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Abstract
Weprove an upper bound for the volume ofmaximal analytic sets onwhich the generic
Lelong number of a closed positive current is positive. As a particular case, we give a
uniform upper bound on the volume of the singular locus of an analytic set in terms
of its volume on a compact Kähler manifold.
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1 Introduction

Let T be a closed positive current on a compact Kähler manifold X of dimension
n. For every irreducible analytic subset V in X , we denote by ν(T , V ) the generic
Lelong number of T along V . For basics of Lelong numbers, we refer to [8]. LetW be
an irreducible analytic subset of dimension m on X . Let VT ,W be the set of (proper)
irreducible analytic subsets V of W such that ν(T , V ) > 0, and V is maximal with
respect to the inclusion of sets, i.e, if V ′ is another proper irreducible analytic set in
W so that ν(T , V ′) > 0 and V ⊂ V ′, then V ′ = V . Such a V is called a component
of Lelong upper-level set of T on W .

Let ω be a fixed Kähler form on X . We denote by ‖T ‖ the mass norm on T
given by ‖T ‖ := ∫

X T ∧ ωn−p, where T is of bi-degree (p, p). Similarly we define
vol(V ) := ∫

V ωdim V for every irreducible analytic subset V in X . Usually the volume
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of an analytic set involves a positive multiplicative dimensional constant. Since the
dimensions of analytic sets in consideration are bounded by n = dim X , we opt to
define vol(V ) as above so that the volume of V is simply equal to the mass norm of the
current of integration along V . This is only for a practical purpose and is not essential.

Theorem 1.1 There exists a constant c > 0 independent of T and W such that

∑

V∈VT ,W

(
ν(T , V ) − ν(T ,W )

)m−dim V vol(V ) ≤ c vol(W )‖T ‖(1 + ‖T ‖)m−1. (1.1)

The constant c in Theorem 1.1 depends only on X and ω but it is non-explicit: it
comes from upper bounds for density currents (see Theorem 2.1 below).

In Theorem 1.1, it is necessary to consider the “relative” generic Lelong number
ν(T , V ) − ν(T ,W ) of T along V in W in place of ν(T , V ), see Example 2.8 in the
end of the paper.

The irreducibility of W is not absolutely necessary. Nevertheless if W is not irre-
ducible, the inequality (1.1) must be modified a bit to take into account the generic
Lelong number of T along irreducible components of W . Theorem 1.1 gives in par-
ticular an upper bound for the volume of a maximal irreducible analytic subset of W
on which T has a strictly positive “relative” generic Lelong number.

Let T be of bi-degree (p, p). If p = 0, then T is a constant function, and in this
case, Theorem 1.1 is clear because VT ,W is empty. If p = n, then T is a measure
on X and the only maximal Lelong level sets for T are points where T has positive
mass. In this case, the desired inequality (1.1) follows from the fact that vol(W ) is
bounded below by a constant c0 > 0 independent of W (see Lemma 2.5 below) and
the elementary inequality

∞∑

j=1

amj ≤ ( ∞∑

j=1

a j
)(
1 +

∞∑

j=1

a j
)m−1

for positive numbers a j . Thus the non-trivial case is when 1 ≤ p ≤ n − 1. Since a
current of bi-degree (p, p) with p ≥ 1 on X has zero generic Lelong number along
X , by taking W := X in Theorem 1.1, one obtains

Corollary 1.2 Let T be a closed positive current of bi-degree (p, p) with p ≥ 1 on
X. Let VT be the set of maximal irreducible analytic subsets V in X along which the
generic Lelong number of T is strictly positive. Then we have

∑

V∈VT

(
ν(T , V )

)n−dim V vol(V ) ≤ c‖T ‖(1 + ‖T ‖)n−1,

for some constant c > 0 independent of T .

By [22], for every closed positive current T of bi-degree (p, p)with 1 ≤ p ≤ n−1,
there exists a closed positive current of bi-degree (1, 1) whose Lelong numbers are
equal to those of T everywhere. Hence it makes no difference in the above results if
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we assume that T is of bi-degree (1, 1). Thus Corollary 1.2 follows indeed from [25,
Theorem 4.1], see Remark 2.6 below.

