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Abstract
We study existence of semi-classical states for the nonlinear Choquard equation:

—2Av+ V() = 8%(101 x F(v)) f(v) inRY,

where N > 3, € (0, N), I, (x) = Ay /|x|V ™% is the Riesz potential, F € C'(R, R),
F’(s) = f(s) and ¢ > 01is a small parameter. We develop a new variational approach,
in which our deformation flow is generated through a flow in an augmented space
to get a suitable compactness property and to reflect the properties of the potential.
Furthermore our flow keeps the size of the tails of the function small and it enables us
to find a critical point without introducing a penalization term. We show the existence
of a family of solutions concentrating to a local maximum or a saddle point of V (x) €
CN (RN, R) under general conditions on F (s). Our results extend the results by Moroz
and Van Schaftingen (Calc Var Partial Differ Equ 52:199-235, 2015) for local minima
(see also Cingolani and Tanaka (Rev Mat Iberoam 35(6):1885-1924, 2019)) and Wei
and Winter (J Math Phys 50:012905, 2009) for non-degenerate critical points of the
potential.
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1 Introduction

In the recent years a large amount of papers has been devoted to investigate concen-
tration phenomena of solutions to nonlinear Schrodinger equations with local sources
around potential wells, namely local minima of some external potential functions.
Starting to the celebrated papers by Floer and Weinstein [31] and Rabinowitz [58],
several variational approaches were implemented and some efforts were done to obtain
optimal results. We mention for instance [7, 16, 18-21, 29, 36, 37]. A more difficult
problem seems to detect concentration phenomena around local maxima or saddle
points of the potential type function. Some results are known for nonlinear Schrodinger
equations under nondegeneracy conditions of the local maxima which allow to per-
form Lyapunov Schmidt reduction arguments [2, 3, 31,41, 51]. More recently, del Pino
and Felmer in [30] introduced a new reduction and proved a concentration result for
solutions of nonlinear Schrodinger equation around local maxima and saddle points
of the potential, assuming Ambrosetti-Rabinowitz type conditions and monotonicity
conditions on the nonlinearity, which are crucial to apply a Nehari manifold approach.
We refer to [28] for a generalization of the result of [30]. The more general result is
contained in [8, 9] where Byeon and the second author succeeded to show the existence
of families of solutions to nonlinear Schrodinger equations with local nonlinearity of
Berestycki-Lions type concentrating at critical points which are given by minimax
method with suitable linking properties, e.g. local maxima, mountain pass critical
points, non-degenerate critical points. See also [6, 10-12, 39].

The goal of the present paper is to develop a new theoretical approach to obtain
existence of solutions which concentrate at local maxima or saddle points of poten-
tial functions, under quite optimal assumptions on the nonlinearity and without any
nondegeneracy conditions for class of nonlinear Schrodinger equations having local
or nonlocal source.

As prototype of nonlocal problem in the source, we focus our analysis on the
following class of equations

1
—&2Av+ V(x)v = —(Iy * F(v)) f(v) inRY,

& (1.1)
v>0 inRY, veH'RY),

where ¢ > 0 is a small positive parameter, N > 3, o € (0, N),

= & - RN \ {0} > R
D(S)me|x V-«

I (x)
is the Riesz potential, F(s) € C'(R,R) and f(s) = F'(s). We recall that in 1954
the Eq. (1.1) with N = 3, « = 2 and F(s) = %|s|2 was introduced by Pekar [52]
to describe the quantum theory of a polaron at rest. In 1976, (1.1) appeared in the
work of Choquard on the modeling of an electron trapped in its own hole, in a certain
approximation to the Hartree-Fock theory of plasma (see also [32]). More recently it
has found a great attention due to models of self-gravitational collapse of a quantum

@ Springer



Semi-classical analysis around local maxima... Page3of55 316

mechanical wave function, proposed by Roger Penrose [53-55] and in that context it
is known as as Schrodinger-Newton equation (see also [46, 60]).

Inliterature, (1.1) is usually referred as nonlinear Choquard equation or Schrédinger
equation with Hartree type potential. From a mathematical point of view, the early
existence and symmetry results are due to Lieb [42] and Lions [43]. Successively,
Ma and Zhao [44] classified all positive solutions to (1.1) for power nonlinearity and
showed that they must be radially symmetric and monotonically decreasing about
some fixed point. Recently Moroz and Van Schaftingen [48] investigated existence,
some qualitative properties and decay asymptotics of positive ground state solutions
to (1.1) for ¢ > O fixed when F satisfies the Berestycki-Lions type conditions. Other
results are contained in [4, 13, 17, 18, 24, 27, 40, 47, 50, 57].

In the present paper we are interested in the study the existence of concentrating
family of solutions of (1.1) at local maxima or saddle point of V (x) as ¢ — 0.

Denoting u(x) = v(ex), the Eq. (1.1) is equivalent to

_ — N
{ Au+ V(Eex)u = (Ig x Fw) f(u) inRY, 12

u>0 inRY. ue H'®RY),

Thus we try to find critical points of the corresponding functional:
1 2 2 1 1 mN
I.(u) = = [Vul” + V(ex)u” — - Iy * Fw)F(u) : H(R") > R
2 RN 2 RN

and we ask the existence of a concentrating family (u.) of solutions of (1.2) as ¢ — 0.

Firstly the concentration at nondegenerate critical points of the potential V (x) has
been studied by Wei and Winter [62] using Lyapunov Schmidt reduction when N = 3,
o = 2 and F(s) = s2. The case of local minima (possibly degenerate) of V when
N = 3 and F(s) = s2 has been considered in [22] by means of a penalization
approach (see also [14, 59, 63]). More recently, Moroz and Van Schaftingen [49]
proved existence of a single-peak solution of (1.1) concentrating at a local minima of
V (x) for f(s) = |s|P~2s, p € [2, %fg) via a new non-local penalization method. [64]

extended the result in [49] and showed the existence under (f4) below, lim;_, oo ﬁ =

tN=2
0 and

. f@®
im ——- =

t—0 1

0. (1.3)

They also proved the existence of multi-peak solutions, whose each peak concentrates
at different local minimum of V (x) as ¢ — 0. We note that conditions p > 2 or (1.3)
is important in their arguments as it enables them to use linearized problems at infinity.
See also [1, 45, 56] dealing with critical Choquard equations.

In [23] we developed a new variational approach which is applicable to a wide class
of nonlinearities including F(s) = |s|”, p € ( NI'\,'F“, %f‘; ). In particular, we can deal
with the sublinear case p € ( N ;\,“)‘ , 2), differently to [49]. We obtained the multiplicity
of concentrating solutions via the cup-length of a critical set Crity, = {x € ©; V(x) =
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Vo), where  C RY is a bounded set such that Vy = infyeq V(x) < infyegg V(x).
See also [38] for the effect of the topology of the potential wells on the existence of
multi-bumps solutions.

The main purpose of this paper is to study the existence of concentrating family of
solutions of nonlinear Choquard equation (1.1) at a local maximum or saddle point
of V(x). To our knowledge, the only concentration result dealing nondegenerate local
maxima is due to Wei and Winter [62], when N = 3, @« =2 and F(s) = 52,

The existence of concentrating families of solutions at local maxima and saddle
points of V (x) is a more involved open problem and deformation argument using the
standard gradient flow associated to 7, (u#) does not seem enough. We also note that
non-degeneracy of solutions of the limit problem —Au + V (xp)u = (Iy * F (1)) f (1)
is not known except the case N = 3, o = 2, F(u) = |u|? and it seems difficult to
apply Lyapunov Schmidt reduction methods in general.

To show the existence of concentrating family of solutions, in this paper we develop
a new deformation argument, which is partially inspired by [8, 25, 33, 35].

Our deformation argument is developed for V (x) € C'(RY, R) through a defor-
mation in an augmented space RN x H'(R") and it has the following new features:

(i) Our deformation flow is developed through a deformation for an augmented
functional:

Je(z,u) = %/ |Vu|2+1/ V<sx+z>u(x)2—3/ (Iy % F(u))F (1)
RN 2 ]RN 2 RN

forall (z, u) € RN x HY(RV). We use the following translation of u € H L(RN)
as a part of our new deformation argument:

t u(x—gt); (-4,68) > R, (1.4)

where 1 € RN If u.(x) “concentrates” at some point pg € R" in the original
scale for (1.1), that is, us(x) ~ v(x — %) for some function v(x), thenase ~ 0

d I ht _ld / V(ex) ht 2d
dtt:OSusx ¢ )) T 2drl= R L B
1d ht
~ - V(sx)v po+ dx
2dtt0
1d

=—— 1% hiyv(x)*d
o7 f=o/RN (ex + po + ht)v(x)”dx

= L9V n / v(¥)? dx.
2 RN

Thus, if VV (pg) # 0, choosing h = VV (po), the traslation flow (1.4) gives a
decreasing flow for I, (#) in a small neighborhood of u,. Thus VV (pg) gives a
useful information for deformation argument. However we note that in H'(RY)
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(i)

the flow (1.4) is continuous but not of class C! in general and it cannot be obtained
through the standard deformation theory, where the flow is obtained as a solution
of ODE in a Banach space and it must be of class C'.

Our augmented functional J.(z, u) enjoys the following property:

Je(z,u) = I (u (x — g)) forallz e RY andu € R

and the traslation flow (1.4) can be obtained as a composition of a C _flow in the
augmented space

t > (ht,u(x)); (=8,8) — RY x H'(RY)

and a projection

et (z,u) —>u (x — g) RN x Hl(RN) — HI(RN).
We also note that the standard deformation flow n(¢) : (=38, 8) — H'(RN) for
I, (u) in H'(R"V) also can be obtained as a composition of a flow (=8, 8) —
RN x H'(@RM); t + (0, n(¢)) and the projection 7.

In the following sections, first we construct a deformation flow 7 for the aug-
mented functional J,(z, u) in RN x H'(RM) and we construct a deformation
flow for I (1) as a composition (77, o 77)(z). We also note that our new construc-
tion of a deformation flow works under weaker version of Palais-Smale type
condition (see Proposition 4.5, 4.7 and 6.1).

Another new aspect of our deformation flow is that it keeps the size of the tail
of functions small during deformation. That is, defining the size of a tail of a
function u by

To(u) = /R Ty gelxe = Ba)(Vul + ) dx.

where ZR(x) € C® (RN, R) satisfies ZR(x) =1 for |x] > R and ER(x) = 0 for
|x] < R—1and B(u) is the “center of mass” of u which will be defined in Sect. 3.3.
We observe that for small k., with k, — 0, the set {u : T, (1) <k} is positively
invariant under our deformation flow. See Proposition 6.1 and (6.3) in Sect. 6.
This property ensures that if #(x) concentrates around the center B(u) of mass,
deformed function 7 (¢, u) continues to concentrate around the center S(n (¢, u))
of mass of the deformed functions 7 (¢, u). The standard deformation flow does not
have this property. Such a property is usually obtained by using tail minimization
methods for local problems, thatis, we solve the elliptic boundary problem outside
of a large ball centered at B(x). We note that such a tail minimizing problem
requires the unique solvability of the elliptic boundary problem and usually it is
ensured for local problems, i.e., for nonlinear Schrodinger equations, under the
condition f € C'. For non-local problems, e.g. nonlinear Choquard equations
such an approach does not work because of non-local feature of the problem. In
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Sects.5 and 6 we develop a new deformation method in which the deformation
flow is constructed through a deformation in an augmented space RY x H!'(RV).
Our deformation method works for both of local and non-local problems. In a
paper in preparation, we aim to apply this new approach to fractional problem
(see [15] for concentration around local minima). See Remark 8.3 in Sect. 8 for
an application to local problem (see also [26]).

Remark 1.1 In [8, 9], a related deformation argument is developed for nonlinear
Schrddinger equation:

—Au+V(eEx)u=gw) inRY (1.5)

in a different way. Namely it is constructed as an iteration of 3 flows:

(1) The standard deformation flow n;(z, -). Here n(z, -) is a solution of % =
—pm)V (), 10, u) = u, where V(-) is a pseudo-gradient vector associated to
the functional corresponding to (1.2).

(2) The translation flow ny (¢, u)(x) = u(x — %t). Here h = —VV (eB(u)), where
B(u) is the center of mass of u.

