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Abstract
We consider sequences of solutions (ψn, An)

∞
n=1 to Taubes’s modified Seiberg–Witten

equations, associated with a fixed volume-preserving vector field X on a 3-manifold
and corresponding to arbitrarily large values of the strength parameter rn → ∞. In
Taubes’s work, the asymptotic behavior of these solutions is related to the dynamics
of X . We consider the rather unexplored case of sequences of solutions whose energy
is not uniformly bounded as n → ∞. Our first main result shows that when the energy
grows more slowly than r1/2n , the limiting nodal set of the solutions converges to an
invariant set of the vector field X . The main tool we use is a novel maximum principle
for the solutions with the key property that it remains valid in the unbounded energy
case. As a byproduct, in the usual case of sequences of solutions with bounded energy,
we obtain a new, more straightforward proof of Taubes’s result on the existence of
periodic orbits that does not involve a local analysis or the vortex equations.Our second
main result proves that, contrary towhat happens in the bounded energy case, when the
energy is unbounded there are no local restrictions to the limiting measures that may
arise in the modified Seiberg–Witten equations. Furthermore, we obtain a connection
between the dimension of the support of the limiting measure (as expressed through
a d-Frostman property) and the energy growth of the sequence of local solutions we
construct.
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1 Introduction

Taubes’s celebrated proof of the Weinstein conjecture in dimension 3 hinges on the
analysis of a modified version of the Seiberg–Witten equations [10], which were
originally introduced to study supersymmetric gauge theories in four dimensions. To
defineTaubes’s equations, one starts offwith a closed oriented 3-manifoldM , endowed
with a smooth volume form μ, and an exact volume-preserving vector field X that
does not vanish. We recall that X is said to be exact if iXμ is an exact 2-form.
The modified Seiberg–Witten equations are then a gauge-invariant semilinear elliptic
system on M that depends on the vector field X and on a large parameter r . The gist of
Taubes’s approach is to relate the dynamics of the vector field X with the concentration
properties of a certain sequence of solutions as r → ∞.

Let us record here the form of the system of PDEs considered by Taubes. For this,
one starts by noting that one can take an adapted metric, that is, a Riemannian metric g
onM such thatμ is the corresponding volume form and X is a unit vector in thismetric:
g(X , X) = 1. There is no loss of generality in assuming that μ is normalized so that∫
M μ = 1. If we now denote by

λ := g(X , ·)

the 1-form dual to the vector field X , Taubes’s modified Seiberg–Witten equations is
a system of equations defined using the metric g and depending on a real parameter
r � 1. The unknowns are A, which is a connection on a complex line bundle, and ψ ,
which is a section of a related C

2 bundle of spinors. The equations read as

∗FA = r(λ − ψ†σψ) + �,

DAψ = 0,
(1.1)

where ∗FA denotes the Hodge dual of the curvature 2-form of the connection A (which
we take to be real valued), DA is the Dirac operator defined by this connection and the
Riemannian metric and ψ†σψ is a 1-form, depending quadratically on the spinor ψ ,
which is defined using Clifford multiplication on the spinor bundle. The equations
depend on an auxiliary 1-form � and on a reference connection A0, which must be
chosen carefully and are bounded in the C3 norm by a constant independent of r .
Precise definitions will be provided in Sect. 2.

Remark 1.1 For convenience, we follow the usual notation according to which a con-
nection on a complex line bundle is locally written as −i A, so that A is a real 1-form.
The curvature FA is the 2-form written locally as FA = d A. In other words, if AT

and FAT denote the imaginary valued connection and its corresponding curvature (as
in Taubes’s article [10]), we have AT = −i A and FAT = −i FA.

A key quantity in Taubes’s analysis of the concentration properties of a sequence
of solutions to the modified Seiberg–Witten equations is the so-called energy of the
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connection A,

E(A) :=
∫

M
λ ∧ FA.

Although it is not obvious a priori, one can show [10] that, for any solution of the
Seiberg–Witten equations, the energy can be estimated as

−C < E(A) < Cr .

The first part of Taubes’s proof of the Weinstein conjecture in dimension 3 is to
show, in a technical tour de force building upon the work of Kronheimer and Mrowka
[4], that if X is the Reeb field of a contact form, then one can construct a sequence
(rn, ψn, An)

∞
n=1 of solutions of fixed degree to themodified Seiberg–Witten equations

with rn → ∞ and bounded energy (i.e., E(An) < C); see [10, Section 3] for a
definition of the degree of a solution. The second part of the proof consists in analyzing
the limitingmeasures defined by a sequence of solutionswith fixed degree and bounded
energy.

The state of the art concerning our knowledge of limiting measures for the Seiberg–
Witten equations is summarized in the following theorem. The statement uses the
helicity of the exact vector field X [1, 12], which can be written as

H(X) :=
∫

M
γ ∧ dγ =

∫

M
∗(γ ∧ dγ )μ

in terms of the 1-form γ defined by the equation iXμ = dγ modulo a closed 1-form
which does not contribute to the integral. Here ∗ denotes the Hodge star operator.

Remark 1.2 For ease of notation, in the statement of the theorem below and in what
follows, we often identify 3-forms and their corresponding signed measures in the
obvious way: if � is a 3-form then there is a signed measure (which we will denote
by � or d� when no confusion may arise) defined as

∫

M
f d� :=

∫

M
f � =

∫

M
f (∗�)μ

for each f ∈ C(M).

Theorem 1.3 (Taubes [10, 11])Suppose that the helicity of the vector field X is positive.
Then there exists a sequence (rn, ψn, An)

∞
n=1 of solutions to the modified Seiberg–

Witten equations (1.1) with rn → ∞ and fixed degree. Furthermore:

(i) If the sequence of energies En := E(An) is bounded (i.e., En < C), then the vector
field X possesses at least one periodic orbit.

(ii) If the sequence of energies is not bounded, the signed measures

σn := λ ∧ FAn

En
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converge, possibly after passing to a subsequence, to an invariant probability
measure σ∞ of X. This measure satisfies

∫

M
∗(γ ∧ dγ ) dσ∞ � 0,

so it is not the volume.

Remark 1.4 In TheoremA.2 wewill show that the last assertion can be refined to show
that, in fact, one can take a subsequence so that

∫

M
∗(γ ∧ dγ ) dσ∞ = 0,

provided that the energy growth is sublinear.

When X is the Reeb field of a contact form, then there exists a sequence of solutions
of fixed degree with bounded energy [10]. For other kinds of exact volume preserving
vector fields, however, all sequences of solutions could have unbounded energy.

One is thus naturally led to the goal of extracting more properties of the invariant
measureσ∞ in the unbounded energy case. This is an interesting question on geometric
analysis and could provide new techniques to study the dynamics of volume-preserving
3-dimensional vector fields. Despite its promise, there have not been any further devel-
opments in this direction, and any other properties of the invariantmeasures σ∞ remain
a mystery.

Our objective in this paper is to analyze the limiting measures for sequences of
solutions with unbounded energy. Specifically, we shall next present two theorems
which illustrate, and under suitable hypotheses provide precise statements of, the
following two rough guiding principles:

(i) The support of the limiting measure is contained in the set where |ψn| tends to 0
(Theorem 1.5 and Proposition 1.7).

(ii) There are no local obstructions to the limiting measures when the energy is
unbounded, so the problem is inherently global (Theorem 1.8).

Needless to say, we do not expect these principles to hold is all generality; however,
the theorems we state below show that they do provide useful intuitions. We hope that
these results will spark further developments on this subject.

The main difficulty in the unbounded energy case is that, over small scales, the
solutions to the Seiberg–Witten equations can no longer be interpreted as approximate
solutions to the 2-dimensional vortex equations with finite energy. This asymptotic
small-scale behavior is a key ingredient in Taubes’s approach.

To overcome this difficulty we resort to a combination of various tools, the most
important of which is a new maximum principle for the Seiberg–Witten equations
(Theorem 3.1). The key feature of this maximum principle is that it applies no matter
if the energy is bounded or not. Although we are mostly interested in the latter case,
when the energy is bounded, this provides a substitute of Taubes’s local analysis based
on the vortex equations. This enables us to provide a different, more straightforward
proof of the corresponding results.
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1.1 LimitingMeasures Supported on the SetWhere |Ãn| → 0

An important observation of Taubes [10] (which follows immediately from the bounds
in Lemma 2.3) is that

1 − |ψn|2 � −C

rn
,

so for all large n and any p ∈ M , |ψn(p)|2 is bounded by a constant as close to 1 as
desired. This does not imply that |ψn|2 converges to an indicator function because the
smooth functions |ψn|2 can oscillate wildly. However, the way the “zeros and ones”
of |ψn(p)|2 are distributed across the manifold has much to do with the dynamics of
the vector field X , and the analysis of the sets where |ψn|2 tends to 0 or 1 lies at the
very heart of Taubes’s proof.

Our first main result shows that when the energy grows slower than r
1
2 , the set of

points of M where |ψn| tends to 0 (that is, the limiting nodal set) is invariant under
the flow of X . The tools we develop to prove this result provide, in the special case of
sequences with bounded energy, a direct proof of Taubes’s celebrated periodic orbit
theorem (item (i) in Theorem 1.3), see Sect. 4.3. Contrary to Taubes’s, this proof does
not rely on the relationship between the small scale behavior of the Seiberg–Witten and
the vortex equations. We want to emphasize that the following theorem is the natural
generalization of Taubes’s periodic orbit theorem for solutionswith unbounded energy.

Theorem 1.5 Suppose that X has positive helicity and consider a sequence of solutions
(rn, ψn, An)

∞
n=1 to the associated Seiberg–Witten equations with rn → ∞ and En =

o(r
1
2
n ), i.e.,

lim sup
n→∞

En
r1/2n

= 0.

Then:

(i) For any fixed θ ∈ (0, 1), the set

Z θ
n :=

{
p ∈ M : 1 − |ψn|2(p) � θ

}

is non-empty for n large enough, and any convergent subsequence (in the Haus-
dorff metric) converges to a closed subset Z θ∞ which is invariant under the flow
of X.

(ii) The collection of limiting sets Z θ∞ is independent of θ , in the sense that, for
any converging subsequence Z θ

n , the corresponding subsequence Z θ ′
n , for any

θ ′ 	= θ , is also converging with the same limit, i.e., Z θ ′
∞ = Z θ∞.

(iii) There is a constant C, independent of n, such that any convergent subsequence
of sets

Zn :=
{

p ∈ M : |ψn|2(p) � C max(r
− 1

4
n , Enr− 1

2
n )

}
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also converges to an invariant set Z∞. The collection of such limiting sets
coincides with the limiting sets Z θ∞ in the sense specified above.

In the case that the sequence of energies is uniformly bounded, the invariant set Z∞
consists of a finite collection of periodic orbits of X.

Remark 1.6 If instead of taking the Hausdorff limit of the sequences of sets in The-
orem 1.5, we take the upper Kuratowski limit, this is always compact and unique
(independent of the subsequence), so we can write Z θ∞ = Z∞ for all θ ∈ (0, 1).

This theorem is proved in Sect. 4, using themaximum principle presented in Sect. 3.
It should be emphasized that, in general, the limiting invariant set Z∞ could be the
whole manifold M . Indeed, because of the high oscillations of |ψn| for large n, the
fact that a point p is in Z∞ does not imply that 1− |ψn|2(p) > 0 for all large enough
n; it could very well happen that |ψn|(p) = 1 for all n. We can only characterize Z∞
when the energy is uniformly bounded.

Concerning points where |ψn| tends to 1, the next proposition establishes that if
|ψn| → 1 on an open set U , then the limiting measure does not charge this set. This
result is proved in Sect. 4.4.

Proposition 1.7 Let (rn, ψn, An)
∞
n=1 be a sequence of solutions with unbounded

energy. If |ψn| → 1 pointwise on an open set U ⊂ M as n → ∞, then σ∞(U ) = 0.

1.2 Absence of Local Obstructions for the LimitingMeasures

Our second main result proves that, locally, any invariant measure can arise as the lim-
iting measure for some sequence of solutions to the Seiberg–Witten equations. Thus,
contrary to what happens in the bounded energy case, when the energy is unbounded
any attempt to derive some restrictions to the possible invariant sets of the vector
field X from the PDE must involve global arguments.

To state the theorem, we start by fixing a flow box C ⊂ M of the vector field X .
We choose local coordinates and identify C = (0, 1) × D, where D is the (open)
unit 2-dimensional disk, and assume that X = ∂t with t being the coordinate on the
interval (0, 1). Note that any X -invariant measure on C can then be written as

σ = σD ⊗ dt

where σD is a measure supported on D and dt is the Lebesgue measure on the interval.
Without loss of generality, we can normalize σD and assume that it is a probability
measure.

