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Abstract
We give a full characterization of circle homeomorphisms which admit a homeo-
morphic extension to the unit disk with finite bi-Sobolev norm. As a special case, a
bi-conformal variant of the famous Beurling–Ahlfors extension theorem is obtained.
Furthermore we show that the existing extension techniques such as applying either
the harmonic or the Beurling–Ahlfors operator work poorly in the degenerated setting.
This also gives an affirmative answer to a question of Karafyllia and Ntalampekos.

Keywords Sobolev homeomorphisms · Sobolev extensions · Beurling–Ahlfors
extension · Harmonic extension · Quasiconformal mapping and mapping of finite
distortion
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1 Introduction

The celebrated Beurling–Ahlfors quasiconformal extension theorem [7] states that
a self-homeomorphism of the unit disk D ⊂ C is quasiconformal if and only if
the boundary correspondence mapping ϕ : S onto−→ S is quasisymmetric. It has found a
number of applications in Teichmüller theory, Kleinian groups, conformalwelding and
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dynamics, see e.g. [4, 17]. Recall that a sense-preserving homeomorphism ϕ : S onto−→ S

is quasisymmetric if the quantity

δϕ(θ, t) = max

{
|ϕ(ei(θ+t)) − ϕ(eiθ )|
|ϕ(eiθ ) − ϕ(ei(θ−t))| ,

|ϕ(eiθ ) − ϕ(ei(θ−t))|
|ϕ(ei(θ+t)) − ϕ(eiθ )|

}
(1.1)

is uniformly bounded both in θ ∈ [0, 2π ] and in t ∈ (0, 2π). Furthermore, a
homeomorphism h : D onto−→ D of Sobolev class W 1,1

loc (D,C) is quasiconformal if

|Dh(x)|2 � K (x)Jh(x) (1.2)

for some K ∈ L ∞(D). Here, |Dh(x)| is the operator norm of the weak differential
Dh(x) : D → R

2 of h at a point x ∈ D, and Jh(x) = det Dh(x) is the Jacobian
determinant of h. The smallest function K (x) = Kh(x) � 1 for which the distortion
inequality (1.2) holds is called the distortion of h.

The remarkable feature of a quasiconformal mapping is that its inverse is also
quasiconformal. In particular, both the mapping h : D onto−→ D and its inverse f =
h−1 : D onto−→ D have finite conformal energy (also called the Dirichlet energy). Their
sum

E[h] =
∫
D

|Dh(x)|2 dx +
∫
D

|Df (y)|2 dy < ∞ (1.3)

is called bi-conformal energy of h (and f ). An orientation-preserving homeomorphism
h : D onto−→ Dwith finite bi-conformal energy is amapping of bi-conformal energy. Note
that a homeomorphism h : D onto−→ D is a mapping of bi-conformal energy if and only if
the mapping h lies inW 1,2(D,C) and has integrable distortion; that is, Kh ∈ L 1(D),
see [5, 15, 16, 21]. For such mappings we have

E[h] =
∫
D

|Dh(x)|2 dx +
∫
D

|Df (y)|2 dy

=
∫
D

K f (y) dy +
∫
D

Kh(x) dx

=
∫
D

[
|Dh(x)|2 + Kh(x)

]
dx < ∞ .

(1.4)

The last integral is alsowell defined in the class of non-injectivemappings of integrable
distortion. Such deformations and their n-dimensional counterparts play an important
role inGeometric Function Theory (GFT) [4, 15, 18] as they share several fundamental
topological and analytical properties of analytic functions. For instance, a nonconstant
mapping h with E[h] < ∞ is continuous, discrete and open [22]. As a result, mappings
of bi-conformal energy form the widest class of homeomorphisms that one can hope to
build a viable extension ofGFTwith connections tomathematicalmodels ofNonlinear
Elasticity [3, 6, 10]. This circle of ideas has applications inmaterials science and critical
phase phenomena, where the distortion functionals are natural measures of change in a
system. They address fundamental questions ofmicrostructure and length scales. In the
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setting of unbounded distortion, however, many of the usual tools of quasiconformal
mappings are lost. In particular, this degenerated setting truly challenges the available
extensionmethods in the literature.Nevertheless, it is known that theBeurling–Ahlfors
extension operator can be pushed to produce a homeomorphism h : D onto−→ Dwith finite
bi-conformal energy (1.4) if the boundary correspondence homeomorphism ϕ : S onto−→
S satisfies the condition

∫
S

∫
S

∣∣∣∣ϕ(ξ) − ϕ(η)

ξ − η

∣∣∣∣
2

dξ dη +
∫ 2π

0

∫ 2π

0
δϕ(θ, t) dθ dt < ∞ . (1.5)

This follows from a very recent result of Karafyllia and Ntalampekos [24]. Actually,
their sharpL ∞-estimates for theBeurling–Ahlfors operator also give sufficient condi-
tions for other extension problems involving unbounded distortion functions, see also
[8, 31, 33, 36]. Such extension problems are in demand e.g. in complex dynamics, [13,
30]. In particularly, Karafyllia and Ntalampekos showed that a boundary homeomor-
phism ϕ : S onto−→ S admits a homeomorphic extension h : D onto−→ D with p-integrable
distortion; that is, Kh ∈ L p(D), p � 1, if

∫ 2π

0

∫ 2π

0

[
δϕ(θ, t)

]p dθ dt < ∞ . (1.6)

They raised a question if the sufficient condition (1.6) is also necessary for obtaining an
extension of p-integrable distortion, see [24, Question 1.5]. Our next result, however,
shows that this is far from being the case.