(3) The tail minimizing operator 7. (#), which is defined by 7.(u) = v, where v is a
solution of the exterior problem:

—Av+ V(ex)v =g() in|x — B(u)| > R,

(1.6)
v(x) =u(x) on|x — B(u)| = R.

The procedure is rather complicated and in present paper we give an “easier’”’ deforma-
tion argument through a construction flow in an augmented space R x H'(RV). We
note that the exterior problem (1.6) is well-defined for local problem (1.5). But for non-
local problem (1.2), the exterior problem is not well-defined because of non-locality
of the problem.

To state our existence result for (1.2), we assume
(f1) f(s) € C(R,R);
(f2) there exists C > 0 such that for all s € R

[sf )] = € (11 + 15175 )

(f3) F(s) = [ f(1)dt satisfies

F F
lim 1(\,?& =0, Ilim Ei)a =0;
s=0 |5 $700 |5 W53

(f4) f(s)isodd and f is positive on (0, c0).
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We remark that the conditions (f1)—(f4) are in the spirit of Berestycki and Lions
[5, 34, 48] and in our previous work [23] for a continuous potential V (x) we studied
concentration at a local minimum under these conditions.

In the present paper we require much regularity on the potential V (x). Precisely
for V (x) we assume

(V1) V(x) e CNRY,R), VV(x) € L (RN) + L®@RN);

(V2) inf gy V(X) =V > 0,sup, gy V(x) =V < o0;

(V3) there exists a bounded connected open set 2 C RY with a smooth boundary
d€2 such that

VV(x)#0 forall x € 0Q2.

We mainly study two situations where V (x) has a local maximum in € or V (x) has a
mountain pass geometry in 2. More precisely, we assume (LM) or (MP) below.

(LM) Vo =sup,cq V(x) > sup,cyq V(x);
(MP) There exist ep, e; € €2 such that setting
Vo = clng\ (Jmax V(c(§)),
A ={c(§) € C([0,1],2) : c(0) = e, c(1) = ey},

Vi satisfies

(i) V(eo), V(er) < Vo;
(i) forx € 3Q with V(x) = Vp,

~VV () ¢ {un(x) 1 p = 0},

where n(x) € R" is the unit outer normal at x € 9<2.

We note that under the assumption (i), (ii) it is standard to see that Vj is a critical value
of V(x).

Our main result is
Theorem 1.2 Assume (f1)—(f4) and (V1)—(V3). Moreover suppose (LM) or (MP). Then
(1.1) has at least one positive solution concentrating in

Crity, = {x € Q: V(x) = Vo, VV(x) = 0}.

That is, there exist g9 > 0 and a family (ug)sc(0,69] Of solutions of (1.2) with the
following property: for any sequence (Sj)j?ozl C (0, o] with ej — 0 after extracting
a subsequence—we denote it by ¢ for simplicity of notation—, there exist (x j)?o: 1 C

RN, xo € Crity, and a least energy solution wy € H LRN) of the limit problem
—Au+ V(xo)u = (Iy * F(u)) f(u) in RN such that

EjXj — X0,

ug;(x —xj) = wo(x) strongly in HI(RN) as j — oo.
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In (V1)—~(V3), the assumption V (x) € CV(RY,R) is used in order to show via
Sard’s Theorem that the set of critical values of V (x) is of measure 0. For a poten-
tial V (x) of class C!, we can show the existence of a solution under the following
assumption of isolatedness of critical points of V (x)

(V') V(x) € C'RY,R), VV(x) € LT ®RY) + L¥RV);
(V17) critical points of V (x) in €2 are isolated in €2.

Namely we have

Theorem 1.3 Assume (f1)—(f4) and (V1’), (V1”), (V2), (V3). Moreover suppose (LM)
or (MP). Then the conclusion of Theorem 1.2 holds.

Remark 1.4 If we assume (V1’) without (V1”) instead of (V1) in Theorem 1.2, a
weaker version of the result holds. See Sect.7.4.

This paper is organized as follows: In Sect.2 we give some preliminary results. In
Sect. 3 we study the limit problem. We introduce a Pohozaev type function P, (u) and
a center B(u) of mass, which are used in this paper repeatedly. In Sect.4 we intro-
duce a neighborhood of expected solutions and we show a concentration-compactness
type results for functional 7. (u). We will develop a local deformation argument in
this neighborhood in Sects. 5, 6, and 7. Here newly introduced e-dependent distance
distg (-, -) in H'(RY) plays an important role. In Sect.5 we introduce a functional
T. (u) to estimate the size of the tail of functions # and we construct a vector field,
which decreases both of Ty (u#) and I.(u) and which enables us to generate a spe-
cial deformation flow that keeps the tail of functions small. In Sect.6 we give our
new deformation result for 7, (u#), which has new features stated above. Finally we
give a proof of our main existence result in Sect.7. In Sect.8 we give a remark on
concentration at a local minimum of V (x).

2 Preliminaries

In what follows, we use notation: for u € H'(R")

12
||u||H1=(/ |W|2+u2> ,
RN

1/r
||u||r=<fN|u|’> forr €[1,00).  [lullo = esssup u(x)]
R

xeRN
We also use notation for p € R ug e HI(RN), r>0

B(p,r)={xeRY: |x—p|l<r}, Bpr=xeR¥:|x—pl <r}

Byi(uo,r) = {u € H'@®RY) : |lu —uolljn < r).
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2.1 Estimates for Non-local Term

First we give some estimates for IRN (Iy * f)g and

Du) = / Iy * F(u))F(u).
RN

For proofs, we refer to [23].
We denote various constants, which are independent of u, by C, C’, C”, - --

Lemma 2.1 (c.f. Section 2.1 of [23]).

(i) For p, r > 1 and o € (0, N) with % + % = % there exists a constant
C=C(N,a,p,r) > 0 such that
‘/ o x g = ClSflpligllr
RN

forall f € LP(RN), g € L"(RN).
(i) Assume p, r > 1 and a € (0, N) with Ly % < % Then for L > 1 there
exists a constant Dy = Dy (N, «, p,r) > 0 such that D;, — 0as L — oo and

‘/RN(IO[ * gl < Drllfllplligly
forall f € LP(RN), g € L"(RN) with dist(supp f, supp g) > L. o
In (i), Dy is given by
D = |1f g,

where ¢ satisfies % + % + % = 2, in particular g > lea and Iof (x) is defined by

1
|X‘N—m fOI' |X| Z La

0 otherwise.

Ik = :

Setting o (s) = 52 + |s|% for s € R, under (f2) we have for u, v € H'(R")

N+a
IF@)ll av. < Co(llullg) =,
N+a

N+o
ID(w)| = C”F(M)HZNZN < Clo(llully) ™V,
+a

a+42

/ / Nto ¥ N2
D (u)v| < C||F(u)||%||f(u)v||% = Co(llullgn) 2 (lull g + llull i) vl g
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We also have

\Y

1 2 1 2 / N+ia
Ie(u) = §||VM||2 + §K||M||2 —Co(llullg) v,

Nta
Iwu > ||Vull3 + Viul} - C'o(lully) ™ .

\%

In particular, 7, (#) has mountain pass geometry uniformly in ¢ € (0, 1] and we have
Corollary 2.2 There exist pg > 0 and co > 0 such that for ¢ € (0, 1]

L(u) = collully.  ILGu = collull3,,
forallu € H'(RN) with ||u| y1 < po. o

For R > 0 we choose functions ¢z (s), Zz(s) € C°(RY, R) such that

tr(x) 1 for|x| <R, E() 0 for|x|]<R-1,

X) = X) =

K 0 forjx|>R+1, % 1 for|x| > R,

tr(x), Cr(x) € 10,11, |[VZrX)], [VZr(x)| <2 forallx € RV, @2.1)

We will use the following inequalities frequently: for u € H'(RV), R > 0, p e RV

lerCxe = pull gt < 3lullgr,  1TrC — phullg < 3lullg. (2.2

In fact,

Igr(x — pullz,y = IVEr( — pw)l3 + IEr(x — pull3
< 2llgr(x = p)Vull3 + 21(VEr(x — pHuwli3 + llull3
< 20Vull3 +9lul3 < 9lul3:-

We can show the second inequality in a similar way.

Lemma 2.3 (c.f. Corollary 2.6 of [23]). For a fixed M > O there exists C > 0 such
that forany R, L > 1 and u € Hl(RN) with [ullgn < M

. N+a

() |(D'(u) — D'(¢ru))tru| < C(Dr + ‘7(||"‘||H'(|x|e[R,R+L])) ).

N+a

(i) [(D'(u) — D' Craru))r+rul < C(DL + o (lull g1 eerr.rir)) N -

Here Dy > 0is given in Lemma 2.1. In particular Dy, — 0 as L — oo.

Proof We set

1 if |x] <R, 1 if|x| e [R, R+ L],
x1(x) = . (x) = )
0 otherwise, 0 otherwise,
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1 if|lx| >R+ L,
0 otherwise.

x3(x) = {

We also setfori =1,2,3

Xi () F (Cru(x)),
Xi () f(Cru(x)),

Fi = xi () F(u(x)),
fi = xi(x) fux)),
uj = xi(xX)Sru(x).

Fi =
f‘:

Since Fi = Fi, fi= fi, F3= f3 =13 =0, L > 1, we have
%(D/(u) — D' (¢ru))ru
= /];N(Ia * (F1 + F2 + F3))(fil + foilp) — /RN(Ia * (F) + F)(filly + fil)
= /R Uax F)(f2 = i + /l; U x F)(filly + foil2)

+/ Iy % B)(filly + foil2) +/ (o * F3)(fiu1 + fouid).
RN RN

. ~ ~~ ~ N+a
Since [ F2]l an_, 1 F2ll an [l f2ti2ll an s (L foti2ll v < Co(llullgrgxerr,reep) 2 -
~ Nia Nto
1 Fill av , 1 F30l 2n, Nl fiunll ov < Co(llullg) 2V < Co(M) 28 and
N+a N+a N+a

/ (Iq * F3)(fiu1)| < DL F3ll 2~ I franll v ,

RN L N+o (|x|>R+L) L N+a (Jx|<R)
We can see that (i) holds. We can show (ii) in a similar way. O

The above lemma gives a useful localization property of D(u).
Finally in this section we give the following lemma on the behavior of bounded
Palais-Smale sequences, which will help us to get concentration-compactness type

result in Sect. 4.

Lemma 2.4 There exists p1 > 0 with the following property: if (8]')711 Cc (0,11, a
bounded sequence (“j)?i1 c H'(RN) and (yj)j:1 C RN satisfy

If/f(uj) — 0 strongly in (H' (RV))*,
uj(x +yj)—uog weaklyin H'®RY)

for some ug € H'(RN) with |ug|| ;1 < p1, then ug = 0.
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Proof Wesetv;(x) =u;(x +y;). Let L € N. Since (uj) ° , is bounded in H L(RN),
we have for C > 0 independent of j and L

2 2
Z ”vj”Hl(\x|€[Li,L(i+l)]) S ”vj”Hl S C
i=1

Thus there exists i; € {1,2,---, L} such that ||v; ||H1 (x|elLij.LG; +l)]) +. Extract-

ing a subsequence if necessary, we may assume that for any L e N there exists
kr €{1,2,---, L} such that

C

Let ¢g(s) be a function satisfying (2.1) and set
0§ () = CLa, ()0 (x).