The following theorem does not only show that there are no local obstructions
for the limiting measure obtained from solutions to the Seiberg–Witten equations.
Furthermore, it also suggests that there is a connection between the dimension of
the support of the invariant measure and the energy sequence. Roughly speaking, the
faster the growth of En that we allow, the larger the dimension of the support of the
measure σ∞. A convenient way of articulating this connection is by recalling that
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a probability measure σ on D is d-Frostman if the measure of any ball B(x, ε) of
radius ε is bounded as

σ(B(x, ε)) � Cεd ,

for all ε > 0 and x ∈ D. It is standard [8, Exercise 1.15.20] that this property implies
that theHausdorff dimension of the support of σ is at least d (i.e., dimH (supp σ) � d),
but this property is strictly stronger in that it provides some quantitative control on the
measure. It is worth mentioning that the dimension of the support of the metric is also
connected with its regularity (i.e., very roughly speaking, the better the integrability
properties of the weak derivatives of the measure, as estimated using Sobolev or Besov
spaces, the higher theHausdorff dimension of its support). For the benefit of the reader,
we specify this connection in Proposition 5.4.

Theorem 1.8 Let σD be any probability measure on D. There is an adapted metric g
on C and a sequence of solutions (rn, ψn, An) to the Seiberg–Witten equations (1.1)
with � = 0 on the flow box C such that

(i) Setting En := ∫
C λ ∧ FAn , we have

λ ∧ FAn

En → σD ⊗ dt

in the sense of weak convergence of measures.
(ii) If σD is d-Frostman for some d > 0, then we can choose the sequence of solutions

such that

lim
n→∞ Enr−θ

n = 0

with θ := min
{ 1
4 ,

d
2(d+1)

}
.

1.3 Structure of the Paper

In Sect. 2 we recall the definition of the various objects appearing in the modified
Seiberg–Witten equations and some properties of the solutions. Some further auxiliary
equations are derived too. In Sect. 3 we prove a new maximum principle for these
equations that can be effectively applied to sequences of solutions with unbounded
energy. This result turns out to be a fundamental tool to analyze the properties of
the limiting invariant measures. The proofs of Theorem 1.5 and Proposition 1.7 are
presented in Sect. 4. As an additional application of the new maximum principle, we
also include an alternative proof of Taubes’s periodic orbit theorem. The proof of
Theorem 1.8 on the absence of local obstructions for the limiting measure is given in
Sect. 5. Finally, in Sect. 6 we show that the vector field X cannot be ergodic provided
that the energy growth is linear. We also include Appendix A with an additional
result that can be useful for future work on the subject. Concretely, we reinterpret the
concentration properties of solutions to the Seiberg–Witten equations using Sullivan’s

123



269 Page 8 of 53 A. Enciso et al.

theory of currents, thus implying as a particular consequence the refinement stated in
Remark 1.4.

2 Setting and Preliminary Results

In this section, following Taubes [10] (see also [7]), we include the precise formula-
tion of the modified Seiberg–Witten equations, Taubes’s theorem on the existence of
solutions (Theorem 2.2) and the basic a priori estimates (Lemmas 2.3 and 2.4). Our
main contribution is Proposition 2.5, which shows that the function |α|2 defined below
satisfies an explicit second order elliptic PDE on M . This statement is not included in
Taubes’s works and is key to prove the new maximum principle we present in Sect. 3.

2.1 Definitions and Existence of Solutions

Let us recall the definition of the modified Seiberg–Witten equations. The reader can
find further details in [3, 10, 11]. Throughout, g denotes a fixed Riemannian metric on
the 3-manifold M adapted to the volume-preserving vector field X , and λ := g(X , ·)
stands for the dual 1-form. In what follows, we will assume that the helicity of the
vector field X is positive.

We start by recalling that a spin-c structure on M is a pair s = (S, σ ), where S is a
rank-2 Hermitian vector bundle on M , called the spinor bundle, and

σ : T M −→ End(S)

is a bundle map, called Clifford multiplication, such that for each p ∈ M :

(i) If V ,W ∈ TpM , then

σ(V )σ (W ) + σ(W )σ (V ) = −2g(V ,W ).

(ii) If e1, e2, e3 is an oriented orthonormal frame for TpM , then

σ(e1)σ (e2)σ (e3) = 1.

Of course, taking a local trivialization, we can identify S with C
2.

A spin-c connection A on S is a connection that behaves naturally with respect to the
Clifford multiplication: for any sectionψ : M → S and any vector fields X ,Y ∈ T M ,
we have

∇ A
X (σ (Y )ψ) = σ(∇LC

X Y )ψ + σ(Y )∇ A
Xψ

where ∇LC is the Levi-Civita connection on T M induced by the metric g.
Consider the oriented 2-plane field K−1 := Ker λ, which we regard as a Hermitian

line bundle. It is standard that K−1 determines a distinguished spin-c structure sλ =
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(Sλ, σλ) on M , in which

Sλ = C ⊕ K−1, (2.1)

where C denotes the trivial complex line bundle over M . Any spin-c structure s =
(S, σ ) is obtained from this one by tensoring with a suitable Hermitian line bundle E ,
so that

S = E ⊗ Sλ = E ⊕ K−1E (2.2)

and σ = σλ ⊗ IdE . In this decomposition, E is the +i eigenspace of Clifford
multiplication by the vector field dual to the 1-form λ, while K−1E is the −i
eigenspace.

In what follows, E stands for a fixed line bundle whose first Chern class is such that
c1(K−1) + 2c1(E) is torsion in H2(M; Z). This is equivalent to requiring that det(S)

has torsion first Chern class, since any spin-c connection on S induces a connection on
the determinant bundle det(S) that can bewritten as A0+2A, where A0 is a connection
on K−1 (inducing a natural spin-c connection on Sλ) and A is a connection on E .

The unknowns in the Seiberg–Witten equations are a spinor ψ , which is a section
of S, and a connection A on E , whose curvature we denote by FA. We also need
an auxiliary connection A0 on K−1, which we pick (following Taubes) as the only
connection such that

DA0ψ0 = 0, (2.3)

whereψ0 := (1, 0) is a section of the distinguished spin bundle Sλ, and DA0 should be
understood as the Dirac operator associated with the unique spin-c connection on Sλ

defined by the connection A0 on K−1 and the trivial connection onC. It is well known
that the connections A0 on K−1 and A on E determine a unique spin-c connection
on s, which we will denote by ∇A; the associated Dirac operator is then defined as
DA := σ(∇A). Taubes’s modified Seiberg–Witten equations read

∗FA = r(λ − ψ†σψ) + �,

DAψ = 0,
(2.4)

where r > 1 is a real parameter. Here � is a given 1-form whose significance will
become clear in a moment, and ψ†σψ is the 1-form that acts on any vector field V
as:

ψ†σψ(V ) := −iψ†σ(V )ψ.

Notice that the properties of the Clifford map σ ensure that the 1-form ψ†σψ is real
valued.

123



269 Page 10 of 53 A. Enciso et al.

Remark 2.1 In local coordinates on a ball B ⊂ M , if {e1, e2, e3} is a local orthonormal
frame so that {e2, e3} span Ker λ, then ψ is a function from B to C

2, A and A0 are
(real-valued) 1-forms,

σ(X) = i
[
(X · e1)σ1 + (X · e2)σ2 + (X · e3)σ3

]
,

where σk are the Pauli matrices, and the covariant derivative ∇Aψ can be understood
as two complex-valued vector fields on B given by

∇Aψ = ∇ψ + �ψ − i

2
(A

0 + 2A)ψ.

Here A is the vector field associatedwith the 1-form A and� is the 2×2matrix-valued
vector field given by

� = 1

8
g(∇e j em, en)[σ(en), σ (em)]e j .

Summation over repeated indices is understood.

We are now ready to state the fundamental existence theorem due to Taubes [10]
that we will need in this paper. A caveat is that we have not defined what one means by
the degree of the solutions to the modified Seiberg–Witten equations whose existence
is proved here. The notion of degree can be defined using the Seiberg–Witten–Floer
homology but, since we will not need it in the following, we refer to [3, 10] for the
precise definition. We stress that in the case of Reeb fields, the value of the energy
(which is always finite) can be related to the degree [7].

Let us also record here that a solution (A, ψ) is called irreducible if ψ is not
identically 0. Finally, we will denote by �K the harmonic 1-form on M with the
property that the Hodge dual ∗�K represents the image in the cohomology group
H2(M) of the first Chern class c1(K ). Equivalently, one can set

�K := −1

2
∗ FA0 + ∗d�, (2.5)

where the 1-form � satisfies

d ∗ d� = 1

2
d ∗ FA0 .

Theorem 2.2 (Taubes) Let X be a nonvanishing volume-preserving vector field with
positive helicity. There is a real number 0 < θ < 1 and an infinite set of negative
integers K such that, for each fixed k ∈ K, we have:

(i) There exists a smooth 1-form � ′, of arbitrarily small C3 norm, such that the
Seiberg–Witten Equations (2.4) with � := �K + ∗d� ′ has an irreducible solu-
tion (ψ, A) of degree k provided that the value of the parameter r belongs to
a certain increasing sequence (rn)∞n=1 ⊂ (1,∞) (depending on k) without any
accumulation points.
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(ii) The aforementioned sequence of solutions (ψn, An) of degree k corresponding to
the value of the parameter rn satisfy the uniform bound

‖1 − |ψn|2‖L∞(M) > θ .

2.2 A Priori Estimates and a Useful Equation

Let us henceforth employ the shorthand notation

ψ =: (α, β)

for the decomposition according to the splitting (2.2) of the spinor part of the solution
(A, ψ) to the modified Seiberg–Witten equations. In view of Remark 2.1, it is clear
that both α and β can be locally understood as complex-valued functions.

In what follows let (rn, ψn, An) be a sequence of solutions as in Theorem 2.2 (see
also Theorem 1.3). For future reference we record here an identity connecting the
signed measures σn and the decomposition ψn = (αn, βn) that will be useful in the
case when En → ∞:

σn = rn(1 − |αn|2) μ

En + O(E−1
n ) μ. (2.6)

This follows easily from the second estimate in Lemma 2.3 and the fact that

(∗ψ†σψ) ∧ λ = ψ†σψ(X) μ = (|α|2 − |β|2) μ.

Now we recall Taubes’s a priori estimates for solutions of the Seiberg–Witten
equations [10, Lemmas 2.2 and 2.3]. With a slight abuse of notation, here and in
what follows we will use ∇A to denote both the covariant derivative defined by the
connection A on E and the covariant derivative defined by A and A0 on E ⊗ K−1. In
other words, in local coordinates ∇Aα = ∇α − i Aα and ∇Aβ = ∇β − i(A + A

0)β.

Lemma 2.3 There exists a constant C such that the solution (ψ, A) is bounded as

|α| ≤ 1 + C

r
,

|β|2 ≤ C

r

∣
∣
∣1 − |α|2

∣
∣
∣ + C

r2
,

|∇Aα| ≤ C
√
r ,

|∇Aβ| ≤ C ,

|∇2
Aα| ≤ Cr ,

|∇2
Aβ| ≤ C

√
r .
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In particular, the negative part of 1 − |α|2 is bounded as

1 − |α|2 � −C

r
.

A first refinement of these a priori estimates we need, which is implicit in Taubes’s
work, is a set of anisotropic estimates that provide finer control of some geometric
quantities. To emphasize this anisotropy, it is convenient to introduce some further
notation. Given a scalar function f on M , we let

∇‖ f := (X · ∇ f )X ,

∇⊥ f := ∇ f − ∇‖ f

denote the components of its gradient that are parallel and perpendicular to the field X ,
respectively. For sections of the vector bundles S, E and E ⊗ K−1, ∇‖

A and ∇⊥
A are

defined analogously.

Lemma 2.4 A solution (ψ, A) to the modified Seiberg–Witten equations satisfies the
following anisotropic bounds:

|∇‖|α|2| � C ,

|∇⊥|α|2| � C
√
r ,

∣
∣∇∇‖|α|2∣∣ � C

√
r ,

|∇2|α|2| � Cr ,

|X · ∇Aα| � C .

Proof Since A is a Hermitian connection on E , we have, for any vector field V ,

V · ∇|α|2 = 2Re(ᾱV · ∇Aα),

so we readily get

|∇|α|2| � 2|α||∇Aα|.

Similarly, since

W · ∇(V · ∇|α|2) = 2Re(W · ∇Aα V · ∇Aα) + 2Re[ᾱW · ∇A(V · ∇Aα)]

for any vector fields V ,W , one finds that

|∇2|α|2| � 2|∇Aα|2 + 2|α||∇2
Aα|.

These equations together with the bounds in Lemma 2.3 automatically imply the
second and fourth estimates we aimed to prove.
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To derive the other bounds, we first observe that the Dirac equation implies (see
e.g. [11, Equation 3.7])

|X · ∇Aα| � C(|∇Aβ| + |β| + |α|).

Combining all the previous estimates together with the bounds on the derivatives of
β in Lemma 2.3, the remaining inequalities follow. ��

Finally, we are ready to state the main result of this section. In the following propo-
sition we show that the function |α|2 satisfies an explicit second order elliptic PDE
on M . This result will be instrumental in the proof of a new maximum principle for
solutions of the Seiberg–Witten equations, cf. Theorem 3.1.

Proposition 2.5 The absolute value of α satisfies the equation

|α|2�|α|2 − |∇|α|2|2 + 2r |α|4(1 − |α|2 − |β|2) = H(ψ, A) (2.7)

where the term H(ψ, A) is pointwise bounded as

|H(ψ, A)| � C
(
1 + |∇⊥|α|2|

)

for an r-independent constant C.

