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Abstract
In this paper, we study the Morse index for the ∂-energy of a non-holomorphic disk
in a strictly pseudoconvex domain in C

n or in a Kähler manifold with non-negative
bisectional curvature.We give a proof that a ∂-energyminimizing disk is holomorphic;
in fact, more generally we show that a non-holomorphic critical disk for the ∂-energy
has Morse index at least n − 1. We also extend the result to domains which satisfy the
weaker k-pseudoconvexity property for k ≥ 2.

1 Introduction

In this paper, we study the Morse index of a free boundary surface in a pseudoconvex
domain in C

n . We consider those maps, which we call ∂-harmonic that are critical
points of the ∂-energy on the space ofmaps fromunit disk D to a pseudoconvex domain
N such that the boundary ∂D is mapped into the boundary ∂N . As an application, we
show that any minimizing ∂-harmonic map from the disk to a strictly pseudoconvex
domain is holomorphic. Combined with existence theory, the study of theMorse index
can provide a powerful tool in studying the topology of pseudoconvex domain in Cn .
We also extend the result to any strictly pseudoconvex domain in a Kähler manifold
with nonnegative bisectional curvature. In [10], Siu-Yau proves the Frankel conjec-
ture, which states any compact Kähler manifold with positive bisectional curvature is
biholomorphic to complex projective space. Their holomorphicity theorem plays an
important role in the proof.

Theorem 1.1 ( [10]) Suppose M is compact Kähler manifold with positive holomor-
phic bisectional curvature. Let f : P1 → M be an energy-minimizing map. Then f
is either holomorphic or anti holomorphic.
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We remark that in the Kähler case, there are three different energies, the ∂-energy,
the ∂-energy, and the full energy. For closed surfaces or surfaces with a fixed boundary
curve, these energies are equivalent and have the same critical points with the same
Morse indices. The situation for the free boundary condition is quite different. In this
case, the critical points, when the domain is the unit disk, are always minimal surfaces,
but the boundary conditions are different. For the full energy, the boundary condition
is the usual free boundary condition which says that the surface meets the boundary
orthogonally (the outer unit normal of the surface is normal to the boundary of the
domain). For the ∂-energy, the boundary condition says that sum of the outer normal to
the surface plus the complex structure J applied to the tangent vector to the boundary
is parallel to the normal to the boundary of the domain (see Sect. 2.1). For the ∂-energy
the boundary condition would have the sum replaced by the difference.

We extend the holomorphicity theorem to a free boundary disk in a pseudoconvex
domain in terms of the Morse index of ∂-harmonic map. The main result of this paper
is the following.

Theorem 1.2 Let D be a unit disk and N be a strictly pseudoconvex domain in Cn.
Let f : D → N be a smooth map, with f (∂D) ⊂ ∂N. Suppose f is critical point of
the ∂-energy. If f is not holomorphic, then f has Morse index at least n − 1 for the
∂-energy. In particular, if f is stable for the ∂-energy, then f is holomorphic.

The key point in our proof is the construction of holomorphic variations that give
negative values in index form. The holomorphic variations then gives a lower bound
on the index. In the second section, we derive the complex version of the second
variation formula of ∂-energy and give the condition on being an admissible variation.
We then construct holomorphic variations and prove the main result in Sect. 3. In [3],
Fraser gave the index estimate and instability theorem for minimal disk in k-convex
hypersurface in Riemannian manifold. We generalize the concept of pseudoconvexity
and define k-pseudoconvexity that is analogous to k-convexity in real manifolds in
the last section. We then give index theorem for the weaker boundary condition k-
pseudoconvex and also in the case of pseudoconvex domain in Kähler manifold with
positive bisectional curvature since the construction of holomorphic variations can
also be adapted in such cases.