Corollary 1.2 is related toDemailly’s self-intersection inequality ([9, Theorem 1.7])
and other higher bi-degree versions of it in [18, 19, 22]. If one applies directly [9,
Theorem1.7] or results in [18, 19, 22], thenoneonlygets anupper bound for thevolume
of maximal Lelong sets of maximal dimension. Precisely, let k := maxV∈VT dim V
and let V ′

T be the subset of VT containing V of dimension k. By these last references,
there holds

∑

V∈V ′
T

(
ν(T , V )

)n−k vol(V ) ≤ c‖T ‖n−k,

for some constant c > 0 independent of T . However [9, Theorem 1.7] is not sufficient
to treat maximal Lelong level sets which are not of maximal dimension k because
these sets are not read in the process of considering jumping values of Lelong level
sets if their Lelong numbers are less than or equal to maxV∈V ′

T
ν(T , V ), see Remark

2.7 at the end of the paper for an example illustrating this issue. Hence the novelty in
Corollary 1.2 (and Theorem 1.1) is that it bounds the volume of every maximal Lelong
level set, see also Corollary 1.3 below.

Let W be analytic set in X . We don’t require W to be irreducible. We define a
sequence of analytic subsets as follows. LetW0 := W andWj to be the singular locus
of Wj−1 for j ≥ 1. The process ends at a finite time when Wj is smooth because of a
dimension reason. Hencewe obtain a finite sequence (Wj )1≤ j≤kW . Note kW ≤ dimW .
We call (Wj )1≤ j≤kW the singularity filtration of W .

Let T := [W ] be the current of integration along W . Recall that ν(T , x) is the
multiplicity ofW at x for every x ∈ X , and ν(T , x) = 1 if x ∈ W0\W1 and ν(T , x) ≥ 2
if x ∈ W1 (see [2, Page 120]). The analytic setWj might not be irreducible and hence
can contain several irreducible components of different dimensions. Write Wj =
∪l
k=1Wjk which is the decomposition of Wj into irreducible components. We define

vol(Wj ) :=
l∑

k=1

vol(Wjk) =
l∑

k=1

∫

Wjk

ωdimWjk .

As an application of Theorem 1.1, we obtain

Corollary 1.3 There exists a constant c > 0 independent of W such that

vol(W1) ≤ c vol(W )(1 + vol(W ))m−1 (1.2)

and

kW∑

j=1

vol(Wj ) ≤ c vol(W )(1 + vol(W ))(m+2)m , (1.3)

where m := dimW.
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If one uses [9, Theorem 1.7], then one only obtains a similar upper bound for the
sum of volumes of irreducible components of W1 of maximal dimension. The reason
as explained above is that some maximal Lelong level sets are not taken into account
in the sequence of jumping numbers for the Lelong level sets Ec in [9, Theorem 1.7].

We can refine Corollary 1.2 a bit more as follows. A Lelong filtration associated to
T is a finite sequence of (non-empty) irreducible analytic subsets V := (Vj )0≤ j≤l in
X such that V0 � V1 � · · · � Vl , and for 1 ≤ j ≤ l+1, Vj−1 is a maximal irreducible
analytic subset of T on Vj such that ν(T , Vj−1) > ν(T , Vj ), where Vl+1 := X . The
number l is called the length of the filtration V. For each Lelong filtration V, we put

vol(V) := vol(V0)
l∏

s=0

(
ν(T , Vs) − ν(T , Vs+1)

)dim Vs+1−dim Vs .

A Lelong filtration V = (Vj )1≤ j≤m is maximal if ν(T , V0) = ν(T , x) for every
x ∈ V0, in other words, one can not add one more analytic subset to V to make it
longer. Let FT be the set of Lelong filtrations of T .

Theorem 1.4 Let T be a closed positive current of bi-degree (p, p) with p ≥ 1 on X.
Then we have

∑

V∈FT

vol(V) ≤ c‖T ‖(1 + ‖T ‖)n2 ,

for some constant c > 0 independent of T .

Since the self-intersection of Demailly mentioned above has found applications in
the study of equidistribution of pre-images of subvarieties in complex dynamics (see
[13, 21]), we expect that Theorem 1.1 could be also useful for this question. Corollary
1.3 is by the way of independent interest in its own right.