Proof As proved in [10, Section 6.1], |α|2 satisfies the equation

|α|2�|α|2 − 2|α|2|∇Aα|2 + 2r |α|4(1 − |α|2 − |β|2) = G,

where G has the form

G := −|α|2
(
τ(α, β) + τ(α,∇Aβ) + τ(α, α)

)

(the notation τ(·, ·) will henceforth represent bilinear maps that only depend on the
metric, and that may change from line to line).

Observe that, by virtue of Lemma 2.3, we have the pointwise bound |G| � C . Thus,
to prove the proposition it suffices to show that

2|α|2|∇Aα|2 = |∇|α|2|2 + G ′,

where G ′ is some function of A, ψ and its derivatives that satisfies the bound

|G ′| � C(1 + |∇⊥|α|2|).

First, we notice that

|α|2|∇Aα|2 = |Re(ᾱ∇Aα)|2 + | Im(ᾱ∇Aα)|2 = 1

4
|∇|α|2|2 + | Im(ᾱ∇Aα)|2.(2.8)
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Next, for convenience we introduce some local notation. For each point p ∈ M ,
one can pick two vector fields ep1 , ep2 , defined on a neighborhood V p of p, such that
{X(q), ep1 (q), ep2 (q)} is an oriented orthonormal basis of the tangent space TqM for
any q ∈ V p. For ease of notation, we will henceforth omit the superscript p. The
vectors {e1(q), e2(q)} span the transverse distribution Ker λ at each point q ∈ V . We
also denote by J (q) the almost complex structure on this 2-plane field defined at q by

J (e1(q)) := e2(q), J (e2(q)) := −e1(q).

This almost complex structure does not depend on the particular choice of orthonormal
vector fields and is well defined globally on Ker λ.

Since the complex structure J on Ker λ preserves the scalar product, Eq. (2.8) can
be rewritten as

|α|2|∇Aα|2 = 1

4
|∇|α|2|2 + | Im ᾱ∇‖

Aα|2 + | Im(J ᾱ∇⊥
A α)|2. (2.9)

Now the crucial observation is that one can infer from the Dirac equation DAψ = 0
that

J i∇⊥
A α = ∇⊥

A α + �∇‖
Aβ + �β. (2.10)

(Here and in what follows, we will use � to represent linear maps between the cor-
responding bundles that depend only on the metric.) Indeed, on the one hand, on the
local frame {X , e1, e2} we have

J i∇⊥
A α = (ie1 · ∇Aα)e2 − (ie2 · ∇Aα)e1,

and on the other hand, the Dirac equation implies the following relation between the
derivatives of α and β (see e.g. [11, Equation 3.7])

X · ∇Aβ = −ie1 · ∇Aα + e2 · ∇Aα + �β. (2.11)

Using this relation to write e1 · ∇Aα in terms of e2 · ∇Aα, and viceversa, we readily
get Eq. (2.10).

This understood, we can write:

Im(J ᾱ∇⊥
A α) = −1

2
J
(
i ᾱ∇⊥

A α − i(∇⊥
A α)α

)

= −1

2

(
ᾱ(J i∇⊥

A α) + (J i∇⊥
A α)α

) =
= −Re(ᾱ∇⊥

A α) − τ(α,∇‖
Aβ) − τ(α, β) ,

where we have used Eq. (2.10) in the last equality.
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Recalling that Re(ᾱ∇⊥
A α) = 1

2∇⊥|α|2, we obtain

| Im(J ᾱ∇⊥
A α)|2 = 1

4
|∇⊥|α|2|2 + ∇⊥|α|2 · (

τ(α,∇‖
Aβ) + τ(α, β)

)

+|τ(α,∇‖
Aβ) + τ(α, β)|2.

Plugging this identity into Eq. (2.9) we easily infer that

|α|2|∇Aα|2 = 1

4
|∇|α|2|2 + 1

4
|∇⊥|α|2|2 + | Im ᾱ∇‖

Aα|2

+ ∇⊥|α|2 · (
τ(α,∇‖

Aβ) + τ(α, β)
)

+ |τ(α,∇‖
Aβ) + τ(α, β)|2 ,

so substituting |∇⊥|α|2|2 by |∇|α|2|2 − |∇‖|α|2|2 we finally obtain

|α|2|∇Aα|2 = 1

2
|∇|α|2| − 1

4
|∇‖|α|2|2 + | Im ᾱ∇‖

Aα|2

+ ∇⊥|α|2 · (
τ(α,∇‖

Aβ) + τ(α, β)
)

+ |τ(α,∇‖
Aβ) + τ(α, β)|2 .

The proposition then follows taking into account the bounds in Lemmas 2.3 and 2.4.
��

3 AMaximum Principle for Solutions with Unbounded Energy

In this section we prove a new maximum principle for solutions of the modified
Seiberg–Witten equations. Specifically,we establish a dichotomy for the large r behav-
ior of local minima of |α|2 on small disks: either they are close to 0 or close to 1 as
r → ∞. The main consequence of this result is Theorem 3.2 below, which is instru-
mental in the proof of Theorem 1.5. We stress that all the constants appearing in this
section are independent of r . In what follows, (r , ψ, A) is a sequence of solutions as
in Taubes’s Theorem 2.2, and we recall that ψ = (α, β).

Theorem 3.1 Let ρ : (1,∞) → (0, 1) be any continuous function with

lim
r→∞ ρ(r) = 0.

Suppose that � is a disk of radius ρ(r), embedded in M, transverse to the vector
field X and perpendicular to it at some point p. If a point q ∈ � is a local minimum
of the restriction of |α|2 to �, then either

|α(q)|2 � Cη(r)1/2
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or

∣
∣|α(q)|2 − 1

∣
∣ � Cη(r).

Here

η(r) := r−1/2 + ρ(r)2

is another continuous function that tends to 0 at infinity.

Proof Let us start by noticing that the Laplacian (on �) of the restriction of a scalar
function f to the surface �, which we denote by �� f , and the restriction to � of the
Laplacian of f are related through the following formula:

� f |� =
2∑

j=1

∇2 f (Vj , Vj ) + ∇2 f (N , N )

= �� f + N · ∇(N · ∇ f ) +
2∑

j=1

(div Vj − div� Vj ) Vj · ∇ f + (div N )N · ∇ f .

Here {V1, V2, N } is a local orthonormal basis of the tangent space of M chosen so that
N is perpendicular to � at every point. Further, div� Vj denotes the divergence of the
vector field Vj (which is tangent to �) with respect to the induced area form on �,
iNμ.

If the point q is a local minimum of the restriction of |α|2 to�, it follows that, at q,

�� |α|2 � 0, ∇� |α|2 = 0,

where the gradient on � is

∇� |α|2 = ∇|α|2 − (N · ∇|α|2) N .

Accordingly, the fact that ∇� |α|2(q) = 0 implies

∇|α|2(q) = (N · ∇|α|2) N (q) = (N − X) · ∇|α|2(q) + X · ∇|α|2(q).

In then follows from the a priori estimates in Lemma 2.4 and the obvious bound
‖X − N‖L∞(�) < Cρ(r), that

|∇|α|2(q)| � C[1 + √
r ρ(r)].

In view of the formula for �|α|2|� , and using again that ‖X − N‖L∞(�) < Cρ(r),
we infer that, always at the point q,

�|α|2(q) � N · ∇(N · ∇|α|2) + (div N )N · ∇|α|2
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= (N − X) · ∇((N − X) · ∇|α|2) + X · ∇((N − X) · ∇|α|2)
+ (N − X) · ∇(X · ∇|α|2) + X · ∇(X · ∇|α|2) + (div N )N · ∇|α|2

� −Cρ(r)2|∇2|α|2| − Cρ(r)|∇∇‖|α|2| − |∇‖∇‖|α|2| − C |∇|α|2|
� −C[1 + r1/2ρ(r) + r ρ(r)2] .

On the other hand, Proposition 2.5 allows us to write

r |α|4(1 − |α|2 − |β|2) � −1

2
|α|2�|α|2 + 1

2
|∇|α|2|2 + C

(
1 + |∇⊥|α|2|).

If we now evaluate at q the inequalities that we have derived and invoke the bounds
obtained in Lemma 2.4, we infer that, at the point q

r |α|4(1 − |α|2 − |β|2) � C[1 + r1/2ρ(r) + rρ(r)2] .

Since β → 0 as r → ∞ by Lemma 2.3, we finally conclude that

|α|4(1 − |α|2) � C[r−1 + r−1/2ρ(r) + ρ(r)2] � C[r−1/2 + ρ(r)2]

at the point q. This is the bound stated in the theorem. ��
The main strength of the maximum principle stated in Theorem 3.1 is that it does

not assume that the sequence of solutions (r , ψ, A) has uniformly bounded energy.
The following result exploits this property to show that if the energy growth is smaller
than r1/2, there are points on M where |α|2 → 0. This turns out to be an effective
alternative to Taubes’s local analysis of solutionswith bounded energy using the vortex
equation, and it will be crucially used in the proof of Theorem 1.5.

In the proof, it is convenient to use suitable flow boxes adapted to the vector field X .
To define a flow box, let p be any point in M and {e1, e2, X} an orthonormal basis at
TpM . Consider, for positive constants ε and R, the map

�p : (0, ε) × DR −→ M,

defined by

�p(t, x) := φt
X

(
expp(x1e1(p) + x2e2(p))

)
,

where DR := {x ∈ R
2 : |x | < R} is the disk of radius R, φt

X is the time-t flow of X ,
and expp : TpM → M is the exponential map. With ε and R small enough, �p is a
smooth diffeomorphism into its image, which we will denote by Cp(R, ε). From now
on, we will refer to Cp(R, ε) as the flow box based at p of radius R and length ε.

Theorem 3.2 Let (rn, ψn, An) be a sequence of solutions to the Seiberg–Witten
equations with rn → ∞ and such that En = o(r1/2n ), i.e.,

lim sup
n→∞

Enr−1/2
n = 0.

123



269 Page 18 of 53 A. Enciso et al.

Let {pn} be a sequence of points in M for which there is a positive constant θ such
that

1 − |αn|2(pn) � θ.

Then there is a constant L (independent of n) such that the following holds: if n is
large enough, there are disks �n ⊂ M of radius ρn := LEnr−1/2

n , transverse to the
vector field X and perpendicular to it at pn, and points qn ∈ �n such that

|αn|2(qn) � C(r−1/4
n + ρn).

Proof The existence of the sequence of points {pn} is ensured by Theorem 2.2, so
let us take disks �n centered at pn as in the statement. We claim that the bound on
the energy growth ensures that there is a local minimum of |αn|2|�n in the interior of
the disk �n , provided that n is large enough. In order to prove this, we proceed by
contradiction.

Consider the connected component Vn of the compact set

{q ∈ �n : 1 − |αn|2(q) � θ}

that contains the point pn . Let us assume that Vn ∩∂�n is nonempty. Then there exists
a continuous curve �n : [0, 1) → �n with �n(0) = pn and �n([0, 1)) ∩ ∂�n 	= ∅
such that

1 − |αn|2(�n(s)) � θ

for all s ∈ [0, 1).
Take a small enough constant � > 0 that will be fixed later. Since the length of the

curve �n([0, 1)) is at least ρn , one can take at least

Kn := r1/2n ρn

2�θ

pairwise disjoint flow-boxes

Cpn,k

(
�θ√
rn

,�θ

)

centered at different points {pn,k}Kn
k=1 lying on the image of the curve �n , with pn,1 :=

pn . If � < �0, Lemma 3.3 below and the definition of ρn imply that the signed
measures σn (cf. Eq. 2.6) satisfy

σn(M) �
Kn⋃

k=1

σn

(

Cpn,k

(
�θ√
rn

,�θ

))

− CE−1
n
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� c0
2

�2θ3r1/2n ρnE−1
n − CE−1

n

� c0
2

�2θ3L − CE−1
n .

Here the constant c0 comes from Lemma 3.3 and does not depend on n or L .
We then infer that picking a large enough constant L in the definition of ρn yields

a contradiction with the fact that σn(M) = 1 (even in the case that En is uniformly
bounded). Therefore, Vn ∩ ∂�n is empty and the compactness of Vn implies that, for
large enough n, there is a global minimum qn of |αn|2|Vn on Vn .

Since |αn|2(qn) � 1 − θ , the maximum principle stated in Theorem 3.1 allows us
to write the bound

|αn|2(qn) � C(r−1/4
n + ρn),

which completes the proof of the theorem. ��
The following technical lemma is invoked in the proof of Theorem 3.2. We use the

same notation as before.

Lemma 3.3 Let (r , ψ, A) be a sequence of solutions to the modified Seiberg–Witten
equations. Assume that p is a point in M such that 1− |α|2(p) � θ for some uniform
0 < θ < 1. Then there are positive constants c0 and �0, independent of θ and r, such
that

σr

(

Cp

(
�θ√
r
,�θ

))

� c0�3θ4

Er
for all � < �0.