We have from (2.3)

L L . .
/R VUJVU( ) 4 Viejx +y])vj N A;N v ( )| + V(e +y])(v( ))2
(L) (L) (D) (L)
f‘/RN V(Uj_vj )ij ~|—V(8jx+yj)(vj—uj )vj ‘ <ag,
(D' (v)) — D/(UEL)))U;L” <ag,

where ay, is independent of j and satisfiesa; — 0as L — oo. Here we apply Lemma
2.3 (i) with R = Lk; and L. Thus we have

(L) (L) (L2 (L)y2 (L)y, (L)
1L @ =yl (x—yj))=/RN|Vv,- 2+ Viejx +ypih? = D' @il

< I up)j(x = yj) +2ap = o(1) +2a.. 24

Since v;L) — uéL) = ¢rk, (Vug(x) strongly in LP(RN) for p € (2, %) and

”Ig/j (Mj)”(Hl(RN))* — 0,

limsup/N |V (L)I +Viejx+ y,)(v(L))2 <D'(u (L))M(L) + 2ay,.
R

Jj—o0

Let po > 0O be the number given in Corollary 2.2. Since ||u(()L)||H1 < Cllugllg1,
choosing p; > 0 small, we have for L large

lim sup ||v( )||H1 < po, provided ||ugll g1 < p1.
/—)OO
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By Corollary 2.2 and (2.4),

colimsup [[v” I < timsup £/, (v} (x = y) " (x = y)) < 2as.

j—o00 j—o0
Thus
2 L),2 . L),2 2
IeLk, @uol3y = llug” 13, < limsup S, < =ay.
j—>00 €0
Since L is arbitrary, we have ug = 0. O

3 Limit Problems
3.1 Limit Problems

For a > 0 we define
1 p,a, o 1 1N
Lo(w) = S |IVull; + s llull; — sDw) : H(RY) — R.
2 2 2
Critical points of L, (u) is a solution of
—Au+au = (I, % F(w) f(u) inRY, 3.1

which appears as a limit equation for (1.2). That is, for a family (u. (x)) of solutions of
(1.2) and (x;) C RY with x, — xo, if there exists a limit vo(x) = limgs_.¢ s (x + %),
then vy is a critical point of Ly () (1), that is, a solution of (3.1) witha = V (x¢). We
denote by E, the least energy level for (3.1):

E, =inf{L,(u): u #0, L, (u) = 0}.

In [48], the existence of a least energy solution is proved under the conditions (f1)—(f3)
and
(f4) there exists so € R \ {0} such that F(sg) > 0.

They also proved that under (f1)—(f3), (f4’) every ground state solution of (3.1) is
radially symmetric with respect to some point in RY . It is also shown that any solution
of (3.1) satisfies the Pohozaev identity:

Pa(u) =0,

where

N+«
2

N -2 N
Po(u) = TIIVMII% + 5a||bt||% - D(u). (3.2)
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The least energy level E, is characterized as
E, =inf{L,(u): u € H'@®RY)\ {0}, P,(u) = 0}. (3.3)
For ¢ > 0 we set

S¢={ue H' R\ {0}: L, (u) =0, Ly(u) <c, [u(0)| = max fu()l}
xeRN

Arguing as in [48], we can show that

Lemma 3.1 Sf is compact in H'RN) provided ¢ < 2E,.

3.2 Scaling Argument for L, (u)

As in [23], to see the scaling property of the limit function L, (u), we consider for
ue H' @®RN)\ {0}

1 a 1
d(A) = La(u(x/x)) = Euwu%ﬂ—z + Euun%ﬂ - §D<u)xN+“ : (0, 00) — R.

We have
(i) d(A) —> +0as A — +0;
(i) d(A) —> —ocoas A — o0;
(iii) d(X) has a unique critical point Ao (x), which is a maximum of d(});
(iv) d’(A) = 0if and only if P,(u(x/A)) = 0.
In particular, we have

Proposition 3.2 For a least energy solution wo(x) of (3.1), that is, L) (wo) = 0,
L,(wg) = E,4, we have

~
Q
N

wo <)S—C)> < E; fors e (0,00)\ {1},

P, (wo (f)) {> 0 fors € (0, 1),

<0 fors e (1, 00).

3.3 Center of Mass

Here we introduce a center of mass §(u) in a neighborhood of a shifted compact set.
We will use the following

Proposition 3.3 Let D cC H! RN\ {0} be a compact set. We set for p > 0

={w(x—p): weD, peRV),

D
D, ={u e H'(RY) : distyi (u, D) < p}.

Then there exist p» > 0, Rg > 0 and C'-function p : 5p2 — RN such that
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(i) Foru(x) = w(x — p) +¢(x) € Dy, withw € D, p € RY, [lgll 1 < p2,
1B) — pl < Ro.
(ii) B(u) is shift-invariant, that is,
Blu(x —q)) = Bu) +4

forall u iﬁpz and g € RV,
(iii) Ifu, v € D,, satisfy

u(x) =v(x) in B(B(u),4Ryp), 3.4)

then B(u) = B(v).

(iv) There exists C > 0 independent of u such that
||.3/(”)||(HI(RN))* <C forallu e 5p2.

A similar center of mass is given in [8, 9], which is locally Lipschitz continuous. Here
we modify and improve the argument in [8, 9] and give a center of mass B(u«), which
is of class C!.

Proof We set ry =inf 5 [|l@| g1 > 0. Since Dis compact, there exists R, > 0 such
that

2 1 —~
||w||H](|x|§R*) > gr*, ”w”H'(lx\ZR*) < gr* forallw € D.
Foru = w(x — p) + ¢(x) with
N ~ 1
peR™, weDand gy < gr* 3.5)
we have
1 1
NN gt (x—pi<ry) = EV*, NN gt pi=ry) = g”*- (3.6)
We set for g € RN andu € 5,*/6

®(q,u) = / tr, (x — @)(IVul? + u?) dx,
RN
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where (g, (x—q) isintroduced in (2.1). By (3.6), we have foru(x) = w(x—p)+¢(x) €

Dy, /6
1 \2
Q(P,M)Z (5"*) 5

1 2
D(g,u) < (5“) for|g — p| > 2R, + 1,

D(q,u(x —q')) = (g —q',ulx)) foralgq,q eRVN.

In fact, supp g, (x — ¢q) C {x : |x — p| > Ry} for |¢ — p| > 2R, + 1. We choose
and fix a function ¥ (s) € C*°([0, 00), R) such that

1 2
W(s) = {1 S €LGrI% 00 e 10.1] foralls € R.

0 sel0, (371
Then we have foru = w(x — p) + p(x) € 5,*/6 with (3.5)
Y(P(p,u)) =1 and ¢ (P(q,u)) =0 for|g — p| = 2R + 1. 3.7

We set

_ Jav a¥ (@ u)dg

= : D, RV,
P = @G andg - DT

Then we have

|Bu) — pl = 2Ry + 1,
Bux —q") = pu(x) +4q'. (3-8)

Thus, setting Ry = 2R, + 1, p2 = r,/6, we have (i)—(ii).
Next we prove (iii). We suppose that u(x) = w(x — p) + ¢(x), v(x) = o' (x —
P +¢'(x) e Dy, s6 satisfy (3.4). By (3.7) and (3.8),

supp ¥ (P (-, u)) C B(p, Ro) C B(B(u), 2Ro). (3.9

Similarly supp ¥ (@ (-, v)) C B(p', Ro) C B(B(v), 2Ro).

By (3.4), we have v(x) = u(x) on B(p, Ry), from which we have ¥ (®(p, v)) =
Y(®(p,u)) = 1. Thus p € supp ¥ (®(-,v)) and we have |p — p'| < Rp. And
thus supp ¥ (®(-, v)) C B(p’, Ro) C B(p,2Rp). Since v = u on B(p,3Ry) C
F(,B(u), 4Rp), wehave Y (P (-, v)) = Y(P(-, u)) on R . Thus we have B) = B(u).
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Finally we prove (iv). We set A = fRN V(D(q,u))dg. For h € H'(RY) we
compute that

1
B (wh = Z/ gy’ (®(q, u))d,P(q, u)h dg
RN

- 91/f(<1>(q,u))dq/ V' (®(q, u))0,P(q, u)hdg
RN RN

1
_ Z/ (¢ — BV (@ (. )3, D(q, wh dg.
RN

By (3.9),

2R
|8 (u)h| < TO /RN ¥/ (®(q, u)3, P (g, w)h|dg

2Ry
< T|B(ﬂ(u),2R0)| [V loo _max |8, P(q, u)h].
qeB(Bu),2R0)

Noting 3, ®(q, wh| = 2| fpn Cr. (x — @) (VuVh 4+ uh)| < 2|ull 1[Il g1, we have
(iv). O

In the following sggtions, we develop a deformation argument for 7 (u) in 5p2 for
a suitable choice of D.
4 A Neighborhood of Expected Solutions

In this section we set up a neighborhood of expected solutions, in which we will
develop a deformation argument in Sect. 6.

4.1 A Neighborhood Q of Concentrating Points

In this section, we show that we may assume the following (V4) in addition to (V1)-
(V3) and (LM) (or (MP)).

(V4) For any p € Q, 2EV(,,) > EVO-

In fact, since E, is a continuous function of a € (0, c0), there exists « > 0 such that
2EV0—0¢ > EVO-
On the other hand, since V (x) is of class CV, the set of critical values of V (x) is of
measure 0 in R by Sard Theorem. Therefore we may assume V) — « is a regular value
of V(x). We set
Qy={xe: Vx)>Vy—al.

Then, V (x) satisfies (V1)—(V4).
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We observe that if V (x) satisfies (LM) ((MP) respectively) in €2, then V (x) satisfies
(LM) ((MP) respectively) in . We show just for (MP).
We may assume V (eg), V(e1) < Vo — a. We set

Mi={xeQ: Vx)=Vy—a, xande; are path connected in
xeQ: V) <Vy—a}} fori=0,1,
A ={c&) € (0,11, Q) : c(0) € My, c(1) € My, V(c(&)) > Vo —a for & € (0, 1)}.

Then we can easily see that V = inf .. maxgefo,1 V (c(§)). Clearly there exists paths
()2, C A with

ck(0) €e My, ci(1) € My, Sm[gxl] Vcr(§)) = Vo ask — oo.
€lo,

Since My, M are compact, we may assume after extracting a subsequence
cr(0) = 29 € My, ci(l) > 2 € My ask — oo.
Choose ¢y, €] € Q4 so that e is close to gy and e is close to €. Replacing 2, e, ey,

A with Qg, €0, 1 and A = {c(&) € C([0, 1], Rq) : c(0) = 2o, c(1) = &1} we can
see that (MP) holds.

4.2 A Neighborhood of Expected Solutions

In what follows, we assume (V1)—(V4) hold for 2 and Vj is a critical value of V (x)
in Q. We write

b = Ey,
and set
Ko ={( ) e @ x H'®RY): VV () =0, Ly (@) =0, Ly (@) = b},
We note that
Ko ={( 0) e @ x H'®RY): DL, ») =0, L, o) = b},

where D = (9;, d,,) and
1 1 1
uauy:?wm@+zvgmm@—zpm)mwvxH%RM—»R

We remark that L(z, u) appears as a limit functional for I, (u). In fact, for z € RY and
u(x) € HY(RN), we have

2\y 1,01 ) 1
Q04x—9)_?wmb+géwwm+@mm 5P > L) ass — 0.
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In what follows, we denote the projections to the first and second components by
Pi(z,u) =z, Pa(z,u) =u.
Remark 4.1 (i) We have

(G.0)eQx H'®RY): V(E) =V, VV(E) =0,
 is a least energy solution of Ly, (w) = 0} C Kp.

(ii) Since E, > b = Ey, fora > Vy, (§,w) € Kp, implies V(§) < Vp. Thus we
have

PIK,NoQ2 =40, PIK,Cl{Ee: V(&) < W)
and P p is compact in 2 by the assumption (V3).
(iii) If (§, w) € K satisfies V(§) = Vj, we have Ly ) (w) = b, that is, w is a least

energy solution of Ly, (-). On contrary, if V(§) < Vy, we have Ly ) () = b >
Evy () and w is not a least energy solution of Ly g)(-).

We set O = [0, 1]V and

Ky =1{¢, 0) € Kp : lloll20) = max o]l 12,40}
neZN

For ¢ > 0 we set
e _ £\ . o
b = a)x—g cEw) eyt

and we try to find a critical point of I, (1) in a neighborhood of K 1(78)' We introduce /Cp,

and /Cp, to obtain necessary compactness properties, in particular, to show Proposition
4.5 below.
For our minimax argument, we also introduce

§b={w(%):wePzﬁb,se[%,;}},

Zy={Ew): £€Q wel,
2és)={w(x—§) : (s,w)eéb}. 4.1
&
It holds
Ky C 2y, K cZP.
By (V1)-(V4) and Lemma 3.1, we see
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Lemma 4.2 I/C\b and é\b are compactin RN x H! RM). I/(\IEE) and /Z\,gs) are also compact
in HY(RM).