Example 1.1 For p � 1 and every q > p, there exists a Lipschitz homeomorphism
h : D onto−→ D such that Kh ∈ L p(D) and

∫ 2π

0

∫ 2π

0
logq

(
e + δϕ(θ, t)

)
dθ dt = ∞ ,

where ϕ = h on ∂D.

In particular, this provides us a mapping of bi-conformal energy from the unit disk
onto itself whose boundarymapping does not satisfy the condition (1.5). Nevertheless,
the first part term of (1.5) being finite still remains as a necessary requirement. Indeed,
a mapping ϕ : S → C admits a continuous extension (not necessarily a homeomor-
phism) to the unit disk D in the Sobolev classW 1,p(D,C), 1 < p < ∞ if and only if
it satisfies the so-called p-Douglas condition,

∫
S

∫
S

∣∣∣∣ϕ(ξ) − ϕ(η)

ξ − η

∣∣∣∣
p

dξ dη < ∞ , (1.7)

known as the Douglas condition when p=2, [11]. For the proof of this result we refer
to [34, p. 151–152]. Note that an arbitrary boundary homeomorphism ϕ : S onto−→ S

satisfies the p-Douglas condition for p < 2.
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On the other hand, according to the famous theory of Radó [32], Kneser [25] and
Choquet [9], see also [12], any homeomorphic boundary value ϕ : S onto−→ S admits
a homeomorphic harmonic extension of D onto itself. Moreover, since the harmonic
extension of ϕ has the smallest Dirichlet energy among all extensions, a homeomor-
phism ϕ : S onto−→ S admits a homeomorphic extension h : D onto−→ D in W 1,2(D,C) if
and only if ϕ satisfies the Douglas condition. Similarly for p > 1, the p-harmonic
variants of the Radó-Kneser-Choquet theorem [2] show that if a homeomorphism
ϕ : S onto−→ S satisfies the p-Douglas condition, then it actually admits a homeomorphic
extension h : D onto−→ D in W 1,p(D,C). For p < 2, this can be also seen by simply
applying the standard harmonic extension operator. Indeed, the harmonic extension
of an arbitrary homeomorphism ϕ : S onto−→ S lies inW 1,p(D,C) for all p ∈ [1, 2), see
[35]. The harmonic extension operator is actually surprisingly robust and able to work
above its natural W 1,2-domain of definition. We give here a proof of this fact in the
setting of higher-order Sobolev spaces, see also [23, Theorem 5.1].

Theorem 1.2 Let ϕ : S onto−→ S be a homeomorphism and h : D onto−→ D the harmonic
extension of ϕ. Then the homeomorphism h lies in W 1,p(D,C) if and only if the
boundary map ϕ satisfies the p-Douglas condition with p ∈ (1,∞).

In particular, a necessary condition for a homeomorphism ϕ : S onto−→ S to be the
trace of mapping of bi-conformal energy is that both ϕ and ϕ−1 satisfy the Douglas
condition. In that case we say that ϕ enjoys the bi-Douglas condition,

∫
S

∫
S

∣∣∣∣ϕ(ξ) − ϕ(η)

ξ − η

∣∣∣∣
2

+
∣∣∣∣ϕ−1(ξ) − ϕ−1(η)

ξ − η

∣∣∣∣
2

dξ dη < ∞ . (1.8)

The bi-Douglas condition can be written purely in terms of the mapping ϕ, see [5].
Indeed, a homeomorphism ϕ : S onto−→ S satisfies the bi-Douglas condition if and only
if ∫

S

∫
S

∣∣∣∣ϕ(ξ) − ϕ(η)

ξ − η

∣∣∣∣
2

+ ∣∣ log|ϕ(ξ) − ϕ(η)|∣∣dξ dη < ∞ . (1.9)

In spite of that the harmonic extension operator is a powerful tool to produce Sobolev
homeomorphic extensions (Theorem 1.2), this techniques certainly has its limitations
when one, for instance, moves to the bi-Sobolev setting.

Example 1.3 There exists a homeomorphism ϕ : S onto−→ S which satisfies the bi-
Douglas condition (1.8) such that the inverse of the harmonic extension of ϕ does
not belong to W 1,2(D,C).

Thus, Examples 1.1 and 1.3 show that new and direct ways of constructing home-
omorphic extensions are needed to prove the following bi-conformal variant of the
Beurling–Ahlfors extension theorem.