Proof First, Eq. (2.6) implies that, for any open set U ⊂ M

σr (U )Er � r
∫

U
(1 − |α|2)μ − Cμ(U )

for some constant C independent of r .
Since 1 − |α|2 � θ at p, it follows from the a priori estimates for the derivatives

of |α|2 in Lemma 2.4 that

1 − |α|2 � θ

2

in a flow box of the form Cp(
�θ√
r
,�θ), provided that the constant � is smaller than

some constant �0 (independent of r and θ ). Therefore

Erσr
(

Cp

(
�θ√
r
,�θ

))

� r
∫

Cp(
�θ√
r
,�θ)

(1 − |α|2)μ − Cμ

(

Cp

(
�θ√
r
,�θ

))

�
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� μ

(

Cp

(
�θ√
r
,�θ

))(
θr

2
− C

)

� C�3θ4 + O(r− 1
2 ) � c0�

3θ4 ,

as claimed. ��

4 Nodal Sets and LimitingMeasures: Proof of Theorem 1.5

Inmost of this sectionwe are concernedwith solutions of themodified Seiberg–Witten
equations whose energy is bounded as

lim sup
n→∞

En
r1/2n

= 0.

Specifically, in Sects. 4.1 and 4.2 we prove Theorem 1.5, which establishes a con-
nection between some invariant sets of the vector field X and the set of points where
|αn| → 0. Our proof exploits the new maximum principle presented in Theorem 3.2.
In particular, since it applies to solutions with uniformly bounded energy, this allows
us to obtain an alternative proof of Taubes’s theorem on the existence of periodic orbits
without using the vortex equations, as discussed in Sect. 4.3. Finally, in Sect. 4.4, we
prove Proposition 1.7, which is a sort of converse to Theorem 1.5: the open sets of M
where |αn| → 1 do not charge the invariant measure σ∞. No constraint on the energy
growth is assumed in this case.

4.1 Step 1: Construction of an Invariant Set

We first observe that we can define the sets Z θ
n and Zn using |αn|2 rather than |ψn|2

(by the a priori estimates in Lemma 2.3). Let us pick any θ ∈ (0, 1). By Theorem 2.2,
the compact set

Z θ
n := {p ∈ M, 1 − |αn|2(p) � θ}

is non-empty for θ small enough, and in fact, by Theorem 3.1, it is non-empty for any
θ ∈ (0, 1) and all large enough n.

Fix a subsequence which converges in the Hausdorff metric, which we still denote
by Z θ

n , and let Z θ∞ be its limit. In this step, our aim is to show that Z θ∞ is invariant
under the flow of X . Notice that by compactness of M , non-empty compact subsets
of M with the Hausdorff metric form a compact metric space, so such a limiting set
always exists and it is not the empty set.

Before proceeding, let us explain the main idea of the proof. For any point p ∈ Z θ∞,
we will show that there is a set Sp containing p, contained in Z θ∞, and invariant under
the flow of X . This clearly implies that Z θ∞ is invariant. The set Sp will turn out to be
the closure of the orbit of X passing through p.
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The Hausdorff convergence implies that, for any p ∈ Z θ∞, there is a sequence of
points pn ∈ Z θ

n converging to p. By definition, the points pn satisfy

1 − |αn|2(pn) � θ

for all n, with θ > 0.
Since En = o(r−1/2

n ), it follows from Theorem 3.2 that for each large enough n,
there exists a point q1n on a disk �1

n centered at pn , of radius at most

ρn := cr−1/2
n En

and orthogonal to X at pn , such that

|αn(q
1
n )|2 < εn,

where εn := C(r−1/4
n + ρn). We then consider the cylinder

Cn,1 := Cq1n (ρn, T )

of radius ρn centered at this point and length T , where T is a small positive constant
independent of n.

Consider the point q̃1n := φT
X (q1n ) and take a disk �2

n centered at q̃1n , of radius ρn
and orthogonal to X at q̃1n . The bounds for the derivatives of |α|2 (Lemmas 2.3 and 2.4)
ensure that

|αn(q̃
1
n )|2 < εn + CT .

Hence if T is small, Theorem 3.2 ensures again that there exists a point q2n ∈ �2
n such

that

|αn(q
2
n )|2 < εn .

Let us now define the flow-box

Cn,2 := Cq2n (ρn, T )

and note that the volumes of Cn,k (with k = 1, 2) and of the intersection Cn,1 ∩ Cn,2
can be estimated as

μ(Cn,k) > Cρ2
n ,

μ(Cn,1 ∩ Cn,2) < Cρ3
n .

Since ρn → 0, thismeans that, for large enough n, the volume of the intersection Cn,1∩
Cn,2 is just a small fraction of that of either of the cylinders.
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By repeating the argument (considering both the forward flow of X and the back-
ward flow), one obtains a sequence of points (qkn )k∈Z, which give rise to flow boxes
Cn,k := Cqkn (ρn, T ) satisfying

μ(Cn,k) > Cρ2
n ,

μ(Cn,k ∩ Cn,k+1) < Cρ3
n ,

|αn(q
k
n )|2 < εn

for all k and all large enough n.
Consider now, for some constant D independent of n, the thinner cylinders C̃n,k :=

Cqkn (Dr
− 1

2
n , T ) ⊂ Cn,k . If D and T are chosen small enough, the bounds for the

derivatives of |α|2 in Lemmas 2.3 and 2.4 ensure that for any point q ′ ∈ C̃n,k we have

|αn(q
′)|2 < εn + C(D + T ) < 1 − θ (4.1)

for all k and all large enough n. For each positive integer K , let us set

Sn,K :=
K⋃

k=−K

C̃n,k .

By construction, Sn,K is contained in a neighborhood of width Kρn of the portion

SnK := {φt
X pn : |t | � KT }

of the integral curve of X passing through pn . If the integral curve is periodic, this
length may mean that this set winds around the integral curve more than once. In
particular, setting

SK := {φt
X p : |t | � KT },

it is clear that both Sn,K and SnK converge to SK as n → ∞, albeit this convergence
does not need to be uniform in K .

Finally, let us define the compact invariant set Sp as the closure of the integral
curve of X passing through p, which obviously arises as the Hausdorff limit of SK as
K → ∞. We claim that Sp ⊂ Z θ∞.

To see this, observe that Eq. (4.1) ensures that, for all K and any large enough n,
Sn,K ⊂ Z θ

n . Consider an infinite sequence of integers · · · < K−1 < K0 < K1 < · · · .
It is clear that any q ∈ Sp is the limit as |i | → ∞ of some sequence of points qi ∈ SKi ,
and the points qi are themselves the limits as n → ∞ of some sequence of points
pni ⊂ Sn,Ki ⊂ Z θ

n . Upon choosing a diagonal sequence of pni , we conclude that q is
the limit as (n, |i |) → (∞, ∞) of a sequence of points in Z θ

n . The uniqueness of the
Hausdorff limit (recall that we have fixed a converging subsequence at the beginning)
implies that q ∈ Z θ∞, as we wanted to prove.
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4.2 Step 2: The Collection of Limiting Sets is Independent of�

Let us recall the definition of the sets Zn :

Zn :=
{

p ∈ M : |αn|2(p) � C max (r
− 1

4
n , Enr− 1

2
n )

}

.

Notice that Zn ⊂ Z θ
n for all n large enough.

We claim that given any θ ∈ (0, 1), and any converging subsequence Z θ
n (in the

Hausdorff metric), there is a converging subsequence Zn such that the limits coincide:
Z θ∞ = Z∞. Reciprocally, given a convergent subsequence Zn , there is a subsequence
Z θ
n with the same limit.
Recall that the Hausdorff distance between the sets Zn and Z θ

n is defined as

distH (Zn, Z
θ
n ) = max

(

sup
x∈Zn

dist(x, Z θ
n ), sup

y∈Z θ
n

dist(y, Zn)

)

,

for each n. Fix a converging subsequence Z θ
n , and consider the corresponding sequence

of sets Zn . We claim that distH (Zn, Z θ
n ) → 0 as n → ∞.

Indeed, by Theorem 3.2, for any sequence of points pn ∈ Z θ
n we can find another

sequence qn such that

|αn|2(qn) � C(r−1/4
n + ρn),

dist(pn, qn) < ρn,

with ρn := cEnr− 1
2

n going to zero as n → ∞. From this we infer that qn ∈ Zn for all
n and we conclude that

sup
y∈Z θ

n

dist(y, Zn) < ρn → 0

as n → ∞. Since Zn ⊂ Z θ
n for all large enough n, we can write

sup
x∈Zn

dist(x, Z θ
n ) = 0,

thus implying that distH (Zn, Z θ
n ) → 0 as claimed. In particular, Zn converges to a

compact set Z∞ which is equal to the limiting set Z θ∞. The same argument shows
that if a subsequence Zn converges to a set Z∞, the corresponding subsequence Z θ

n
converges to the sameHausdorff limit. Analogously, combining the previous argument
with the fact that Z θ ′

n ⊂ Z θ
n if θ ′ � θ , it follows that any converging subsequence

Z θ
n yields a converging subsequence Z θ ′

n with the same limit, for any θ ′ 	= θ . This
completes the proof of Theorem 1.5.
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4.3 The Bounded Energy Case: Taubes’s Result Revisited

All the previous arguments, as well as the maximum principle proved in Sect. 3, apply
to sequences of solutions with uniformly bounded energy. In fact, in this case, a simple
boundedness argument allows us to prove that the invariant set Z∞ must consist of a
finite collection of periodic orbits of X . Of course, this recovers Taubes’s periodic orbit
theorem, but without making use of the local analysis that compares Seiberg–Witten
with the vortex equations. To see this, in this short subsection we shall assume that
En � C .

We claim that for any p ∈ Z θ∞, the invariant set Sp that we constructed in Sect. 4.1
is a periodic orbit of X . Indeed, suppose Sp is not a periodic orbit. Then one has that,

for any K as large as desired, the cylinders C̃n,k satisfy the small intersection condition

μ(̃Cn, j ∩ C̃n,k) < Cρn
3

for all −K � j < k � K and all large enough n (depending on K ). Here, we set

ρn := Dr− 1
2 .

Let us now define the slightly cut out cylinders

C′
n,k := C̃n,k\C̃n,k−1,

which are pairwise disjoint by construction. In view of Eq. (4.1) and Lemma 3.3, we
have

Enσn(C′
n,k) > δ

for some constant δ > 0 depending on θ, T and D (which are taken sufficiently small),
but not on n.

Observe that, by definition, Enσn(M) = En . Moreover, the sets C′
n,k are pairwise

disjoint, so Eq. (2.6) and the bound for the negative part of 1 − |α|2 in Lemma 2.3
imply

En �
K∑

k=−K

Enσn(C′
n,k) − C � (2K + 1)δ − C,

where all the constants are independent of n. Since K can be taken as large as desired
and En is uniformly bounded by hypothesis, this yields a contradiction. So Sp must
be a periodic orbit.

The same argument shows that the number of periodic orbits in Z θ∞ must be finite;
otherwise we could construct an unbounded number of disjoint cylinders with Enσn
bounded from below, contradicting the boundedness of the energy.
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4.4 Additional Concentration Properties: Proof of Proposition 1.7

In this final section we prove Proposition 1.7. This concerns the set of points where
|αn| → 1, which is not considered in Theorem 1.5. We show that any open component
of such a set has zero measure with respect to σ∞. The only hypothesis on the energy
sequence is that it is unbounded. We stress that for sequences of bounded energy, an
analogous result follows from the analysis in [10], whichmakes use of the convergence
of the Seiberg–Witten equations towards the vortex equations at small scales.

Proof of Proposition 1.7 We first observe that the assumption |ψn| → 1 on U is
equivalent to |αn| → 1 on U , by the a priori estimates (Lemma 2.3).

Let us define vn := |αn|2 − 1. Equation (2.7) in Proposition 2.5 can be written as:

(1 + vn)�vn − |∇vn|2 = 2r(1 + vn)
2vn + H(vn), (4.2)

where the term H(vn) satisfies the pointwise bound

|H(vn)| � C
(
1 + |∇⊥vn|

)
. (4.3)

Here we have used that |β|2 � C
r , cf. Lemma 2.3.

Fix a sufficiently small constant ρ > 0, and consider a geodesic ball Bρ ⊂ U of
radius ρ. It is convenient to define a cut-offC∞ function χ : M → [0, 1] that vanishes
on the complement of Bρ , is positive on Bρ and is equal to 1 on B ρ

2
⊂ Bρ . It is easy

to see that χ can be chosen to satisfy the pointwise bounds:

|∇χ |2 � C

ρ2 , |�χ | � C

ρ2 . (4.4)

Now, multiply Eq. (4.2) by χ2vn to obtain:

χ2vn(1 + vn)�vn − χ2vn|∇vn|2 = 2rχ2(1 + vn)
2v2n + χ2vnH(vn).

Taking into account that

�(χ2vn) = vn�χ2 + χ2�vn + 4χ∇χ · ∇vn,

we can write

vn(1 + vn)�(χ2vn) − v2n(1 + vn)�χ2 − 4vn(1 + vn)χ∇χ · ∇vn − χ2vn|∇vn|2
= 2rχ2(1 + vn)

2v2n + χ2vnH(vn) .