Here and in what follows we indicate compact sets by~
To describe neighborhoods, we introduce an e-dependent distance dist, (-, -) on

H'(RN) by
2\ 12
ux) —v (x — ﬁ) ) .
& H

The e-dependent distance dist, (-, -) is a natural distance to consider concentration of
a sequence (ugj)j:1 c H'(RM), ¢j — 0 to alimit profile (§, w) € Kp as ug; (x) ~

w(x — E%). In fact, introducing H, : H'(RV) — R¥ by

dist, (u(x), v(x)) = inf <|h|2+
heRN

He(u) = % fR i VV (ex)u(x)?,

we have

Lemma4.3 (i) For (£, w) € RN x H'(RN), if 32, C H'(RN), ¢; — 0 satis-

fies
ast (w0 (x- 2))
iste; (uj,o|x —— — 0, “4.2)
€j

then for ¢ € H'(RY)

IEJ' (uj) - L(E? w)a

1L e (x - §> — B, L(E 0)p, 43)
J
1
He w)) = YVl = 0:L(E o). 4.4)

(i) For (¢, w), (£, ") € RN x H'@RN) withw, @ # 0and e; — 0,

diste; <a) <x — i) , o <x — §—/>> -0 4.5)
£j £j

holds if and only if

£ =& and o' (x) = w(x — ho) for some hy € RV. (4.6)
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Proof (i) dist,; (uj (x), w(x — f—j )) = Oholds if and only if there exists (h;)52, C RV
and (Qﬂj);il C HI(RN) such that

hj — 0, lgjllgr — 0

uj(x)za)(x—g-’_hj)—i-(pj (x—é+hj).
€j €j

and

Thus

1 1
L,(uj) =zVo+ Vil + 5 | Vex+&+hplox) + o)
/ 2 RN

2
1
— L&, w).
(4.3) and (4.4) hold in a similar way. (ii) can be shown easily. O

We also note that dist.(-, -) is weaker than H!-distance, namely there exist
sequences (u)52,, (v,)32, C H'(R") such that for e; — 0

diste; (uj, vj) — 0, liminf ||u; — vl g1 > 0. 4.7

In fact, for o # 0, setting u;(x) = w(x — %), vj(x) = w(x), where p; =
J

(1,0, ---,0), we have (4.7).

Lemma4.3 (i) shows that for (§, w) € Eb, (u j)?‘; | satisfying (4.2)is an e-dependent
Palais-Smale type sequence with the limit profile (§, ). Conversely, in Proposition
4.5 below, we study the convergence of e-dependent Palais-Smale type sequences with
respect to the distance dist. (-, -).

We set for p > 0

N[(f) ={ue H'®RY): dist,(u, 1?,58)) <p}
+h th K
-5 () e <.

A® = fue H'®RY): dist.(u, Z,") < p}
E+h E+h - _
={w<x—8 to(x—>—— ) weS, §€Q P +lgli <o’y
These sets are uniformly bounded with respect to ¢ € (0, 1] and we have
(¢) (&)
Ny C A
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In what follows, for suitable 0 < p < p’ we develop a deformation argument in A;g/)

to find a critical point in N ;S).

Remark 4.4 The reason we introduce AE,S) is to construct neighborhoods which are

suitable for our deformation arguments. Our neighborhood Aﬁf) includes a suitable
initial path in H'(R") which is related to a minimax argument in Q@ C RV. See

Sect.7.1 below. Our another neighborhood », l(f) is precisely an g-neighborhood of
expected solutions with the profile in /Cp.

4.3 Concentration-Compactness Type Results

In this section we give an e-dependent concentration-compactness type results, which
will be useful to develop deformation theory in Sect. 6.

Proposition 4.5 There exists p3 > 0 such that if ()52, C (0,1] and (u;)32, C
HI(RN) Sdl‘l'Sfy gj — 0, u; c A;‘Z/) and

le;(uj) — b, (4.8)
I (uj) — O strongly in (H'(RN))*, (4.9)
Hy,(uj) > 0 inRY (4.10)

as j — oo, then

dist, . (u; I’(\(gj)) -0 asj — o0

e \Uj, By J .
In particular, for any p > 0 there exists j, € N such that
uj e NS forj > jp.

Remark 4.6 To show the existence of a family concentrating at a local minimum of
V(x),in [23] we obtained a similar result for (u );?Ozl CN /()ij ) but without the assump-
tion (4.10). To study concentration at local maxima and saddle points, we need (4.10).

In fact, if (£, w) € Q x H'(RV) satisfies

ne

thenu;(x) = w(x — ;) with e; — 0 satisfies (4.8) and (4.9). However we don’t have
J
VV (&) = 0 and the limit set

{, ) LE, w)=b, 3L, 0) =0, |0l 29) = m%] loll2peo) @11

is not compact in 2 x H'(R") in general.
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We note that if b is corresponding to local minimum, L(§, w) = b, 9, L(§, w) =0
imply V(§) = Vo (= infeq V(x)), L(§, w) = Ey, and the set defined in (4.11) is
compact.

Proof of Proposition 4.5 For p’ > 0 suppose that (& j);?’;l, (u j);?il satisfy e; — 0,
uj € Af,f') and (4.8)~(4.10). Since u; € Aif,f), there exist (£j,w;) € Zp, ¢ €
H'(RV) and h; € RV such that

uj(x) = o <x——5j+hj)+goj (x——gﬁhf), (4.12)
& &

loilgt <p's  |hjl <p'. (4.13)

Extracting a subsequence if necessary, we may assume for some (§y, wp) € §b,
©o € HY®RNY and hg € RY such that

§j — &,  hj — ho,
wj — wo strongly in H 1(]RN ),
@j—@o weakly in H'(RM).

We set

Ej=¢&+h; — & =& + ho,

Bj(x) = w;(x) + ¢ (x)—~@(x) = wy + o weakly in H'(RY). (4.14)
Suppose p’ € (0, p1), where p; > 0 is given by Lemma 2.4. Then we have
Step 1: w;j(x) — wo(x) strongly in H'(RM).

It suffices to show that

sup [|@; — @oll 2(p40) — 0 as j — oo. (4.15)
neZN

Since (@;)32; is bounded in H'(RY), (4.15) implies for p € (2, 725)

@j — @ strongly in L?(RY),

D'(@j)@; — D' (@p)ay as j — oo.

It follows from

IE/. (LT), <x - Ej)) w;j (x— 5]) — 0, [;_ (5)] (x_ SJ)) @0 (x _ gl) -0
J & & J gj g
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that

IVai 13+ | Viejx +E)@ =D(@)@; + o(1) = D' (@)@ + o(1),
RN /

Va3 + /RN V(ejx +&))ag = D' (@0)@o + o(1).

And thus @; — @y strongly in H'(RV).
If (4.15) does not hold, there exists (n j) - C ZN such that

”‘~0j - 5O||L2(nj+Q) # 0. (4.16)

By (4.14), we have |n j| — oo. Thus letting wj(x+ nj)—\zo(x) weakly in H'(RM),
we have from (4.13), (4.16) that wy # 0 and

I@oll g1 < o' (4.17)

On the other hand, since @;(x +n;) = uj(x + f—’, +n;)and Ig’j (uj) — O strongly in

(HY RN ))*,~Lemma 2.4 and (4.17) imply 50 = 0, which is in contradiction.
Step 2: VV (&y) = 0.
We have

1 2|1 ~ gj 2
ng(uj) = 3 - VV(gixu;(x)” = 3 - VV(gjx)wj | x — g
1 ~ 1~ .
- 5/ VV(ejx +£)@;(x)*> — ~VV(E)laol3 asj— oo
RN 2

and thus (4.10) implies VV(S;‘O) =0.
Step 3: DL(EO, o) = 0 and L(’g‘o, o) = b.
For any ¢ € C‘X’(RN), we have

3 ~ =~ ~
I (uj)e (x——j :/RN V&V + Viejx +E)wjp —D(@))g

= [ Vaue + VG - D'@op.

Thus (4.9) implies BML(EO, o) = 0. It is easily seen that (4.8) implies L(go, o) = b.
Step 4: For p’ > 0 small, diste, (uj, K (8’)) -0

It is clear that EJ =& +hjisina p’-neighborhood of Q and thus so is Eo. Since
VV(x) # 0on 3$2, we have (&), @wg) € Kp if o’ > 0 is sufficiently small. Thus there
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exists ko € RY such that @o(x) = @o(x — ho) satisfies (&9, Do) € Cpp. We have

diStsj (Mj, I/(\;‘?j)) < diStgj (uj(x), ZU\O (x — @))
&

J

= dist,; (53]- (x - S—’) , 0 (x — §—0>>
€j €j
<ais, (3 (x - 2) o (- 2))
gj €j
+ais, (0 (v = 2. (x - 2))
€j £j
o 3
< 13 = Bl + it (@0 (x = L) g (5 2
£j £j

<lw; —aollgt + & —ejho — &l — 0 as j — oo.

Thus choosing p3 > 0 small, the proof is completed. O

Next we show that /I (1) satisfies the Palais-Smale type condition in Aﬁfl) fore € (0, 1]
fixed.

Proposition 4.7 Let p; > 0 be the number given in Lemma 2.4. For ¢ € (0, 1] fixed,
I¢(u) satisfies the Palais-Smale type condition in Aﬁfl). That is, if (uj)‘j’-‘;l C Aﬁ)
satisfies

(He(uj), IL(u;)) — 0 strongly in (RN x H'(RN))*, (4.18)
then (u j)‘/’.il has a strongly convergent subsequence in H'(RN). Moreover, after
extracting a subsequence if necessary, assume uj — ug strongly as j — oo. Then uq
satisfies I](uo) = 0 and

H,(ug) = 0. (4.19)
Proof Since (u)%, C A% there exist (£, ;) € Zp, h; € RN and ; € H' (RY)

such that
i+ h; i+ h;
uj(x) = w; (x— El—j> + @; (x— gj—j),
€j €j

|hjl < p1, ll@jllgr < p1.

Extracting a subsequence if necessary, we may assume for some (§p, wp) € Ks.
@0 € H'(RN) and hy € RN

& — &, hj— ho,
wj — wo strongly in HI(RN),
@j—@o weakly in H'RY).
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Using Lemma 2.4 and arguing as in Step 1 of the proof of Proposition 4.5, we have
the strong convergence of (u;). (4.19) follows from H,(u;) — 0. O

Remark 4.8 In Proposition 4.7, the condition (4.18) can be relaxed to
L(uj)—0
To see this fact, first we remark that I/ (o) = 0 implies H, (1) = 0. Indeed, from the

regularity argument (c.f. [47, 50]), it follows from I/ (u¢) = O that ug € H 2(RN). On
the other hand, we have for j € {1,2,---, N}

1
[, vuovuo, =5 [ o avuP) = o
RN 2 JrN

/V(s) —1/ V(ex)dy, (ul) = 8/ OV exu?
RN XMOMoxj—z RN o Y o) = 2 RN ax]‘ Vtto,

D' (u)(uox;) = A;{N (Io * F(u0)) F'(uo)uox; = A;N (Io * F(u0)) (F (u0))x; = 0.

Thus Is/(uo) = 0 implies fRN %(sx)u% =0forj=1,2,---, N.Thatis,
J

1
He (o) = 5 /RN VV (ex)ud = 0.

If I](uj) — Ostrongly in (H L(RN))*, from the proof of Proposition 4.7 there exists a
strongly convergent subsequence (i, )2 . Let uj, — ug in H I(RM). Then we have
I[(uo) = 0, He(uj) — Hg(uo). Since I (ug) = 0 implies H,(ug) = 0, we have
Hg(uj,) — 0. Thus we have (4.18).

4.4 A Choice of Neighborhoods and Gradient Estimates

We choose py > 0 small so that in a neighborhood Aﬁf,i of K lge)’ we can develop a
deformation argument for a proof of our main result.
We set

gbz{w(x—p): wETS’\b,peRN},
Sp.p={uc H'RN) : distyi(u, Sp) < p} for p > 0.

Heref;, is defined in (4.1). Applying the argument in Sect. 3.3 with D=S,,D=5,
and D, = Sp ,, we can define the center of mass:

B: gh,pz — RY for small p > 0.

We choose and fix p4, ps > 0 such that
. 1
0 < 16px < ps < min {gpo, P1, P2, p3} , (4.20)
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where p is given above and pg (p1, p3 respectively) is given in Corollary 2.2 (Lemma
2.4, Proposition 4.5 respectively). We will use relation 16p, < p. later in the proof
of Lemma 6.9. We note that the center of mass 8(u) is defined on Agi)k and

distgn (6B(u), Q) < eRo + p foru € AL 4.21)

In fact, by the definition of A,Ef;’)k, we have for some & € Quwe §b, h eRN

u(x)—w(x—s_‘_h)

2
2
H!

h|* +
&

Thus by Proposition 3.3 (i) we have (4.21).
By Propositions 4.5 and 4.7, we have the following estimates.