The difficulty in proving Theorem 1.1 is that the intersection of copies of T with the
current of integration along W is not well-defined in the classical sense. To solve this
problem, we need to use both the analytic regularisation of psh functions by Demailly
([9]) and the theory of density currents by Dinh–Sibony ([14]). The fact that the notion
of density currents generalizes the classical intersection of currents of bi-degree (1, 1)
(see [16]) is also crucial in our proof.

We suspect that the inequality in Corollary 1.2 is more or less the best possible
relation between ν(T , V ) for maximal V if we don’t take into account the cohomology
class of T . More precisely we would like to pose the following question.

Problem 1.5 Let (Vj ) j∈N be a countable family of irreducible analytic subsets in X
together with a sequence of strictly positive real numbers (λ j ) j∈N such that Vj �⊂ Vj ′
for every j �= j ′, and

∞∑

j=1

λ
n−dim Vj
j vol(Vj ) < ∞.
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Does there exist a closed positive current T of bi-degree (1, 1) such that ν(T , Vj ) ≥ λ j

and Vj is a maximal analytic subset along which T has strictly positive generic Lelong
number for every j? Furthermore, if α is a pseudoeffective (1, 1)-class, under which
additional assumptions on (Vj , λ j ) there exists a closed positive current T in α so that
T satisfies the above property?

The problemwas solved in [10, Corollary 6.8] in the casewhereα is big and nef, and
(Vj ) j∈N is a countable family of points in X . The necessary and sufficient condition
in this case is

∞∑

j=1

λnj ≤
∫

X
αn .

Problem 1.5 can be put in a broader context as follows. Consider a big cohomology
(1, 1)-classα and an analytic subset V in X . Onewants to study the space of currents in
α having controlled singularities along V (in some reasonable ways). Such a question
is relevant in the theory of complexMonge-Ampère equations big cohomology classes
where this equation was solved with given prescribed singularities (see [4–6, 15]). We
refer also to [3, 7] for some results around this topic in the case where the class is
integral.

2 Proofs of Theorem 1.1 and Its Consequences

Wefirst recall some basic properties of density currents. The last notionwas introduced
in [14].

Let X be a complex Kähler manifold of dimension n and V a smooth complex
submanifold of X of dimension l. Let T be a closed positive (p, p)-current on X ,

where 0 ≤ p ≤ n. Denote by π : E → V the normal bundle of V in X and
E := P(E ⊕ C) the projective compactification of E . By abuse of notation, we also
use π to denote the natural projection from E to V .

LetU be an open subset of X withU ∩V �= ∅. Let τ be a smooth diffeomorphism
from U to an open neighborhood of V ∩ U in E which is identity on V ∩ U such
that the restriction of its differential dτ to E |V∩U is identity. Such a map is called an
almost-admissible map. When U is a small enough tubular neighborhood of V , there
always exists an almost-admissible map τ by [14, Lemma 4.2]. In general, τ is not
holomorphic. When U is a small enough local chart, we can choose a holomorphic
almost-admissible map by using suitable holomorphic coordinates onU . For λ ∈ C∗,
let Aλ : E → E be the multiplication by λ on fibers of E .

Theorem 2.1 ( [14, Theorem 4.6]) Let τ be an almost-admissible map defined on a
tubular neighborhood of V . Then, the family (Aλ)∗τ∗T is of mass bounded uniformly
in λ on compact sets, and if S is a limit current of the last family as λ → ∞, then S
is a current on E which can be extended trivially through E\E to a closed positive
current on E such that the cohomology class {S} of S in E is independent of the choice
of S, and {S}|V = {T }|V , and ‖S‖ ≤ C‖T ‖ for some constant C independent of S
and T .
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We call S a tangent current to T along V . By [14, Theorem 4.6] again, if

S = lim
k→∞(Aλk )∗τ∗T

for some sequence (λk)k converging to ∞, then for every open subset U of X and
every almost-admissible map τ ′ : U ′ → E , we also have

S = lim
k→∞(Aλk )∗τ ′∗T .

This is equivalent to saying that tangent currents are independent of the choice of
almost-admissible maps. By this reason, the sequence (λk)k is called a defining
sequence of T∞. In practice, to study tangent currents, we usually choose τ ′ to be
a holomorphic change of coordinates.