If we integrate this equation over the ball Bρ , and integrate by parts the term vn(1 +
vn)�(χ2vn), we get the following expression for the local L2 norm of the derivatives
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of vn :

−
∫

Bρ

χ2|∇vn|2 = 3
∫

Bρ

vnχ
2|∇vn|2 + 8

∫

Bρ

v2nχ∇χ · ∇vn

+ 6
∫

Bρ

vnχ∇χ · ∇vn +
∫

Bρ

v2n(1 + vn)�χ2

+ 2r
∫

Bρ

χ2v2n(1 + vn)
2 +

∫

Bρ

χ2vnH(vn) .

Our objective now is to bound the integrals in the right hand side of this equation. We
will use repeatedly the bounds in Eq. (4.4) and the fact that, for any δ > 0,

∫

Bρ

χ |∇vn| � δ

∫

Bρ

χ2|∇vn|2 + C

δ
,

withC a constant independent of δ and n. This follows from the elementary inequality

χ f � δχ2 f 2 + 1

4δ
.

Noting that the L∞ norm ‖vn‖∞ of vn on the ball Bρ is bounded by 1 (as a
consequence of the a priori bound on |αn|2), we have

∣
∣
∣

∫

Bρ

vnχ
2|∇vn|2

∣
∣
∣ � ‖vn‖∞

∫

Bρ

χ2|∇vn|2,
∣
∣
∣

∫

Bρ

v2nχ∇χ · ∇vn

∣
∣
∣ � C‖vn‖2∞

ρ

∫

Bρ

χ |∇vn| � C‖vn‖∞
ρ

(
δ

∫

Bρ

χ2|∇vn|2 + C

δ

)
,

∣
∣
∣

∫

Bρ

vnχ∇χ · ∇vn

∣
∣
∣ � C‖vn‖∞

ρ

∫

Bρ

χ |∇vn| � C‖vn‖∞
ρ

(
δ

∫

Bρ

χ2|∇vn|2 + C

δ

)
,

∣
∣
∣

∫

Bρ

v2n(1 + vn)�χ2
∣
∣
∣ � C‖vn‖∞

ρ2 .

Furthermore, using the bounds for H in Eq. (4.3), we deduce

∣
∣
∣

∫

Bρ

vnχ
2H

∣
∣
∣ � C‖vn‖∞

(
ρ3 +

∫

Bρ

χ |∇vn|
)

� C‖vn‖∞
(
ρ3 + δ

∫

Bρ

χ2|∇vn|2 + C

δ

)
.

Finally, applying Eq. (2.6), we obtain

2r
∫

Bρ

χ2v2n(1 + vn)
2 � C‖vn‖∞

(
En|σn(Bρ)| + 1

)
.
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Plugging all these estimates into the integral identity we obtained for χ2|∇vn|2, and
using that δ and ρ are small, we conclude:

(

1 − ‖vn‖∞
(
3 + Cδ

ρ

))∫

Bρ

χ2|∇vn|2 � C‖vn‖∞
( 1

ρ2δ
+ En|σn(Bρ)|

)

Now we use that, by assumption, ‖vn‖∞ goes to zero as n → ∞ (because |αn| → 1
on U ⊃ Bρ). Fixing a constant δ, for large enough n we have

∫

B ρ
2

|∇vn|2 �
∫

Bρ

χ2|∇vn|2 � C‖vn‖∞
( 1

ρ2δ
+ En|σn(Bρ)|

)
.

Therefore, as n → ∞
1

En

∫

B ρ
2

|∇|αn|2|2 = 1

En

∫

B ρ
2

|∇vn|2 � C‖vn‖∞
( 1

ρ2δEn + |σn(Bρ)|
)

→ 0, (4.5)

which holds even for solutions with uniformly bounded energy En .
To show that σ∞(U ) = 0, we first observe that, for n large enough we have

1√
2

� |αn|2 � 1 + Cr−1
n

at any point on Bρ , the upper bound coming from Lemma 2.3. Together with Eq. (2.6),
this implies that

rn
En

∫

B ρ
4

|αn|4(1 − |αn|2) � rn
2En

∫

B ρ
4

(1 − |αn|2) − C

En ρ3 � 1

2
σn(B ρ

4
) − C

En ρ3 .

(4.6)

Now, let χ ′ : M → [0, 1] be a smooth cut-off function supported on the ball B ρ
2
,

equal to one on B ρ
4
and positive on B ρ

2
. We assume that it satisfies the same bounds

as in (4.4). Multiplying Eq. (2.7) by χ ′ and integrating, we deduce

2rn
En

∫

B ρ
4

|αn|4(1 − |αn|2) � 1

En

( ∫

B ρ
2

χ ′|∇|αn|2|2 −
∫

B ρ
2

χ ′|αn|2�|αn|2

+
∫

B ρ
2

χ ′H + Cρ3
)

,

where we have used the a priori bounds for |βn|2 and that 1 − |αn|2 + Cr−1
n � 0.

Accordingly, from Eq. (4.6) we get

σn(B ρ
4
) � 1

En

( ∫

B ρ
2

χ ′|∇|αn|2|2 −
∫

B ρ
2

χ ′|αn|2�|αn|2 +
∫

B ρ
2

χ ′H + Cρ3
)

.(4.7)
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Next, let us estimate the second term on the right hand side of this equation. Integrating
by parts we obtain

−
∫

B ρ
2

χ ′|αn|2�|αn|2 =
∫

B ρ
2

χ ′|∇|αn|2| +
∫

B ρ
2

|αn|2∇χ ′ · ∇|αn|2.

By the elementary inequality a � a2 + 1
4 , the bound for |∇χ ′| and the fact that

|αn|2 � 1 + Cr−1
n , we can write

∫

B ρ
2

|αn|2∇χ ′ · ∇|αn|2 � C

ρ

∫

B ρ
2

|∇|αn|2|2 + Cρ2,

with C independent of ρ and n. Summing up, we obtain the bound

−
∫

B ρ
2

χ ′|αn|2�|αn|2 � C

ρ

∫

B ρ
2

|∇|αn|2|2 + Cρ2.

Using this estimate in Eq. (4.7), it follows that

σn(B ρ
4
) � 1

En

(
C

ρ

∫

B ρ
2

|∇|αn|2|2 +
∫

B ρ
2

χ ′H + Cρ2
)

� C

En

(
1

ρ

∫

B ρ
2

|∇|αn|2|2 + ρ2
)

,

where we have used that Eq. (4.3) implies the bound

∣
∣
∣
∣

∫

B ρ
2

χ ′H
∣
∣
∣
∣ � C

∫

B ρ
2

|∇|αn|2|2 + Cρ3.

Then we infer from Eq. (4.5) and the assumption En → ∞, that

σn(B ρ
4
) → 0 (4.8)

as n → ∞. Since for any point p ∈ U we can take a small enough neighborhood Np

whose closure is contained inU , Eq. (4.8) implies that σ∞(Np) = 0, thus completing
the proof of the proposition. ��

5 Absence of Local Obstructions for the Invariant Measures

In this section we prove Theorem 1.8. To this end, in Sect. 5.1 we show that, locally,
the modified Seiberg–Witten equations can be reduced to a rescaled version of the
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vortex equations. This allows us to study the limiting invariant measures using the
2-dimensional vortex equations, cf. Sect. 5.2.

As defined before stating Theorem 3.2, we denote by C a flow box adapted to the
vector field X . We recall that a flow box is the image of the cylinder (0, 1) × D under
an appropriate map

� : (0, 1) × D −→ M,

which is a diffeomorphism into its image and which satisfies

d�(∂t ) = X .

Here t is the coordinate in the interval (0, 1). By the volume-preserving flow box
theorem, we can choose the local diffeomorphism � so that the volume form μ on the
flow box coordinates is given by

μ = Cdx ∧ dy ∧ dt

for some small enough constant C , and coordinates (x, y) ∈ D, t ∈ (0, 1).
The standard Euclidean metric

g0 = dx2 + dy2 + dt2

is then an adapted metric for the vector field X on C. It is easy to see that we can
construct a global metric g on M adapted to the vector field X so that �∗g0 = g|C .

5.1 From Seiberg–Witten to the RescaledVortex Equations

In this sectionwe use the notation and constructions introduced in Sect. 2.1.We always
work in the flow box C using the aforementioned coordinates and adapted metric. The
1-form λ = iX g is dt , the Hermitian line bundle K = Ker λ is spanned by the vector
fields {∂x , ∂y} and thus it is trivial, and the base connection A0 defined by Eq. (2.3) is
A0 = 0, and then the 1-form �K introduced in Eq. (2.5) is also 0.

We take the associated line bundle E to be the trivial bundle C × C. We endow the
rank-two complex bundle S = E ⊕ K−1E with the following spin structure, defined
via the Clifford multiplication:

σ(∂t ) :=
(
i 0
0 −i

)

, σ (∂y) :=
(
0 −1
1 0

)

, σ (∂x ) :=
(
0 i
i 0

)

.

Since all the bundles are trivial, the spinor can be identified with a map ψ = (α, β) :
C → C

2 and the connection with a 1-form A = Atdt + Axdx + Aydy on C. The
modified Seiberg–Witten equations then read as

∂y Ax − ∂x Ay = r(1 − |α|2 + |β|2) , (5.1)
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∂x At − ∂t Ax = ir(ᾱβ − β̄α) , (5.2)

∂t Ay − ∂y At = r(ᾱβ + β̄α) , (5.3)

and the second equation (the Dirac equation) is

− (∂tβ − i Atβ) + (∂x − i∂y)α − i(Ax − i Ay)α = 0 , (5.4)

(∂tα + i Atα) + (∂x + i∂y)β + i(Ax + i Ay)β = 0 . (5.5)

These equations can be simplified if we look for t-independent solutions that satisfy

β = At = ∂t Ax = ∂t Ay = ∂tα = 0, (5.6)

in which case the modified Seiberg–Witten equations reduce to the well-known
rescaled vortex equations on D ⊂ C with the complex variable z := x + iy:

∗ da = r(1 − |φ|2) , (5.7)

∂aφ := ∂ zφ − i(ax − iay)φ = 0 . (5.8)

Here we have set φ := α and a = axdx + aydy := Axdx + Aydy. Equations (5.7)
and (5.8) are obtained from the standard vortex equations using the change of variables
z = √

r z′ (see e.g. [2]).
Thefinite-energy solutions to the vortex equations arewell understood. In particular,

the following result was proved by Taubes, see [2, 9]. It will be instrumental to prove
Theorem 1.8, so we state it for future reference.

Theorem 5.1 (Taubes [2, 9]) LetP := {z j }kj=1 be a finite set of distinct points z j ∈ C,

and let {m j }kj=1 be an associated set of positive integers. There is a smooth solution

(a, φ) to the vortex equations (5.7) and (5.8) with r = 1 such that φ−1(0) = P , and
such that the zero z j of φ has multiplicity m j . Furthermore, the solution satisfies the
additional properties:

(i) |φ| < 1 on C and |φ| → 1 as |z| → ∞.
(ii) The energy of the solution is given by

E :=
∫

C

da =
∫

C

(1 − |φ|2) = 2π
∑

j

m j .

(iii) There is a universal constant C, not depending on the particular configuration of
points P nor on their multiplicities, such that

|∇|φ|2(z)| � |∇aφ(z)| � C .

(iv) Let �−(φ) denote the set of points in C where |φ|2 � 1
2 . There is a universal

constant c ∈ (0, 1), not depending on the particular configuration of points nor

123



Limiting Measures and Energy Growth for Sequences… Page 31 of 53 269

their multiplicities, such that, for any z ∈ C with dist(z,�−(φ)) � c−1,

|1 − |φ(z)|2| � e−c dist(z,�−(φ)), (5.9)

|∇|φ|2(z)| � |∇aφ(z)| � c−1e−c dist(z,�−(φ)). (5.10)

From this theorem we deduce the following important corollary, which we will
use in the next section. It follows from the trivial observation that if (a(z), φ(z)) is a
solution to the vortex equations with r = 1 and zeros at {z j }kj=1, then

(ar (z), φr (z)) := (
√
ra(

√
r z), φ(

√
r z)) (5.11)

is a solution to the rescaled vortex equations (5.7)–(5.8) with zeros at { z j√
r
}kj=1. All

the items in Corollary 5.2 then follow from Theorem 5.1 by rescaling according to
Eq. (5.11).

Corollary 5.2 Let P := {z j }kj=1 be a finite set of points z j ∈ D, and let {m j }kj=1 be an
associated set of positive integers. For each r > 0, there is a solution (ar , φr ) to the
rescaled vortex equations (5.7) and (5.8) on C with |φr |−1(0) = P and with each zero
z j having multiplicity m j . Furthermore, the solution (ar , φr ) is bounded as |φr | < 1
and has the following properties:

(i) |∇|φr |2(z)| � |∇ar φr (z)| � C
√
r .

(ii) Er := r
∫
C
(1 − |φr |2) = 2π

∑
j m j .