Proposition 4.9 For 0 < p, < pu with (4.20). Then we have

(1) There exist g > 0, vo > 0 and 69 > O with the following properties: For
e € (0, eo]

1/2
1CHe o), I @)l N i1 Ve = (|Hg<u>|2 + ||1;(u)||%H](RN))*) > v

forallu € AS\NS with I, (u) € [b— 80, b + 8],
(i) Suppose that for some ¢ € (0, o]

(He(u), I'(w)) # 0 forallu € NS with I,(u) € [b — 80, b+ 8ol. (4.22)
Then there exists ve > 0 such that
| (He (), 1) | x 1wV Y+ = Ve (4.23)

foru e AY) with I,(u) € [b — 80, b + 8o].
In what follows we assume without loss of generality v, < vy.
Proof (i), (ii) follow from Propositions 4.5 and 4.7 easily. O
We fix g9, vo > 0 and 9 > 0 given in Proposition 4.9.

Remark 4.10 (4.22) can be replaced with I/(u) # 0. We note that I (u) = 0 implies
H¢(u) = 0 (see Remark 4.8). (4.23) can be replaced by

[14;(u) (a1 vy = Ve

In the following Sect. 5, we develop a special deformation argument for 7, ().
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5 A Functional Corresponding to the Tail of a Function

5.1 Functional T¢ (v)

To find a critical point of I, (u) in a neighborhood N,(f) of expected solutions, it is
important to control the size of u outside of a ball B(8(u), Jig).

We set for u € §b,p2 and e > 0

T.(u) = /RN Cayye(x = B@)(Vul* + [ul?) € C'(Shp. R). (.1)

We note that T, («) is translation invariant, that is,
Te(u(- —h)) =T, (u) forallh e RN
and

luell? < Te(u).

H (x=palz ) ~
We use T (1) to estimate the size of u outside of a ball B(8(u), %).

In this section, we extend our idea in [23] to generate a special deformation flow
for I (u), which keeps T, (1) small along the flow.

5.2 A Special Vector Field in Afoe)
To construct a deformation flow which keeps the size of tail T, (1) small, we find a

special vector field in this section.
We note A(p'ii is bounded and so there exists C > 0 such that

lul?, < C forallu e A®.

First we decompose u € A,(oi)k into a center part #‘" and a tail part u‘> . We denote the
integer part of a > 0 by [a].

Since
[e~1/4=1
kgo 11 e paotet 24 g, 2+ £y < Il < C.
there exists k € {1,2, -+, [8_1/4] — 1} such that

||u|| — 0 ase — 0. 5.2)

H () el 2+, 24 k41 = 77174
7 1 ER N e ]
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In what follows we denote by ¢, various constants which do not depend on u and
satisfy ¢, — 0 as ¢ — 0. We set

MWm=c%t%@—ﬂw»wm, M%w=2%%%u—ﬂw»mm

where (g (x), ER (x) are defined in (2.1). We also set

M) =8y g = B@)u,  Ma@w) = (1 =8y g(x —B@))u.  (5.3)

These function also give decomposition of u into a center part and a tail part. Clearly we
haveu = M1 (u)+M>(u). By (2.2), we also have || M1 (u) || g1, | M2 ()| g1 < 3|ull 1.

We note that uY, u@, M, ), Ma(u) depend on ¢. But for simplicity of notation,
we omit ¢ from the notation.

We use —u@ to construct a deformation flow and we use M (u) and M (u) to
estimate effects of —u?.

u® has the following properties.

Lemma 5.1 There exists c; > 0 independent of u € Aﬁii such that
ce >0 ase >0

and for ¢ > 0 small u € Aﬁji)k satisifes the following properties (i)—(v).

®

@ g1, IM2@) 1 < po. (5.4)
lu —u® —u® g1 <ce. (5.5)
[ —u® u®) | < ce. (5.6)
() — LuP))Hu®| < c,. (5.7

(ii) For the center of mass B(u) defined in Sect. 3.3,
B wu® = 0. (5.8)
(iii) For M1 (u), M3 (u) defined in (5.3),

M (wu® =0, (5.9)
(M) [13,)u® > —c. (5.10)

(iv) For T;(u) defined in (5.1),

Te(u) < [lu® )3, (5.11)
T (wyu'® = 2T; (u). (5.12)

@ Springer



316 Page 30 of 55 S. Cingolani, K. Tanaka

(v) For co > 0 given in Corollary 2.2, we have
1L u® > coTe(u) — ce. (5.13)

From Lemma 5.1, we can observe a vector field u — —u‘® has good properties for
deformation. By (ii), (iii), —u@ does not effect the center part M (u) and the center
B(u) of mass of u. By (5.12) and (5.13), —u®@ gives a direction which decreases
both of I,(u) and Ty (u) provided T, (u) > i—g Thus it is convenient to construct a
deformation flow for I, (1) which keeps the size T (1) of tail small.

Proof (i) u € Aﬁ;ﬁi C gb, o Can be written as
u(x) = wlx = p) + o),

where w € §b and ||@[| g1 < ps. Since |B(u) — p| < Rp and §b is compact in
H'(RVM), we have Nl g1 (e —Buyi=1/5) = 205 for & small. Thus by (2.2)

P g, IM2@) 1 < 3Nl g1 (e payi=1, ) < 6P < 0

(&)

By (5.2), we have uniformly inu € A,_,

1 (0= BGa)ull g

lu —u® —u@ | =101 —C24 o (x—ﬂ(u))—;“z

8

S 3”u”Hl(‘X7ﬂ(u)|E[% % D —> 0 as & — 0
We also have
—u® @
e~ Yl < Clully pwielZt g a by 0 €= 0.

Thus we have (5.5) and (5.6). In a similar way, using Lemma 2.3 (ii) with R =
\% + 81% and L = ﬁ, we have (5.7).

(i) Since supp u® c RM\BB®), %) does not intersect B(B(u), 3Ry) for ¢ €

O ), we have by (iii) of Proposition 3.3

’ 9R2
Bu + teu®) = B(u) for small 7.

Thus we have (5.8).
By suppu® < R¥\B(B(u), \%) we note that

¢y ye(x = Ba)u? (x) = 0. (5.14)
(iii) We have from (5.8), (5.14)
QM Wu® = ¢, (x = BB @Wu®u + ¢y sx = p)u® =0.
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Thus we have (5.9).
For M3 (u), we compute by (5.6)
1
SO IM20) I7)u® = (Mo ), 3 Mo @)u'®) gy

=((1 = &1 ye(x = B@)ux), ¢f, o 0x = B)) (B (> u
+ (1 =&y & — B)u)

=(u, u(z))Hl = ||u(2)||%11 + u—u®, M(z))Hl > (u—u®, u(z))Hl

= — Cg.

Thus we have (5.10). ~
(iv) Since u(x) = u® (x) in supp Ty e (x —Bw) = RN\B(B(u), % —1), we have
(5.11) and

T (wyu® = — /R T e BB UVl + )
+ 2/ Sy e x = B@)(Vuvu® + uu®)
RN
2T, (u).

Thus we have (5.12).
(v) By (58.4),(5.7), (5.11) and Corollary 2.2,

Lwu® > 1L@Pu® —co > collu® |3, — co > coTe(u) — ce.

Thus we get (v).
O
Choice of k.. By the compactness of 3’;, we have
sup Tz (w) - 0 ase — 0.
a)eg;,
For ¢, > 0 given in Lemma 5.1, we set
2ce
ke =max {2 sup To(w), — ¢ —> 0 ase — 0. (5.15)
wegh €0

With this choice of «., we have the following corollary. In what follows, we use the
following notation for ¢ € R

I <cl={ue H'®RY): L) < ¢},
[Te > cl={ue H'®RY): T.(uw) > c}.
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Corollary 5.2 Foru € A;,ii N [Ty > k], we have
Lwu® > ¢,
in particular, IJ(u) # 0 in Agii N [T > kel
Proof By (v) of Lemma 5.1, we have for u € AE,’“;)k N[T: > k).

I @ > 0T — . > — . > .2ﬁ_ =
cu” > coTe(u) — ce = coke — Ce = Co Ce = C.

€0

O
As a corollary to Proposition 4.9 (ii) and Corollary 5.2, we have
Corollary 5.3 Suppose that for e > 0
(H:(u), Is’(u)) #(0,0) forue N_(i)ﬂ [T, < k] with I.(u) € [b — 89, b+ 6p].
(5.16)
Then there exists ve > 0 such that
I CHe @), L) e vy = Ve (5.17)

foru € AS) with I,(u) € [b — 80, b + 80].

In fact, Corollary 5.2 and (5.16) imply (4.22). Thus Proposition 4.9 (ii) implies
(5.17).

For later use, we state the following lemma, which states that the property u €
[T: < k] ensures that u concentrates around the center of mass f(u).

Proposition 5.4 Assume u € Aﬁii N [T; < k¢). Then we have

I (u) > L(ef(u), u) — ce — %VK&

Here c; > 0 is independent of u and satisfies c; — 0 as ¢ — 0.
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Proof For u € A(g) N [T: < k.] we compute

1
I () = LB, 1) + 5 / (V(ex) — V(eBw))u’
]RN

1
= L({;‘,B(M), M) + z (/ . —|—f . ) (V(SX) _ V(E,B(M)))Mz
x=Bul=—_z =Bz

1
= L(eB). 1) = S 1V = V(EBW) 1 qy—epiyzavolul3

V” ”H1(|x B> )

1—
> L(eB(u), u) — 5||V(y) = VBl qy-epiizava lull3 = 3 VT ).

Let Q¢Ry+p,. be a (6Ry + ps)-neighborhood of €2, that is, Qepy4p,, = {x € RN .

distgpn (x, ) < eRo + ps). We recall (4.21) and we note that Aﬁf;i is uniformly

bounded for all ¢ € (0, 1] and let C = SUP, (0. 1].ueA® ||u||§ < 00. Setting
e Pk

1
Ce = ECSUP{W()’) — VOO y. Y € Qerptpus Iy — Y <4J/e} >0 ase — 0,

and noting u € [T, < «], we have the conclusion of Proposition 5.4. |

6 Deformation Argument
6.1 Deformation Result

In this section we develop a special deformation argument for I, (x), which keeps
T, (u) small. Our aim is to show the following deformation result.

Proposition 6.1 Let gy, vo, 60 > 0 be numbers given in Proposition 4.9 and let k; > 0
be a number given in (5.15), which satisfies k. — 0 as ¢ — 0. Moreover suppose for
some € € (0, go]

(He(u), I () #0 foru € W with I, (u) € [b — 80, b + o] 6.1)

Then for any 81 € (0, &) there exist § € (0,81) and a continuous map n(t,u) :
[0, 1] x Afoii — Ai,iz such that

() n(0,u) =uforallu € A(S)
(i) n(t,u) = uforallt € [0, 11if I(u) & [b—81,b+8]orugAS)

3psetpx

@ii) t +— I.(n(t, u)) is a non-increasing function of t for all u € A(s)

(v) n(lu)y eI, <b—8lifue AY N[l <b+5].
V) n(t,u) € [T, <kelforallt € [0,1]ifu € [Ty < kel
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The properties (i)—(iv) are standard under the standard Palais-Smale condition. How-
ever our concentration-compactness type result Proposition 4.5 ensures a weaker
condition; we assume (4.10) in addition to (4.8) and (4.9) and we have (4.23) under
the condition (4.22).

