant superintegrable system having the same values of the
structure tensor and of the Killing tensors at the fixed point x0. Due to Proposition 5.4,
the Killing tensors and the structure tensors of both systems coincide everywhere. In
particular, both are abundant. 	


Theorem 6.4 states that the configuration space of non-degenerate superintegrable
systems is a quasi-projective variety. Our proof is not constructive, as it is based on
an infinite set of implicitly defined algebraic equations. For an abundant system on a
constant curvature manifold, Proposition 7.12 reduces this set to a finite set of explicit
algebraic equations, given by (7.10). This is what renders an algebraic-geometric
classification tractable in the first place. We can simplify these equations further by
rewriting them in terms of the structure functions.

Corollary 7.14 A superintegrable system on a constant curvature manifold of dimen-
sion n � 3 is abundant if and only if the structure function B satisfies

i j
k l

∗ (
Ba

i j Bakl + 9R

n(n − 1)
gi j gkl

)
= 0 (7.12)

and the structure function C vanishes, up to gauge transforms of the form (7.7).

Proof Observe that for constant curvature the left hand side of Eq. (7.10b) is nothing
but the trace free part of the tensor Zi j defined in (4.6e) and used in the definition (7.1)
of the Codazzi tensor Ci j . This shows that the trace-free part of Ci j is zero and that
we can choose a gauge in which C vanishes. But for C identically zero, Eq. (7.10)
becomes the Ricci decomposition of the algebraic curvature tensor in (7.12) after
expressing the structure tensor in terms of the structure functions via (7.6). 	
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7.3 Structure Connection of a Superintegrable System

We now encode the information about a superintegrable system on a constant curva-
ture manifold in a torsion-free affine connection and express all relevant integrability
conditions for abundant systems as the flatness of this connection.

Definition 7.15 For a non-degenerate superintegrable systemon amanifold of constant
curvature and dimension n � 3, we introduce a torsion-free affine connection ∇̂ by

g(∇̂XY , Z) = g(∇XY , Z) + A(X ,Y , Z),

where the tensor Ai jk is given by

Ai jk := −1

3

(
Ti jk + 1

n − 1
gi j tk

)
. (7.13)

We call ∇̂ the structure connection of the superintegrable system and denote its cur-
vature tensor by R̂i jkl .

Note that Ai jk is symmetric due to the first integrability condition (4.4a).

Proposition 7.16 The curvature of the structure connection ∇̂, written in terms of the
structure functions, reads

R̂i
jkl = Ri

jkl + 1

9
k
l

(
Bi

ka B
a
jl

+ C ,a

n − 2

(
gi l B jak − g jl B

i
ak

)
+ 3

n − 2

(
gi lC, jk + g jlC

,i
k

)

+ 1

(n − 2)2

(
gi kC, jC,l − g jkC

,iC,l + gi kg jlC
,aC,a

))
, (7.14)

where Ri
jkl is the metric curvature tensor.

Proof The formula follows from applying the definition of the curvature of an affine
connection,

R̂i
jkl = Ri

jkl + k
l

(
∇k A

i
jl + Ai

mk A
m

jl

)
,

taking into account the Codazzi equation (7.4) for Bi jk . 	

Corollary 7.17 A superintegrable system on a constant curvature manifold of dimen-
sion n � 3 is abundant if and only if its stucture connection is flat.

Proof We can decompose the curvature tensor R̂i jkl into its symmetric and anti-
symmetric part with respect to the indices (i, j). Due to the symmetry of Ai jk the
antisymmetric part has Riemann symmetry. The symmetric part is proportional to

k j i
l

∗
gi jC,kl .
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abundant

non-degenerate

irreducible

Fig. 1 Relation between different types of superintegrable systems.

Taking the trace in (i, k) shows that this term vanishes if and only if C,kl is trace. The
latter implies that we can choose a gauge in wich C vanishes. But for C identically
zero, R̂i jkl becomes the curvature tensor in (7.12). 	


7.4 TheVariety of Abundant Superintegrable Systems

In the previous sections we have shown how an abundant superintegrable system can
be reconstructed from the values of its structure tensor in a single point and we have
given explicit algebraic equations which are necessary and sufficient conditions for
a tensor to be the structure tensor of an abundant superintegrable system. In order to
understand the corresponding variety and its relation to the quasi-projective variety
defined in Sect. 6, we first need to comment on a technical subtlety.