Let m ≥ 2 be an integer. Let Tj be a closed positive current of bi-degree (p j , p j )

for 1 ≤ j ≤ m on X and let T1 ⊗ · · · ⊗ Tm be the tensor current of T1, . . . , Tm which
is a current on Xm . A density current associated to T1, . . . , Tm is a tangent current to
⊗m

j=1Tj along the diagonal �m of Xm . Let πm : Em → � be the normal bundle of
�m in Xm . Whenm = 2 and T2 = [V ], the density currents of T1 and T2 are naturally
identified with the tangent currents to T1 along V (see [14] or [23, Lemma 2.3]).

We say that the Dinh–Sibony product T1 � · · · � Tm of T1, . . . , Tm is well-defined
if

∑m
j=1 p j ≤ n and there is only one density current associated to T1, . . . , Tm and

this current is the pull-back by πm of a current S on �m . We define T1 � · · · � Tm to
be S.

We note that one can still define density currents on general complex manifolds;
see [16, 17, 24] for details. We recall the following from [16].

Let R be a positive closed current and v be a psh function on an open subset 	 in
Cn . If v is locally integrable with respect to (the trace measure) of R, we define

ddcv ∧ R := ddc(vR), (2.1)

see [1].
For a collection v1, . . . , vs of psh functions, we can apply the above definition

recursively, as long as the integrability conditions are satisfied.

Definition 2.2 We say that the intersection of ddcv1, . . . , ddcvs, R is classically well-
defined if for every non-empty subset J = { j1, . . . , jk} of {1, . . . , s}, we have that
v jk is locally integrable with respect to the trace measure of R and inductively, v jr is
locally integrable with respect to the trace measure of ddcv jr+1 ∧ · · · ∧ ddcv jk ∧ R
for r = k − 1, . . . , 1, and the product ddcv j1 ∧ · · · ∧ ddcv jk ∧ R is continuous under
decreasing sequences of psh functions.

The abovedefinition is generalized in anobviousway to the casewhere	 is replaced
by a complex manifold. If X is a complex manifold and T1, . . . , Tm are closed positive
currents of bi-degree (1, 1) on X and R is closed positive current on X , then we say
that the intersection T1 ∧ · · · Tm ∧ R of T1, . . . , Tm, R is classically well-defined if
they are so locally on X .
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The reason forDefinition 2.2 is that in all ofwell-known standard situationswarrant-
ing the well-definedness of the intersection of currents (see, e.g, [8]), the intersection
satisfies the continuity under decreasing sequences. In particular if Tj has locally
bounded potentials outside some analytic subset Vj in X and R := [W ] the current of
integration along an analytic set W , and

dim(Vj1 ∩ · · · ∩ Vjs ∩ W ) ≤ dimW − s,

for every 1 ≤ j1 < · · · < js ≤ m, then T1 ∧ · · · ∧ Tm ∧ R is classically well-defined.

Theorem 2.3 ([16, Corollary 3.11]) Let X be a complex manifold. Let T1, . . . , Tm be
closed positive currents of bi-degree (1, 1) on X and let R be a closed positive current
on X such that T1 ∧ · · · ∧ Tm ∧ R is classically well-defined. Then the Dinh-Sibony
product of T1, . . . , Tm, R is well-defined and equal to T1 ∧ · · · ∧ Tm ∧ R.

Note that the last result was proved in [14] when local potentials of Tj ’s are con-
tinuous. We recall the following.

Lemma 2.4 The set of Lelong numbers of an arbitrary closed positive current on an
open subset in Cn is countable.

Proof For readers’ convenience, we present below a proof communicated to us by
Tien–Cuong Dinh. It is more or less a direct consequence of Siu’s analyticity of
Lelong upper level sets ([20]). Let T be a closed positive current on X . We show that
for every analytic set V in X , the set {x ∈ V : ν(T , x) > 0} is at most countable. The
desired assertion is the case where V = X . We prove this claim by induction on the
dimension of V . If dim V = 0, there is nothing to prove. Assume that the claim holds
for every analytic set of dimension < m. Let V be now of dimension m. For k > 0
integer, consider

E1/k := {x ∈ V : ν(T , x) ≥ ν(T , V ) + 1/k}

which is a proper analytic subset of V by Siu’s analyticity theorem [20]. Applying the
induction hypothesis to E1/k , one obtains that the set of Lelong numbers of T on E1/k
is at most countable. Since there is a countable number of E1/k , we infer the claim for
V . This finishes the proof. ��

The following result is also standard.