(iii) If we define

�−
r :=

{
z ∈ C such that |φr |2(z) � 1

2

}
,

there is a constant c such that, if dist(z,�−
r ) � 1

c
√
r
, we have

|1 − |φr |2(z)| � e−c
√
r dist(z,�−

r )

and

|∇|φr |2(z)| � c−1√re−c
√
r dist(z,�−

r )

5.2 Proof of Theorem 1.8

The theorem follows from the following key proposition, whose proof is relegated to
Sect. 5.3:

Proposition 5.3 Let σD be a probability measure on the disk. There is an increasing
sequence of constants rn that tends to∞, a sequencePn := {z jn}knj=1 ⊂ D of finite sets

of points, with {m jn}knj=1 an associated collection of positive integers, and a sequence
of solutions (arn , φrn ) to the Eqs. (5.7) and (5.8) such that:
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(i) φ−1
rn (0) = Pn, with multiplicities {m jn}.

(ii) The sequence of measures

σn := rn(1 − |φrn |2)dx ∧ dy
∫
D
darn

converges weakly to σD.
(iii) As n → ∞, we have

∫
D
darn

2πNn
→ 1,

where Nn := ∑kn
j=1m jn.

(iv) If σD is d-Frostman for some d > 0, then Nn is bounded as

lim
n→∞ Nnr

−θ
n = 0,

with θ := min
{ 1
4 ,

d
2(d+1)

}
.

Let usfirst showhow item (i) inTheorem1.8 follows fromProposition5.3.Given the
sequence of solutions (arn , φrn ), the discussion in Sect. 5.1 shows that ψr := (φrn , 0)
and Ar := arn is a sequence of solutions of the modified Seiberg–Witten equations on
C. Obviously FAr = darn , λ∧ FAr = rn(1−|φrn |2)dx ∧dy∧dt and the energy of the
solutions is Er = ∫

D
darn . The sequence of measures of the Seiberg–Witten equations

is then

σn ⊗ dt,

and therefore item (ii) above implies that it converges weakly to σD ⊗ dt , as claimed.
The energy Er is bounded as Nn , when r → ∞, by item (iii). Assuming that the
measure σD is d-Frostman, item (iv) provides an estimate for Nn , which immediately
implies item (ii) in Theorem 1.8, which completes the proof.

In the following proposition, we show the connection between the regularity of a
measure and its Frostman properties alluded to in the Introduction. Recall that the
Sobolev space W−1,p

D
is defined as

W−1,p
D

:=
{
φ ∈ W−1,p(R2) : supp(φ) ⊂ D

}
.

It easily follows from a duality argument and the Sobolev embedding theorem that
any measure σD is in W−1,p

D
for all p < 2. This result is sharp, as evidenced by the

Dirac measure δp0 supported at a point p0 ∈ D. When the measure is slightly more
regular, we infer that it is d-Frostman for some d > 0:

Proposition 5.4 Assume that the probabilitymeasureσD is in the Sobolev spaceW−1,p
D

for some p ∈ (2,∞]. Then σD is d-Frostman with d := 1 − 2
p .
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Proof Take a smooth bump function χ : R
2 → [0, 1] such that χ(x) = 1 if |x | � 1

and χ(x) = 0 if |x | � 2. Defining χε(x) := χ
( x−x0

ε

)
for any point x0 ∈ R

2 and any
ε > 0, we obviously have

σD(B(x0, ε)) �
∫

R2
χε(x) dσD(x). (5.12)

Let p′ := p/(p − 1) ∈ [0, 2) be the dual exponent to p. By scaling, the W 1,p′
norm

of χε satisfies

‖χε‖W 1,p′ = ‖χε‖L p′ + ‖∇χε‖L p′ � Cε
2− 2

p + Cε
1− 2

p � Cε
1− 2

p .

The generalized Hölder inequality then allows us to estimate (5.12) as

σD(B(x0, ε)) � ‖σD‖W−1,p‖χε‖W 1,p′ � C‖σD‖W−1,pε
1− 2

p .

The lemma then follows. ��

5.3 Proof of Proposition 5.3

The proof is divided in five steps. Items (i) and (iii) are established in Steps 2
and 4, respectively, while items (ii) and (iv) are proved in Step 5. The proof of some
intermediate lemmas is postponed to Sect. 5.4.

Step 1: Choice of a Sequence of Points

We claim that we can choose a sequence of finite sets of points Pn = {z jn}knj=1 ⊂ D

withmultiplicities {m jn}knj=1, n ∈ N, and Nn = ∑
j m jn , such that the Diracmeasures

δPn := 1

Nn

kn∑

j=1

m jnδ(z − z jn)

converge weakly to σD as n → ∞, and, moreover, if we define

εn := 1

2
min

(

min
j,k

|z jn − zkn|, min
j

dist(z jn, ∂D)

)

. (5.13)

we have:

(i) There is a decreasing continuous function F : (0,∞) → (0,∞) with

lim
x→∞ F(x) = 0
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and so that

εn � F(Nn).

(i) If σD is d-Frostman with d > 0, this function can be taken F(x) := Cx− 1
d for

some constant C > 0, so that

εn � C

N
1
d
n

.

Indeed, in the case that σD is a point measure there is n0 � 1 such that Pn = Pn0
for all n � n0, and the same with Nn and εn ; the claim is then obvious because the
function F can be chosen so that F(Nn) � εn0 for all n � n0. Otherwise, it is standard
that we can always approximate the measure σD, in the sense of weak convergence,
by a sequence of Dirac probability measures of the form

�n := 1

Mn

kn∑

j=1

σD(Bε′
n
(z jn))δ(z − z jn)

for some sequence of points {z jn}knj=1 ⊂ D. Here, {Bε′
n
(z jn)} is a disjoint collection

of balls of radius ε′
n inside the disk, which cover it when n → ∞ (and hence ε′

n →
0), and Mn := ∑kn

j=1 σD(Bε′
n
(z jn)). By density, we can safely assume that each

σD(Bε′
n
(z jn))M−1

n is a rational number of the form

σD(Bε′
n
(z jn))

Mn
= m jn

Nn

for some positive integers m jn and Nn . Obviously,
∑

j m jn = Nn , kn � Nn and
Mn → 1 as n → ∞. The measure �n is then of the form δPn stated above. Moreover,
the numbers εn defined in Eq. (5.13) are bounded from below as εn � ε′

n .
If σD is d-Frostman, then σD(Bε(x)) � Cεd , so taking n large enough so that

Mn � 1
2 , we deduce the relation

Nnε
d
n � Nn(ε

′
n)

d � C

2
,

which proves the item (ii) above. If the measure σD is not d-Frostman, there is no
explicit relation between εn and Nn . However, using that the sequence εn can be
chosen to be decreasing, we can always define F(Nn) := εn , and find a decreasing
positive function F interpolating those values such that limx→∞ F(x) = 0, so that
item (i) is trivially true.

In what follows we fix a sequence Pn and associated multiplicities {m jn}knj=1 with
the properties stated above. In particular, if the measure is d-Frostman, we assume
that F is given as in item (ii).
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Step 2. Choice of a Sequence of Rescaled Vortex Solutions

By Corollary 5.2, for any sequence of positive real numbers {rn}∞n=0 we can find
a sequence of solutions (arn , φrn ) to the rn-rescaled vortex equations on C, with
φ−1
rn (0) = Pn , and with associated multiplicities {m jn}. This already proves item

(i) of the proposition.
For the rest of the proof, it is convenient to fix a sequence {rn} so that the following

conditions are satisfied as n → ∞:

0 = lim
n→∞

Nn

r
1
4
n

= lim
n→∞

Nn

F(Nn)
√
rn

= lim
n→∞

log rn
F(Nn)

√
rn

, (5.14)

where F is the function defined in Step 1. Observe that such a sequence always exists
because it suffices to take rn large enough for each n.

It is easy to see that in the case that σD is d-Frostman for some d > 0, and so

F(Nn) = CN
− 1

d
n , Eq. (5.14) is satisfied if we choose a sequence rn verifying

lim
n→∞ Nnr

−θ
n = 0 (5.15)

with

θ := min

{
1

4
,

d

2(d + 1)

}

.

Step 3: Some Key Auxiliary Lemmas

It is convenient to define

�+
n := D \

⋃

j

B(z jn, F(Nn)) ,

�−
n :=

{

z ∈ D : |φrn (z)|2 <
1

2

}

and to let �−
n (z jn) denote the connected component of �−

n which contains z jn . Note
that

�−
n =

⋃

j

�−
n (z jn)

because there is a zero of φ in each connected component of �−
n (simply because, by

the form of the vortex equations, φ must vanish at each minimum of |φ|2).
Our goal is to show that, as n → ∞, the function |φrn | is exponentially close to 1

in the set �+
n , while in the set �

−
n the solution goes to zero with a polynomial bound.
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Before stating the lemmas that establish these properties, we notice that Eq. (5.14)
implies, for any fixed constant C independent of n, that

B

(

z jn,
CNn√
rn

)

⊂ B(z jn, F(Nn)) (5.16)

provided that n is large enough. The proofs of these lemmas will be presented in
Sect. 5.4.

Lemma 5.5 �−
n (z jn) ⊂ B(z jn,

CNn√
rn

) for some constant C independent of n, for all j

and all large enough n.

Lemma 5.6 For any z ∈ �+
n and all n > 0, the solution to the vortex equations is

bounded as

1 − |φrn (z)|2 � e−cF(Nn)
√
rn ,

|∇|φrn |2| � c−1√rne
−cF(Nn)

√
rn .

Moreover, for any z ∈ C \ D the estimate is

1 − |φrn (z)|2 � e−c
√
rn(||z|−1|+F(Nn)),

|∇|φrn |2| � c−1√rne
−c

√
rn(||z|−1|+F(Nn)).

Here c is a constant that does not depend on n.

Observe that the third condition in Eq. (5.14) implies that F(Nn)
√
rn → ∞ as

n → ∞ faster than log rn (even in the case where Nn is constant for all n � n0), so
all the upper bounds in Lemma 5.6 go to 0 as n → ∞.

Lemma 5.7 For some constant C > 0 (independent of n), on each ball B(z jn,
CNn√
rn

)

we can write

|φrn (z)|2 = r
m jn
n h jn(z)|z − z jn|2m jn ,

where h jn(z) is a smooth function satisfying h jn(z) > 0 and

∣
∣
∣
∣
1

Nn

∑

j

∫

B(z jn ,
CNn√
rn

)

log(h jn)

∣
∣
∣
∣ → 0

as n → ∞.

Step 4: Proof of Item (iii)

Taking into account item (ii) in Corollary 5.2, it is enough to show that

lim
n→∞ rn

∫

C\D
(1 − |φrn |2) = 0.
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By Lemma 5.6, we have the estimate

∫

C\D
rn(1 − |φrn |2) � rne

−c
√
rn F(Nn)

∫

C\D
e−c

√
rn |z−1|.

Accordingly, since F(Nn)
√
rn → ∞ faster than log rn , the claim follows.

Step 5: Proof of Items (ii) and (iv)

Once item (iii) has been established, to prove item (ii) it is enough to show that, for
any function f ∈ C∞(D),

∫

D

rn(1 − |φrn |2) f = 2π
∑

z jn∈Pn

m jn f (z jn) + e(rn),

with an error satisfying limn→∞ e(rn)/Nn = 0.
It will be convenient to work with the function urn defined as

urn := log |φrn |2.

Since |φrn | < 1 (cf. Corollary 5.2), the function urn is negative. It is not hard to check
that the function urn satisfies, as a distribution, the PDE (see e.g. [2, Chapter 3.3])

�urn + 2rn(1 − eurn ) = 4π
∑

z jn∈Pn

m jnδ(z − z jn). (5.17)

In terms of urn , the measure σn reads as

σn = rn(1 − eurn )dx ∧ dy
∫
D
darn

.

Noticing that Eq. (5.17) implies that, for any f ∈ C∞(D),

rn

∫

D

(1 − eurn ) f = −1

2

∫

D

f �urn + 2π
∑

Pn

m jn f (z jn),

we infer that item (ii) follows if we prove that

lim
n→∞

∣
∣
∣
∣
∫
D
f �urn

∣
∣
∣
∣

Nn
= 0,

for all f ∈ C∞(D).
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To this end, we first integrate by parts to obtain

∫

D

f �urn = −
∫

D

∇urn · ∇ f +
∫

∂D

f ∇urn · ν dθ, (5.18)

where ν is the outward pointing unit normal vector at the boundary of the disk. Now,
by Lemma 5.6, for any point z ∈ ∂D and all n large enough, we have the estimate

|∇urn |(z) = 1

|φrn (z)|2
|∇|φrn (z)|2| � C

√
rne

−cF(Nn)
√
rn .

Therefore,

∣
∣
∣
∣

∫

∂D

f ∇urn · ν

∣
∣
∣
∣ � C‖ f ‖L1(∂D)

√
rne

−cF(Nn)
√
rn ,

which goes to zero as n → ∞ because F(Nn)
√
rn tends to infinity faster than log(rn)

(cf. Eq. (5.14)).
As for the first summand in Eq. (5.18), a second integration by parts yields

−
∫

D

∇urn · ∇ f =
∫

D

urn� f −
∫

∂D

urn∇ f · νdθ.