Up to now we required a superintegrable system to be irreducible. This assump-
tion enabled us to define the structure tensor in terms of the Killing tensors in the
superintegable system, given by the Moore-Penrose inverse. Every time we have been
writing down the structure tensor, we were considering it to be an explicit function of
the Killing tensors in the superintegrable system. For an abundant system, in contrast,
we can now give an alternative, implicit way of defining the structure tensor, namely
by using the non-linear prolongation (5.10) and requiring the corresponding algebraic
integrability conditions (7.10) to hold. Note that superintegrable systems arising in this
way are always non-degenerate, but need not be irreducible (see Fig. 1). Nevertheless,
if they are irreducible, then obviously both definitions coincide.

With these clarifications made, we can illustrate the relation between the two vari-
eties geometrically as sketched in Fig. 2: denote by Fn1,n2

(K(M)
)
the flag variety of

inclusions U1 ⊂ U2 ⊂ K(M) of subspaces U1 and U2 in the space of Killing tensors
with dimensions dimU1 = n1 = 2n − 1 and dimU2 = n2 = 1

2n(n + 1). Forgetting
either one of these two subspaces, we have the two projections

πi : Fn1,n2
(K(M)

) −→ Gni

(K(M)
)

i = 1, 2
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Fig. 2 Relation between the classification spaces for abundant and usual non-degenerate superintegrable
systems.

onto the corresponding Grassmannians. Denote by I ⊆ S the set of irreducible non-
degenerate superintegrable systems. In Sect. 6 we have shown that its image under the
canonical map

�1 : I −→ Gn1

(K(M)
)

is a quasi-projective variety. In the same way, we can define a canonical map

�2 : A −→ Gn2

(K(M)
)

from the set A ⊆ S of abundant non-degenerate superintegrable systems to the
Grassmannian Gn2

(K(M)
)
, by mapping such a system to the space spanned by all its

Killing tensors.
As we are going to see shortly, the structure tensor Ti jk of an abundant system can be
obtained from its image under �2 by solving the prolongation equation (5.2) for Ti jk .
The potential can then be recovered by integrating the prolongation (4.1). That is, an
explicit knowledge of the set �2(A) solves the classification problem for abundant
non-degenerate superintegrable systems. This motivates the following definition.

Definition 7.18 We call the subset

�2(A) ⊂ G n(n+1)
2

(K(M)
)

the classification space for abundant non-degenerate superintegrable systems.

Note that for the intersection A ∩ I we have a fibre bundle

�1(A ∩ I) −→ �2(A ∩ I),

whose fibres consist of superintegrable systems possessing the same structure tensor
and are isomorphic to the Grassmannian Gn1(n2).

We are now ready to state our second main result.

Theorem 7.19 The classification space for abundant non-degenerate superinte-
grable systems on a Riemannian manifold M is a subvariety in the Grassmannian
G n(n+1)

2

(K(M)
)
of n(n + 1)/2-dimensional subspaces in the space K(M) of Killing

tensors on M. It is isomorphic to the variety of cubic forms

�i jk x
i x j xk
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on Rn satisfying

j
k

(
�a

i j�akl + R

n(n − 1)
gi j gkl

)
= 0. (7.15)

Proof For a fixed point x0 ∈ M , let Y ⊂ Sym3 Tx0M be the variety of cubic forms
� on Tx0M ∼= R

n satisfying (7.15). We construct an isomorphism f : Y → �2(A)

from a map

f̂ : Y × Sym2 Tx0M → K(M).

For � ∈ Y we define Ti jk(x0) by (4.7) and (7.6), where

Bi jk(x0) = 3�i jk, ∇C(x0) = ∇B(x0) = 0.

By definition, Ti jk(x0) satisfies all necessary integrability conditions generically, so
that Ti jk(x0) extends to a structure tensor Ti jk of an abundant superintegrable system.

Recall that any Killing tensor Ki j is determined locally by the values Ki j (x0),
Ki j,k(x0) and Ki j,kl(x0) in a single point x0, cf. Sect. 5.1. Therefore, given a pair
(�, S), we can define K = f̂ (�, S) by defining

• Ki j (x0) := Si j ,
• Ki j,k(x0) by (5.2),
• Ki j,kl(x0) by (5.6).