To illustrate the theorem and show that the hypotheses are necessary,we give several
examples. First we give an example of a non-holomorphic critical disk for the ∂-energy
in a strictly pseudoconvex domain. We also give an example of a stable critical disk
for the full energy (free boundary disk) in a strictly pseudoconvex domain which is
not holomorphic. Further we give an example of a holomorphic free boundary disk
in a strictly pseudoconvex domain which is unstable for the full energy. Finally, we
give an example of a critical disk for the ∂-energy in a weakly pseudoconvex domain
which is stable. This shows that the strict pseudoconvexity assumption is necessary in
Theorem 1.2.

We also define the notion of a strictly k-pseudoconvex domain for integer k ≥
1. This means that the trace of the second fundamental form on any k-dimensional
complex subspace tangent to the boundary is positive at each point of the boundary.
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Theorem 1.3 Let D be the unit disk and N be a strictly k-pseudoconvex domain in
Cn. Let f : D → N be a smooth map, with f (∂D) ⊂ ∂N. Suppose f is a critical
point of the ∂-energy. If f is not holomorphic, then f has Morse index at least n − k
for the ∂-energy.

For the case k = 1, the domain is strictly pseudoconvex and the above theorem
coincides with theorem 1.2.

2 Preliminaries

Definition 2.1 (Levi Pseudoconvex) Let � ⊂⊂ C
n be a domain with C2 boundary.

Let ρ : Cn → R be defining function for �. The domain � = {z ∈ C
n : ρ(z) < 0} is

strictly Levi pseudoconvex if for every point p ∈ ∂�

n∑

j,k=1

d2ρ

dz jdzk
(p)ω jωk > 0

for all ω ∈ Cn that satisfy

n∑

j=1

dρ

dz j
ω j = 0

It is equivalent to saying that 〈∇V V , ν〉 < 0 for any V in holomorphic tangent
bundle on ∂� that satisfies V (ρ) = 0, where ν is outward unit normal to ∂�

Now suppose D is a unit disk in C and N is a strictly pseudoconvex domain in Cn

and their metric are g and h respectively. Let f : D → N be a smooth map. We define
the partial energies as follows.

Definition 2.2 (∂-energy and ∂-energy) In local holomorphic coordinate { f 1, . . . , f n}
on N and {ω} on D, the pointwise ∂-energy of the map f , |∂ f |2, is defined by

g−1 d f
α

dω̄

d f β

dω̄
hαβ̄

and we define the ∂-energy E ′′( f ) to be
∫
D |∂ f |2dA where dA is volume form of

	. It can be observed that f is holomorphic if and only if E ′′( f ) = 0. Similarly, the
pointwise ∂-energy E ′( f ) of the map f , |∂ f |2, is defined by

g−1 d f
α

dω

d f β

dω
hαβ̄

and the ∂-energy E ′( f ) is defined by
∫
D |∂ f |2 dA.
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From the definition, the energy E( f ) of the map f is, therefore, equal to E ′( f ) +
E ′′( f ). The pullback of the Kähler form of N under f is

√−1hαβd f
α ∧ d f β = √−1hαβ

(
d f α

dω

d f β

dω
− d f α

dω̄

d f β

dω̄

)
dω ∧ dω̄

and hence, the difference of the partial energies,

E ′( f ) − E ′′( f ) =
∫

D

√−1hαβd f
α ∧ d f β =

∫

D
f ∗ωN

A.Lichnerowicz proves that the difference of the partial energies is homotopy invariant
on compactmanifolds (without boundary). In fact, If ft : D → N is a family of smooth
maps, then d

dt f
∗
t ωN = d( f ∗

t i(v)ω) where v = d f
dt . Therefore, the E ′( f ) − E ′′( f ) is

constant when ft have fixed boundary.

2.1 The First and SecondVariation Formula

Let ft : D → N be a family of smooth map, with f (∂D) ⊂ ∂N . Let V = d f
dt |t=0 ∈


( f ∗T N ) be the variation vector field and z = x + iy be holomorphic coordinate on
D. The first variation of ∂-energy of f with real variation field V is given by

d

dt
|t=0E

′′( f ) =
∫

D

〈
V ,∇ d

dz̄

d f

dz

〉
dx ∧ dy +

∫

∂D

〈
V ,

d f

dr
+ J

d f

dθ

〉
dθ

We say that f is harmonic if ∇ d
dz̄

d f
dz = 0. Then for any harmonic map f , it is critical

point of ∂-energy if and only if d f
dr + J d f

dθ = λν for some function λ, where ν is
outward normal to ∂N .