Theorem 1.4 Let ϕ : S onto−→ S be an orientation-preserving homeomorphism. Then
ϕ satisfies the bi-Douglas condition if and only if it admits a bi-conformal energy
extension to D.
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This actually follows as a special case (p = 2 = q) from our main result which
completely characterizes circle homeomorphisms that admit bi-Sobolev extensions to
the unit disk.

Theorem 1.5 Let ϕ : S onto−→ S be a homeomorphism. Then ϕ satisfies the p-Douglas
condition and ϕ−1 the q-Douglas condition if and only if the mapping ϕ admits
a homeomorphic extension h : D onto−→ D so that h ∈ W 1,p(D,C) and h−1 ∈
W 1,q(D,C).

Since every homeomorphism ϕ : S onto−→ S satisfies the p-Douglas condition with
p < 2, the following result is another immediate consequence of Theorem 1.5.

Corollary 1.6 Any homeomorphism ϕ : S onto−→ S admits a homeomorphic extension to
D so that both the mapping and its inverse lie in the Sobolev classW 1,p(D,C) for all
p ∈ [1, 2).

The principle of non-interpenetration of matter in themathematical models of Non-
linear Elasticity asserts that the energy-minimal displacement field h : X onto−→ Y is a
homeomorphism. Clearly, the validity of this principle depends on the studied stored
energy functional

EX[h] =
∫
X

E(x, h, Dh) dx , E : X × Y × R
2×2 (1.10)

where the so-called stored energy function E characterizes the mechanical and elastic
properties of the material occupying the domains X and Y. The p-harmonic energy,
including the Dirichlet integral (p = 2), and the so-called total p-harmonic energy
serve as model examples,

Ep[h] =
∫
X

|Dh(x)|p dx and Tp[h] =
∫
X

|Dh(x)|p dx +
∫
Y

|Dh−1(y)|p dy .

For instance, in the case of the Diriclet energy the injectivity may be lost when passing
to the limit of the minimizing sequence of homeomorphisms, the interpenetration of
matter takes place [20].Of course, herewe need to know that theminimization problem
is well-posed to start with. This, and more generally minimizing the p-harmonic
energy, leads us to study the associated Sobolev variants of the Jordan-Schönflies
theorem. The classical Jordan-Schönflies theorem states that for a given pair of (simply
connected) Jordan domains X,Y ⊂ R

2 and a boundary homeomorphism ϕ : ∂X
onto−→

∂Y there is a homeomorphism h : X → Y which equals ϕ on ∂X.
For p � 1, the Sobolev Jordan-Schönflies problem asks to characterize the pairs

of Jordan domains X,Y ⊂ R
2 for which any boundary homeomorphism ϕ : ∂X

onto−→
∂Y that admits a continuous extension to X of the Sobolev class W 1,p(X,R2) also
admits a homeomorphic extension h : X onto−→ Y inW 1,p(X,R2). The Sobolev Jordan-
Schönflies problem is well understood today [26, 28, 29]. On the other hand, the
well-posedness of variational problems involving the total p-harmonic energy requires
us to study the associated bi-Sobolev Jordan-Schönflies problems.
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Since the Sobolev spaces under consideration are invariant via a global bilipschitz
change of variables in both the reference and the deformed configuration, Theorem 1.5
generalizes right away to the case of Lipschitz domains (an axiomatic assumption in
the theory of Non-linear Elasticity). Thus, the pair of Lipschitz domains satisfies
the conditions in the bi-Sobolev Jordan-Schönflies problem. Moreover, a standard
reflection argument shows that the extension given byTheorem1.5may also be defined
globally with h ∈ W 1,p

loc (C,C) and h−1 ∈ W 1,q
loc (C,C). Thus we obtain the following

theorem as a corollary.

Theorem 1.7 Let X and Y be simply connected bounded Lipschitz domains in the
complex plane. Suppose that a homeomorphism ϕ : ∂X

onto−→ ∂Y admits a continuous
extension f : X → C which lies in the Sobolev space W 1,p(X,C) for some 1 �
p < ∞. If ϕ−1 also admits a continuous extension to Y in W 1,q(Y,C) for some
1 � q < ∞, then ϕ admits a homeomorphic extension h : C onto−→ C inW 1,p

loc (C,C) so

that the inverse h−1 ∈ W
1,q
loc (C,C).

Now, if an orientation-preserving boundary homeomorphism ϕ : ∂X
onto−→ ∂Y sat-

isfies the assumptions of Theorem 1.7 with p = 2 = q, then a minimizer of the
bi-conformal energy

E[h] =
∫
X

|Dh(x)|2 dx +
∫
Y

|Dh−1(y)|2 dy =
∫
X

[
|Dh(x)|2 + Kh(x)

]
dx

exists among all homeomorphisms h : X onto−→ Ywhich coincidewithϕ on the boundary
of X; that is, an interpenetration of matter does not occur. It is worth comparing this
to the mappings with smallest Dirichlet energy which need not be injective in the case
of nonconvex target domains [1, 9, 19].