Again, using Lemma 5.6, the rightmost term is bounded as

∣
∣
∣
∣

∫

∂D

urn∇ f · νdθ

∣
∣
∣
∣ � C‖ f ‖W 1,1(∂D)e

−cF(Nn)
√
rn ,

which again goes to zero as n → ∞. Finally, using that urn < 0, it is clear that

−
∫

D

urn� f � −‖ f ‖C2(D)

∫

D

urn ,

so our main claim follows if we show that

lim
n→∞

1

Nn

∫

D

urn = 0. (5.19)

To prove this, we divide the integral into two parts, the disks B(z jn, F(Nn)), and
the set �+

n :

−
∫

D

urn = −
∫

�+
n

urn −
∑

Pn

∫

B(z jn ,F(Nn))

urn .

By Lemma 5.6, for any z ∈ �+
n we can write the bound

|1 − |φrn (z)|2| � e−cF(Nn)
√
rn � 1
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provided that n is large enough. Thus, taking the Taylor expansion of

urn = log(1 − (1 − |φrn |)2)

we obtain

−
∫

�+
n

urn = −
∫

�+
n

log |φrn |2 �
∫

�+
n

(1 − |φrn |)2 + C
∫

�+
n

(1 − |φrn |2)2

� Ce−cF(Nn)
√
rn ,

which tends to 0 as n → ∞.
To bound the integral

−
∫

B(z jn ,F(Nn))

urn ,

we write it for large enough n as

−
∫

B(z jn ,F(Nn))

urn = −
∫

B(z jn ,
CNn√
rn

)

urn −
∫

B(z jn ,F(Nn))\B(z jn ,
CNn√
rn

)

urn ,

where C is the constant in Lemma 5.5 and we have used Eq. (5.16). By Lemma 5.5,
we know that |φrn |2 � 1

2 on the set B(z jn, F(Nn))\B(z jn,
CNn√
rn

), so on this set

0 � −urn � log 2,

which allows us to write the bound

−
∫

B(z jn ,F(Nn))\B(z jn ,
CNn√
rn

)

urn � CF(Nn)
2. (5.20)

On the other hand, by Lemma 5.7, we can express urn in the disk B(z jn,
CNn√
rn

) as

urn (z) = log(h jn) + m jn log rn + 2m jn log(|z − z jn|),

so we deduce

−
∫

B(z jn ,
CNn√
rn

)

urn � −
∫

B
(
z jn ,

CNn√
rn

)

[

log(h jn) − πm jn

(
CNn√
rn

)2

log rn

−2πm jn

(
CNn√
rn

)2

log

(
CNn√
rn

)

+ πm jn

(
CNn√
rn

)2]

.

The first term after the inequality divided by Nn goes to zero because of Lemma 5.7, so
putting the other terms together with the one coming from Eqs. (5.20), (5.19) follows
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if we show that the quantity

1

Nn

∑

Pn

[

CF(Nn)
2 − πm jn

(
CNn√
rn

)2

log rn

− 2πm jn

(
CNn√
rn

)2

log

(
CNn√
rn

)

+ πm jn

(
CNn√
rn

)2]

� C

(

F(Nn)
2 +

(
Nn√
rn

)2

log rn +
(

Nn√
rn

)2

log Nn

)

goes to zero as n → ∞. But this is evident, because, by construction, if σD is not a
point measure,

lim
n→∞ F(Nn) = 0,

and the other terms also tend to 0 as n → ∞ by the conditions in Eq. (5.14). If σD
is a point measure, and thus Nn stays constant for all n � n0, we reach the same
conclusion by substituting in the argument above the sequence F(Nn) by a sequence
Fn of positive numbers, smaller than εn0 , and going to zero as n → ∞.

This completes the proof of item (ii). Concerning item (iv), we simply recall that
the condition (5.14) is verified by any d-Frostman measure upon choosing a sequence
of rn satisfying Eq. (5.15). Proposition 5.3 then follows.

5.4 Proof of the Auxiliary Lemmas

In this section we prove Lemmas 5.5, 5.6 and 5.7, which are instrumental in the
previous section. We follow the same notation and assumptions as before without
further mention.

5.4.1 Proof of Lemma 5.5

The claim obviously follows if we show that for any points pn and qn in the same
connected component of �−

n there is a constant C (independent of n) such that

dist(pn, qn) � CNn√
rn

.

Indeed, let γn be a smooth embedded curve inside�−
n , joining the points pn and qn

(which exists because �−
n is an open set). By definition, any point z ∈ γn satisfies that

|φrn |2(z) < 1
2 . Using that

|∇|φrn |2(z)| � C
√
rn

123



Limiting Measures and Energy Growth for Sequences… Page 41 of 53 269

for all z ∈ C by Corollary 5.2, we infer that there is a constant C (independent of n)
such that, for any δ > 0 as small as desired, all the points within a distance δ

C
√
rn

of

γn satisfy |φrn |2 � 1
2 + δ.

Fixing a small constant δ > 0, let us denote byUn the aforementioned set of points
z ∈ C at a distance smaller or equal than δ

C
√
rn

from γn . The area of Un is bounded

from below by

∫

Un

dx ∧ dy � |γn| δ

C
√
rn

,

where by |γn| we denote the length of the curve γn . Therefore,

rn

∫

Un

(1 − |φrn |2) � rn|γn|
(1

2
− δ

) δ

C
√
rn

� C
√
rn|γn|,

for some constant C that depends on δ but not on n. On the other hand, notice that, by
Corollary 5.2,

rn

∫

Un

(1 − |φrn |2) � rn

∫

C

(1 − |φrn |2) = 2πNn .

Therefore, combining both inequalities we can bound the length of γn as

|γn| � C
Nn√
rn

for some n-independent constant C . The claim follows because the length of γn is
always greater or equal than the distance between pn and qn .

5.4.2 Proof of Lemma 5.6

We recall Eq. (5.16), i.e.,

B

(

z j ,
CNn√
rn

)

⊂ B(z jn, F(Nn)).

Then Lemma 5.5 implies that

�−
n (z jn) ⊂ B(z jn, F(Nn)).

In particular, since εn � F(Nn) by definition, it follows that

�−
n (z jn) ∩ �−

n (zkn) = ∅
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for any j 	= k. Let us estimate the infimum of dist(z,�−
n ) for z ∈ �+

n . It is clear that
we can take z on the boundary ∂B(z jn, F(Nn)) for some j , in which case Lemma 5.5
implies that, for some C > 0,

dist(z,�−
n ) � F(Nn) − CNn√

rn
= F(Nn)

(

1 − CNn

F(Nn)
√
rn

)

.

Then, we deduce from Eq. (5.14) that for any given δ > 0 and any large enough n we
have

dist(z,�−
n ) � (1 − δ)F(Nn) � 1√

rn
,

where we have used that limn→∞ F(Nn)
√
rn = ∞. The first two statements in

Lemma 5.6 then follow by applying item (iii) of Corollary 5.2.
The two other statements concerning points z ∈ C\D also follow from item (iii) in

Corollary 5.2 upon noticing that

dist(z,�−
n ) � dist(z, ∂D) + dist(∂D,�−

n ) � ||z| − 1| + (1 − δ)F(Nn).

This completes the proof of the lemma.

5.4.3 Proof of Lemma 5.7

It is well known, cf. [2, Proposition 5.1], that any solution φ for the r = 1 vortex
equations can be written as

φ(z) = (hk(z))
1/2(z − zk)

mk

on a disk that contains just one zero zk . Here hk(z) is a smooth non-vanishing function
on the disk andmk is themultiplicity of the zero. By rescaling,we get the first statement
in Lemma 5.7, that is, we can represent φrn as

|φrn (z)|2 = h jn(z)r
m jn
n |z − z jn|2m jn . (5.21)

Notice that this representation holds on the disk B(z jn,
CNn√
rn

) for some constantC > 0

because, by construction, εn � F(Nn) � CNn√
rn
, and hence z jn is the only zero of φrn

in such a disk.
For notational simplicity, we define the smooth function vrn : B(z jn,

CNn√
rn

) → R

as

vrn (z) := log h jn(z),

and we set Bn := B(z jn,
CNn√
rn

).
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To prove the estimate for h jn in Lemma 5.7, we first notice that

∣
∣
∣
∣

∫

Bn
vrn

∣
∣
∣
∣ � π

1
2
CNn√
rn

‖vrn‖L2(Bn). (5.22)

Our goal is to bound the L2 norm ‖vrn‖L2(Bn). To this end, we first observe that, ifwrn
is the unique harmonic function on the disk Bn that coincides with vrn at the boundary,
we have the inequality

‖vrn‖L2(Bn) � ‖wrn‖L2(Bn) + 1

λ1(Bn)
‖�vrn‖L2(Bn) (5.23)

where λ1(Bn) = c0rn
N2
n
is the first eigenvalue of the Dirichlet Laplacian on the disk Bn

(for some constant c0). This estimate follows easily from themin–max characterization
of Dirichlet eigenvalues.

Now, the maximum principle for harmonic functions allows us to write

sup
Bn

|wrn | = sup
∂Bn

|wrn | = sup
∂Bn

|vrn |,

and therefore,

‖wrn‖L2(Bn) � CNn√
rn

sup
∂Bn

|vrn |.

To obtain a bound of sup∂Bn |vrn |, we recall that �−
n (z jn) ⊂ Bn by Lemma 5.5, so

|φrn |2 � 1
2 on ∂Bn , which implies by Eq. (5.21)

h jn|∂Bn � 1

2

1

(CNn)
2m jn

,

and hence

vrn |∂Bn � − log 2 − 2m jn log(CNn).

On the other hand, |φrn |2 � 1, so applying again Eq. (5.21) and taking the logarithm,
we get the upper bound

vrn |∂Bn � −2m jn log(CNn).

We then conclude that

sup
∂Bn

|vrn | � |2m jn log(CNn) + 1| � 2m jn| log(CNn) + 1|,
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and therefore

‖wrn‖L2(Bn) � CNnm jn√
rn

| log(CNn) + 1|. (5.24)

Finally, to obtain a bound for the L2 norm of �vrn , we use Eq. (5.17) and the fact
that

� log |z − z jn|2m jn = 4πm jnδ(z − z jn),

to infer that the smooth function vrn satisfies the PDE

�vrn = 2rn(e
urn − 1). (5.25)

Accordingly,

‖�vrn‖L2(Bn) = 2rn

( ∫

Bn
|eurn − 1|2

) 1
2

,

and since |φrn |2 = eurn < 1, we obtain the estimate

‖�vrn‖L2(Bn) � CNn
√
rn . (5.26)

Putting together Eqs. (5.22), (5.23), (5.24) and (5.26) we get the bound

∣
∣
∣
∣

∫

Bn
vrn

∣
∣
∣
∣ � Cm jnN 2

n

rn
| log(CNn) + 1| + CN 4

n

rn
, (5.27)

and finally, using that Nn = ∑
Pn

m jn and kn � Nn , we obtain

1

Nn

∑

Pn

∣
∣
∣
∣

∫

Bn
vrn

∣
∣
∣
∣ � 1

Nn

∑

Pn

m jn

(
CN 2

n

rn
| log(CNn) + 1|

)

+ 1

Nn

∑

Pn

CN 4
n

2rn

� CN 2
n

rn
| log(CNn) + 1| + CN 4

n

rn

which goes to zero as n → ∞ by the way the sequence of rn was constructed, cf.
Equation (5.14). This completes the proof of the lemma.

6 Energy Growth and Ergodicity

In this final section we include a simple observation on the limiting invariant measures
that one obtains when the energy growth of the sequence of solutions to the modified
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Seiberg–Witten equations is linear. By thiswemean that there exists a positive constant
C > 0, independent of n, such that

C−1rn � En � Crn .

Theorem 6.1 Let (rn, ψn, An)
∞
n=1 be a sequence of solutions to the modified Seiberg–

Witten equations as in Theorem 1.3. If the energy sequence En has linear growth, then
the vector field X cannot be ergodic (with respect to the Lebesgue measure).

Proof By Eq. (2.6), the signed measures σn can be written as

σn(U ) = rn
∫
U (1 − |αn|2)μ

En + O(E−1
n )

for any domain U ⊂ M . Accordingly, if the energy growth is linear, we obtain

σn(U ) � C
∫

U
|1 − |αn|2|μ + O(r−1

n ) � Cμ(U ),

where we have used that |αn| is uniformly bounded. Taking the limit n → ∞, this
implies that σ∞(U ) = 0 whenever μ(U ) = 0. In other words, σ∞ is absolutely
continuous with respect to μ.

