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Abstract
Similar to the Bers simultaneous uniformization, the product of the p-Weil–Petersson
Teichmüller spaces for p ≥ 1 provides the coordinates for the space of p-Weil–
Petersson embeddings γ of the real line R into the complex plane C. We prove the
biholomorphic correspondence from this space to the p-Besov space of u = log γ ′ on
R for p > 1. From this fundamental result, several consequences follow immediately
which clarify the analytic structures concerning parameter spaces of p-Weil–Petersson
curves. Specifically, it implies that the correspondence of theRiemannmappingparam-
eters to the arc-length parameters preserving the images of curves is a homeomorphism
with bi-real-analytic dependence of the change of parameters. This is analogous to the
classical theorem of Coifman and Meyer for chord-arc curves.
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1 Introduction

The Weil–Petersson metric was originally introduced in the study of Teichmüller
spaces of Riemann surfaces. To parametrize the deformation of closed curves on
the plane, the universal Teichmüller space can be utilized, and the Weil–Petersson
metric was also provided for this space. In particular, the subspace T2 of the universal
Teichmüller space T that admits theWeil–Petersson metric was introduced by Cui [8],
and subsequently the Hilbert manifold structure of T and the curvatures of the Weil–
Petersson metric were further investigated by Takhtajan and Teo [43]. Building upon
these fundamental works, Shen and his coauthors have developed complex-analytic
theories of the subspace T2,which is now referred to as theWeil–PeterssonTeichmüller
space. As Beltrami coefficients representing elements of T2 are square integrable with
respect to the hyperbolic metric, this is also called the integrable Teichmüller space.

The main focus of this paper lies in exploring the complex analytic aspects of the
Weil–Petersson Teichmüller space. In this context, Shen [35] first characterized the
Weil–Petersson class W2, which consists of quasisymmetric homeomorphisms rep-
resenting elements of T2, without employing quasiconformal extension. It was given
in terms of the fractional dimensional Sobolev space H1/2

R
of real-valued functions.

Then, Shen and Tang [36] regarded H1/2
R

as a new parameter space for T2 which is
real-analytically equivalent to the original complexHilbert structure. In this work, they
considered the Weil–Petersson class W2 on the real line R and applied the arguments
of chord-arc curves induced by BMO functions in Semmes [34]. Furthermore, Shen
and Wu [38] examined the Weil–Petersson curves in the complex plane C, which rep-
resent the complex generalization of the elements in W2, and proved that the Riemann
mappings onto the domains defined by Weil–Petersson curves move continuously.

Recently, Bishop [2, 3] accomplished a comprehensive study on Weil–Petersson
curves by showing approximately twenty different characterizations from vari-
ous viewpoints of analysis and geometry including the complex analytic methods
mentioned above. For instance, a planar geometric characterization of a bounded
Weil–Petersson curve � is given by the rate at which the perimeter of the inscribed
2n-polygon for � converges to that of �. Other characterizations involve certain mea-
surement of coarse smoothness for closed rectifiable curves γ , the Möbius energy
defined on γ similar to knots, hyperbolic geometry of convex cores spanned by γ ,
the curvatures of minimal surfaces with the boundary γ , and more. One can find
other related work in the references therein including Shanon and Mumford [32] on
2D-shape mapping, and Wang [46] arising from SLE theory.

In this present paper, we lay the foundation of the parametrization of the space of
Weil–Petersson curves in the framework of quasiconformal Teichmüller theory. We
represent this space as the product of the Weil–Petersson Teichmüller spaces in three
ways and establish analytic and topological correspondences among these factors. In
this approach, we can understand the structure of the space of Weil–Petersson curves
clearly and easily and extend several known results that have important applications as
immediate consequences from our fundamental theorems. We further develop those
arguments in the generalization to p-Weil–Petersson curves for p > 1.
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For p ≥ 1, let Mp(U) be the set of Beltrami coefficients that are p-integrable
with respect to the hyperbolic metric on the upper half-plane U ⊂ C. The p-Weil–
Petersson Teichmüller space Tp(U) is the quotient space ofMp(U) by the Teichmüller
equivalence. The precise definitions are given in Sect. 2 . It has been proved that Tp(U)

possesses a complex Banach manifold structure via the Bers embedding. On the lower
half-plane L ⊂ C, the corresponding spacesMp(L) and Tp(L) are defined similarly.
The p-Weil–Petersson class Wp is the set of quasisymmetric homeomorphisms f :
R → R that extend quasiconformally toU (and toL) with their complex dilatations in
Mp(U) (and inMp(L)). Then, the element f in Wp for p > 1 can be characterized by
the property that f is locally absolutely continuous and log f ′ belongs to the p-Besov
space BR

p (R) of real-valued functions, which coincides with H1/2
R

(R) for p = 2.
In fact, in our paper [47] generalizing [36], it was proved that if a quasisymmetric
homeomorphism f of R is locally absolutely continuous and log f ′ is in BR

p (R),
then the variant of the Beurling–Ahlfors extension by the heat kernel introduced by
Fefferman, Kenig and Pipher [10] yields a quasiconformal homeomorphism of U
whose complex dilatation is in Mp(U). We will elaborate these concepts in Sect. 3
as well as those introduced next.

A p-Weil–Petersson embedding γ : R → C is defined as the restriction of a qua-
siconformal homeomorphism of C whose complex dilatations on U and L belong to
Mp(U) andMp(L), respectively. (In this paper, we always assume that γ (∞) = ∞
and associated quasiconformal homeomorphisms fix ∞. Instead of explicity stating
this condition, we useR andC to exclude ∞.) With this definition of a curve as a con-
tinuousmapping, the spaceWPCp of all normalized p-Weil–Petersson embeddings for
p ≥ 1 can be parametrized in the same spirit as the Bers simultaneous uniformization.
Specifically,WPCp is identifiedwith the product of the p-Weil–Petersson Teichmüller
spaces Tp(U) × Tp(L). Although this natural viewpoint has been overlooked in the
literature, we emphasize in this paper that this can significantly clarify the theory of
WPCp. In our recent paper [49], we employed similar arguments for the space of
chord-arc curves and obtained several interesting consequences.

In Theorems 3.6 and 5.1, we establish the following basic result regarding this
parametrization of WPCp. The p-Besov space Bp(R) is a complex Banach space of
complex-valued functions that contains BR

p (R) as the real subspace. The crucial point
is not only to characterize the elements in WPCp but also to demonstrate that this
correspondence is biholomorphic. This is a novel result even in the case of p = 2.

Theorem 1.1 For any p-Weil–Petersson embedding γ : R → C, the logarithm of
its derivative log γ ′ belongs to the p-Besov space Bp(R) for p > 1. Moreover, this
correspondence

L : WPCp ∼= Tp(U) × Tp(L) → Bp(R)

is a biholomorphic homeomorphism onto the image.

The p-Weil–Petersson class Wp consisting of all normalized quasisymmetric
homeomorphisms of R onto itself forms a real-analytic submanifold of WPCp corre-
sponding to the diagonal axis of the Bers coordinates Tp(U) × Tp(L). All normalized
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p-Weil–Petersson embeddings that are induced by Riemann mappings on U consti-
tute a complex-analytic submanifold RMp of WPCp corresponding to {[0]}× Tp(L).
Every γ ∈ WPCp is represented uniquely as the reparametrization of h ∈ RMp

by f ∈ Wp. We denote these correspondences as f = �(γ ) and h = �(γ ). In
the Bers coordinates, these maps are defined as �([μ1], [μ2]) = ([μ1], [μ1]) and
�([μ1], [μ2]) = ([0], [μ2] ∗ [μ1]−1). Here, we see that � is a continuous surjection
by the topological group property of Tp (Theorem 6.1). Thus, we have a homeomor-
phism

(�,�) : WPCp → Wp × RMp.

This is the second product structure of WPCp.
Moreover, let I Wp be the space of all p-Weil–Petersson embeddings that have

arc-length parametrizations. Every γ ∈ WPCp is represented uniquely as the
reparametrization of its arc-length parametrization γ0 ∈ I Wp by f ∈ Wp. In
this way, WPCp ∼= Wp × I Wp. See Sect. 4 for more details. Since the condition
γ ∈ I Wp is equivalent to the condition that L(γ ) is purely imaginary, we have
I Wp = L−1(i BR

p (R)◦) and this is a real-analytic submanifold of WPCp. Here,

i BR
p (R)◦ is the intersection of the open subset L(WPCp) ⊂ Bp(R) with the real sub-

space i BR
p (R) consisting of purely imaginary functions. Clearly, L(Wp) = BR

p (R).

Then, there is a bijection J from BR
p (R)×i BR

p (R)◦ to L(WPCp) such that this product
structure is compatible with Wp × I Wp onWPCp under J−1 ◦ L (Lemma 4.2). Again
by the topological group property of Tp, J is a homeomorphism (Theorem 6.3) and
thus we have a homeomorphism

J−1 ◦ L : WPCp → BR

p (R) × i BR

p (R)◦.

This is the third product structure of WPCp.
By investigating these product structures,we establish a topological correspondence

between the factor subspaces of the products. This reveals that these subspaces admit
different analytic structures that are topologically equivalent to each other.We develop
those arguments in Sect. 6 and the results are summarized as follows (Fig. 1).

Theorem 1.2 The space WPCp for p > 1 admits two other product structures Wp ×
RMp and Wp × I Wp that are homeomorphic to WPCp. The fiber structures for the
projections to the second factors in both products are the same and each fiber consists
of the family of all normalized p-Weil–Petersson embeddings of the same image.

More detailed real-analytic correspondence between the subspaces of WPCp are
also established. In particular, the dependence of the Riemann mappings on the arc-
length parameters of p-Weil–Petersson curves is an interesting problem, which is
addressed in Corollary 5.2 and Theorem 5.4. The latter theorem contains the following
new achievement on the real-analytic dependence of the reparametrization map.
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Wp

RMp WPCpIWp

J−1 ◦ L

BR

p (R)

iBR

p (R)
◦ Bp(R)

Fig. 1 The fiber structure of WPCp

Theorem 1.3 The reparametrization map from the arc-length parametrization to the
Riemann mapping parametrization defined by

λ = L ◦ � ◦ L−1|i BR
p (R)◦ : i BR

p (R)◦ → BR

p (R)

is a real-analytic homeomorphism onto an open contractible domain of BR
p (R) for

p > 1 whose inverse is also real-analytic.

This is the Weil–Petersson curve version of the original result for chord-arc curves
by Coifman and Meyer [7], which has been a significant contribution to the field.
See Semmes [34, Section 6] and Wu [51]. Our formulation of the space of p-Weil–
Petersson curves can make these arguments transparent, and in particular, the real-
analyticity of λ follows from our arguments immediately. The essential step in the
original work is the investigation of the inverse correspondence, but once we know
that λ is real-analytic, we can apply their result to conclude that λ−1 is also real-
analytic. These are demonstrated in Sect. 5.