The map f̂ is polynomial in � and linear in S and hence defines a regular map
f : Y → Gn2(K(M)) with image in �2(A).
The inverse of f is a regular map �2(A) → Y constructed as follows. Consider a

pointU2 ∈ �2(A), i.e. a subspace U2 ⊂ K(M) spanned by n2 = n(n + 1)/2 linearly
independent Killing tensors K (α) of an abundant system. Contracting (i, j) in (5.2),
one obtains

KabT̃abk = Ka
a,k (7.16)

with

T̃i jk = 1

3
i j

(
gkj ti − Tkji

)
.

The definition of T̃i jk implies

gi j T̃i jk = 0 si := g jk T̃i jk = n

3
tk .

Using (4.4a), we can express Ti jk linearly in T̃i jk as

Tkji = 3

2

(
n − 2

n(n − 1)
si g jk + 1

n − 1
s j gik − T̃i jk

)
.

123



Superintegrable Systems in Arbitrary Dimension Page 43 of 49 360

Taking Eq. (7.16) for each of the K (α), we obtain a linear system of the form

AX = B,

where

• A is the n2 × n2 square matrix whose rows contain the components K (α)
i j for

1 � i � j � n and fixed α ∈ {1, 2, . . . , n2}
• B is the n2 × n -matrix whose rows contain the components gabK (α)

ab,k for k =
1, . . . , n and fixed α ∈ {1, 2, . . . , n2} and

• X is the n2 × n -matrix containing the components T̃i jk .

The matrix A is invertible. Indeed, if the Killing tensors K (α) are linearly dependent
at some point x , then they are linearly dependent in K(M) by Proposition 5.5, which
is a contradiction. Therefore the components T̃i jk , given by

X = A−1B = (Adj A)B

det A
,

are rational in K (α)
i j and K (α)

i j,k . Since the Codazzi tensor Bi jk is linear in Ti jk , which

in turn is linear in T̃i jk , the same is true for Bi jk . Note that derivatives and evaluation

are linear operations, so that K (α)
i j (x0) and K (α)

i j,k(x0) are linear functions on K(M).
Consequently, the components Bi jk(x0) are rational functions on K(M)n2 with non-
vanishing denominator on the Stiefel manifold Vn2

(K(M)
)
. Since the construction

is independent of the choice of the basis K (α) in the subspace U2, these functions
descend to regular functions on the Grassmannian Gn2 (K(M)). This defines a regular
map Gn2 (K(M)) → Sym3 Tx0M , mapping the subspace spanned by the n2 Killing
tensors K (α) to the cubic �i jk = 1

3 Bi jk(x0). By Corollary 7.14 it restricts to a map
�2(A) → Y . 	


8 Examples

Arbitrary-dimensional families of superintegrable systems can be obtained by gen-
eralising low-dimensional examples, and subsequently through Bôcher contractions
and Stäckel transforms. In the following we list some important families of super-
integrable systems in arbitrary dimension, cf. Table 2. For each system we detail its
potential V (omitting the additive constant) and its structure function B in a gauge
where C = 0 (all examples in the list are abundant in particular).

On flat space we use standard coordinates xi . On the n-sphere, in order to make the
similarity between the flat and the curved case apparent, we use local coordinates yi
with

g = −n(n − 1)
n∑

i=1

dy2i
y2n

,
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Table 2 Overview of examples discussed in the text

Families of non-degenerate second-order superintegable systems in arbitrary dimension n � 3

Euclidean geometry Complex n-sphere

g = ∑
i dx

2
i g = −n(n − 1)

∑n
i=1

dy2i
y2n

= ∑n
i=0 dx

2
i

(ambient coordinates xi on R
n+1 ⊃ S

n )

Isotropic harmonic oscillator –

V = ω2 ∑
i x

2
i + ∑

i αi xi

B = 0 mod gauge

t̄ = 0

Smorodinsky–Winternitz I Smorodinsky–Winternitz I’

V = ∑n
i=1

(
ai
x2i

+ ω2 x2i

)
V = − y2n

n(n−1)
∑n

i=1

(
ai
y2i

+ ω2y2i

)

B = − 3
n−1

∑
i (x

2
i ln xi ) B = 3n(n−1)