Lemma 2.5 Let X bea compact complexmanifold of dimensionn andω beaHermitian
form on X. Then there exists a constant C > 0 such that for every 0 ≤ p ≤ n and
every closed positive (p, p)-current T and every x ∈ X, we have

∫

X
T ∧ ωn−p ≥ Cν(T , x). (2.2)

In particular there exists a constant C > 0 such that if W is an irreducible analytic
subset of dimension m on X, then the vol(W ) := ∫

W ωm ≥ C.
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Proof Cover X be afinitelymany local chartsU1, . . . ,Um .We can assume furthermore
thatU j is contained in a bigger local chartU ′

j for 1 ≤ j ≤ m. Let x ∈ X . Then x ∈ Uj

for some j . We work locally onUj ⊂ Cn . Let ω0 be the standard Kähler form on Cn .
Note that there is a constant δ > 0 independent of x such that B(x, 2δ) ⊂ U ′

j . By the
definition of Lelong numbers, we have

∫

B(x,δ)
T ∧ ω

n−p
0 ≥ Cnδ

2(n−p)ν(T , x),

where Cn is an explicit dimensional constant. Since ω is Hermitian, we obtain a
constant C1 > 0 such that C1ω ≥ ω0. Thus

∫

B(x,δ)
T ∧ ω

n−p
0 ≤ Cn−p

1

∫

B(x,δ)
T ∧ ωn−p ≤ Cn−p

1

∫

X
T ∧ ωn−p.

Hence (2.2) follows. As for the second desired assertion, we recall that ν([W ], x) is
equal to the multiplicity of x in W which is a positive integer. Hence ν([W ], x) ≥ 1
for every x ∈ W . The uniform lower bound for the volume of W thus follows. ��

Proof of Theorem 1.1 By [22, Theorem 3.1], we can assume that T is of bi-degree
(1, 1).
Step 1.We assume first that T has analytic singularities in X (i.e., potentials of T are
locally the sum of a bounded function and the logarithmic of a sum of holomorphic
functions) and ν(T ,W ) = 0. We will explain how to remove this assumption at the
end of the proof.

For an irreducible analytic set V , we denote by [V ] the current of integration along
V . Denote by L(T ) the unbounded locus of T (for a definition, see [8, Page 150]). In
our present setting, the last set is an analytic subset of X . Since ν(T ,W ) = 0, we have
W �⊂ L(T ). Let 0 ≤ l ≤ m − 1 be an integer. Let V l

T ,W be the set of V ∈ VT ,W such
that dim V = l. The last set is finite because T has analytic singularities. Note that

VT ,W = ∪m−1
l=0 V l

T ,W .

Let V ∈ V l
T ,W . By the maximality of V , we see that V is an irreducible component

of L(T ) ∩ W . Thus, since dim V = l, we deduce that the intersection Tm−l ∧ [W ]
is classically well-defined on some open neighborhood UV of V \Sing(L(T ) ∩ W

)
,

where Sing
(
L(T ) ∩ W

)
denotes the singular locus of the analytic set L(T ) ∩ W .

Let Q := Tm−l ∧ [W ] onUV . Now, using a comparison result on Lelong numbers
( [8, Page 169]) gives that

Q ≥ (
ν(T , V )

)m−l [V ]
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on U . Letting V run over every element of V l
T ,W , we infer that Q is well-defined on

some open neighborhood U of

⋃

V∈V l
T ,W

V \Sing(L(T ) ∩ W
)
,

and

Q ≥
∑

V∈V l
T ,W

(
ν(T , V )

)m−l [V ] (2.3)

on U . We now estimate the mass of Q. Let �m−l+1 be the diagonal of Xm−l+1 and
π : E → �m−l+1 the normal bundle of �m−l+1 in Xm−l+1. Let Q̃ be a density
current associated to T , . . . , T (m − l times), and [W ]. Recall that Q̃ is a closed
positive current on E := P(E ⊕ C). By Theorem 2.1, we have

‖Q̃‖ � ‖T ‖m−l vol(W ). (2.4)

Since Q is well-defined on U , using Theorem 2.3, we obtain that Q̃ = π∗Q on
π−1(U ), where we have identified �m−l+1 with X . This combined with (2.4) yields
that

‖Q‖ � ‖T ‖m−l vol(W ).