2 The p-Weil–Petersson Teichmüller Space and the p-Besov Space

A measurable function μ on U is called a Beltrami coefficient if ‖μ‖∞ < 1. By the
solution of the Beltrami equation, there exists a quasiconformal homeomorphism F
of U onto itself whose complex dilatation μF = Fz̄/Fz coincides with μ uniquely up
to the post-composition of affine transformations of U. The definition on the lower
half-plane L can be similarly done for this and all other concepts appearing hereafter.

For p ≥ 1, let Mp(U) be the set of Beltrami coefficients μ satisfying

‖μ‖p
p =

∫
U

|μ(z)|p

y2
dxdy < ∞.

By the norm ‖ · ‖∞ + ‖ · ‖p,Mp(U) is a domain of the corresponding Banach space.
The p-Weil–Petersson Teichmüller space Tp(U) on the upper half-planeU is defined

to be the set of all Teichmüller equivalence classes [μ] for μ ∈ Mp(U). Here, μ and
μ′ are equivalent if the quasiconformal homeomorphisms Fμ and Fμ′ of U onto itself
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determined by μ and μ′ have the same boundary extension to R up to the post-
composition of an affine transformation of R. The quotient map π : Mp(U) →
Tp(U) taking the equivalence class is called the Teichmüller projection. The canonical
complex Banach manifold structure of Tp(U) for p ≥ 1 is introduced via the Bers
embedding into certain complex Banach space (see [52, Theorem 4.4], [42, Theorem
2.1], [50, Theorem 4.1], and the Appendix).

The boundary extension to R of a quasiconformal homeomorphism F : U → U

is called a quasisymmetric homeomorphism. If such an f : R → R is the extension
of F whose complex dilatation is in Mp(U), we say that f is a p-Weil–Petersson
class homeomorphism. Then, the above definition of Tp(U) is equivalent to saying
that Tp(U) is the set of all p-Weil–Petersson class homeomorphisms modulo affine
transformations of R. Later, this set is defined as Wp for p ≥ 1.

A p-Weil–Petersson class homeomorphism for p > 1 can be intrinsically defined
as an increasing homeomorphism f : R → R such that f is locally absolutely
continuous and log f ′ belongs to BR

p (R) defined below (see [35, Theorem 1.1], [42,
Theorem 1.2], [37, Theorems 1.2 and 1.3] and [50, Theorem 5.5]). Partially, this will
be proved in Lemma 3.3.

The p-Besov space Bp(R) for p > 1 is the set of all locally integrable complex-
valued functions u on R satisfying

‖u‖p
Bp

= 1

4π2

∫ ∞

−∞

∫ ∞

−∞
|u(t) − u(s)|p

|t − s|2 dsdt < ∞.

Clearly, if u ∈ Bp(R) then |u|, Re u, Im u ∈ Bp(R). We can regard Bp(R) as a
complex Banach space with norm ‖ · ‖Bp by taking the quotient modulo constant
functions. Namely, we regard Bp(R) as the homogeneous Besov space, which is often
denoted by Ḃp(R) in the literature. The real Banach subspace of Bp(R) consisting of
all elements represented by real-valued functions is denoted by BR

p (R).

Remark When p = 1, Bp(R) degenerates into the space of constant functions (see
[19, Exercise 17.14]). In this case, we change B1(R) into the space of all bounded
complex-valued functions u on R that satisfy

1

4π2

∫ ∞

−∞

∫ ∞

−∞
|u(t) + u(s) − 2u( t+s

2 )|
|t − s|2 dsdt < ∞.

Correspondingly, the analytic Besov space on U defined below should be defined for
p = 1 as the space B1(U) of all bounded holomorphic functions ϕ on U satisfying

1

π

∫∫
U

|ϕ′′(z)|dxdy < ∞.

See [28, Sections 2, 9]. Then, the arguments below can also be developed under these
replacements even in the case of p = 1. However, we do not pursue this in the present
paper and put the restriction p > 1 at the places where the Besov spaces are involved.
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Concerning the composition operator on this space, the following result was shown
in [5, Theorem 12 and Remark 5] (see also [45, Theorem 2.2] and [4, Theorem 1.3
and Section 3.4]).

Proposition 2.1 Let p > 1. An increasing homeomorphism h from R onto itself is
quasisymmetric if and only if the composition operator Ph : u �→ u ◦ h gives an
isomorphism of the p-Besov space Bp(R) onto itself, that is, Ph and (Ph)−1 are
bounded linear operators.

Remark In the case of p = 2, it is known that the operator norm ‖Ph‖ of the compo-
sition operator Ph : Bp(R) → Bp(R) depends only on the doubling constant of h (or
equivalently, the quasisymmetric constant of h or the Teichmüller distance d∞(h, id)).
See [26, Theorem 3.1]. In contrast, in the case of p = 2, the estimate of the operator
norm becomesmore difficult. See [5, Remark 4]. In a special case where log h′ belongs
to Bp(R), a certain dependence of ‖Ph‖ on h will be shown later in Proposition 6.9.

Next, we consider analytic function spaces. Let B(U) denote the Bloch space of
functions ϕ holomorphic on U with semi-norm

‖ϕ‖B = sup
z∈U

|ϕ′(z)|y.

Let Bp(U) denote the analytic p-Besov space for p > 1 (or p-Dirichlet space) of
holomorphic functions ϕ on U with semi-norm

‖ϕ‖Bp =
(
1

π

∫∫
U

|ϕ′(z)|p y p−2dxdy

) 1
p

.

Then,Bp(U) ⊂ Bq(U) ⊂ B(U) for 1 < p ≤ q, and the inclusionmaps are continuous.
By considering functions in these spaces modulo additive constants, which we always
do hereafter, the semi-norms become norms and the spaces become complex Banach
spaces.

These spaces can be defined on the unit disk D in the same way as on U, and
any conformal homeomorphism U → D induces an isometric isomorphism between
the corresponding spaces. For example, we take the Cayley transformation 	(z) =
(z − i)/(z + i), which mapsU ontoD, and define the push-forward	∗ : ϕ �→ ϕ ◦	−1

for functions ϕ on U. Then,

1

π

∫∫
D

|(	∗ϕ)′(w)|p
(
1 − |w|2

2

)p−2

dudv = 1

π

∫∫
U

|ϕ′(z)|p y p−2dxdy.

By defining Bp(D) as the analytic p-Besov space of holomorphic functions onDwith
the finite norm in the left side integral of the above equation, we have that Bp(D) and
Bp(U) are isometric.
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We also see that the Cayley transformation 	 induces an isometric isomorphism
between Bp(S) and Bp(R), where Bp(S) is defined similarly. Indeed,

1

4π2

∫
S

∫
S

|(	∗u)(w1) − (	∗u)(w2)|p

|w1 − w2|2 |dw1||dw2|

= 1

4π2

∫
R

∫
R

|u(z1) − u(z2)|p

|	(z1) − 	(z2)|2 |	′(z1)||	′(z2)||dz1||dz2|

= 1

4π2

∫
R

∫
R

|u(z1) − u(z2)|p

|z1 − z2|2 |dz1||dz2|,

where we used the identity

|	(z1) − 	(z2)|2
|z1 − z2|2 = |	′(z1)||	′(z2)|

for a Möbius transformation 	.
We use the fact that each function ϕ ∈ Bp(U) has a boundary value almost every-

where on R, and this boundary function b(ϕ) belongs to the p-Besov space Bp(R).
As we have seen above, the results on the pairs (Bp(U), Bp(R)) and (Bp(D), Bp(S))

correspond under 	∗; we can consider this problem for (Bp(D), Bp(S)).
The boundary function b(φ) is given by non-tangential limits of φ ∈ Bp(D). The

existence of the non-tangential limit, and moreover, the reproduction of φ from b(φ)

by the Poisson integral have been proved (see [53, Lemma 10.13]).
For p = 2, the fact that b(φ) ∈ B2(S) for φ ∈ B2(D) is well known as the Douglas

formula for the Dirichlet integral:

‖φ‖2B2
=

∫
D

|φ′(z)|2 dxdy

π
=

∫
S

∫
S

|b(φ)(z) − b(φ)(w)|2
|z − w|2

|dz|
2π

|dw|
2π

= ‖b(φ)‖2B2
.

See [1, Theorem 2-5] for example. The statement for the general case is as follows
(see [53, pp.131, 301]).

Lemma 2.2 The boundary function b(φ) of φ ∈ Bp(D) belongs to Bp(S) for p > 1.
The boundary extension operator b : Bp(D) → Bp(S) is a bounded linear isomor-
phism onto the image.

A proof for the inhomogeneous Besov space onR (and onRn) can be found in [39,
Section V.5]. Amore explicit proof for the homogeneous case on S is in [27, Theorems
2.1 and 5.1]. These are referred to in [31, p.505].

The inverse map of the boundary extension b can be extended to Bp(S) after com-
posing the Riesz–Szegö projection P : Bp(S) → b(Bp(D)). The boundedness of P
is also known (see [28, Section 2.3]). This implies the boundedness of the conjugate
operator H because P = (I + iH)/2. On the real line R, H is represented as the
Hilbert transformation, which is defined by

(Hu)(x) = lim
ε→0

1

π

∫
|x−t |>ε

u(t)

x − t
dt
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(see [13, Section III.1]).

Lemma 2.3 The Hilbert transformation H gives a bounded linear surjective isomor-
phism H : Bp(R) → Bp(R) such that H2 = −I for p > 1.

This also follows from the results on more general operators, for example, in [18,
Théorème A] and [14, Proposition 4.7].

The p-Besov space Bp(R) is closely related to BMO functions defined as follows.
A locally integrable complex-valued function u on R is of bounded mean oscillation
(BMO) if

‖u‖∗ = sup
I⊂R

1

|I |
∫

I
|u(x) − uI |dx < ∞,

where the supremum is taken over all bounded intervals I on R and uI denotes the
integral mean of u over I . The set of all BMO functions onR is denoted by BMO(R).
This is regarded as aBanach spacewith theBMO-norm ‖·‖∗ by ignoring the difference
of constant functions. It is said that u ∈ BMO(R) is of vanishing mean oscillation
(VMO) if

lim|I |→0

1

|I |
∫

I
|u(x) − uI |dx = 0,

and the subspace of all such functions is denoted by VMO(R).
The following relation between Bp(R) and VMO(R) is known. See [38, Section

3] and [47, Propositions 2.2 and 2.3].