We note that H, (1) gives a useful information on deformation. In fact, for » € RY
we have

d 1 ht))—ld
dili=o " T T 0w

/ Viex + htyu(x)* = 1/ h-VV(ex)u(x)?
t=0 JrN 2 RN

1
= Eh - He(u).
Thus, if H. (1) # 0, the translation flow:
h .
(t,v) —> v <x — —t) with h = —H.(u) (6.2)
&

gives a decreasing flow in a neighborhood of u.
The property (v) means that the set [T, < k] is positively invariant for the flow
n(t, u),ie.,

n@, [Te < kel) C[Te < k] fort =0. (6.3)
This property is related to the tail minimizing flow developed in [23]. In [23], we used
the tail minimizing flow separately from the deformation flow (the steepest descent
flow) for I, (u). Here, extending the idea in [23] we construct a deformation flow for
I (u) which keeps the size T, (u) of the tail UIRN\ B(B(w),4/ /%) small.
Remark 6.2 Tn [25, 33, 35], we study radially symmetric problems in RY. A typi-

cal example is a nonlinear scalar field equation: —Au = g(u) in RY. The natural
corresponding functional is

) =} 2 _ . gl mN
(u) = §||VM||2 V/H;N Gw): H RT) — R

and scaling 6 + u(x/e?) is important in the arguments in [25, 33, 35]. Precisely
Pohozaev functional

N -2
P = 22 vug2 - N/ Gw)
2 ]RN
is characterized as

Pu) = T(u(x/e?)). (6.4)

7l
de 16=0
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Thus, if P(u) > 0 (P(u) < O resp.), the scaling flow (0, u) — u(x/e™?) (u(x/e?)
resp.) gives a decreasing flow in a neighborhood of u. In [25, 33, 35], we introduce an
augmented functional 7 (6, u) by

1
T O, u) = Ee‘N‘mHWH%—eW / Gu),
RN

which enjoys the property J (8, u) = Z(u(x/e?)). We develop a deformation flow for
Z(u) through a deformation for 7 (6, u) in the augmented space R x Hr1 (RM).

In the following sections, replacing scaling (6.4) to translation (6.2), we give a proof
of Proposition 6.1.

6.2 Augmented Functional

To prove Proposition 6.1, we consider the following functional in the augmented space
RN x H'(RN):

TGy = Sivu+ 2 Lo RY < HURY) - R
e(@u) = S|Vuly + 3 RNV(SX-FZ)M(X) ;D) : REx HIRT) — R.

We note that J.(z, u) € CH®RY x HY(RY), R) and
(1) Je(z,u) = I (u(x — §))

(i) 0y Je(z, W = Iy (u(x — £)px — £).

(iii) 0;Je(z, u) = He(u(x — 2)).

Recalling D = (9;, d,), we have

Lemma6.3 (i) For (z,u) € RN x HY(RN), (z,u) is a critical point of Js, i.e.,
DJ:(z,u) =0ifand only if v(x) = u(x — g) satisfies

I[(v) =0 and Hg(v) =0.

(ii) Forc € R, c is a critical value of J, if and only if there exists v € H'(RN) such
that

I(v) =c, I/(v)=0 and Hg(v)=0.

(iii) Forall (z,u) € RN x H'(RN)

' Z\\ |2
(e =)
€ (HY(RN))*

z 2
Dz, 0l = |He (u (= 2))]
” S(Z M)H(RNXH](RN)) s \U\X e +

As in Corollary 2.2, we have

@ Springer



316 Page 36 of 55 S. Cingolani, K. Tanaka

Corollary 6.4 There exist pg > 0 and ¢y > 0 such that

2 2
Je(z,u) = collullyyi,  dulte(z, wyu = collully,

forall (z,u) € RN x H'@RN) with |lu||y1 < po.
To show our Proposition 6.1, we develop a deformation argument in RV x H!'(RY)
and we construct a flow n(¢, u) through a flow 7(¢,z,u) on a product space
RN x HY(RM).

We introduce a pseudo-distance DIST, (-, -) on RN x H!(RN), which is related to

dist. (-, -), by
h
u (x — —) —u'(x)
e
for (z,u), (z/,u') € RY x HY(RN). We note that

DIST: ((z, u), (', u')) = dist, <u (x - 5) u (x _ Z_>>
€ £

2
DIST,((z, u), (z',u")) = inf \/Iz’ —z—h*>+
heRN

H!

and

DIST.((z, u), (', u")) < distgn , g1 gy (2, ), (2, u))

= Jle =P+ u—w'l.

We set

N = {(z,u) e RN x H'(RY) : DIST,((z. u), Kp) < p)
_ {(z,u) eRY x H'RY) : dist, (u (x — g) , 1?;8))) < ,0},
A = {(z,u) e RN x H'(RY) : DIST,((z. u). Z5) < p}
={ew e R < H'@"): diste (u (v - 2). 27) < o}

Clearly these sets are uniformly bounded with respect to ¢ € (0, 1] and we have

Nés) c Agf). From Proposition 4.9 (i), Corollary 5.3 and Lemma 6.3 we have the
following

Proposition 6.5 Let 0 < p, < p. be the numbers satisfying (4.20). Then we have

(1) There exist vo > 0 and §g > 0 independent of € such that for ¢ > 0 small

”DJS(Z, M)”(RNXHI(RN))* > 1X0) (65)

forall (z,u) € AN with J,(z, u) € [b — 80, b + ).
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(i) Suppose that (6.1) holds, in other words, it holds that

DJs(z,u) 0 forall (z,u) € N with Jo(z,u) € [b — 80, b + 80]. (6.6)
Then there exists ve > 0 such that

| DJe(z, W) [(®N w g1 Ny = Ve forall (z,u) € A,EJZ with
Je(z,u) € [b— 8o, b+ dpl. (6.7)

We note that we may assume vg < vg.
6.3 Construction of a Vector Field

In what follows, we will show that the existence of a critical point (z, u) € N, (f) with
Je(z,u) € [b — 8o, b+ §p]. Arguing indirectly, we assume (6.1) holds. To construct a
deformation flow, we find a special vector field V_ , : Aéﬁi — RN x HY(RY). Since
(6.5) and (6.7) hold by Proposition 6.5, for (z, u) € AY) with J(z, u) € [b—80, b+8]
there exists (&, w) € RV x H'(RV) such that

E + wli3, <1, (6.8)
DJ(z.u)(E w) > vo if (z.u) € A \ NS, (6.9)
DJe(z, 0, w) > v, if (z,u) € N (6.10)

We compute for (z, u) € A;,i{ and £ >0
A Te(w)(w + €u®) = 8, To(ww + £8, T wu'® > —Cy + 20T, (u), (6.11)

where C1 > 0 is independent of ¢ and u. Here we used (5.12) and the boundedness

Of [0y Te (u) || g1 v+
For k. defined in (5.15), we set

c
o= 500 ase — 0. (6.12)
Ke

Finally we define V, , € RN x H'(RV) for (z, u) € AE;Z with Je(z, u) € [b—35p, b+
Sol by

v JEw L) T @) > ke,
“T (E w) if T, (1) < ke.

Then we have
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Proposition 6.6 Suppose that (6.1) holds. Then for ¢ € (0, 9%) and (z,u) € AE;Z,
0

we have

() If Te(u) > e, then
DT )V, > 0.
(i) For (z,u) € AY) with J.(z, u) € [b — 80, b + 8],

DJe(z,u)V, y > ve.

(iii) For (z,u) € AN with J.(z, u) € [b — 80, b+ 8],
DJc(z,u)V,y > vp.
(iv) There exist C, C' > 0 such that for My(u), M, (u) given in (5.3)

IDM () Vel g1 < C, (6.13)
D(|M2w)ll31) Ve > —C'. (6.14)

In the above proposition, we write
DTy(u) = (0,0, T:(w)), DM;(u) = (0,8,M;u)) fori=1,2.
In particular,

QT () (w + Lu®) if To(u) > e,

DT.(w)V,, =
e@)Veu !auTg(u)w if To(u) < ke.

We use similar formulas also for My (u) and || M3 (u) ”%—I"

Proof First we recall that (6.5), (6.7) hold under (6.1).
(1) By (6.11) and (6.12), we have for T, (1) > k;

DTe(u)Vz,u > —C1+20:Te(u) > —C1 + 2lk, = C1 > 0.
Thus we have (i).
(i), (iii) By our choice (5.15) of k, as in Corollary 5.2 we have D J,(z, u)(0, u®) > 0
when T, (1) > k.. Thus (ii) and (iii) follow from (6.9)—(6.10).
(iv) Since

B Mi@w = —¢{, 2(x = Ba) (B @Ww)u + ¢ s (x = Ba)w,
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10, M1 (u)w| g1 and ||, Ma(u)w| g1 are uniformly bounded by the boundedness of
||ﬁ/(u)||Hl(RN)*. Thus (6.13) follows from (5.9). As to (6.14), we have from (5.10)
and (6.12)

hu(IM2) |13, eu® > —Lece = —C.

Thus (6.14) follows from the boundedness of ||0, M2 (u)w|| g1. O

Proposition 6.7 Suppose that (6.1) holds. Then for ¢ > 0 small, there exists a locally
Lipschitz vector field W(z, u) : A,(Oii N{(z,u) : Je(z,u) € [b — S9,b + Sol} —
RN x HY(RN) with the following properties.

1) DT ()W (z,u) > 0if T (u) > k.

(i) DIz, )W (z, 1) > v, if (z,u) € AL and J.(z, u) € [b— 80, b + ).
(iii) DJe(z, W)W (z,u) > vg if (z,u) € .A(g) \J\/(f) and Jz(z,u) € [b — 8y, b + 8.
(V) IDMy @)Wz, )l g1 < C, DUIM2w)|12,)W (z,u) = —C".
Proof Let V., be a vector field given in Proposition 6.6. We remark that for any
(z,u) € AE,Z there exists a small neighborhood U, , of (z, u) in RN x H'(RN) such
that for (z/,u) € U,

(i) DT, (u" )V, > 0if To(u) > k.

(i) DJ(Z u)Voy > veif (z,u) € A(s) and Jg(z,u) € [b — 80, b + dol.
(iii) DJ(Z', u)Vou > o if (z,u) € AS \ N and Jo(z, u) € [b — 80, b+ So).
(V) IDMi(u )V ullgr < C, D(”MZ(I"/)HHI)V,M > —C'.
We may choose a neighborhood U , of (z, u) so that

U,u C {(Z/a I/t/) : Ta(u/) > ke) i Te(u) > ke,

Uss € AD\ N, “) if (z,u) € A9\ W, (8).

Using a partition of unity, we can construct a locally Lipschitz continuous vector field
Wz u): AYN{(z u) : Je(z,u) € [b—80, b+80]} — RY x H'(RV)ina standard
way. We can easﬂy see that W (z, u) satisfies (i)—(iv). m]

We note that W (z, u) is bounded in the following sense:
IW @ 1)l gt vy < CCL+ £e) (6.15)

for all (z, u), where C > 0 is independent of ¢, (z, u).

6.4 Deformation Flow for the Augmented Functional J. (z, u)

Using the pseudo-gradient flow W (z, u) obtained in Proposition 6.7, we have

Proposition 6.8 For ¢ > 0 small, suppose that (6.1) holds. Then for any given 81 €
(0, 8o) there exist § € (0, 8) and a continuous map 7(t, z, u) : [0, 1] x .Aj,i)k — A;,i)k
such that
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(i) 70, z,u) = (z,u) forall (z,u) € A(s)
(i) 7(t,z,u) = (z,u) forallt € [0,11if Jo(z,u) ¢ [b—81,b+ 811 or (z,u) ¢
(e)

A3ﬂ>~=k4+ﬂ* .

(iii) 1 — J.(j(t, 2, u)) is non-increasing on [0, 1] for all (z, u) € A%
(iv) Jo(I(1, z,u)) < b— 8 if (z,u) € AY satisfies J.(z,u) < b+ 6.
(v) Ts(ﬁ(ls z,u)) < ke if To(u) < ke.

For a proof we use notation for c € R
Ve < cll = (G w) e RN x H'®RY) : Je(z,w) < ).

Proof Let W(z, u) be a locally Lipschitz continuous vector field given in Proposition
6.7. For 6 € (0, 28 1) we choose locally Lipschitz continuous functions ¢; : R —
[0, 1], @2 : RN x H'(RN) — [0, 1] such that

1 forse[b—8,b+4], 1 for (z,u) € Ay,
p1(s) = w2(z,u) = (5)2
0 fors ¢ [b—28,b+25], 0 for () ¢ AL .