Then, it is well known that we can write σ∞ = f μ, where f ∈ L1(M) is the
Radon-Nikodym derivative of σ∞ with respect toμ. Since both σ∞ andμ are invariant
measures, f can be understood as an L1 function that is invariant under the flow of
X . Therefore, if X is ergodic, the ergodic theorem implies that f is constant, i.e.,
f = ∫

M f μ = 1, at almost every point of M .
However, the main observation is that f cannot be a.e. constant, because item (ii)

in Theorem 1.3 ensures that, for any 1-form γ such that dγ = iXμ:

∫

M
∗(γ ∧ dγ ) f μ = σ∞(∗(γ ∧ dγ )) � 0,

while
∫
M ∗(γ ∧ dγ )μ = H(X) > 0 by hypothesis. This contradiction shows that X

cannot be ergodic. ��
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Appendix A: The Seiberg–Witten Invariant Measures via Foliation
Cycles

In this appendix, which is of independent interest, we revisit Taubes’s Theorem 1.3
from the viewpoint of Sullivan’s theory of foliation cycles, and refine it showing the
property stated in Remark 1.4. Let us first recall some concepts.

A.1: Preliminaries

We denote by Z p the space of p-currents on M , i.e., the continuous dual of the space
of smooth p-forms. Notice that any 2-form � on M can be identified with a 1-current
(denoted in the same way) as follows: for any 1-form θ , the action of � on θ is given
by

∫
M � ∧ θ . Let ZX and CX be the set of foliation currents and of foliation cycles

of the vector field X , respectively. We recall (see e.g. [5]) that a foliation current
of a vector field X is a 1-current that can be approximated arbitrarily well (in the
weak topology) by 1-currents supported on segments of orbits of the vector field.
Equivalently, a foliation current can be approximated by 1-currents of the form

N∑

i=1

ci δ
pi
X ,

with N ∈ N, ci ∈ [0,∞) and pi ∈ M , and where for any p ∈ M the 1-current δ
p
X is

defined as

δ
p
X (θ) = θp(X) for any 1-form θ.

A foliation cycle is a closed foliation current, i.e., a foliation current whose kernel
contains the linear subspace of exact 1-forms. It is straightforward to see that foliation
cycles are in one to one correspondence with invariant measures of the vector field X .

Following [6], associated to the vector field X , we also define the subset FX of the
space of 1-currents, consisting of the boundaries of zero-flux surfaces, i.e.,

FX =
{
∂S : S is a surface with

∫

S
iXμ = 0

}
.

Notice that a 1-current c being in FX (where the closure is taken with respect to the
weak topology in the space of 1-currents) is equivalent to the fact that, for any γ such
that dγ = iXμ

c(γ ) = 0.
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In particular, if the 1-current c is a smooth 2-form, this means that there is a 1-form b
with db = c and

∫

M
b ∧ iXμ = 0.

Before stating the main theorem of this appendix, following the same notation as in
[11, Section 2] we introduce some functionals depending on solutions (r , ψr , Ar ) to
the modified Seiberg–Witten equations. We first define the Chern–Simons functional

cs :=
∫

M
ar ∧ dar ,

where ar := Ar − A1 is a 1-form and A1 is a fixed connection on the bundle E
satisfying

2FA1 + FA0 = 0.

Recall that the determinant bundle of E ⊕ K−1E has torsion first Chern class, so
[2FA1 + FA0 ] = 0, and such an A1 always exists. We also define

e :=
∫

M
γ ∧ dar ,

where γ is a 1-form so that dγ = iXμ, and

eν :=
∫

M
(� + � ′) ∧ dar ,

where � and � ′ are the perturbing 1-forms introduced in Eq. (2.5) and Theorem 2.2,
respectively. Finally, we define the action functional

a := 1

2
cs − re − eν + r

∫

M
ψ†
r DAr ψr .

One can check that for each fixed r , the solutions (ψr , Ar ) to the Seiberg–Witten
equations are critical points of the functional a.

Finally,we state amore detailed versionofTaubes’sExistenceTheorem2.2 (see [11,
Proposition 4.1]), which ensures that, in fact, the sequence of solutions (rn, ψn, An)

comes from a piecewise smooth 1-parameter family of solutions (r , ψr , Ar ):

Proposition A.1 (Taubes [11]) Let (rn, ψn, An)
∞
n=0 be a sequence of solutions to the

Seiberg–Witten equations provided by Theorem 2.2. There is an increasing sequence
{ρk}∞k=1 ⊂ [1,∞) with no accumulation points so that the following holds:

(i) For each k, there is a smooth family of solutions (r , ψ̃r , Ãr ) to the Seiberg–Witten
equations parametrized by r ∈ (ρk, ρk+1).

123



269 Page 48 of 53 A. Enciso et al.

(ii) The associated functions a(r), cs(r), e(r), eν(r) and Er defined by this family
are smooth on the intervals (ρk, ρk+1). Moreover, there is a continuous function
a0 : [1,∞) → R such that for any r ∈ [1,∞)\{ρk}∞k=1, a0(r) = a(r).

(iii) The sequence {rn}∞n=0 is contained in the set [1,∞) \ {ρk}∞k=1, and moreover
(ψn, An) = (ψ̃rn , Ãrn ) with energy En ≡ Ern .

A.2: Main Theorem

Theorem A.2 Suppose that the helicity of the vector field X is positive. Let
(rn, ψn, An)

∞
n=1 be a sequence of solutions to the modified Seiberg–Witten equa-

tions as in Proposition A.1. Assume that the sequence of energies En is not bounded
(i.e., lim infn→∞ En = ∞). Then the sequence of 2-forms

�n := FAn

En
converges, possibly after passing to a subsequence, to a foliation cycle �∞ of X.
Moreover, if the one-parameter family of energies Er satisfies the estimate

C1r
θ � Er � C2r

θ , (A.1)

for some θ ∈ (0, 1), some positive constants C1,C2 and all r large enough, we have

�∞ ∈ FX ∩ CX .

We remark that the 1-current�∞ obtained in this theorem is related to the invariant
measure σ∞ of Taubes’s Theorem 1.3 in the following way: for any 1-form θ on M ,
we have

�∞(θ) = σ∞(θ(X)).

However, the proof we give below is different from Taubes’s proof of the existence of
the invariant measure σ∞. Additionally, we can interpret the property that �∞ ∈ FX

as follows: for any 1-form γ satisfying dγ = iXμ, define the function hγ := ∗(γ ∧
iXμ) = γ (X), which is precisely the density of the helicity functional. Then, as argued
in the previous section,

0 = �∞(γ ) = σ∞(hγ ),

which is the refinement stated in Remark 1.4.

A.3: Proof of Theorem A.2

We divide the proof in three steps. First, we show that �n has a subsequence that
converges to some non-trivial closed 1-current �∞ (this is straightforward). Then, we
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prove that �∞ is a foliation cycle of X . Finally, we establish that �∞(γ ) = 0 for
dγ = iXμ, so that �∞ ∈ FX ∩ CX .

Step 1: 6n → 6∞ and @6∞ = 0

For any 1-form θ it is straightforward to see that

|�n(θ)| = |σn(θ(X))| � C‖θ‖L∞(M), (A.2)

which implies that the sequence �n is bounded in the weak topology. Since in the
space of 1-currents (with the weak topology) bounded subsets are precompact, there
is a convergent subsequence. We denote by �∞ the limiting 1-current. It is obvious
that�∞ is not trivial (the zero current) because�∞(λ) = 1 (recall that λ is the 1-form
dual to X , so λ(X) = 1).

We observe that the boundary operator ∂ : Z1(M) → Z0(M) in the space of
1-currents is defined by duality as

∂c( f ) := c(d f ),

and is continuous in the weak topology. Since the curvatures FAn are closed 2-forms,
we infer that for any n ∈ N and any smooth function f

�n(d f ) = 0,

thus implying that �∞(d f ) = 0, i.e., �∞ is a closed 1-current.

Step 2: 6∞ ∈ CX

We proceed by contradiction. As is well known, the space of foliation currentsZX is a
closed convex cone with compact convex base inside the space of 1-currents. Suppose
that �∞ /∈ ZX . Then, by a standard application of the Hahn–Banach theorem, there
is a hyperplane separating �∞ and ZX ; in other words, there is a continuous linear
functional L : Z1 → R satisfying L(c) � 0 for any c ∈ ZX and L(�∞) < 0.

Since the space of 1-currents and the space of smooth 1-forms are continuous duals
of each other, we can identify the functional L with a 1-form θ satisfying

θp(X) � 0 at any point p ∈ M,

and

�∞(θ) < 0.

Thus, to prove that �∞ is a foliation current it suffices to check that for any θ with
θp(X) � 0, we must have �∞(θ) � 0. Indeed, let θ be any such 1-form, then

�n(θ) =
∫
M FAn ∧ θ

En
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= rn
∫
M (1 − |αn|2 + |βn|2)θ(X)μ

En
+

∫
M (rnψ

†
nσ⊥ψn + �) ∧ θ

En .

Herewe have used the notationψ†σ⊥ψ := ∗(ψ†σψ)−(ψ†σ(X)ψ)iXμ. Now, taking
an upper bound of the last term in the above equation, we can write

�n(θ) �
rn

∫
M (1 − |αn|2 + |βn|2)θ(X)μ

En − ‖θ‖L∞(M)

∫
M (rn|αn||βn| + C)μ

En .

Using the assumption θ(X) � 0 on M and the fact that rn(1 − |αn|2) � −C by
Lemma 2.3, we obtain

�n(θ) � −‖θ‖L∞(M)

En
(
C + rn

∫

M
|αn||βn|μ

)
.

Now, applying Lemma 2.3 again and using Eq. (2.6), we can bound the second
summand in the above inequality as

rn

∫

M
|αn||βn|μ � C

√
rn

∫

M
|1 − |αn|2| 12 μ � C

(
rn

∫

M
|1 − |αn|2|μ

) 1
2 � CE

1
2
n .

We then conclude that

�n(θ) � −‖θ‖L∞(M)

En
(
C + E

1
2
n

) → 0

as n → ∞ because En is assumed to be an unbounded sequence, and therefore
�∞(θ) � 0. As we argued before, this implies that �∞ is a foliation current and
being closed (by Step 1) we deduce that it is a foliation cycle, as we wanted to show.

Step 3: 6∞ ∈ FX

Let (r , ψ̃r , Ãr ) be the 1-parameter family of solutions, whose existence is ensured by
Proposition A.1, which coincides with (rn, ψn, An) at r = rn . Observe that, since En
is unbounded, we can write

�∞(γ ) = lim
n→∞

e(rn)

En , (A.3)

so �∞ ∈ FX if and only if

lim
n→∞

e(rn)

En = 0.
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Since �∞(γ ) � 0 by Taubes’s Theorem 1.3, it is enough to prove that there is no
constant C > 0 such that

− e(rn) � CEn . (A.4)

The following lemma is key in what follows.

Lemma A.3 For r large enough, there is a constant C independent of r such that

|cs(r)| � Cr
2
3 E

4
3
r

|eν(r)| � CEr

Proof The first bound on the cs functional follows from the proof of [11, Lemma 4.3]
and the assumption that Er is unbounded. As for the second bound, we notice that

|eν(r)|
Er = |�r (� + � ′)| + O(E−1

r )

and clearly |�r (� + � ′)| � C for some constant C . ��
To show that there is no constant C > 0 for which Eq. (A.4) holds, let us assume

the contrary. Set b(r) := −2a0(r)/r . By Proposition A.1, the functions b(r) and a0(r)
are differentiable on the intervals Ik := (ρk, ρk+1). Moreover, it is straightforward to
check that they verify the relation (cf. [11, Section 4]):

db

dr
= cs

r2
− 2eν

r2
,

so, in view of Lemma A.3, we obtain the bound

∣
∣
∣
db

dr

∣
∣
∣ � C

(Er
r

) 4
3

on Ik , from which we deduce that

|b(r)| � |b(r0)| +
∫ r

r0

(Eρ

ρ

) 4
3
dρ

and hence

|a0(r)| � 1

2
r |b(r0)| + 1

2
r
∫ r

r0

(Eρ

ρ

) 4
3
dρ. (A.5)

Since a0 is a continuous function, the inequality (A.5) holds for all r � r0 with
r , r0 ∈ [1,∞).
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Next, the definition of the functional a(r) (notice that DAr ψr = 0 for solutions of
the Seiberg–Witten equations), Lemma A.3, and our assumption that −e(rn) � CEn ,
allow us to write the bound

|a0(rn)| � C

(

rnEn − En − r
2
3
n E

4
3
n

)

.

Since we are assuming that the energy growth is bounded as En � Cr θ
n for some

θ < 1, we easily infer that lim supn→∞ r
2
3
n E

4
3
n (rnEn)−1 = 0, and therefore, for large

enough rn , the previous bound implies

|a0(rn)| � CrnEn . (A.6)

Accordingly, Eqs. (A.5) and (A.6) hold simultaneously, if

En � C
∫ rn

r0

(Eρ

ρ

) 4
3
dρ + C (A.7)

as n → ∞. Finally, combining this estimate with the Assumption (A.1), we derive
that

r θ
n � C(1 + r

4θ−1
3

n )

provided that θ 	= 1
4 , and

r
1
4
n � C ln rn

when θ = 1
4 , for all n large enough. This yields a contradiction with the fact that

θ ∈ (0, 1). We then conclude that there is no constant C > 0 for which Eq. (A.4)
holds, and hence limn→∞ e(rn)

En = 0, which completes the proof of the theorem.
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