2 Preliminaries

For the proofs to be presented in the next sections we will need an alternative formu-
lation of the p-Douglas condition (1.7). To state this condition, we let In,k denote a
dyadic decomposition of the unit circle. Then the result reads as follows.

Proposition 2.1 The boundary homeomorphismϕ : ∂D → ∂D satisfies the p-Douglas
condition for p > 1 if and only if

∞∑
n=1

2n∑
k=1

|ϕ(In,m)|p2(p−2)n < ∞.

For the proof, we refer to [26].

3 The Bi-Sobolev Extension

In this section we prove Theorem 1.5.
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Proof It is clear that the ’if’ part of the statement is a trivial consequence of the fact
that the p-Douglas condition (1.7) characterizes the trace space of W 1,p(D). Hence
we prove here the ’only if’ part by assuming that ϕ satisfies the p-Douglas condition,
ϕ−1 satisfies the q-Douglas condition, and constructing the desired extension h.

For the purposes of easier presentation we consider the boundary of the unit disk as
locally flat, and hence we suppose that ϕ is defined as a map of the interval I := [0, 1]
on the real line to itself. The extension h will be constructed to the upper half plane
above this interval. Generally speaking, once this local extension process has been
defined the map may be defined globally by a simple gluing process, see e.g. [26] for
an example of this argument.

For n = 1, . . . we let I (n) := I × {2−n} denote the unit length line segment
obtained by lifting the interval I to height 2−n . These segments will be defined both
on the domain and target side, but to avoid confusion we change the notation to use J
instead of I when we are on the target side. For each n we also lift the boundary map
ϕ to a map ϕ(n) which maps I (n) to J (n).

The map h will be constructed in a way that it maps each segment I (n) to the
corresponding segment J (n). On each of these segments h will be a piecewise linear
approximation of ϕ(n), and in the strip between I (n) and I (n+1) the map h will be
defined by a simple gluing process we define later.

Let us start by decomposing I (n) dyadically into segments I (n)
k , k = 1, . . . , 2n of

length 2−n , ordered from left to right. The corresponding segments J (n)
k ⊂ J (n) on the

target side are defined as the images of I (n)
k under ϕ(n), or in other words by projecting

each I (n)
k down to the interval I , applying the boundary map ϕ, and then lifting the

image interval back to the height 2−n .
Now it would be simple if we could just define h to map each I (n)

k to each J (n)
k

linearly, but it turns out that this choice is only compatible with Sobolev-estimates for
h and not h−1. The issue is when the image segment J (n)

k happens to be quite small
which results in large stretching for h−1. To fix this issue, we define the following
process.

We define some number of new segments S(n)
j , each of which will be a union of one

or more successive segments I (n)
k (plus one half interval in some exceptional cases).

The segments S(n)
j are defined inductively as follows. We start by choosing k1 as the

smallest positive integer so that the union J (n)
1 ∪ · · · ∪ J (n)

k1
has length at least 2−n ,
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and define S(n)
1 as the union

S(n)
1 = I (n)

1 ∪ · · · ∪ I (n)
k1

.

We also define T (n)
1 = J (n)

1 ∪ · · · ∪ J (n)
k1

.
Then we continue this process by defining k j as the smallest positive integer so that

the union J (n)
k j−1+1 ∪ · · · ∪ J (n)

k j
has length at least 2−n , and define

S(n)
j = I (n)

k j−1+1 ∪ · · · ∪ I (n)
k j

and T (n)
j = J (n)

k j−1+1 ∪ · · · ∪ J (n)
k j

.

However, we add two exceptions to this. If k j > 1 and the last interval J (n)
k j

to be

added has length larger than 2 · 2−n , then instead of adding the whole segment I (n)
k j

to

S(n)
j we split I (n)

k j
into two halves I (n)

k j ,− and I (n)
k j ,+ from left to right. We also split J (n)

k j

into two intervals J (n)
k j ,− and J (n)

k j ,+ from left to right, where the split is chosen so that

|J (n)
k j ,−| = 2−n . Finally we define

S(n)
j = I (n)

k j−1+1 ∪ · · · ∪ I (n)
k j ,− and T (n)

j = J (n)
k j−1+1 ∪ · · · ∪ J (n)

k j ,−

instead. Furthermore, in this situation we also define the next pair of segments with
index j + 1 by S(n)

j+1 := I (n)
k j ,+ and T (n)

j+1 := J (n)
k j ,+. This exception guarantees that we

do not combine too large intervals with small ones while keeping the length of both
S(n)
j and T (n)

j larger than 2−n/2 for all j .