Proposition 2.4 (1) If u ∈ Bp(R) then u ∈ VMO(R). Moreover, ‖u‖∗ ≤ ‖u‖Bp .
(2) If u ∈ BR

p (R) then eu is an A∞-weight.

Here, we say that a non-negative locally integrable functionω ≥ 0 is an A∞-weight
if there exists a constant C∞(ω) ≥ 1 such that

1

|I |
∫

I
ω(x)dx ≤ C∞(ω) exp

(
1

|I |
∫

I
logω(x)dx

)

for every bounded interval I ⊂ R. Ifω is an A∞-weight, then logω is a BMO function
(see [11, Corollary IV.2.19]).

Finally, we introduce certain classes of Beltrami coefficients on U including
Mp(U). Let λ be a positive Borel measure on the upper half-plane U. We say that λ

is a Carleson measure if

‖λ‖c = sup
I⊂R

λ(I × (0, |I |])
|I | < ∞,

where the supremum is takenover all bounded closed intervals I ⊂ R and I×(0, |I |] ⊂
U is the Carleson box over I . The set of all Carleson measures on U is denoted by
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CM(U). A Carleson measure λ ∈ CM(U) is called vanishing if

lim|I |→0

λ(I × (0, |I |])
|I | = 0.

The set of all vanishing Carleson measures on U is denoted by CM0(U).
For a Beltrami coefficient μ on U, we define a positive Borel measure λμ so that it

is absolutely continuous with respect to the Lebesgue measure and satisfies

dλμ(z) = |μ(z)|2y−1dxdy.

Using this, a norm of μ is defined by ‖μ‖c = ‖λμ‖1/2c . Let Mc(U) be the set of all
Beltrami coefficients on U with λμ ∈ CM(U), which is a domain of the Banach space
with norm ‖·‖c+‖·‖∞. The following claim implies the inclusionMp(U) ⊂ Mc(U).

Proposition 2.5 If μ ∈ Mp(U) for p ≥ 1, then λμ ∈ CM0(U). Moreover, ‖μ‖c ≤
C p‖μ‖p for some constant C p > 0 depending only on p.

Proof We may assume that p ≥ 2 because Mp(U) ⊂ M2(U) and ‖μ‖2 ≤ ‖μ‖p if
p ≤ 2. Let p′ = p/2 ≥ 1 and take q ′ > 1 satisfying 1/p′ + 1/q ′ = 1. When p′ = 1,
the inequality below can be modified suitably. For any bounded interval I ⊂ R, we
have

1

|I |
∫ |I |

0

∫
I

|μ(z)|2
y

dxdy = 1

|I |
∫ |I |

0

∫
I

|μ(z)|2
y2/p′ · y

2
p′ −1

dxdy

≤
(∫ |I |

0

∫
I

|μ(z)|p

y2
dxdy

)2/p (
|I |1−q ′

∫ |I |

0
y
−

(
1− 1

p′−1

)
dy

)1/q ′

.

The first factor in the last line of the above inequality is bounded by ‖μ‖2p and tends

to 0 uniformly as |I | → 0. The second factor is equal to (p′ − 1)−1/q ′
(= 1 when

p′ = 1), which we define as C2
p. Taking the square root shows the statement. ��

3 The Bers Coordinates of the Space of p-Weil–Petersson Curves

In this section, we introduce the Bers coordinates for the space of p-Weil–Petersson
embeddingsR → C and show the holomorphic correspondence to the p-Besov space
for p > 1.

Definition A continuous embedding γ : R → C passing through ∞ is called a p-
Weil–Petersson embedding for p ≥ 1 if there is a quasiconformal homeomorphism
G : C → C such that G|R = γ and its complex dilatationμG = Gz̄/Gz onU belongs
to Mp(U) and μG on L belongs to Mp(L). We call such G a p-Weil–Petersson
quasiconformal homeomorphism associated with γ .
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The image of γ : R → C as above is called a p-Weil–Petersson curve. To consider
the space of p-Weil–Petersson curves, we incorporate their parametrizations and treat
them as p-Weil–Petersson embeddings. Special types of p-Weil–Petersson embed-
dings γ are as follows. If such an embedding γ maps R onto itself, this is nothing but
a p-Weil–Petersson class homeomorphism. If γ extends conformally to U, we call it
the Riemann mapping parametrization of a p-Weil–Petersson curve.

We can define a BMO embedding γ : R → C by replacing the above Mp(U)

and Mp(L) with Mc(U) and Mc(L). By Proposition 2.5, we see that any p-Weil–
Petersson embedding γ for p ≥ 1 is a BMO embedding. Hence, we can utilize the
following known properties of BMO embeddings (see [49, Proposition 3.3, Theorem
3.6]) for p-Weil–Petersson embeddings.

Proposition 3.1 A BMO-embedding γ : R → C has its derivative γ ′ almost every-
where on R and log γ ′ ∈ BMO(R). Moreover, if |γ ′| is an A∞-weight on R, then γ is
locally absolutely continuous and the image γ (R) is a chord-arc curve.

A locally rectifiable Jordan curve � passing through ∞ is called a chord-arc curve
if there is a constant K ≥ 1 such that the length of the arc between a, b ∈ � is bounded
by K |a − b|. Any p-Weil–Petersson curve is a chord-arc curve as we see in the proof
of the next claim.

Lemma 3.2 If h : R → C is a Riemann mapping parametrization of a p-Weil–
Petersson curve for p > 1, then h is locally absolutely continuous with log h′ ∈ Bp(R).

Proof By definition, h extends to a conformal homeomorphism H on U. By The-
orem 7.1 in the Appendix, we have log H ′ ∈ Bp(U). Then, the non-tangential limit
b(log H ′) belongs to Bp(R) by Lemma 2.2. Moreover, log h′ coincides with b(log H ′)
(a.e.) since H has the quasiconformal extension toC (see [30, Theorem 5.5]). Thus, we
have log h′ ∈ Bp(R). In particular, |h′| ∈ A∞ by Proposition 2.4. Then, we conclude
by Proposition 3.1 that h is locally absolutely continuous on R. ��

The following result is given in [35, p.1056] for p = 2, and in [42, p.669] for
p ≥ 2. The generalization to p > 1 is also possible as we do it in [50, Theorem 5.5].

Lemma 3.3 If f : R → R is a p-Weil–Petersson class homeomorphism for p > 1,
then f is locally absolutely continuous and log f ′ ∈ BR

p (R).

Proof By the well-known conformal welding principle (see [17, Section III.1.4] and
[43, p.11]), there exists a pair of quasiconformal homeomorphisms H and H∗ on the
whole planeC such that H is conformal onU, H∗ is conformal onL, and f = h−1∗ ◦h
on R for h = H |R and h∗ = H∗|R. Moreover, we can choose these H and H∗ so
that the complex dilatation of H |L is in Mp(L) and the complex dilatation of H∗|U
is in Mp(U). This is a crucial step and its argument is given in [50]. We note that
to obtain the appropriate mapping H∗, we have to show that the inverse f −1 has a
quasiconformal extension whose complex dilatation belongs toMp(U). This is a part
of the property that Tp has the group structure, which will be explained in Sect. 6.

Lemma 3.2 implies that both h and h∗ are locally absolutely continuous with
log h′ ∈ Bp(R) and log h′∗ ∈ Bp(R). From h∗ ◦ f = h on R, we see that the
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increasing homeomorphism f maps a set of null measure to a set of null measure
because h is locally absolutely continuous and |h′∗(x)| > 0 almost everywhere on R.
Hence, f is locally absolutely continuous. Taking the derivatives of both sides of the
above equality, we have

Pf (log h′∗) + log f ′ = log h′.

Moreover, Proposition 2.1 shows that Pf (log h′∗) ∈ Bp(R). Hence, log f ′ ∈ Bp(R).
��

The combination of the above two lemmas proves the characteristic property of
p-Weil–Petersson embeddings.

Theorem 3.4 A p-Weil–Petersson embedding γ : R → C is locally absolutely con-
tinuous and log γ ′ belongs to Bp(R) for p > 1.

Proof Let G : C → C be a p-Weil–Petersson quasiconformal homeomorphism asso-
ciated with γ such that μ1 = μG |U ∈ Mp(U) and μ2 = μG |L ∈ Mp(L). We take
a quasiconformal homeomorphism F : C → C whose complex dilatation is μ1(z)
for z ∈ U and μ1(z̄) for z ∈ L, which maps R onto itself. By Lemma 3.3, f = F |R
is locally absolutely continuous and log f ′ belongs to BR

p (R). Next, we take a quasi-
conformal homeomorphism H : C → C that is conformal on U and whose complex
dilatation on L is the push-forward F∗μ2 of μ2 by F . Namely, the complex dilatation
of H ◦ F is μ2. Then, H ◦ F coincides with G up to an affine transformation of C,
and hence, we may assume that H ◦ F = G.

We may replace F |L with a bi-Lipschitz diffeomorphism under the hyperbolic
metric whose complex dilatation μ̃1 belongs to Mp(L) (see [8, Theorem 6], [52,
Theorem 2.4], and [50, Lemma 3.4]). The complex dilatation of H |L is explicitly
given by

F∗μ2(ζ ) = μ2(z) − μ̃1(z)

1 − μ̃1(z)μ2(z)
· Fz

Fz

for ζ = F(z) ∈ L. Using the property that F is a bi-Lipschitz diffeomorphism, we see
from this formula that F∗μ2 also belongs to Mp(L). Then by Lemma 3.2, h = H |R
is locally absolutely continuous with log h′ ∈ Bp(R).

By h ◦ f = γ , we see that γ is also locally absolutely continuous, and taking the
derivative, we have

log h′ ◦ f + log f ′ = log γ ′.

By log f ′ ∈ Bp(R) and log h′ ∈ Bp(R) combined with Proposition 2.1, we obtain
that log γ ′ ∈ Bp(R). ��

We impose the normalization γ (0) = 0 and γ (1) = 1 (and γ (∞) = ∞) on a
p-Weil–Petersson embedding γ . Let WPCp be the set of all such normalized p-Weil–
Petersson embeddings for p ≥ 1. We also denote the subset of WPCp consisting

123



Parametrization of the p-Weil–Petersson... Page 13 of 32 292

of all normalized p-Weil–Petersson class homeomorphisms by Wp, and the subset
consisting of all normalized Riemann mapping parametrizations of p-Weil–Petersson
curves by RMp. For μ1 ∈ Mp(U) and μ2 ∈ Mp(L), we denote by G = G(μ1, μ2)

the normalized p-Weil–Petersson quasiconformal homeomorphism of C (G(0) = 0,
G(1) = 1, and G(∞) = ∞) with μG |U = μ1 and μG |L = μ2. We define a map

ι̃ : Mp(U) × Mp(L) → WPCp

by ι̃(μ1, μ2) = G(μ1, μ2)|R. Then, by the famous argument of simultaneous uni-
formization due to Bers, we see the following fact. The proof is essentially the same
as that for BMO embeddings, which is in [49, Proposition 4.1].