We consider the following ODE:

di

o =—o1(J: MW (), 170, z,u) = (z,u). (6.16)

First we note that for each ¢ € (0, 1] the vector field W(z, u) is locally Lipschitz
and uniformly bounded, where the bound depends on ¢ (c.f. (6.15)), the solution
n(t) = (¢, z, u) of (6.16) is extendable as long as 7j(t) € Agﬁ. Moreover the right
hand side of (6.16) vanishes in A(a) \A(S) and thus 7(¢) exists for all £ > 0.

xﬂw +px

We compute

d dn ~ ~
EJS@ = DJg(Tf)d—;7 = =1 (Je (M2 DT (HW (1),
d

ETS(?I) = —1(Je (M2 (D DT (MW (7).

Thus, we have from Proposition 6.7 that

d

EJg(ﬁ) <0 onAY, 6.17)
d o

e < —ve if7 € A(,i)km and J, (7)) € [b — 8, b + 8], (6.18)

d
(D < —wo i e A(,f;ﬂ,* \N‘S) and J. (7)) € [b — 8, b + 6], (6.19)

d
ETe(?f) <0 if T,(7) > k.. (6.20)
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The properties (i)—(iii) and (v) follow from the definition (6.16) and the properties
(6.17) and (6.20). To complete the proof, we need to show (iv).
We suppose (z, u) € Ag;) N [[J: < b+ §8]] and we show for some 7, > 0
N(te, z,u) € [[Je < b —8]]. (6.21)

Arguing indirectly, we assume that 77(¢) € [[Je > b — S]] forall t > 0. If j(z) =
7(t, z, u) satisfies

(1) € B.AMH* for some 7y > 0, (6.22)

then we can find an interval [s; ,, t; ,] such that
i) e Af;+p* \AG for € (s L), (6.23)
(s2) € aA‘” Tltz) € DG (6:24)
The following Lemma 6.9 shows that for some 7y > 0 independent of ¢, (z, u)
Izu = Szu = T0- (6.25)
Thus by (6.19),
Je((tz,u)) < Je((s2,u)) — voT0 < b + 8 — voT0.

Choosing § < voro, we have

Je((t;0)) < b — 28, (6.26)

which is in contradiction. Thus (6.22) cannot occur and we have 7(1) € A([i)m,* for
2

all t > 0. By (6.18), setting 7, = E > 0, we have (6.21) and (iv) holds. O

The following lemma is a key of the proof of Proposition 6.8. We remark that
distgn g1 vy (A 8A28;+p*) > DIST, (A, 3A28;+p*) > —(p*k — py).

However, since £, — oo as ¢ — 0, II%HRNXW(RN) = (W@ Ilgw x g1 gy is not
uniformly bounded by (6.15). Thus (6.25) does not follow from (6.23)—(6.24). In the
following lemma, (iv) of Proposition 6.7 plays a role.

Lemma 6.9 There exists 19 > 0 independent of ¢ > 0 such that if 7(t) = 7(t, z, u)
satisfies (6.23)—(6.24), then (6.25) holds.
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Proof By Proposition 6.7 (iv), we have for 77(r) = 7(¢, z, u)

d ~ ~
I M@l = o1 (T2 I DM (DWW (Dl g1 < C,

d . ’
= (1GEDIE1) = =1 e @2 (DU 0 WD <
Thus, for t € [s; 4, S;,u + ] we have

| P277(t) — Paij(sz)ll 1
< M (P25(1)) — My (P21 (szu)) | g1 + | M2 (P21j(t)) — Ma(Pa1i(sz,0)) | 1
< C(t —sz0) + IMa(P20j(s2)) | g1 + M2 (P (1)) ]| g

~ ~ 1/2
< C( = 52) + IMa (P2 gt + (IMa (PG50 1 + €0 = 52

< Cr 4+ IMa(Pais ) s + (IMa(Pafits) 3 + 7). (627)
On the other hand we have
I Mo (Poi(szu) | g1 < 3ps + de, (6.28)
where

de=sup (A =& )0 =yl — 0 ase — 0.

w€Sp,|y|<Ro

In fact, writing 77(s; ) = (z/, u') € Aﬁfj, we have for some (£, wo) € @ X Sp

dist, (u’ (x — Z—/> , 00 (x — §—0>> < Ps.
g g

Thus, there exists 4 € RV such that

Uulx——\)—wo|x—
& €

2

2
< ps”.

R +

H!
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By Proposition 3.3, we have |8(u’) —
by (2.2)

/
SO_; +h| 5 RO. Since PZ]’](SZ’M) = M/, we have

IM2(Po7i (sl g1 = 1Mo @)l g1 = (1 = &y e (x — B Nu' ()|

— h

< (1= ¢y yetx = B <u’<x> — w0 (x - &’—Z+>)
& H!
—74+h
+ H(l — ¢ (= By (x - M)
NG & H
<3|u'(x) — wy (x—w> +d; <3ps +ds.
& H!

Thus we have (6.28). By (6.27),

| P27 (1) — Paii(szi)ll gt < CT + Bps +de) + (Bps +de)* + C'1)'/?
fort € [s;u, S;u + 71

Since | Py W (z, u)| < 1 for all (z, u), we have |P,7j(¢) — P17(sz.4)| < 7. Thus there
exists 7o > 0 such that for ¢ > O small

DIST, (17(1), 71 (szu)) ST = 0(s2,) IRy s 11 RNy

- - - - 1/2
= (1P1770) = PriiGsca) P + 1 P20 = PaifCsca 2 )

<Tpy fort e [Sz,us 82,0 + 0],
which implies

DIST, (7(t), Z5) < DIST.(7(1), 7(s2.4)) + DISTe (7(sz.0), Z5)

<Tps + ps < MTW fort € [sz,u, Sz,u + 0]

P+ Psex

Here we used (4.20). Thus we have 7(z) € A(g) for t € [s;.u, S;.u + 7ol and the
prtpr

proof of Lemma 6.9 is completed. O

End of the proof of Proposition 6.1 We define 77, : RN x H'(RV) — H'(RN) by
z
e (z,u)(x) =u (x — g) .
For the flow 7 (¢, z, u) obtained in Proposition 6.8, set

7](1‘, u) = ne(ﬁ(tv 09 u))

Noting Te (7. (z, u)) = T.(u), it is easily observed that 1 (¢, ) has the desired proper-
ties. m|
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7 Existence of Critical Points

In this section we complete a proof of Theorem 1.2. We argue 2 setting (MP) and
(LM) separately.

7.1 Existence Under the Condition (MP)

First we consider (1.1) under the assumptions (f1)—(f4), (V1)-(V4) and (MP). Let
Vo > 0 be the number given in (MP) and let b = Ey,,.

Proposition 7.1 Assume (f1)—(f4), (VI)~(V4) and (MP) and let b = Ev,. For any
px > 0and § > 0 there exists g = €o(px, 6) > 0 such that for ¢ € (0, &o), I (u) has

a critical point u in N,()i) N[T: < ke] with I.(w) € [b — 8, b + 8.

Proof of Proposition 7.1 Letey, e, A be given in (MP). We may choose p, > 0 smaller
if necessary and choose p, > 0 so that (4.20) holds.

Let wo(x) be a least energy solution of L’V0 (u) = 0. We choose sg € (0, %) such
that

Ha)o (f) - wo(x)H <2 foralls e [1=s0, 1+ 0], 1.1)
K H! 3
Ly (a)o (f)) <b foralls e[l —so, 1 +solandi =0,1.  (7.2)
S

Since Ly (e;)(@0(5)) < Ly, (wo(3)) < b, (7.2) holds for small s € (0, %).
We may assume that § > 0 satisfies

max Ly (wo (f)> <b—285 fors e[l —s9,1+splandi =0, 1,
s€[l—sp,1+s0] N
(7.3)

Ly, (a)() (JS—C)) <b—25 fors=14%s. (7.4)

Arguing indirectly and noting Corollary 5.2, we assume that (6.1) holds. Applying
Proposition 6.1, there are 8 € (0,8) and n(r,u) € C([0, 1] x AY), A¥)) such that
(i)—(v) of Proposition 6.1 hold.

Step 1: Choice of an initial path y; (s, &) : [1 — so, 1 + so] x [0, 1] — HYRY)
Forc(§) € A, we set

x—c@)/e
s

Y0e(c; 5, 8)(x) =wo< ) : [1—s0, 14501 x [0, 1] = H'(RY).

By the choice (5.15) of k¢, we have

Voe(c; s, 8) € [Te < kel, (7.5)
Yoe(c; s, &) € Agj} forall (s, &) € [1 — so, 1 + s0] x [0, 1]. (7.6)
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In fact, wo(x — c(§)/e) € Z,* and (7.1) imply (7.6).
We also have

Te(yoe(c; s, 6) — L (0@)’ @0 (?))
X
S

=Ly (@0 (3)) + %(V(C(E)) — Vo) [ ( )Hz (1.7)

as ¢ — 0O uniformly in [1 — 5o, 1 4 s9] x [0, 1].
Thus, choosing c(§) € A such that maxg¢(o,17 V(c(§)) is very close to Vp, from
(7.3), (7.4) and (7.7) we have for sufficiently small ¢ > 0

Ve (cs s, €) € [Ie < b — 8] for (s,€) € d([1 —s0, 1 +50] x [0, 1]), (7.8)
yoe(c:s,§) € [Ie =b+8] for (s,§) € [1 —s0, 1+ s0] x [0, 1]. (7.9)

Letn(t,u) : [0,1] x Aﬁ)fi — AE,Q be a deformation given in Proposition 6.1 and we
set

Ye(s, &) = n(l, yoe(c: s, §)). (7.10)

By (7.8) and the property (ii) of Proposition 6.1,

Ve(s, &) = yoe(c; 5, 8) = wo (
for (s, &) € d([1 — so, 1 + s0] x [0, 1]). (7.11)

x—C(E)/S)
S

By (7.9) and the properties (iv), (v) of Proposition 6.1, we have for (s,&) €
[1 =50, 1+ s0] x [0, 1]

Ve(s, &) € e <b =8N [T < kel (7.12)
Next we will show under (7.5)—(7.6) and (7.11) that y. (s, §) satisfies

lim inf ma.

. :§)) =z b. 7.13
£—>0 (S»é)ellfso,l)isoJX[O,lj e(ve(s. §)) = ( )

We note that (7.13) is incompatible with (7.12) and it shows the existence of a critical

point in N[()i) N[T: < kel
We remark that under (MP) there exists a small neighborhood €'(D ) of @ with
the following properties:

(1) For & > 0 small,

eB(ye(s,€)) € @ forall (s,&) € [1 — s0, 1 +50] x [0, 1].
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(2) Set
W={xeQ: V) <V,

then eg and e; belong to different components of W.

(&)
Piex

Since y. (s, z) € A, forall (s, z), we have

distgn (eB(ye (s, £)), Q) < &R0 + pwe

and (1) follows.
We denote by W_ the component of W, to which eg belongs, and we set

Wie=W\W_, Wo={xeQ: VX > V.
We also introduce a signed distance function dy(x) on Q' by

distc, Wo) ey W

;_di(st(%,‘)’Vo)

_ 1st(x, :

dO(x) - diSt(E[,WL()) lf.x S W+,
0 if x € Wy.

For P,(u) defined in (3.2), we set a = V{y and consider
Fo(u) = (Py, (). do(eBw))) : AY) — R x R.

Then we have
Step 2: For y(s, &) defined in (7.10),

deg(Fe(ye(s, &), [1 —s0, 1+ s0] x [0, 1], (0,0)) = —1. (7.14)
In particular, there exists (sg, &) € [1 — so, 1 + so] x [0, 1] such that

Py, (ye(se, §6)) =0 and V(eB(ye(se, &))) = Vo. (7.15)

In fact, for (s, &) € d([1 — s0, 1 + s0] x [0, 1]), we have by (7.11)
o2

- (Pv0 (@0 (%)) (5/3 (“’0 <x_csﬂ))))

= (P (@0 (%)) - dote®) +o(1))).
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By Proposition 3.2 we have

X >0 fors=1-— s, >0 for& =0,
P il d
Yo (“’°<s>){<o fors = 1450, PN 0 fore =1,

and thus we have (7.14). Since do(y) = 0 implies V(y) > Vp, (7.14) implies the
existence of (s¢, &) with (7.15).

Step 3: 1. (v (s, &) = b+ o(l) ase — 0.

We write we, = . (s, & ). Since w, € Aﬁfi N [T: < k], it follows from Proposition
5.4

I (we) > L(V(eB(we)), we) — ce — %VK{;‘

1 1—
= Lyy(we) + 5 (V (e(we) — Vo) llwell3 — c: — 5 Ve

By (7.15), we have

1—
Is(ws) 2 LV()(ws) - Cg - EVKS.