The second exception we place concerns the case of trying to define the final
segment S(n)

j , as in this case it might not be possible to choose a number k j so that the

union J (n)
k j−1+1 ∪ · · · ∪ J (n)

k j
has length at least 2−n if there is not enough space left in

J (n). In this case we simply forget about this segment and add the remaining segments
I (n)
k j−1+1, . . . , I

(n)
2n to the end of the previous segment S(n)

j−1 instead. On the target side

we similarly add J (n)
k j−1+1 ∪ · · · ∪ J (n)

k j
to the previous segment T (n)

j−1 in this case.
To summarize the above process, we have increased the size of both the domain and

image interval until both lengths are comparable from below to 2−n . More precisely,
this guarantees that I (n) has been decomposed into a number of segments S(n)

j of

length at least 2−n/2, each of whose ”image” segment T (n)
j has length at least 2−n .

The map h is now finally defined on I (n) so that it maps each S(n)
j to T (n)

j linearly.
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We then extend h to the strip between I (n) and I (n+1) for each n. Let I ∗ be one of the
segments I (n)

k in I (n) and let I ∗− and I ∗+ denote the two intervals in I (n+1) which have
half the length of I ∗ and lie directly below it (the ”dyadic children” of I ∗, at least in
projection). Let X1, X2 denote the left and right endpoint of I ∗ and Y1,Y2,Y3 denote
the endpoints of I ∗− and I ∗+ from left to right with Y2 being the common endpoint
in-between.

Wenow triangulate the quadrilateral X1Y1Y3X2 via the segments X1Y1, X1Y2, X2Y2
and X2Y3 into three triangles	i , i = 1, 2, 3, on each of which we define the map h as
a linear map into the corresponding image triangle 	′

i . This image triangle is already
well-defined since h is defined on all of the vertices Xi , i = 1, 2 and Y j , j = 1, 2, 3.
It remains to control the behaviour of h on 	i .

The triangle 	i on the domain side is bilipschitz-equivalent to a right triangle with
sides of length 2−n . The image triangle	′

i has height 2
−n , has a horizontal side whose

length is h(I ′), where I ′ denotes one of the intervals I ∗, I ∗−, or I ∗+ depending on choice

of i . In the earlier process of joining intervals J (n)
k into the intervals T (n)

j , we may
have shifted the respective endpoints so that the intervals h(I ′) and ϕ(I ′) are not equal
(abusing notation slightly asϕ should be eitherϕ(n) orϕ(n+1) here). However, we claim
that |h(x) − ϕ(x)| � C2−n for a uniform constant C , meaning that the endpoints are
shifted by an amount comparable to 2−n .

This is due to the fact that we only join multiple intervals J (n)
k together within the

interval T (n)
j which already has length comparable to 2−n . And in some special cases

where J (n)
k is long, either the endpoints are left alone or shifted by exactly 2−n . Thus

our claim is true, and this allows us compose with a bilipschitz linear shear map to
assume that the image triangle 	′

i is actually a right triangle with one side h(I ′) and
height 2−n .

Hence we need to estimate the differential and distortion of a linear map between
two right triangles: one with sides of length 2−n and another with side lengths 2−n

and h(I ′). In brief terms,∫
	i

|Dh|p dz ≈ |h(I ′)|p2−n(2−p) + 2−2n and

∫
	′

i

|Dh−1|q dz ≈ |h(I ′)|2−n 2−qn

|h(I ′)|q + 2−2n .

Note that the expression 2−2n is summable over all dyadic intervals, which means that
we need only control the first terms in each expression. Let us begin by bounding the
p-norm of Dh.

The term |h(I ′)|p2−n(2−p) is only relevant when |h(I ′)| is much larger than 2−n .
In this case the interval h(I ′) was obtained from ϕ(I ′) in the construction either by
changing nothing or removing a small segment. In either case |h(I ′)| � |ϕ(I ′)|. But
now it only remains to control the sum

∞∑
n=1

2n∑
k=1

|ϕ(In,k)|p2−n(2−p),
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which is known to be finite since ϕ satisfies the p-Douglas condition and thus also
the discrete p-Douglas condition.

Let us then bound the q-norm of Dh−1. It is enough to bound the first term
2−n(1+q)|h(I ′)|1−q . Let us suppose that the segment I ′ is part of the segment S(n)

j ,

and that S(n)
j consists of the union of N � 1 neighbouring segments of the same

length. Due to the special cases in the construction above, it may be possible that one
of these segments is half the length of the others, but this will not particularly affect
the estimates so we disregard this case. We estimate the total energy coming from all
these segments, which equals to

N · 2−n(1+q)|h(I ′)|1−q = 2−n (N2−n)q

(N |h(I ′)|)q−1 , (3.1)

as the map h is linear on S(n)
j and thus maps each of the N segments into a segment

of the same length |h(I ′)|. The image segment h(S(n)
j ) = T (n)

j was chosen crucially

to have length larger than 2−n but less than 2−n+1. Due to this fact we may argue as
follows:

Each segment T (n)
j can be covered by at most three neighbouring dyadic segments

J (n)
l on the image side. For each of these segments on the image side, we recall that

sum in the discrete q-Douglas condition for ϕ−1 involves a corresponding term of the
form

2(q−2)n|ϕ−1(J (n)
l )|q .