The second variation of ∂-energy along the smooth variation ft with variation field
V gives a symmetric bilinear index form:

I (V , V ) = 1

2

[ ∫

D
‖∇V ‖2 − 〈R(V ), V 〉dx ∧ dy +

∫

∂D

〈
∇V V ,

d f

dr
+ J

d f

dθ

〉
dθ

+
∫

∂D

〈
J∇ d

dθ
V , V

〉
dθ

] (2.1)

The norm of ∇V is given by

‖∇V ‖2 = 〈∇ d
dx
V ,∇ d

dx
V 〉 + 〈∇ d

dy
V ,∇ d

dy
V 〉

and the endomorphism R on vector bundle f ∗T N is defined by

R(V ) = R

(
V ,

d f

dx

)
d f

dx
+ R

(
V ,

d f

dy

)
d f

dy
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The index of ∂-energy of f is defined by the maximal dimension of subspace of

( f ∗T N ) in which the index form in (2.1) is negative definite. Now consider the
complexified pull back tangent bundle f ∗T N ⊗C. The metric extends to f ∗T N ⊗C

as a complex billinear form (, )or aHermitian inner product 〈〈, 〉〉. And the connection
∇ extends to a complex linear connection on f ∗T N ⊗ C. In complexified pull back
tangent bundle, the vector field d f

dz̄ will be a useful indicator in determining whether

a section V ∈ 
( f ∗T (1,0)N ) is a variation vector field to a harmonic map f that is
critical to ∂-energy.

Proposition 2.1 Let V ∈ 
( f ∗T N ), f : D → N be a map which is critical to ∂-
energy. Let W = V − i J V . Then V , JV are variation vector field along deformation

of f if and only if
〈〈
W ,

d f
dz̄

〉〉
= 0.

Proof On the boundary ∂D, d f
dz̄ = α

(
d f
dr + i d fdθ

)
for some complex valued function

α. Then

(
d f

dr
+ i

d f

dθ

)(1,0)

= 1

2

[ (
d f

dr
+ J

d f

dθ

)
− i J

(
d f

dr
+ J

d f

dθ

) ]

= λ

2
(ν − i Jν)

In the last equality, we use the fact that d f
dr + J d f

dθ = λν for some function λ as f is
critical point to ∂-energy. Then

〈〈
W ,

(
d f

dr
+ i

d f

dθ

)〉〉
=

〈〈
W ,

(
d f

dr
+ i

d f

dθ

)(1,0)
〉〉

=
〈〈
V − i J V ,

λ

2
(ν − i Jν)

〉〉

= λ[〈V , ν〉 − i 〈JV , ν〉]

Therefore, V , JV are variation vector fields if and only if
〈〈
W ,

d f
dz̄

〉〉
= 0 ��

The index form I (V , V ) extends to a Hermitian symmetric bilinear form on
f ∗T N ⊗ C,

I (V , V ) = 1

2

[ ∫

	

‖∇V ‖2 − 〈〈R(V ), V 〉〉dA +
∫

∂	

〈〈∇V V ,
d f

dr
+ J

d f

dθ
〉〉dθ

+
∫

∂	

〈〈
J∇ d

dθ
V , V

〉〉
dθ

]
.