Proposition 3.5 The space WPCp of all normalized p-Weil–Petersson embeddings is
identified with Tp(U) × Tp(L) for p ≥ 1. More precisely, ι̃ splits into a well-defined
bijection

ι : Tp(U) × Tp(L) → WPCp

by the product of the Teichmüller projections π̃ : Mp(U)×Mp(L) → Tp(U)×Tp(L)

such that ι̃ = ι ◦ π̃ .

We call Tp(U) × Tp(L) the Bers coordinates of WPCp. Any normalized p-Weil–
Petersson embedding γ is represented by a pair ([μ1], [μ2]) of the Teichmüller
equivalence classes of μ1 ∈ M(U) and μ2 ∈ M(L) via G(μ1, μ2).

Wemay provide complexBanachmanifold structures for Tp(U) and Tp(L) by using
the pre-Schwarzian derivative models as in Theorem 7.2 of the Appendix. Namely,
Tp(U) is identified with the domain Tp(L) of the analytic p-Besov space Bp(L), and
Tp(L) is identified with the domain Tp(U) of Bp(U) for p > 1:

Tp(U) ∼= Tp(L) = {LG(μ,0) ∈ Bp(L) | μ ∈ Mp(U)};
Tp(L) ∼= Tp(U) = {LG(0,μ) ∈ Bp(U) | μ ∈ Mp(L)}.

Then, by Proposition 3.5, we may also regard WPCp as a domain of Bp(L) × Bp(U)

for p > 1.
By Theorem 3.4, we can consider an injective map L : WPCp → Bp(R) defined

by L(γ ) = log γ ′. Then, with respect to the complex structure of WPCp given as
above, we see the following.

Theorem 3.6 The map L : WPCp → Bp(R) is a holomorphic injection for p > 1.

Proof We will prove that L is holomorphic at any point γ = G(μ1, μ2)|R in WPCp.
SinceWPCp can be regarded as a domain of the productBp(L)×Bp(U) of the Banach
spaces, the Hartogs theorem for Banach spaces (see [6, Theorem 14.27] and [25,
Theorem 36.8]) implies that we have only to prove that L is separately holomorphic.
Thus, by fixing [μ1] ∈ Tp(U), we will show that log(G(μ1, μ)|R)′ ∈ Bp(R) depends
holomorphically on [μ] ∈ Tp(L). The other case is similarly verified.
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By the proof of Theorem 3.4, we have

log(G(μ1, μ)|R)′ = log γ ′ = log h′ ◦ f + log f ′.

As before, we may choose a bi-Lipschitz diffeomorphism F : L → L that is the
extension of f : R → R and whose complex dilatation still belongs to Mp(L). Let
h : R → C be the restriction of the quasiconformal homeomorphism HF∗μ of C that
is conformal on U and has the complex dilatation F∗μ on L. Since F is a bi-Lipschitz
diffeomorphism, we see that F∗ acts on Mp(L) as a biholomorphic automorphism,
and its action projects down to Tp(L) also as a biholomorphic automorphism. For
p ≥ 2, this is shown in [43, Chap.1, Corollary 2.12] and [52, Proposition 5.3], and
the same proof is valid for p ≥ 1 once we know that F∗μ ∈ Mp(L) for every μ ∈
Mp(L) (see [50, Lemma 3.1]). The continuity or local boundedness of F∗ is enough
to show the holomorphy of F∗, which is also explained in [48, Proposition 3.1] in a
similar setting. Hence, LHF∗μ|U = log(HF∗μ|U)′ ∈ Bp(U) depends on [μ] ∈ Tp(L)

holomorphically as we see that α−1 : Tp ∼= Tp(L) → Bp(U) is holomorphic in the
proof of Theorem 7.2 in the Appendix.

By Lemma 2.2, the boundary extension b : Bp(U) → Bp(R) is a bounded linear
operator for p > 1. Moreover, by Proposition 2.1, the composition operator Pf :
Bp(R) → Bp(R) induced by f is also a bounded linear operator. Therefore,

log h′ ◦ f = Pf ◦ b(LHF∗μ|U) ∈ Bp(R)

depends on [μ] ∈ Tp(L) holomorphically, and so does log(G(μ1, μ)|R)′. ��

4 Conformal Welding and Curve Theoretical Coordinates

We introduce other coordinates of WPCp and L(WPCp) and investigate their rela-
tionship. To this end, we utilize the canonical automorphisms of WPCp.

For ν ∈ Mp(U), the same symbol ν still denotes the complex dilatation ν(z̄) for
z ∈ L inMp(L). This also gives the identification of Tp(U) and Tp(L), which is often
denoted by Tp hereafter. For any [ν] ∈ Tp, we define the right translation of WPCp

for p ≥ 1 by

R̃[ν] : ([μ1], [μ2]) �→ ([μ1] ∗ [ν], [μ2] ∗ [ν]),

where R[ν]([μ]) = [μ] ∗ [ν] is the composition of elements in Tp that is given by
the Teichmüller class of the complex dilatation of Fμ ◦ Fν for the normalized p-
Weil–Petersson class homeomorphisms Fμ and Fν of U (or L) onto itself with the
given complex dilatations. The right translation defined by R[ν] is a biholomorphic
automorphism of Tp for p ≥ 1 as is explained in the proof of Theorem 3.6. Hence,
R̃[ν] gives a biholomorphic automorphism of WPCp.

First, we consider the conformal welding coordinates of WPCp for p ≥ 1. Under
theBers coordinatesWPCp ∼= Tp(U)×Tp(L), the subspaceWp ⊂ WPCp is identified
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with the diagonal locus

{([μ], [μ]) ∈ Tp(U) × Tp(L) | [μ] ∈ Tp},

where the second coordinate [μ] ∈ Tp(L) stands for the Teichmüller class of the
Beltrami coefficient μ(z̄) ∈ Mp(L) for μ(z) ∈ Mp(U). Since this is the fixed point
locus of the anti-holomorphic involution ([μ1], [μ2]) �→ ([μ2], [μ1]), we see that
Wp is a real-analytic submanifold of WPCp by the implicit function theorem (see [6,
Theorem 7.18]). A more explicit claim in the finite dimensional case can be found in
[16, Proposition 1.2], which is also applicable to our case. See also [9, p.38].

Moreover, the subspace RMp ⊂ WPCp is identified with the second coordinate
axis

{([0], [μ]) ∈ Tp(U) × Tp(L) | [μ] ∈ Tp},

which is a complex-analytic submanifold of WPCp.
We define the projections to these submanifolds

� : WPCp → Wp, � : WPCp → RMp

by �([μ1], [μ2]) = ([μ1], [μ1]) and �([μ1], [μ2]) = ([0], [μ2] ∗ [μ1]−1) in the
Bers coordinates, where [μ]−1 is the inverse of an element in Tp that is given by the
Teichmüller class of the complex dilatationμ−1 of (Fμ)−1. Then, every γ ∈ WPCp is
decomposed uniquely into γ = �(γ ) ◦�(γ ). This corresponds to the decomposition
γ = h ◦ f in the proof of Theorem 3.4. Clearly, � is real-analytic. We see that � is
continuous later by Theorem 6.1. The biholomorphic automorphism R̃[ν] of WPCp

for [ν] ∈ Tp satisfies that � ◦ R̃[ν] = �.
The projections � and � define another product structure Wp × RMp on WPCp

for p ≥ 1. Namely, we have a bijection

(�,�) : WPCp → Wp × RMp.

Once we see that� is continuous, (�,�) is a homeomorphism. This is the coordinate
change of WPCp from the Bers coordinates to the one we may call the conformal
welding coordinates. Since Wp and RMp are both identified with Tp, by marking Tp

with Wp ∼= T W
p and RMp ∼= T RM

p , the coordinate change is expressed as

Tp(U) × Tp(L) → T W
p × T RM

p : ([μ1], [μ2]) �→ ([μ1], [μ2] ∗ [μ1]−1).

Next, we consider the curve theoretical coordinates of the space of p-Weil–
Petersson embeddings γ by using the image L(WPCp) in Bp(R) for p > 1. We
see that L is injective because γ can be reproduced from w = log γ ′ ∈ L(WPCp) by

γ (x) =
∫ x

0
ew(t)dt .
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We have assumed that Bp(R) is the Banach space of all equivalence classes of
complex-valued functions modulo additive constants, and can also regard it as the
set of representatives w satisfying the normalization condition

∫ 1
0 ew(t)dt = 1. For

w ∈ L(WPCp), this is always possible by adding some complex constant to w.
Let u ∈ BR

p (R) and let γu : R → R be the p-Weil–Petersson class homeo-

morphism in Wp defined by γu(x) = ∫ x
0 eu(t)dt . Then, the composition operator

Pγu : Bp(R) → Bp(R) is given by w �→ w ◦ γu for w ∈ Bp(R), which is a
bounded linear isomorphism of the Banach space Bp(R) onto itself by Proposition 2.1.
Moreover, we define Qu(w) = Pγu (w) + u for w ∈ Bp(R), which is an affine
isomorphism of Bp(R) onto itself. Since Pγu preserves BR

p (R), we see that Qu maps

u0 + i BR
p (R) onto u1 + i BR

p (R) for some u1 ∈ BR
p (R) depending on u0 ∈ BR

p (R),

where i BR
p (R) denotes the real subspace of Bp(R) consisting of all purely imaginary

functions modulo complex-valued constant functions.
We see that the affine isomorphism Qu of Bp(R) keeps the subset L(WPCp) invari-

ant as the following claim asserts.

Proposition 4.1 The right translation R̃[ν] satisfies

L ◦ R̃[ν] = QL([ν],[ν]) ◦ L

on WPCp for every [ν] ∈ Tp. Hence, the affine isomorphism Qu of Bp(R) for any
u ∈ BR

p (R) maps L(WPCp) onto itself.

The proof is the same as that of [49, Proposition 5.1] for BMO embeddings. Indeed,
by the correspondence between u ∈ BR

p (R) and [ν] ∈ Tp through γu ∈ Wp ∼= Tp, we
have

QL([ν],[ν]) ◦ L = Qu ◦ L = Pγu ◦ L + u = L ◦ R̃[ν].

We define the following subset of L(WPCp) corresponding to the arc-length
parametrization:

i BR

p (R)◦ = i BR

p (R) ∩ L(WPCp).