Notice that 2−n � |T (n)
j | = N |h(I ′)|. Moreover, since |I ′| = 2−n it holds that

N2−n = |S(n)
j |. But since T (n)

j was covered by the intervals J (n)
l , of which there were

at most three, we also have |S(n)
j | � 3maxl |ϕ−1(J (n)

l )|. Thus, estimating the energy
from (3.1), we get:

2−n (N2−n)q

(N |h(I ′)|)q−1 � C2−nmaxl |ϕ−1(J (n)
l )|q

(2−n)q−1 .

Considering also that each dyadic interval J (n)
l is involved in this process at most three

times, we may sum over n and l to obtain that

∫
D

|Dh−1(z)|q dz � C
∞∑
n=1

2n∑
l=1

2(q−2)n|ϕ−1(J (n)
l )|q .

But this is finite due to the discrete q-Douglas condition for ϕ−1. This finishes the
proof. 
�

123



Bi-Sobolev Extensions Page 11 of 18 301

4 Sobolev-Estimates for the Harmonic Extension

In this section we give the proof of Theorem 1.2, showing that the harmonic extension
will lie inW 1,p(D) as long as the boundarymap ϕ : ∂D → ∂D satisfies the p-Douglas
condition. We follow the same line of arguments as in [27], but provide the details
here for the readers’ convenience.

Split the unit circle into dyadic arcs In,k . For each given arc In,k , we now inductively
define a familyP(In,k) of dyadic arcs with disjoint interiors that cover the whole circle
as follows. We first add In,k into P(In,k). We then repeat the following process:

Recall that every dyadic arc J has a unique sibling J ′ being the unique arc for
which J ∪ J ′ is also a dyadic arc. For each arc J in P(In,k), we now consider two
neighbouring arcs of J . The first of these is the unique sibling J ′, which we add to
P(In,k) if J ′ was not already contained in the union of all arcs added to P(In,k) so
far. We also let J ∗ denote the dyadic arc which neighbours J and has twice the size
of J , which necessarily lies on the other side as J ′. We also add J ∗ to P(In,k) unless
J∗ was already contained in the union of previous arcs.

The key properties of the family P(In,k) is that the arcs in it have disjoint interiors,
cover the whole boundary, and the distance from each arc J ∈ P(In,k), J �= In,k to
the midpoint of In,k is comparable to the length of J .

We now estimate the differential of the harmonic extension. The Poisson extension
formula may be differentiated to obtain that

hz(z) = 1

2π

∫ 2π

0

eiθ

(z − eiθ )2
ϕ(eiθ ) dθ.

Let us write ϕ(eiθ ) = ei f (θ) for a real-valued continuous increasing function f . We
then integrate by parts to estimate as follows

|hz(z)| =
∣∣∣∣ 1

2π

∫ 2π

0

eiθ

(z − eiθ )2
ei f (θ) dθ

∣∣∣∣
=

∣∣∣∣ 1

2π i

∫ 2π

0

1

(z − eiθ )
d

(
ei f (θ)

)∣∣∣∣
� 1

2π

∫ 2π

0

1

|z − eiθ |dμ f (θ),

where μ f denotes the Lebesgue-Stieltjes measure of f .
Let us estimate this expression for z ∈ Un,k , using the family P(In,k) to separate

the domain of integration so that we may estimate this expression separately for each
eiθ ∈ J ∈ P(In,k). On each such arc J , the distance |z − eiθ | is comparable to the
length of J , which is equal to 2−N for some N with N � n. Thus

∣∣∣∣
∫

{0�θ�2π,eiθ∈J }
1

|z − eiθ |dμ f (θ)

∣∣∣∣ � |ϕ(J )|
2−N

.
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301 Page 12 of 18 A. Koski, J. Onninen

Let us then write J = IN ,m for some m, and note that N � n. Thus for z ∈ Un,k we
have

|hz(z)| �
∑
N�n

∑
IN ,m∈P(In,k )

|ϕ(IN ,m)|2N .

We raise to the power p, integrate over Un,k , and sum over n and k to obtain

∫
D

|hz(z)|p dz �
∞∑
n=1

2n∑
k=1

2−2n

⎛
⎝∑

N�n

∑
IN ,m∈P(In,k )

|ϕ(IN ,m)|2N
⎞
⎠

p

�
∞∑
n=1

2n∑
k=1

2−2n

⎛
⎝∑

N�n

∑
IN ,m∈P(In,k )

1(
2−αN

) p
p−1

⎞
⎠

p−1

·
∑
N�n

∑
IN ,m∈P(In,k )

|ϕ(IN ,m)|p2(1−α)pN

Here we have applied Hölder’s inequality in the second step for the sequences 2αN

and |ϕ(IN ,m)|2(1−α)N , where α ∈ (0, 1/p) is a parameter which will matter later. For
each N � n, the number ofm for which IN ,m ∈ P(In,k) is definitely less than 5. Thus
in the first factor above we may estimate the sum as a geometric series where only the
leading term matters:

⎛
⎝∑

N�n

∑
IN ,m∈P(In,k )

1(
2−αN

) p
p−1

⎞
⎠

p−1

� C

⎛
⎝ 1(

2−αn
) p
p−1

⎞
⎠

p−1

= C2α pn .