Following the calculation in [7],
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Lemma 2.2 If V is a variation vector field to f , then

I (V , V ) = 2
∫

D
‖∇ d

dz̄
V ‖2 −

〈〈
R

(
V ,

d f

dz

)
d f

dz̄
, V

〉〉
dx ∧ dy

+ 1

2

∫

∂D

〈〈
∇V V ,

d f

dr
+ J

d f

dθ

〉〉
dθ

− i

2

∫

∂D

〈〈
∇ d

dθ
V + i J V , V

〉〉
dθ

Proof By direct computation,

‖∇ d
dz
V ‖2 + ‖∇ d

dz̄
V ‖2 = 1

2

[
‖∇ d

dx
V ‖2 + ‖∇ d

dy
V ‖2

]

and

〈〈
R

(
V ,

d f

dz

)
d f

dz̄
, V

〉〉
+

〈〈
R

(
V ,

d f

dz̄

)
d f

dz
, V

〉〉

= 1

2

[〈〈
R

(
V ,

d f

dx

)
d f

dx
, V

〉〉
+

〈〈
R

(
V ,

d f

dy

)
d f

dy
, V

〉〉]
.

Then we have

I (V , V ) =
∫

D
‖∇ d

dz
V ‖2 + ‖∇ d

dz̄
V ‖2 −

〈〈
R

(
V ,

d f

dz

)
d f

dz̄
, V

〉〉

−
〈〈
R

(
V ,

d f

dz̄

)
d f

dz
, V

〉〉
dx ∧ dy + 1

2

∫

∂D

〈〈
∇V V ,

d f

dr
+ J

d f

dθ

〉〉
dθ

+ 1

2

∫

∂D

〈〈
J∇ d

dθ
V , V

〉〉
dθ

(2.2)

As we have

‖∇ d
dz
V ‖2 =

(
∇ d

dz
V , ∇ d

dz̄
V

)

= d

dz̄

(
∇ d

dz
V , V

)
− (∇ d

dz̄
∇ d

dz
V , V )

= d

dz̄

(
∇ d

dz
V , V

)
− (∇ d

dz
∇ d

dz̄
V , V ) − (R(

d f

dz̄
,
d f

dz
)V , V )

= d

dz̄

(
∇ d

dz
V , V

)
− d

dz

(
∇ d

dz̄
V , V

)
+ ‖∇ d

dz̄
V ‖2 −

〈〈
R

(
d f

dz̄
,
d f

dz

)
V , V

〉〉
,
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using this in (2.2), we get

I (V , V ) =
∫

D
2‖∇ d

dz̄
V ‖2 + d

dz̄

(
∇ d

dz
V , V

)
− d

dz

(
∇ d

dz̄
V , V

)

−
〈〈
R

(
d f

dz̄
,
d f

dz

)
V , V

〉〉
−

〈〈
R

(
V ,

d f

dz

)
d f

dz̄
, V

〉〉

−
〈〈
R

(
V ,

d f

dz̄

)
d f

dz
, V

〉〉
dx ∧ dy + 1

2

∫

∂D

〈〈
∇V V ,

d f

dr
+ J

d f

dθ

〉〉
dθ

+ 1

2

∫

∂D

〈〈
J∇ d

dθ
V , V

〉〉
dθ.

By Stoke’s theorem,

∫

D

d

dz̄

(
∇ d

dz
V , V

)
− d

dz

(
∇ d

dz̄
V , V

)
= − i

2

∫

∂D

〈〈
∇ d

dθ
V , V

〉〉
ds

and Bianchi identities

−
〈〈
R

(
d f

dz̄
,
d f

dz

)
V , V

〉〉
−

〈〈
R

(
V ,

d f

dz̄

)
d f

dz
, V

〉〉
=

〈〈
R

(
d f

dz
, V

)
d f

dz̄
, V

〉〉
,

we finally have the equality

I (V , V ) = 2
∫

D
‖∇ d

dz̄
V ‖2 −

〈〈
R

(
V ,

d f

dz

)
d f

dz̄
, V

〉〉
dx ∧ dy

+ 1

2

∫

∂D

〈〈
∇V V ,

d f

dr
+ J

d f

dθ

〉〉
dθ + 1

2

∫

∂D

〈〈
J∇ d

dθ
V , V

〉〉
dθ

− i

2

∫

∂D

〈〈
∇ d

dθ
V , V

〉〉
dθ

= 2
∫

D
‖∇ d

dz̄
V ‖2 −

〈〈
R

(
V ,

d f

dz

)
d f

dz̄
, V

〉〉
dx ∧ dy

+ 1

2

∫

∂D

〈〈
∇V V ,

d f

dr
+ J

d f

dθ

〉〉
dθ

− i

2

∫

∂D

〈〈
∇ d

dθ
V + i J V , V

〉〉
dθ

��
From the formula and Proposition 2.1, index form would take negative values for any