By (3.3), it follows from Py, (w,) = O that Ly,(ws) > Ey, = b. Thus we have Step
3.

Step 4: Conclusion.

(7.12) and (7.13) are incompatible and thus (6.1) does not hold. Thus we have the
conclusion of Proposition 7.1. O

7.2 Existence Under the Condition (LM)

In this section we consider (1.1) under the assumptions (f1)—(f4), (V1)—(V4) and (LM).
Let Vp > 0 be the maximum in €2 and let b = Ey;,. We have

Proposition 7.2 Assume (f1)~(f4), (V1)-(V4) and (LM) and let b = Ey,. For any
px > 0and § > 0 there exists g = €o(px, 6) > 0 such that for ¢ € (0, eo), I (u) has

a critical point u in N/()i) N [T, < k] satisfying I.(u) € [b — 8, b+ 98]

Proof of Proposition 7.2 Let wy(x) be a least energy solution corresponding to b =
Evy,. We choose sg € (0, %) satisfying (7.1) and set yos (s, &) : [1 —s0, 1 +50] X 2 —
H'(RV) by

N

Y0 (5. £)(x) = wp (x - 5/8) .
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We note that

s 00 =3 [V (o3 [ v+ om () 32 ()

= tfeon(5)) =t (o0 (5)) - 300 - ven fen ()],

as e — Ouniformlyi_n (s,8) €[l —s0, 14+ 50] x Q.
Thus there exists § > 0 such that

max L (S, o (%)) <b,

(s,8)€[1—s0,14+s50]x 2

max L (S, wo (;—C)) <b—26.

(5,6)€d([1—50,1+50]x )

Moreover for any § € (0, §) we have for sufficiently small & > 0

max 716(1/08(5"%‘))517"‘8,
(s,8)e[1—s0,14s0] xR
max Ie (Yoe (s, €)) < b — 6.

(5,6)€d([1—s0, 1+s01x 2)

We also note that yp.(s, &) € [T: < k] for all (s,&) € [1 —s0, | + 0] X Q. We
define F; : Af,i)k — R x RN by

Fe(u) = (Py, (), e (u)).

Arguing as in the proof of Proposition 7.1, we can prove Proposition 7.2. O

7.3 End of the Proof of Theorem 1.2

Finally we derive our Theorem 1.2 from Propositions 7.1 and 7.2.

End of the proof of Theorem 1.2 Let V) be the critical value given by (MP) or (LM).
Since V(x) € CN(RY, R), by the Sard Theorem there exists a sequence (an)2, C
(0, 00) such that

D)o >0 > >0y >apt1 >+
2) a, > 0asn — oc;
(3) Vo — «, is aregular value of V (x).

We set
Q,={xe: V&) > Vy—a,}.

We can see that (V1)-(V4) and (MP) or (LM) hold in €2, for large n (See Sect.4.1).
Thus we can apply the arguments in previous sections in €2,, and, replacing 2 with
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2y, we prove Propositions 7.1 or 7.2 for £2,. That is, for any p, > 0 and 8 > 0 there
exists eg(n, px, 8) > 0 such that for ¢ € (0, 9(n, p«, 8)], I (u) has a critical point u,
in N\°). with I, (ue) € [b — 3, b + 8]. Precisely,

Kion=1(6,0): & €, DLE @) =0, LE @) = b, ol 20 = max ol 21))
— (€ ) EeQ, VE) € [Vo—an Vol, VV(E) =0, Ly (@) =0,

Lyg) (@) =b, ol = max lollz2640)}
ne

KY) = {w (x - %) D (Eo) e /Eb,n},

N© — {ue HI(RN) . distg (u, feb(g)) < Px}-

n, Ps N
We note that I/C\b, » shrinks to the following I/C\b,Oo asn — oo:
Kpoo = {(6.0): € €Q, V() = Vo, DL(E, ) =0, L, 0) = b,
w = max |w
lollz2(g) max ol 240}
= Crity, x {w € H'®RY) : L, (@) =0, Ly, () = b,
w = max |w .
[ ||L2(Q) e l ||L2(n+Q)}
Thatis, diStRNXHI(RN)(’/C\b,n, I/C\b,oo) — Oasn — oo. Now we can complete the proof
of Theorem 1.2. We choose sequences (0x1)°%, (6,)°%; with py;, — 0,8, — 0 as
n — oo. Then there exists &, = £o(n, Psn, 8») > 0 such that for ¢ € (0, &,], I (1)

has a critical point u,, € N,gi))*n with I (upe) € [b — 8p, b + 5,]. We may assume
& >8>+ > &, > &4 > --- and g, — 0 as n — oo. Finally we set

ug(x) = upe(x) fore € (g,-1, &l

We observe that (#s)sc(0,¢,] 1S the desired family of solutions. O

Proof of Theorem 1.3 Under the assumptions (V1°) and (V17), V (x) has finitely many
critical points in €2. So there exists & > 0 such that there are no critical values of V |
in [Vo — a, Vo + «]\{W}. Replacing 2 with

fxeQ: Vix)e (Vo —a, Vo + a)}

and arguing as in Sect.4.1, we may assume that x € Q and VV(x) = 0 imply
V(x) = Vp. Thus for b = Ey,

K = Crity, x Cp,
where C}, is a set of least energy solutions of Ly, (u) = 0, that is,

_ 1Ny . _ / _ _
Ch={we H R"): Lyy(w) =b, Ly (0) =0, oll2¢0) = ;2%7; loll2(4-0)}-
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Thus N/(,g) is a p-neighborhood of
Kl(g) ={w|lx—=): &eCCrity, we(
e) 0’ '

By the arguments in the proof of Propositions 7.1 and 7.2, for any p, and § > 0 there

exists &g = £9(x, 8) > 0 such that for ¢ € (0, 9], I, (1) has a critical point in N,()i).
Taking sequences (04)5 | (g,,);’f: | with py, — 0, 8, — 0and arguing as in the

proof of Theorem 1.2, we complete the proof of Theorem 1.3. O

7.4 Potential V(x) of Class C

In previous sections we consider the situation where the set of critical values {V (x) :
x € Q, VV(x) = 0} is of measure 0, which is ensured by Sard Theorem for V (x) €
CN (RN, R). In this section we assume just V (x) € C'(RV, R). Then the set of critical
values may not be of measure 0.

We have the following weaker result.

Theorem 7.3 Assume (f1)—(f4) and (V1’), (V2), (V3). Moreover suppose (LM) or (MP).
Moreover assume (V4) in Sect. 4.1 for a constant Vy appeared in (LM) or (MP). Then
(1.1) has a family of solutions, which concentrates in 2. That is, there exists eg > 0 and
a family (ig)ec(0,50] Of SOlutions of (1.2) with the following property: for any sequence
(81')?11 C (0, e0] with ¢; — 0 after extracting a subsequence — still we denote it by

&j — there exist ()cj);."’:1 C RV, xo € Q and a non-trivial solution wy(x) € H'(RN)
of the limit problem —Au + V (xp)u = (I * F(u))F'(u) in RY such that

gjxj — xo, uj(x+x;)—> wo(x) strongly in HI(RN) as j — oo.
Moreover, (xo, wg) satisfies for b = Ey,
VV(xg) =0, V(xo) < Vo, 9L(x0,wp) =0, L(xo,w0)=">b.

In Theorem 7.3, the concentration point x is a critical point of V (x) in €2 but its
critical level may be lower than Vj in general.

Proof of Theorem 7.3 For V > 0 given in (LM) or (MP) and let b = Ey, > O be a
least energy level for the limit functional Ly, (1). As in the previous sections, we set
Kp=1{¢ o) e @x H'RY): DLE 0) =0, L&, 0) = b,

||60||L2(Q) = max ||w||L2(n+Q)}‘
nezZlN

Then, following the proofs 9f Proposition 7.1 and 7.2,_let 0 < ps < ps be the numbers
satisfying (4.20). For any § > 0 there exists €y(p4, §) > 0 such that for ¢ € (0, &o],

I, (1) has a critical point u in J\/}Ef) satisfying I, (u) € [b — 8, b + 8].

@ Springer



Semi-classical analysis around local maxima... Page 51 0of55 316

Choosing sequences (psn)°%, (8,)°°, with px, — 0,8, — 0, we complete the

proof of Theorem 7.3. O

8 Concentration at a Local Minimum

In Sects. 1,2, 3,4, 5, and 6, we develop a deformation theory under our new version of
Palais-Smale condition (see Proposition 4.5), i.e., if (SJ)?OZI C(0,1]and u; € A;ij)

satisfy as j — oo

ej = 0. Lo(uj) — b, I/ (uj) — Oin (H'RY))", 8.1)
He,(u)) — 0, (8.2)

then
diste, (uj, Ky7) — 0. (8.3)

And our deformation flow 7(z, u) is constructed through a deformation in the aug-
mented space RN x H!'(RY). When a stronger version of Palais-Smale condition, i.e.,
if (8.3) holds under (8.1) (without (8.2)), we can construct the desired flow directly as
a deformation in H(RY).

We note that for the functional /. (u) corresponding to the nonlinear Choquard
equation (1.2) under the conditions (f1)—(f4), (V2) and

V1) V e CRY, R);
(I?l\7[) There exists a bounded connected open set 2 C RV such that

Vo= inf V(x) < inf V(x),

xeQ x€d2
the compactness (8.3) holds under (8.1). This fact is essentially given in Proposition
4.11in [23].
In fact, if (8.3) holds under (8.1) and if
I[(u) #0 forallu € N with I (u) € [b— 8. b + Sl

then for any py, pxx > 0 with (4.20) and for ¢ > 0 small there exist constants v, > 0
depending on € and vy > 0 independent of ¢ and a locally Lipschitz continuous vector
field

W) : A® — H'®RY)

such that
(i) For To(u) : Sp.,, — R defined (5.1),

T, )W) >0 if T (u) > k.
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(i) Foru € AY) with I.(u) € [b — 80, b + 8]

IS/(M)W(M) > V.

(iii) Foru € AS) \ NS with I, (u) € [b — 80, b+ o]
1.)W (u) = vo.
(iv) There exist C, C’ > 0 such that for M (u), M>(u) given in (5.3)

IM{ @)W @) g1 < C.
B (IMa ()12, )W (u) > —C'.

Here we use the arguments in Sects.5 and 6. We obtain a deformation flow n(z, u) :
[0, 1] x Agi)k — Aﬁ)i)k with the properties (i)—(v) in Proposition 6.1 as a solution of
ODE in H!(RM):

dn

i —o1(I:M)e2mMW (), 10, u) =u,

where ¢1(s) : R — [0, 1], o2(u) : H'(RN) — [0, 1] are suitable cut-off functions.
Thus we have the following result.

Thsorem 8.1 (Theorem 1.1 of [23]). Assume the conditions (fl)—(f4) and ( Vi ), (V2),
(LM). Then (1.1) has at least one positive solution concentrating in 2.

Remark 8.2 In [23], we study the existence of solutions of (1.1) concentrating in a
potential well €2, i.e., under (]:M) using 2 flows; one flow is the standard gradient
flow corresponding to — I, (u) and the other is the tail minimizing flow. We can give a
simplified proof to the result in [23] using our deformation flow 7 (¢, u), which keeps
the size T (u) of tail of functions small and we can show the existence of critical
points using just one flow n (¢, u). We note that in [23] we also study the multiplicity
of solutions using cup length of the critical set K = {x € Q: V(x) = W}.

Remark 8.3 Our deformation argument can be applied to various singular perturba-
tion problems. For example, it is applicable to the following nonlinear Schrodinger
equations:

—&?Au+V(x)u=gw) inRY, (8.4)

where N > 2, g(&£) € C(R, R).

We can use our new deformation argument to improve results in [8] slightly and
to simplify the proofs and arguments (c.f. [26]). In [8], Byeon and the second author
studied (8.4) under the assumption g(§) € C I(R, R), which is used to solve elliptic
problems (1.6) outside of a large ball uniquely. By virtue of our new deformation flow
obtained in Proposition 6.1, which keeps the H '-energy small outside a ball, we don’t
need to solve the elliptic problems outside of a ball uniquely and we can relax the
regularity assumption on g to the class C©.
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