Let iv ∈ i BR
p (R)◦. Then, γiv(x) = ∫ x

0 eiv(t)dt is a p-Weil–Petersson embedding
of arc-length parametrization. Precisely speaking, due to the normalization, γiv is
parametrized by the multiple of its arc-length by a positive constant. We can regard
i BR

p (R)◦ as a parameter space of such p-Weil–Petersson embeddings for p > 1.All p-
Weil–Petersson embeddings are obtained by the reparametrization of their arc-length
parametrizations as follows.

Lemma 4.2 Let u ∈ BR
p (R) and iv ∈ i BR

p (R)◦. Then, γQu(iv)(x) is obtained from
the p-Weil–Petersson embedding γiv(x ′) of arc-length parametrization by the change
of parameter x ′ = γu(x), which is also a p-Weil–Petersson embedding. Conversely,
every p-Weil–Petersson embedding is obtained in this way. Hence, the map

J : BR

p (R) × i BR

p (R)◦ → L(WPCp) ⊂ Bp(R)
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defined by J (u, iv) = Qu(iv) = u + i Pγu (v) is bijective.

Proof Since Qu(iv) = u + i Pγu (v) = u + iv ◦ γu , we have

γQu(iv)(x) =
∫ x

0
eu(t)eiv◦γu(t)dt =

∫ x

0
γ ′

u(t)eiv◦γu(t)dt

=
∫ γu(x)

0
eiv(s)ds = γiv(γu(x))

by s = γu(t). Proposition 4.1 implies that the reparametrization of a p-Weil–Petersson
embedding is also a p-Weil–Petersson embedding. Conversely, let γu+iv′ be any p-
Weil–Petersson embedding for u + iv′ ∈ L(WPCp). Then, by choosing v ∈ BR

p (R)

satisfying Pγu (v) = v′, we see that γu+iv′ is obtained from γiv by changing the
parameter. Here, γiv is a p-Weil–Petersson embedding, and hence iv ∈ i BR

p (R)◦. ��
We will see later in Theorem 6.3 that the above bijection J is in fact a homeomor-

phism.
Now, we have two product structures Wp × RMp onWPCp and BR

p (R)× i BR
p (R)◦

on L(WPCp) for p > 1. There is a close relation between these structures through
L and J . Each fiber of the projection � consists of a family of embeddings with the
same image, and hence their arc-length parametrizations are the same. See Fig. 1 in
Sect. 1. This observation leads the following.

Proposition 4.3 For any iv ∈ i BR
p (R)◦, let γ = � ◦ L−1 ◦ J (0, iv) ∈ RMp. Then,

the fiber �−1(γ ) coincides with L−1 ◦ J (BR
p (R) × {iv}), which is the family of all

normalized p-Weil–Petersson embeddings with the same image γ (R).

5 Biholomorphic Correspondence

All the results in this section are stated under the assumption p > 1. We show the
main theorem in this section as follows.

Theorem 5.1 The holomorphic map L : WPCp → Bp(R) is a biholomorphic homeo-
morphism onto its image. In particular, L(WPCp) is an open contractible domain of
Bp(R) which contains BR

p (R).

Proof By virtue of Theorem 3.6, to prove that L is biholomorphic, it suffices to show
that L has a local holomorphic inverse at any point w ∈ L(WPCp) ⊂ Bp(R). This in
particular shows that L(WPCp) is open.

It is proved in [38, Theorem 6.1] based on the arguments in [34] that if w = iv ∈
i BR

p (R)◦ for p = 2, then there is a neighborhood Viv ⊂ L(WPCp) of iv and a
holomorphic map λiv : Viv → Mp(U) ×Mp(L) such that L ◦ π̃ ◦ λiv = id|Viv . For
general p > 1, the proof is essentially the same.

By [34, Lemma 4.11] and [38, Proposition 5.3], the quasiconformal homeomor-
phismG ofConto itself definedby the complex dilatationλiv(iv) ∈ Mp(U)×Mp(L)

is bi-Lipschitz in the Euclidean metric on C. This implies that both G|U and G|L
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are bi-Lipschitz with respect to the hyperbolic metrics on U, L, and their images
(see [23, Proposition 11]). In this case, the product of the Teichmüller projections
π̃ : Mp(U) × Mp(L) → T (U) × T (L) is continuous at λiv(iv) and in fact holo-
morphic. This follows from [50, Lemma 3.2] with [48, Lemma 6.1] for p ≥ 1. We
note that the Teichmüller projection π is known to be holomorphic for p ≥ 2 in [41,
Theorem 3.1]. Then, �iv = π̃ ◦ λiv is a local holomorphic inverse of L defined on
Viv by choosing a smaller neighborhood Viv if necessary.

If w = u + iv′ is an arbitrary point in L(WPCp), then we utilize Qu , and find
iv ∈ i BR

p (R)◦ with Qu(iv) = u + iv′ by Lemma 4.2. Since Qu is a biholomorphic
automorphism of L(WPCp) by Proposition 4.1, we see that R̃[ν] ◦ �iv ◦ Q−1

u is
holomorphic on Qu(Viv) for [ν] ∈ Tp corresponding to γu ∈ Wp. Then, Proposition
4.1 implies that

L ◦ R̃[ν] ◦ �iv ◦ Q−1
u = QL([ν],[ν]) ◦ L ◦ �iv ◦ Q−1

u = QL([ν],[ν]) ◦ Q−1
u = id

on Qu(Viv). Hence, R̃[ν] ◦�iv ◦ Q−1
u is a local holomorphic inverse of L on Qu(Viv).

We know that the p-Weil–Petersson Teichmüller space Tp is contractible by [8,
Theorem 6] for p = 2, by [52, Proposition 3.5] for p ≥ 2, and by [47, Corollary 1.4]
and [50, Proposition 5.6] for general p > 1. (In fact, the above argument giving the
identification Tp ∼= Wp ∼= BR

p (R) for p > 1 produces Corollary 5.2 (1) below, which
implies that Tp is contractible.) Hence, the product Tp(U) × Tp(L) is contractible,
and so is L(WPCp). ��
Remark The space L(WPCp) is denoted by T̂e in [38, Theorem 2.5] in the case of
p = 2 and proved that it is a contractible open domain in H1/2(R) = B2(R). It
is also shown in [38, Theorem 2.2] that i BR

2 (R)◦, the parameter space for Weil–
Petersson curves with arc-length parametrization, coincides with an open subset of
i BR

2 (R) consisting of all elements corresponding to chord-arc curves with arc-length
parametrization. This result can be generalized as follows: For p > 1, i BR

p (R)◦

is the subset consisting of all iv ∈ i BR
p (R) such that γiv(x) = ∫ x

0 eiv(t)dt is a
quasisymmetric embedding of R. This claim follows from Proposition 5.5 at the end
of this section.

Let I Wp ⊂ WPCp denote the subset of all arc-length parametrizations of normal-
ized p-Weil–Petersson curves. Namely,

I Wp = L−1(i BR

p (R)◦).

As i BR
p (R)◦ is a real-analytic submanifold of the domain L(WPCp) in the complex

Banach space Bp(R), I Wp is a real-analytic submanifold of the complex manifold
WPCp. By Wp = L−1(BR

p (R)), we see again that Wp is a real-analytic submanifold
of WPCp.

Corollary 5.2 (1) Wp is a real-analytic submanifold of WPCp, and L|Wp is a real-
analytic homeomorphism onto BR

p (R) whose inverse is also real-analytic. (2) I Wp

is a real-analytic submanifold of WPCp, and L|I Wp is a real-analytic homeo-
morphism onto i BR

p (R)◦ whose inverse is also real-analytic.
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The real-analytic property of L|Wp has been shown in [36, Theorem 2.3] in the
case of p = 2 by a different method. Part (1) of the above corollary shows that the
real-analytic structure of Wp is equivalent to that of BR

p (R). This is subordinate to
the complex-analytic structure of Tp. Part (2) shows that the real-analytic structure of
I Wp is equivalent to that of i BR

p (R)◦. Later in Theorem 6.6, we will see that I Wp is
topologically equivalent to Tp.

In [47, Theorem 4.4], we construct a holomorphic map � : U (BR
p (R)) → Mp(U)

on some neighborhood U (BR
p (R)) of the real-valued subspace BR

p (R) for p > 1. In
the same way, we have the correspondence to the complex dilatations on L. Thus, we
can extend � to a holomorphic map

�̃ : U (BR

p (R)) → Mp(U) × Mp(L).

This induces the inverse of the biholomorphic map L on the neighborhood U (BR
p (R))

as shown in [47, Theorem 4.5].

Theorem 5.3 The neighborhood U (BR
p (R)) is contained in L(WPCp), and

π̃ ◦ �̃ : U (BR

p (R)) → WPCp

is the inverse of L on U (BR
p (R)) which is holomorphic.

We compare the arc-length parametrizations in I Wp with the Riemann mapping
parametrizations in RMp. Both are the sets of all representatives of p-Weil–Petersson
curves, which follows from Proposition 4.3. Hence, there is a canonical bijection
between I Wp and RMp giving the change of the representatives, namely, keeping the
images of the corresponding embeddings the same. For the projection � : WPCp →
RMp, this bijection is nothing but its restriction �|I Wp : I Wp → RMp. We will see
that �|I Wp is a homeomorphism by Proposition 6.5 in the next section.

Here, we consider the other projection� restricted to I Wp, which has been studied
with great interest in the literature. For any γ ∈ I Wp, �(γ ) ∈ Wp is defined by the
p-Weil–Petersson class homeomorphism inducing the reparametrization from γ to
�(γ ) ∈ RMp. We will prove the bi-real-analytic property of this mapping. For the
space of chord-arc curves, this property for the corresponding map was proved in [7,
Theorem 1] by operator theoretical arguments. The first part of the following theorem
asserting that λ is real-analytic appeared in [38, Theorem 7.1] in the case of p = 2.

Theorem 5.4 The map �|I Wp : I Wp → Wp is real-analytic. Hence,

λ = L ◦ � ◦ L−1|i BR
p (R)◦ : i BR

p (R)◦ → BR

p (R)

is also real-analytic. Moreover, λ is injective and the inverse λ−1 is real-analytic.
Namely, λ is a real-analytic homeomorphism onto an open subset of BR

p (R) whose
inverse is also real-analytic. This is also the case for �|I Wp .
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Proof By Corollary 5.2, I Wp is a real-analytic submanifold of WPCp. Hence, the
restriction �|I Wp of the projection � : WPCp → Wp is real-analytic. Since L is
biholomorphic by Theorem 5.1, the conjugate map λ is real-analytic.