2y2n

∑n
i=1(y

2
i ln yi )

mod gauge mod gauge

t̄ = − 3
n+2

∑
k ln xk t̄ = 3

n+2

(
(n + 1) ln xn − ∑

i �=n ln xi
)

Smorodinsky–Winternitz II Smorodinsky–Winternitz II’

V = ∑
i∈J (4ω2x2i + ai xi ) V = − y2n

n(n−1)

[
∑

i∈J

(
4ω2y2i + ai yi

)

+
∑

i∈Jc

(
ai
x2i

+ ω2x2i

)
+ ∑

i∈Jc

(
ω2y2i + ai

y2i

)]

B = − 3
n−1

∑
i∈Jc x

2
i ln xi B = 3n(n−1)

2y2n

∑
i∈Jc y

2
i ln yi

mod gauge mod gauge

t̄ = − 3
n+2

∑
i∈Jc ln xi t̄ = 3

n+2
(
(n + 2) ln yn − ∑

i∈Jc ln yi
)

– Generic system on the n-sphere

V = ∑n
i=0

ai
x2i

B = − 3
2

∑n
i=0 x

2
i ln xi mod gauge

t̄ = − 3
n+2

∑n
i=0 ln(xi )

Horizontally adjacent examples are Stäckel equivalent. Note that the potential V is stated up to an additive
constant, and B up to gauge terms. All examples are abundant with gauge choice C = 0

except for the generic system, which we write in the coordinates xi of the ambient
Euclidean space.

8.1 Isotropic Harmonic Oscillator

V =
n∑

i=1

(ω2x2i + ai xi ) B = 0
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This is the trivial case already mentioned in Example 3.6. Its structure tensor vanishes
and therefore, up to gauge terms, all its structure functions vanish as well.

8.2 Smorodinsky–Winternitz I

V =
n∑

i=1

(
ai
x2i

+ ω2x2i

)
B = − 3

n − 1

n∑

i=1

x2i ln xi

This system was first described on flat space by Friš et al. [20] and is often called the
“generic system on flat space”. For low dimensions, other labels have also been used
in the literature such as (0, 11, 0) in [58] or [E1] in [47]. The corresponding label in
three dimensions is [I] in [12, 38, 42].

This system has a Stäckel invariant counterpart on the n-sphere, known as [I’] in
dimension three [42]:

V = − y2n
n(n − 1)

n∑

i=1

(
ai
y2i

+ ω2y2i

)
B = 3n(n − 1)

2y2n

n∑

i=1

y2i ln yi

8.3 Smorodinsky–Winternitz II

V =
∑

i∈J

(4ω2x2i + ai xi ) +
∑

i∈J c

(
ai
x2i

+ ω2x2i

)
B = − 3

n − 1

∑

i∈J c
x2i ln xi

In dimension 2, this system is also denoted by (0, 1, 0) [58] or [E2] in [47]. In dimen-
sion 3, it is labeled [IV] [38]. This system formally appears as a superposition of the
Smorodinski-Winternitz system I and the isotropic harmonic oscillator, defined by a
partition of the index set,

{1, 2, . . . , n} = J ∪ J c.

This might be an indication for the existence of a composition of superintegrable
systems similarly to the operad construction of separable systems on spheres [74].

The corresponding system on the n-sphere reads

V = − y2n
n(n − 1)

[∑

i∈J

(
4ω2y2i + ai yi

)
+

∑

i∈J c

(
ω2y2i + ai

y2i

)]

B = 3n(n − 1)

2y2n

∑

i∈J c
y2i ln yi

In low dimensions, the labels [S1] [47] and [IV’] [12, 38] have been used for this
system.

8.4 The Generic System on the n-Sphere

V =
n∑

i=0

ai
x2i

B = −3

2

n∑

i=0

x2i ln xi
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This system on the n-sphere, not to be confused with the generic system on flat
space, is labelled [S9] for 2D in [47] and [VIII] in [38, 42] for 3D. Its name and
its significance result from the fact that in dimensions two and three any other non-
degenerate second-order superintegrable system can be obtained from it via Stäckel
transforms and contractions.

Note that the term “generic” has a precise meaning in our algebraic geometric
context: it refers to a Zariski open subset in the classification space. We remark that if
the latter turns out to be reducible, there might as well be several “generic” systems,
as observed for the Euclidean plane [58].
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