Let χN ,m,n,k := χ
(
IN ,m ∈ P(In,k)

)
denote a function which is 1 when IN ,m ∈

P(In,k) and 0 otherwise. Then, combining with the above estimates, we obtain

∫
D

|hz(z)|p dz � C
∞∑
n=1

2n∑
k=1

2(α p−2)n
∑
N�n

∞∑
m=1

|ϕ(IN ,m)|p2(1−α)pNχN ,m,n,k

= C
∞∑
n=1

∑
N�n

∞∑
m=1

2(α p−2)n|ϕ(IN ,m)|p2(1−α)pN
2n∑
k=1

χN ,m,n,k

= C
∞∑
N=1

∞∑
n=N

∞∑
m=1

2(α p−2)n|ϕ(IN ,m)|p2(1−α)pN
2n∑
k=1

χN ,m,n,k

We should now estimate the sum
∑2n

k=1 χN ,m,n,k as a function of N ,m, and this sum
represents the amount of intervals In,k , k = 1, . . . , 2n for which IN ,m ∈ P(In,k). As
before, for a fixed k the number ofm for which this relation holds is bounded by 5. But
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conversely, as the amount of k for fixed m must be the same for each m by symmetry,
we find that the exact amount of such k must be comparable to 2n−N . Thus

∫
D

|hz(z)|p dz � C
∞∑
N=1

∞∑
n=N

∞∑
m=1

2(α p−2)n|ϕ(IN ,m)|p2(1−α)pN2n−N

= C
∞∑
N=1

∞∑
m=1

|ϕ(IN ,m)|p2(1−α)pN−N
∞∑

n=N

2(α p−1)n

� C
∞∑
N=1

∞∑
m=1

|ϕ(IN ,m)|p2(1−α)pN−N2(α p−1)N

= C
∞∑
N=1

∞∑
m=1

|ϕ(IN ,m)|p2(p−2)N ,

where we used the fact that α was chosen in a way that α p − 1 < 0 to calculate
the geometric series. The finiteness of the final sum is exactly the discrete p-Douglas
condition of ϕ, which proves the claim.

5 Failure of the Harmonic Extension in the Bi-Sobolev Case

In this section we prove the statement of Example 1.3, showing that the harmonic
extension does not solve the bi-Sobolev extension problem.

Proof Let ϕ : ∂D → ∂D be a boundary map to be chosen. We wish to pick ϕ so
that the distortion function Kh of the harmonic extension h has a singularity at z = 1
which will result in Kh not belonging to L1(D). The map ϕ will be chosen as a smooth
homeomorphism of the boundary to itself.

Due to Heinz [14], the differential of h is strictly bounded from below in the whole
disk D. Moreover, due to the smoothness of h up to the boundary the differential is
also uniformly bounded from above. Let c and C be constants so that c � |Dh| � C .
Then for r = |z| > 1/2 we can estimate the distortion from below:

Kh = |Dh|2
Jh

= |Dh|2
1
r 
m(hrhθ )

� c2

2C

1

|hθ | .

The Poisson integral formula may be used to find an integral representation for the
angular derivative:

hθ (z) =
∫

∂D

1 − |z|2
|z − ω|2 ϕθ (ω)|dω|.

We now pick the boundary map ϕ as the map

ϕ(eiθ ) = exp
(
iπ e1−(π/θ)4

)
.
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301 Page 14 of 18 A. Koski, J. Onninen

We consider the harmonic extension h in the regions

Sn = {reiθ : 2−n−1 < 1 − r < 2−n, |θ | <
1

n0.25
}.

If we can show that |hθ | � Cn0.52−n in Sn , then

∫
Sn

Kh dz �
∫
Sn

c1
|hθ | dz � c2

2−n

n0.25
1

n0.52−n
= c2

n0.75
. (5.1)

Since the sets Sn are disjoint, taking the sum over all n will show that
∫
D
Kh dz = ∞

as desired. For z ∈ Sn we therefore estimate that

|hθ (z)| = (1 − |z|2)
∣∣∣∣∣
∫ π

−π

1

|z − eit |2
i4π5

t5
e1−(π/t)4 exp

(
iπ e1−(π/t)2

)
dt

∣∣∣∣∣
� C12

−n
∫ π

−π

1

|z − eit |2
1

t5
e−(π/t)4 dt

� C22
−n

∫ π

0

1

|z − eit |2 e
−(2/t)4 dt .

Let us now split the region of integration into two intervals. First, we consider t ∈
[0, 2/n0.25]. Here we may use the estimates |z − eit | � 2−n and (2/t)4 � n to get

2−n
∫ 2/n0.25

0

1

|z − eit |2 e
−(2/t)4 dt � 1

n0.25
2ne−n � 1

n0.25
.