We will prove the real-analyticity of the inverse of λ. To this end, we use the
corresponding result for the space of chord-arc curves as in [49, Theorem 7.3]. From
Propositions 2.4 and 3.1, we see that the space CA of all normalized BMOembeddings
with chord-arc images contains WPCp. Then, there are the corresponding subspaces
of CA that contain Wp, I Wp, and RMp. We also have the inclusion relations of
subspaces

BR

p (R) ⊂ BMO∗
R
(R), i BR

p (R)◦ ⊂ iBMOR(R)◦

in Bp(R) ⊂ BMO(R), where BMO∗
R
(R) stands for the space of all real-valued BMO

functions u with eu being an A∞-weight, and iBMOR(R)◦ is the open subset con-
sisting of imaginary-valued BMO functions iv such that

∫ x
0 eiv(t)dt is the arc-length

parametrization of a chord-arc curve.
The corresponding map to λ between these larger spaces is denoted by λ̃ :

iBMOR(R)◦ → BMO∗
R
(R). Then, λ = λ̃|i BR

p (R)◦ . It is known that λ̃ is a real-analytic

homeomorphism onto an open subset of BMO∗
R
(R)whose inverse is also real-analytic

(see [33, Theorem 5]).
First, we prove the injectivity of λ. This is the same as the case of the space of

chord-arc curves. Every γ0 ∈ I Wp is decomposed uniquely into γ0 = h ◦ f for
h ∈ RMp and f ∈ Wp. Taking the logarithm of the derivative of this equation, we
have

log γ ′
0 = log h′ ◦ f + log f ′.

Since log γ ′
0 = iv is purely imaginary and log f ′ is real, the real and imaginary parts

of this equation become

0 = Re log h′ ◦ f + log f ′ and v = Im log h′ ◦ f . (†)

Moreover, since log h′ is the boundary extension of the holomorphic function log H ′
for the Riemann mapping H on U, Re log h′ and Im log h′ are related by the Hilbert
transformationH on R:

Im log h′ = H(Re log h′). (‡)

Then, the combination of these equations yields

−Pf ◦ H ◦ P−1
f (log f ′) = v. (∗)

This shows that v is determined by f and thus λ : log γ ′
0 �→ log f ′ is injective.

Claim 1 Suppose that we have the decomposition γ̃0 = h̃ ◦ f̃ of the arc-length
parametrization γ̃0 of a chord-arc curve by the Riemann mapping parametrization
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h̃ and the strongly quasisymmetric homeomorphism f̃ of R. In this situation, if f̃
belongs to Wp, then h̃ ∈ RMp and γ̃0 ∈ I Wp.

Proof The formula corresponding to (∗) reads as

−Pf̃ ◦ H ◦ P−1
f̃

(log f̃ ′) = ṽ. (∗∗)

Here, f̃ ∈ Wp implies log f̃ ′ ∈ BR
p (R) by Lemma 3.3. Moreover, since (Pf̃ )

−1 =
Pf̃ −1 preserves BR

p (R) by Proposition 2.1, we have P−1
f̃

(log f̃ ′) ∈ BR
p (R). By

Lemma 2.3, the Hilbert transformation H maps BR
p (R) onto BR

p (R). This implies

H ◦ P−1
f̃

(log f̃ ′) ∈ BR
p (R). By applying Pf̃ again, we see that the left side of (∗∗)

is in BR
p (R), and hence ṽ ∈ BR

p (R). Since log γ̃ ′
0 = i ṽ, we have γ̃0 ∈ I Wp and thus

h̃ = γ̃0 ◦ f̃ −1 ∈ RMp. ��
By the conjugation of L , this claim is equivalent to saying that if λ̃(w) ∈ BR

p (R)

for w ∈ iBMOR(R)◦ then w ∈ i BR
p (R)◦.

Wemove to the investigation of the derivatives ofλ and λ̃.We note the following two
facts: (1) As λ is real-analytic, the derivative dwλ : i BR

p (R) → BR
p (R) is a bounded

linear operator at every point w of the domain of λ; (2) As λ̃ is real-analytic and λ̃−1

is also real-analytic, the derivative dw̃λ̃ : iBMOR(R) → BMOR(R) is a surjective
bounded linear isomorphism at every point w̃ of the domain of λ̃.

Claim 2 dwλ̃|i BR

P (R) = dwλ at every point w in the domain i BR
p (R)◦ of λ.

Proof Take any iv ∈ i BR

P (R), and set dwλ(iv) = u and dwλ̃(iv) = ũ. Then,

lim
t→0

∥∥∥∥λ(w + t iv) − λ(w)

t
− u

∥∥∥∥
Bp

= 0; lim
t→0

∥∥∥∥∥
λ̃(w + t iv) − λ̃(w)

t
− ũ

∥∥∥∥∥∗
= 0.

Since w+ t iv ∈ i BR
p (R)◦ for all t ∈R sufficiently close to 0, we have λ̃(w+ t iv) =

λ(w+ t iv) as well as λ̃(w) = λ(w). Combined with the estimate of the norms ‖ ·‖∗ ≤
‖ · ‖Bp by Proposition 2.4, these two limits imply u = ũ. Hence, dwλ̃(iv) = dwλ(iv)

for every iv ∈ i BR

P (R), that is, dwλ̃|i BR

P (R) = dwλ. ��

Fact (2) as above implies that dw̃λ̃ is injective at every w̃. Then, dwλ is also injective
at everyw ∈ i BR

p (R)◦ byClaim 2.Next, wewill show that dwλ is surjective. After this,

we see from Fact (1) and the open mapping theorem that dwλ : i BR
p (R) → BR

p (R)

is a bounded linear isomorphism. Under this condition, the inverse mapping theorem
implies that λ−1 is real-analytic in some neighborhood of any point in the image
λ(i BR

P (R)◦), and thus λ−1 is globally real-analytic on λ(i BR

P (R)◦) which is an open
subset of BR

P (R).
The remaining task is to show that dwλ is surjective at every w ∈ i BR

p (R)◦. We

take any tangent vector u ∈ BR
p (R) at λ(w), and consider a segment {λ(w) + tu} ⊂
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BR
p (R) with t in a sufficiently small interval [0, ε]. Since λ(w) ∈ λ̃(iBMOR(R)◦)

and λ̃(iBMOR(R)◦) is open, we may assume that {λ(w) + tu} ⊂ λ̃(iBMOR(R)◦).
Then, the inverse image λ̃−1{λ(w) + tu} of the segment is a real-analytic curve β(t)
in iBMOR(R)◦ starting at w = β(0). The tangent vector iv = d

dt β(t)|t=0 of β(t)

at t = 0 satisfies dwλ̃(iv) = u. On the other hand, since {λ(w) + tu} is contained
in BR

p (R), Claim 1 implies that β(t) is contained in i BR
p (R)◦. Hence, iv ∈ i BR

p (R).
Then by Claim 2, we have dwλ(iv) = u. This shows that dwλ is surjective. ��

In this Weil–Petersson curve version of the Coifman–Meyer theorem, we can also
ask a question about the characterization of the domains i BR

p (R)◦ and λ(i BR
p (R)◦)

which are contractible and real-analytically equivalent to each other. The contractibil-
ity will be seen by Proposition 6.5.

Claim 1 in the above proof can be generalized to some extent. The claim in the
remark after Theorem 5.1 is also related to this. A continuous embedding γ : R → C

is a quasisymmetric embedding if and only if it extends to a quasiconformal homeo-
morphism of C (see [44]).

Proposition 5.5 Let γ0 : R → C be a quasisymmetric embedding that is given as the
arc-length parametrization γ0(x) = ∫ x

0 eiv(t)dt by a measurable function v on R. Let
H : U → � be the Riemann mapping onto the domain � bounded by the image � of
γ0, and h : R → � its extension. Then, the reparametrization f : R → R satisfying
γ0 = h ◦ f is a locally absolutely continuous quasisymmetric homeomorphism. In
these circumstances, the following conditions are equivalent: (i) log f ′ ∈ BR

p (R); (ii)

log γ ′
0 ∈ Bp(R) (iv ∈ i BR

p (R)); (iii) log h′ ∈ Bp(R); (iv) � is a p-Weil–Petersson
curve.

Proof Since � is locally rectifiable, the extension h of H to R is locally absolutely
continuous and h′(x) = 0 almost everywhere on R (see [30, Theorem 6.8]). Then,
for the same reason as in Lemma 3.3, f is locally absolutely continuous from the
fact that γ0 = h ◦ f is locally absolutely continuous. Since both γ0 and h extend
quasiconformally to C, so does f , and hence f is quasisymmetric.

The equivalence of (i), (ii), and (iii) follows from formulas (†) and (‡) combined
with the fact that the composition operator Pf and the Hilbert transformation H
preserve the p-Besov space by Proposition 2.1 and Lemma 2.3. Lemma 3.2 gives the
implication (iv) ⇒ (iii). Conversely, Theorem 7.1 with Lemma 2.2 gives (iii) ⇒ (iv).

��

The corresponding statements to chord-arc curves are also true for the same reason.

6 The Topological Group Structure and Its Applications

For further investigation, we use the following fact.

Theorem 6.1 The p-Weil–Petersson Teichmüller space Tp for p ≥ 1 is a topological
group under the operation ∗.
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For p = 2, this was proved in [43, Chap.1, Theorem 3.8]. A similar argument to
this case using the bi-Lipschitz quasiconformal extension and estimating the integral
of the complex dilatation also works for any p ≥ 1. We show the following basic fact.

Lemma 6.2 If [μ] and [ν] converge to [0] in Tp for p ≥ 1, then [μ] ∗ [ν] → [0] and
[ν]−1 → [0].
Proof Let F : U → U be a quasiconformal homeomorphism with its complex dilata-
tion μ ∈ Mp(U) in the equivalence class [μ]. We may choose μ so that ‖μ‖p → 0
and ‖μ‖∞ → 0 as [μ] → [0]. Let H : U → U be a bi-Lipschitz diffeomorphismwith
its complex dilatation ν ∈ Mp(U) in the equivalence class [ν]. The existence of such
an extension is guaranteed by [50, Lemma 3.4]. This also implies that ‖ν‖p → 0 and
‖ν‖∞ → 0 as [ν] → [0] and that the bi-Lipschitz constant L ≥ 1 of H is uniformly
bounded while [ν] tends to [0]. We use the chain rule for the complex dilatations:

μ ∗ ν(z) =
(μ ◦ H(z)) · Hz

Hz
+ ν(z)

1 + μ ◦ H(z) · ν̄(z) Hz
Hz

; ν−1(H(z)) = −ν(z)
Hz

Hz
.

For the composition, we estimate the integral as

∫
U

|μ ∗ ν(z)|p dxdy

y2
≤ 2p−1

(1 − ‖μ‖∞‖ν‖∞)p

(∫
U

|μ ◦ H(z)|p dxdy

y2
+

∫
U

|ν(z)|p dxdy

y2

)
.