Using this and (2.3) gives

∑

V∈V l
T ,W

(
ν(T , V )

)m−l vol(V ) � ‖T ‖m−l vol(W )

for every l. Summing the last inequality over l gives the desired inequality.
Step 2.We now get rid of the assumption that T has analytic singularities (but we still
require ν(T ,W ) = 0).

By Lemma 2.4 there are at most countably many maximal Lelong level sets of T
on W . Hence we can write

VT ,W = {V1, . . . , Vk, . . .}.

Let r > 0 be a small constant, and let Ar be the finite subset of VT ,W consisting of V
such that ν(T , V ) ≥ r . Therefore Ar increases to VT ,W as r → 0.

Let (Tε)ε be the sequence of closed positive (1, 1)-current regularising T given by
Demailly’s analytic approximation of psh functions ( [12, Corollary 14.13]). These
currents satisfy the following properties. One has Tε → T weakly as ε → 0, and
ν(Tε, ·) ≤ ν(T , ·) for every ε, and ν(Tε, ·) → ν(T , ·) uniformly on X as ε → 0. It
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follows that for every r > 0 there exists an ε > 0 small enough such that Ar ⊂ VTε ,W .
Applying the first part of the proof to Tε yields that

∑

V∈Ar

(
ν(Tε, V )

)m−dim V vol(V ) ≤ c vol(W )‖Tε‖(1 + ‖Tε‖)m−1,

for some constant c > 0 independent of T ,W . Letting ε → 0, and then r → 0 gives
the desired inequality.
Step 3. Finally we treat the general case where ν(T ,W ) > 0.We use [9, Theorem 1.1]
which is a regularisation result of (1, 1)-currents (see also [11, Theorem 6.1]). The
last theorem allows one to cut down the Lelong level set Ec := {x ∈ X : ν(T , x) ≥ c}
from T , where c > 0 is a constant. Choose c := ν(T ,W ) which is bounded by
a uniform constant times ‖T ‖. By [9, Theorem 1.1], we obtain a closed positive
(1, 1)-current T ′ such that ‖T ′‖ ≤ M‖T ‖ (M is a constant independent of T ), and
ν(T ′, x) = max{ν(T , x) − c, 0}, and additionally T ′ is smooth outside Ec (but we
don’t need this property at this point). Hence

VT ,W = VT ′,W , ν(T ′,W ) = 0,

and for every V ∈ VT ,W one gets ν(T , V ) − ν(T ,W ) = ν(T ′, V ). Thus the desired
inequality follows from Step 2 applied to T ′ and W . This finishes the proof. ��

Proof of Theorem 1.4 Observe that the length of a Lelong filtration is at most n− 1, so
it is bounded uniformly. Let FT ,l be the set of Lelong filtrations of T of length l for
0 ≤ l ≤ n − 1. We prove by induction on l that

∑

V∈FT ,l

vol(V) ≤ c‖T ‖(1 + ‖T ‖)nl+1
, (2.5)

for some constant c > 0 independent of T . If l = 0, the desired estimate is Corollary
1.2. We assume that (2.5) holds for l − 1. For every irreducible analytic subset W
in X , define FT ,l,W to be the subset of FT ,l consisting of V = (Vj )0≤ j≤l such that
V1 = W . We have

FT ,l = ∪WFT ,l,W .

For every V = (Vj )0≤ j≤l ∈ FT ,l,W , we associate to it a Lelong filtration CW (V)

of length l − 1 by putting

CW (V) := (Vj )1≤ j≤l .

Hence CW is a map fromFT ,l,W toFT ,l−1. The imageFT ,l,W under CW is the subset
ofFT ,l−1 consisting of Lelong filtrations starting fromW . The fiber of CW is naturally
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identified with VT ,W . Applying now Theorem 1.1 to T and W yields

∑

V∈VT ,W

(ν(T , V ) − ν(T ,W ))dimW−dim V vol(V ) � vol(W )‖T ‖(1 + ‖T ‖)m−1.

Thus
∑

V∈FT ,l,W

vol(V) �
∑

V1∈CW (FT ,l,W )

vol(V1)‖T ‖(1 + ‖T ‖)m−1

≤
∑

V1∈CW (FT ,l,W )

vol(V1)(1 + ‖T ‖)n

Summing again over W , one get

∑

W

∑

V∈FT ,l,W

vol(V) �
∑

V1∈FT ,l−1

vol(V1)(1 + ‖T ‖)n .