For t > 2/n0.25, we note that |z − eit | � c/n0.25. Thus we find that

2−n
∫ π

2/n0.25

1

|z − eit |2 e
−(2/t)4 dt � 2−n 1

(c/n0.25)2
= 1

c
n0.52−n .

This proves the claim through (5.1). 
�

6 Sharpness of Beurling–Ahlfors Type Extensions, Example 1.1

In this section we first construct Example 1.1, showing that the Karafyllas-
Ntalampekos condition (1.6) is not a necessary condition for a boundary map to admit
a homeomorphic extension with p-integrable distortion.

Fix p � 1 and q > p. Thenwe choose ε ∈ (0, q− p). Consider the radial stretching
mapping h : C → C defined by

h(z) = H(|z|) z

|z| , where H(s) = exp
(
−s− 2

p+ε

)
.
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It will be enough to show that Kh ∈ L p near z = 0 but that the restriction ϕ =
h|R : R onto−→ R of h to the real line satisfies

∫ 1

0

∫ 1

0
logq

(
e + |ϕ(x + t) − ϕ(x)|

|ϕ(x) − ϕ(x − t)|
)

dx dt = +∞. (6.1)

We simplify writing and denote β = 2
p+ε

. A direct computation shows that

|Dh(z)|2 = max

{
Ḣ2(|x |), H

2(|x |)
|x |2

}
� H2(|z|)

|z|2
(
β2|z|−2β + 1

)

and

Jh(z) = Ḣ(|z|)H(|z|)
|z| = β

H2(|z|)
|z|2+β

.

Therefore,

Kh(z) � β|z|−β + β−1|z|β .

LetBR be the ball centered at 0 with radius R > 0. Computing in polar coordinates,
we obtain that

∫
BR

K p
h (z) dz = 2π

∫ R

0

(
βr1−

2p
p+ε + β−1r1+

2p
p+ε

)
dr < ∞.

Let us now show that (6.1) holds. Consider the subsetU = {(x, t) : t � 2x} of [0, 1]2.
Note that

ϕ′(s) = Ḣ(s) = βs−β−1 exp
(−s−β

)
.

Thus both ϕ and ϕ′ are increasing for s close to zero. For all (x, t) ∈ U close to the
origin we then estimate using the mean value theorem that

ϕ(x + t) − ϕ(x)

ϕ(x) − ϕ(x − t)
� ϕ(x + t) − ϕ(x + t/2)

ϕ(x) − ϕ(x − t)

� 1

2

ϕ′(x + t/2)

ϕ′(x)

� 1

2

ϕ′(2x)
ϕ′(x)

. (6.2)

We may now simplify this expression to find that

1

2

ϕ′(2x)
ϕ′(x)

� Cxα exp
((
1 − 2−β

)
x−β

)
,
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where C, α > 0 are constants. Note that 1 − 2−β > 0. Since β = 2
p+ε

< 2
q we may

further estimate this expression for x close to zero by using a single exponential to
dominate the lower order factors:

ϕ′(2x)
ϕ′(x)

� Cxα exp
((
1 − 2−β

)
x−β

)
� exp

(
x− 2

q

)
,

for all 0 < x < αp,q = α. Hence

∫ 1

0

∫ 1

0
logq

(
e + |ϕ(x + t) − ϕ(x)|

|ϕ(x) − ϕ(x − t)|
)

dx dt � c
∫ α

0
x−1 dx = ∞ .

This concludes the construction of Example 1.1.
Question 1.5 in [24] also asks if the boundary condition

∫ 2π

0

∫ 2π

0
exp

(
qδϕ(θ, t)

)
dθ dt < ∞ , where q > 0 (6.3)

is necessary for obtaining an extension h : D onto−→ D of exponentially integrable dis-
tortion; that is, exp(Kh) ∈ Lλ(D) for some λ > 0. To see that this is not the case, for
fixed λ > 0 we may choose

H(s) = exp
(
−μ log2(e/s)

)
where 0 < 2μ < λ ,

and consider the corresponding radial symmetric map h = H(|z|) z
|z| . Since

Kh(z) � 2μ log(e/|z|) + 2μ−1 log−1(e/|z|)

we have that exp(λKh) ∈ L1
loc(C). On the other hand, the restriction ϕ = h|R : R onto−→

R of h to the real line satisfies

∫ 1

0

∫ 1

0
exp

(
q · |ϕ(x + t) − ϕ(x)|

|ϕ(x) − ϕ(x − t)|
)

dx dt = +∞ for all q > 0 . (6.4)

Indeed, estimating as in (6.2), for all (x, t) ∈ U close to the origin, we have

ϕ(x + t) − ϕ(x)

ϕ(x) − ϕ(x − t)
� 1

2

log(1/(2x))H(2x)

log(1/(x))H(x)
� 1

log(1/x)

H(2x)

H(x)

� 1

log(1/x)

1

(2x)μ

and therefore (6.4) follows.
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