Since H−1 is Lipschitz with the constant L in the hyperbolic metric, we have

∫
U

|μ ◦ H(z)|p dxdy

y2
=

∫
U

|μ(ζ )|p dξdη

JH (z)y2
≤ K L2

∫
U

|μ(ζ )|p dξdη

η2

for the Jacobian determinant JH of H and the maximal dilatation K ≥ 1 of H . Thus,

‖μ ∗ ν‖p ≤ 2
p−1

p
(K L2‖μ‖p

p + ‖ν‖p
p)

1/p

1 − ‖μ‖∞‖ν‖∞
; ‖μ ∗ ν‖∞ ≤ ‖μ‖∞ + ‖ν‖∞

1 − ‖μ‖∞‖ν‖∞
.

This implies that [μ] ∗ [ν] → [0] as [μ] → [0] and [ν] → [0].
For the inverse operation, we obtain similarly

∫
U

|ν−1(z)|p dxdy

y2
≤

∫
U

|ν ◦ H−1(z)|p dxdy

y2
≤ K L2

∫
U

|ν(ζ )|p dξdη

η2

since H is Lipschitz with the constant L . Thus,

‖ν−1‖p ≤ (K L2)1/p‖ν‖p; ‖ν−1‖∞ = ‖ν‖∞.

This implies that [ν]−1 → [0] as [ν] → [0]. ��
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Proof of Theorem 6.1 Lemma 6.2 implies that Tp is a partial topological group. We
have already seen that the right translation R[ν] for any [ν] ∈ Tp is continuous (in fact,
biholomorphic) at the beginning of Sect. 4. Hence, to show that Tp is a topological
group according to [12, Lemma 1.1], we have only to prove that the adjoint map
Tp → Tp defined by [ν] �→ [μ] ∗ [ν] ∗ [μ]−1 for any fixed [μ] ∈ Tp is continuous at
[ν] = [0]. The arguments for this fact are essentially the same as those in [43, Chap.1,
Lemma 3.5]. We omit the details here. ��

There are several consequences from Theorem 6.1. We first consider the curve
theoretical product structure for the space WPCp of normalized p-Weil–Petersson
embeddings, and verify the topological equivalence between this real-analytic product
structure and the complex-analytic product structure of WPCp. Then, the continuity
of Riemann mappings defined by p-Weil–Petersson curves is proved, and the bound-
edness of the image of a bounded set under the biholomorphic homeomorphism L on
WPCp is investigated.

Theorem 6.1 in particular implies that R[ν]([μ]) = [μ] ∗ [ν] and (R[ν])−1([μ]) =
[μ] ∗ [ν]−1 are continuous with respect to two variables ([μ], [ν]) ∈ Tp × Tp. Since
R̃[ν] and QL([ν],[ν]) correspond as in Proposition 4.1, this fact yields the following
consequence on the bijection J given in Lemma 4.2.

Theorem 6.3 The bijection J : BR
p (R)×i BR

p (R)◦ → L(WPCp) is a homeomorphism
for p > 1.

Proof We prove that Qu(w) and Q−1
u (w) are continuous for (u, w) ∈ BR

p (R) ×
L(WPCp). By Proposition 4.1 with L([ν], [ν]) = u for some [ν] ∈ Tp, we obtain
that

Qu(w) = L ◦ R̃[ν] ◦ L−1(w).

Then, Theorems 5.1 and 6.1 imply that this is continuous. Similarly, Q−1
u (w) is also

continuous. Since J (u, iv) = Qu(iv) and J−1(u + iv) = (u, Q−1
u (u + iv)), both J

and J−1 are continuous. ��
Remark The continuity of Qu(w) also implies that the composition operator P :
Bp(R)× Wp → Bp(R) defined by Ph(w) = w ◦ h is continuous for both w ∈ Bp(R)

and h ∈ Wp. Indeed, Ph(w) = Qlog h′(w) − log h′. For p = 2, a stronger claim than
this continuity was asked in [35, Question 4.2].

Corollary 6.4 The complex Banach manifold structure on WPCp ∼= Tp(U) × Tp(L)

is topologically equivalent to the real Banach structure of BR
p (R) × i BR

p (R)◦ under

J−1 ◦ L.

Next,we investigate the continuity ofRiemannmappings definedby p-Weil–Peters-
son curves with respect to the topological structure of WPCp. By Corollary 6.4, we
can also use the product structure WPCp ∼= BR

p (R) × i BR
p (R)◦ in order to consider

this continuity.

Proposition 6.5 The map � : WPCp → RMp ∼= T RM
p is a continuous surjection for

p ≥ 1. Moreover, �|I Wp : I Wp → RMp is a homeomorphism for p > 1.
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Proof The first statement follows from Theorem 6.1. For (�|I Wp )
−1 : RMp → I Wp,

we consider its conjugate by J−1 ◦ L . This is nothing but the projection BR
p (R) ×

i BR
p (R)◦ → i BR

p (R)◦ to the second factor by Proposition 4.3. Hence, (�|I Wp )
−1 is

continuous and �|I Wp is a homeomorphism. ��
Remark It is proved in [38, Theorem 2.4] that the map i BR

2 (R)◦ → T RM
2 is a homeo-

morphism,which corresponds to our�|I W2 under I W2 ∼= i BR

2 (R)◦. In our framework,
I W2 and i BR

2 (R)◦ are real-analytically equivalent under L . Hence, this claim can be
rephrased as the homeomorphy of �|I W2 as in Proposition 6.5.

Thus, we conclude that I Wp and RMp, both of which can be regarded as the space
of all p-Weil–Petersson curves, are naturally endowed with the two analytic structures
in the following sense.

Theorem 6.6 The real-analytic submanifold I Wp and the complex-analytic submani-
fold RMp of WPCp for p > 1 are equipped with both the complex-analytic structure
of Tp and the real-analytic structure of i BR

p (R)◦, which are topologically equivalent.

By J−1 ◦ L , we can introduce the product structure Wp × I Wp to WPCp from
BR

p (R)× i BR
p (R)◦. Both the products Wp × RMp and Wp × I Wp are homeomorphic

to WPCp for p > 1. We summarize the correspondence of these product structures
more precisely than Proposition 4.3 by incorporating the homeomorphic property
of the sections for the projection �. The proof is similar. The fiber structure of the
projection to the second factors in both products are preserved since such a fiber
consists of p-Weil–Petersson curves of the same image.

Proposition 6.7 (1) For every γ0 ∈ I Wp, the projection � : WPCp → RMp

restricted to Wp × {γ0} ⊂ Wp × I Wp is a constant map, and hence Wp × {γ0} is the
fiber of � over �(γ0). (2) For every f ∈ Wp, � restricted to { f }× I Wp ⊂ Wp × I Wp

is a homeomorphism onto RMp ∼= T RM
p , and hence { f } × I Wp is the section of �

through f .

We remark that in the comparison of the product structures Wp × RMp and Wp ×
I Wp on WPCp, the fibers of the projection to the first factors are not preserved. The
reparametrization �|I Wp : I Wp → Wp considered in Theorem 5.4 measures the
difference between the fibers RMp and I Wp over the origin.

Finally, we consider the correspondence of bounded subsets under the biholo-
morphic mapping L : WPCp → Bp(R). Here, the boundedness on WPCp ∼=
Tp(U)× Tp(L) is defined with respect to the product of the canonical metric structure
of Tp. The invariant metric provided for Tp is the p-Weil–Petersson metric (see [8,
21, 43]), and let dp denote the p-Weil–Petersson distance in Tp. This has been defined
for p ≥ 2, but it can be extended similarly to p ≥ 1.

The correspondence f �→ log f ′ for f ∈ Wp gives a real-analytic equivalence
of the p-Weil–Petersson Teichmüller space Tp to BR

p (R). Translating Lemma 6.2

to BR
p (R) for p > 1, we see that ‖ log( f ◦ h)′‖Bp → 0 as ‖ log f ′‖Bp → 0 and

‖ log h′‖Bp → 0 for f , h ∈ Wp. Extending this consequence to a claim for the
composition operator Ph : Bp(R) → Bp(R) defined by w �→ w ◦ h for every
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w ∈ Bp(R), we obtain the following lemma. We have seen that Ph is a bounded linear
operator in Proposition 2.1.

Lemma 6.8 Let p > 1. There exist constants τ0 > 0 and C0 ≥ 1 such that the operator
norm of the composition operator Ph on Bp(R) satisfies ‖Ph‖ ≤ C0 for every h ∈ Wp

with ‖ log h′‖Bp ≤ τ0.

For the BMO norm, an analogues result was stated in [7, p.18]. For this case, a
proof is given in [49, Proposition 6.3]. The proof in the present case is the same as
this.

Proposition 6.9 Let h ∈ Wp for p > 1. (1) The operator norm ‖Ph‖ of the composition
operator Ph on Bp(R) is bounded by a constant depending only on the p-Weil–
Petersson distance dp(h, id) on Wp ∼= Tp. (2) The p-Besov norm ‖ log h′‖Bp on
Bp(R) is bounded by a constant depending only on dp(h, id).

Proof For the constant τ0 in Lemma 6.8, we choose a constant r0 > 0 such that if
h ∈ Wp satisfies dp(h, id) ≤ r0 then ‖ log h′‖Bp ≤ τ0. Any element h ∈ Wp can be
joined to id by a curve in Wp with its length arbitrarily close to dp(h, id). We choose
the minimal number of consecutive points

id = h0, h1, . . . , hn = h

on the curve such that dp(hi , hi−1) < r0 for any i = 1, . . . , n. Then, the number
n is determined by dp(h, id), and the invariance of dp under the right translation
implies that the composition hi ◦ h−1

i−1 satisfies dp(hi ◦ h−1
i−1, id) < r0, and hence

‖ log(hi ◦ h−1
i−1)

′‖Bp ≤ τ0.
By decomposing h into these n mappings, we have

Ph = Ph1◦h−1
0

◦ Ph2◦h−1
1

◦ · · · ◦ Phn◦h−1
n−1

.

Then, Proposition 6.8 shows that ‖Ph‖ ≤ Cn
0 . This proves statement (1). Moreover,

‖ log h′‖Bp = ‖ log((hn ◦ h−1
n−1) ◦ (hn−1 ◦ h−1

n−2) ◦ · · · ◦ (h1 ◦ h−1
0 ))′‖Bp

≤ ‖Ph1◦h−1
0

◦ Ph2◦h−1
1

◦ · · · ◦ Phn−1◦h−1
n−2

(log(hn ◦ h−1
n−1)

′)‖Bp

+ · · · + ‖ log(h1 ◦ h−1
0 )′‖Bp

≤ Cn−1
0 τ0 + Cn−2

0 τ0 + · · · + τ0.