Since the left-hand side of the last inequality is equal to

∑

V∈FT ,l

vol(V),

the induction hypothesis now implies the desired assertion for l. This finishes the
proof. ��
Remark 2.6 We explain now how to deduce Theorem 1.1 in the case where W = X
from [25, Theorem 4.1]. Firstly by considering T /‖T ‖ instead of T , we can assume
that T of mass 1. Observe now that there is a constant c > 0 independent of T such
that T + cω lies in a fixed compact subset of Kähler cone in X . Thus Theorem 1.1 for
W = X follows directly from [25, Theorem 4.1].

Proof of Corollary 1.3 We prove first (1.2). Assume for the moment that W is irre-
ducible.

Let T := [W ]. Note that elements of VT ,W are irreducible components of W1.
Moreover ν(T , V ) − ν(T ,W ) ≥ 1 for V ∈ VT ,W because it is a strictly positive
integer. This combined with Theorem 1.1 applied to T := [W ] and W yields (1.2).
The case whereW is not necessarily irreducible follows by applying the previous case
to each irreducible component of W .

It remains to prove (1.3). Let (Wj )1≤ j≤m be the singularity filtration of W . Note
that m ≤ n. Note that dimWs−1 ≤ dimW − (s − 1). Applying (1.2) toWs−1 in place
of W for 1 ≤ s ≤ m, we obtain

vol(Ws) ≤ c vol(Ws−1)(1 + vol(Ws−1))
m−(s−1),

for some constant c > 0 independent of W . An induction argument thus gives

vol(Ws) � vol(Wl)(1 + vol(Wl))
(m−l+2)s−l
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for every 0 ≤ l ≤ s ≤ m. Applying the last inequality to l = 0 gives

vol(Ws) � vol(W )(1 + vol(W ))(m+2)s

for every 1 ≤ s ≤ m. This finishes the proof. ��
We end the paper with some examples.

Remark 2.7 Let X := Pn with n > 3 and x = [x0 : · · · : xn] homogeneous
coordinates. Let V1, V2, V3 be linear subspaces in Pn such that dim V1 = n − 1,
dim V2 = n − 2, and dim V3 = 1, and V3 �⊂ V2 ∪ V1, and V2 �⊂ V1. Let
T1, T2, T3 be closed positive currents of bi-degree (1, 1) such that the set of points
with positive Lelong number for Tj is equal exactly to Vj , and ν(Tj , x) = ν(Tj , Vj )

for every x ∈ Vj , and for j = 1, 2, 3 (e.g., V2 = {x0 = x1 = 0}, choose
T2 := ddc(|x0|2 + |x1|2)). Choosing positive constants λ j suitably, one see that the
current

T := λ1T1 + λ2T2 + λ3T3

satisfies

ν(T , V1) = 1/100, ν(T , V2) = 1/100, ν(T , V3) = 1.

Hence V1, V2, V3 are all maximal Lelong upper level sets for T . On the other hand,
if Ec := {x ∈ Pn, ν(T , x) ≥ c}, then Ec = V1 ∪ V2 ∪ V3 if c ∈ (0, 1/100], and
Ec = V3 if c ∈ (1/100, 1], and Ec = ∅ if c > 1. One sees that the maximal set V2 is
not taken into account in the self-intersection inequality in [9, Theorem 1.7] as well
as its generalizations in [18, 22] (because V2 is of codimension 2, but only appears in
E1/100 which is of codimension 1).

Example 2.8 Let X = P3,W ≈ P2 a hyperplane in P3 and D a hypersurface of degree
d inP3 so that D intersectsW at a smooth curve V (of degree d). Let T := ε[D]+[W ]
for some small constant ε > 0. We see that VT ,W = {V } and vol(V ) = d and

ν(T , V ) vol(V ) = (1 + ε)d, c vol(W )‖T ‖(1 + ‖T ‖) ≤ c(2 + εd)2 < (1 + ε)d

if d is big enough and ε := 1/d (recall c is independent of T ,W ). Thus the inequality
(1.1) fails to be true in general if ν(T , V ) − ν(T ,W ) is replaced by ν(T , V ).
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