This proves statement (2). ��
Remark For p = 2, statement (1) follows from the stronger result mentioned in the
remark after Proposition 2.1. This is because the Teichmüller distance d∞ is bounded
by a certain multiple of the p-Weil–Petersson distance dp, that is, d∞ � dp. See [22,
Proposition 6.10].
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We show that L maps a bounded set inWPCp to a bounded set in Bp(R) in a special
case. We expect that this is valid in general.

Theorem 6.10 Under the holomorphic mapping L : WPCp → Bp(R) for p > 2, the
image L(W̃ ) of any bounded subset W̃ ⊂ WPCp is bounded in Bp(R). More precisely,
for γ = G(μ1, μ2)|R with μ1 ∈ Mp(U) and μ2 ∈ Mp(L), the norm ‖L(γ )‖Bp is
bounded by a constant depending only on dp([μ1], [0]) and dp([μ2], [0]).

Proof By the proof of Theorem 3.4, we have

L(γ ) = log(G(μ1, μ2)|R)′ = log h′ ◦ f + log f ′ = Pf (log h′) + log f ′,

where f ∈ Wp is the extension of the quasiconformal homeomorphism F : U → U to
R determined by [μ1] ∈ Tp(U), and h ∈ WPCp is the restriction of the quasiconformal
homeomorphism H : C → C to R that is conformal on U and quasiconformal on L

determined by R−1
[μ1]([μ2]) ∈ Tp(L). By Proposition 6.9, ‖ log f ′‖Bp and ‖Pf ‖ are

bounded in terms of dp([0], [μ1]). Hence, we have only to estimate ‖ log h′‖Bp .
As R[μ1] is a biholomorphic automorphismof Tp and the p-Weil–Petersson distance

dp is invariant under R[μ1], we have

dp(R−1
[μ1]([μ2]), [0]) = dp([μ2], [μ1]) ≤ dp([0], [μ1]) + dp([0], [μ2]).

By [21, Proposition 8.4], we see that there is ν ∈ Mp(L) such that [ν] = R−1
[μ1]([μ2] ∈

Tp(L) and ‖ν‖p is bounded by a constant depending only on dp(R−1
[μ1]([μ2]), [0]).

We consider the estimate of ‖ log(H |U)′‖Bp in terms of ‖ν‖p . For the Schwarzian
derivative of H |U in the Banach space Ap(U) (see the Appendix), this is known. By
modifying the arguments for [43, Chap.1, Theorem 2.3, Lemma 2.9] which implies
this estimate for the Schwarzian derivative case, we can prove that ‖ log(H |U)′‖Bp is
bounded by a constant multiple of ‖ν‖p under the condition p > 2.

Finally, the boundary extension b : Bp(U) → Bp(R), which maps log(H |U)′
to log h′, is a bounded linear operator by Lemma 2.2. Then, the combination of all
estimates we have obtained proves the statement. ��

Conversely, we also expect that for any bounded subset B ⊂ BR
p (R), the inverse

image L−1(B) is bounded in Wp. If we could prove that ‖μu‖p and ‖μu‖∞ < 1
are dominated by ‖u‖Bp for the complex dilatation μu of a certain quasiconformal
extension Fu : U → U of γu : R → R, we would obtain this result from [21, Theorem
5.4]. However, we only have the estimates of ‖μu‖p and ‖μu‖∞ in terms of ‖u‖Bp

in the case where Fu is the variant of the Beurling–Ahlfors extension and ‖u‖Bp is
sufficiently small (see [47, Proposition 3.5, Lemma 4.2]). To obtain the estimate for
general u ∈ BR

p (R), we have to decompose u into pieces un of small norms and
construct a quasiconformal extension Fu out of Fun .
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7 Appendix: The pre-Schwarzian Derivative Model on the Upper
Half-Plane

In this appendix, we provide a complex Banach manifold structure for the p-Weil–
Petersson Teichmüller space Tp = Tp(U) by using pre-Schwarzian derivatives on U.
This is well known in the case of the unit disk D for p = 2. However, since the pre-
Schwarzian derivative is notMöbius invariant, we carefully treat the case ofU.Wewill
see below that there is a certain advantage of considering the pre-Schwarzian derivative
model onU compared withD. The generalization to any p > 1 is also mentioned. We
note that if we use the Schwarzian derivative model, there is no difference between
U and D due to its Möbius invariance, and Tp is equipped with the complex Banach
manifold structure for p ≥ 1.

Let A(U) denote the Banach space of holomorphic functions ϕ on U with norm

‖ϕ‖A = sup
z∈U

|ϕ(z)|y2.

For p ≥ 1, we also denote by Ap(U) the Banach space of holomorphic functions ϕ

on U with norm

‖ϕ‖Ap =
(
1

π

∫∫
U

|ϕ(z)|p y2p−2dxdy

) 1
p

.

For any locally univalent function H , the derivative of the logarithm LH and the
Schwarzian derivative SH are defined by

LH = log H ′, SH = L′′
H − 1

2
(L′

H )2.

The derivative of LH is called the pre-Schwarzian derivative of H . We will show
the following result on the upper half-plane U. In the case of the unit disk D, the
corresponding theorem for p ≥ 2 was proved in [15, Theorems 1, 2]. However, since
LH is not Möbius invariant, this is not straightforward from that on D. As mentioned
below, the case of p = 2 was proved in [37].

Theorem 7.1 Let p > 1. Let H : U → C be a conformal mapping on U extending
to the whole plane C quasiconformally such that limz→∞ H(z) = ∞. Then, the
following conditions are equivalent :
(a) H extends to a quasiconformal homeomorphism of C whose complex dilatation μ

on L belongs to Mp(L);
(b) LH ∈ Bp(U);
(c) SH ∈ Ap(U).

Proof The equivalence of (b) and (c) for p = 2 was investigated in [37, Theorem 4.4].
Essentially the same argument is valid for general p > 1. See [20, Theorem 3.3]. The
implication (a) ⇒ (c) for p ≥ 1 is asserted in [50, Lemma 3.2], and (c) ⇒ (a) for
p ≥ 1 is contained in [50, Theorem 4.1]. The equivalence of (a) and (c) was proved
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formerly by [8, Theorem 2] for p = 2, and by [15, Theorems 2] and [36, Theorem
2.1] for p ≥ 2. ��

Under this preparation, we introduce the pre-Schwarzian derivativemodel of Teich-
müller spaces on U. Let H : U → C be a conformal mapping on U satisfying the
condition H(∞) = ∞ (i.e., limz→∞ H(z) = ∞) that extends to a quasiconformal
homeomorphism of the whole plane C. Then, the set T of all SH ∈ A(U) for such
H is the Schwarzian derivative model of the universal Teichmüller space T , and the
set T of all LH ∈ B(U) for such H is the pre-Schwarzian derivative model of T . It is
known that T is a bounded domain inA(U) identified with T (the Bers embedding),
which defines the complex Banach manifold structure for T (see [17, Section III.4]).

However, if we do not impose the condition H(∞) = ∞ on the conformal mapping
H and consider all LH for those H , then they are classified into uncountably many
components and T is the one containing 0. To see this, we consider the conformal
mapping H̃ = H◦	−1 ofDpushed forwardby theCayley transformation	 : U → D.
Since

log H̃ ′ = 	∗LH + log(	−1)′

and log(	−1)′ ∈ B(D), this defines an affine isometry B(U) → B(D). Under this
isometric isomorphism, the components in B(U) correspond to those in B(D) bijec-
tively, which are Tω(D) (ω ∈ S) and Tbdd(D) characterized by the property that a point
ω ∈ S or no point of S is mapped to ∞ by the extension of the conformal mapping
H̃ to S. See [54] and [40, Section 4]. Then, the component T ⊂ B(U) containing
0 corresponds to T	(∞)(D) = T1(D), which is biholomorphically equivalent to the
universal Teichmüller space T ∼= T .

We can also consider the pre-Schwarzian derivative model of the p-Weil–Petersson
Teichmüller space Tp for p > 1 in the same manner. However, unlike the case of the
universal Teichmüller space, no unbounded components appear in Bp(D); namely,
Tω(D) ∩ Bp(D) = ∅ for every ω ∈ S (see [41, Theorem 4.1]). Concerning the
correspondence between the spaces onU and onD, there is also a difference, which is
due to the fact that log(	−1)′ does not belong to Bp(D). Nevertheless, Theorem 7.1
implies that there is a bijective correspondence between Tp = T ∩ Bp(U) and Tp =
T ∩ Ap(U) under the map α : Bp(U) → Ap(U) given by α(ϕ) = ϕ′′ − (ϕ′)2/2
which stems from SH = L′′

H − 1
2 (L′

H )2. It was proved in [42, Lemma 2.3] that α

is holomorphic in the case of D for p ≥ 2. This is also true in the case of U for
p > 1. Moreover, Tp is a contractible domain in Ap(U) identified with the p-Weil–
Petersson Teichmüller space Tp for p ≥ 1, which provides the complex Banach
manifold structure for Tp (see [8, 15, 50, 52]).

We finish our discussion by stating the following theorem.

Theorem 7.2 The holomorphic map α restricted to Tp is a biholomorphic homeo-
morphism onto Tp for p > 1. Hence, the complex Banach manifold structures on
these two models of the p-Weil–Petersson Teichmüller space Tp are biholomorphi-
cally equivalent.
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Proof We have mentioned that α : Tp → Tp is a holomorphic bijection. For a
Beltrami coefficient μ in Mp(L), we take a conformal homeomorphism Fμ on U

with Fμ(∞) = ∞ that is quasiconformally extendable to L having the complex
dilatation μ. Then, the map � : Mp(L) → Tp defined by μ �→ LFμ is continuous
at μ if Fμ (or Fμ) is bi-Lipschitz on L with respect to the hyperbolic metric. To see
this, even in the case of L for p > 1, the proof of [42, Theorem 2.4] in the case of
D

∗ for p ≥ 2 can be applied once we fill the step of showing that the Bers projection
σ : Mp(L) → Tp given by μ �→ SFμ is continuous at μ if Fμ is bi-Lipschitz on
L. This is verified in [50, Lemma 3.2]. (In fact, we obtain that σ is holomorphic for
p ≥ 1 by applying [48, Lemma 6.1] though this is not mentioned in [50].)

Moreover, as the composition α◦� coincides with σ , at any pointψ ∈ Tp, there is a
local continuous right inverse s of α◦� such that s(ψ) is an arbitraryμ ∈ Mp(L)with
Fμ bi-Lipschitz on L (see [42, Theorem 2.1], [52, Proposition 4.3], and [50, Theorem
4.1]). It follows that � ◦ s becomes a local continuous right inverse of α at ψ , from
which we see that α−1 is continuous. By the standard argument in this situation, the
holomorphy of α−1 : Tp → Tp follows from its continuity. Thus, α is biholomorphic.

��
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