section V of f ∗T (1,0)N satisfying
〈〈
V ,

d f
dz̄

〉〉
= 0 and ∇ d

dz̄
V = 0. For those sections,

the last term vanishes as it is in f ∗T (1,0)N . The curvature term also vanishes as the
metric is flat in Cn . The remaining terms would be negative because of pseudocon-
vexity.
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3 Genus Zero with Single Boundary Component

In this section, we prove conformality theorem for the critical points of ∂-energy by
changing themetric on the disk D. As a consequence, it gives the direction of d f

dr + J d f
dθ

in first and second variation formula. We then give the construction of holomorphic
variations and index theorem for ∂-energy.

Proposition 3.1 If f : D → N is critical to ∂-energy, then f is harmonic and weakly
conformal. Moreover, we have boundary condition that d f

dr + J d f
dθ = λν for some

nonnegative function λ on the boundary ∂	.

Proof By the first variation formula, if f is a critical point of ∂-energy, then

0 =
∫

D

〈
V ,∇ d

dz̄

d f

dz

〉
dx ∧ dy +

∫

∂D

〈
V ,

d f

dr
+ J

d f

dθ

〉
dθ

where V is a variation vector field on 	. If we choose V with compact support on

	, then the boundary terms is zero and
∫
D

〈
V ,∇ d

dz̄

d f
dz

〉
dx ∧ dy = 0 for any V with

compact support. This implies ∇ d
dz̄

d f
dz = 0 on D and hence f is harmonic.

Now suppose that we change the metric on the disk instead of varying the map f .
Let gt = δ + tT be the metrics on the disk for small time t , where T is arbitrary
symmetric two tensor. For each t , by uniformization theorem, there exists a conformal
map ht : (D, δ) → (D, gt ). Since the total energy is preserved by conformalmapping,
we have E( f ◦ht , δ) = E( f , gt ). On the other hand, E( f ◦ht , δ) = 1

2 E
′′( f ◦ht , δ)−

1
2ω(N )[ f (D)]. Since the pull-back Kähler form is diffeomorphic invariance under
fixed boundary, it gives

d

dt
|t=0E ( f ◦ ht , δ) = d

dt
|t=0

1

2
E ′′ ( f ◦ ht , δ) + 0

As f is a critical point of ∂-energy, we then have

0 = d

dt
|t=0E ( f ◦ ht , δ) = d

dt
|t=0E( f , gt )

= −
∫

D
tr(AT ) + 1

2
tr(A)tr(T ) dx ∧ dy

where tr(M) is trace of M and (Ai j ) =
⎛

⎝

〈
d f
dx ,

d f
dx

〉 〈
d f
dx ,

d f
dy

〉

〈
d f
dx ,

d f
dy

〉 〈
d f
dy ,

d f
dy

〉

⎞

⎠. Letting T = A into

the formula, it give A = ηI for some positive function η. Therefore, f is weakly
conformal.

Next from the first variation formular, we have d f
dr + J d f

dθ = λν for some function
λ on the boundary ∂	. We are going to show that λ is nonnegative. Take the inner

123



Morse Index of Free Boundary Disk in Pseudoconvex Domain Page 9 of 18 271

product with d f
dr on both sides, we get

∣∣∣∣
d f

dr

∣∣∣∣
2

−
∣∣∣∣
d f

dθ

∣∣∣∣

∣∣∣∣
d f

dr

∣∣∣∣ ≤
∣∣∣∣
d f

dr

∣∣∣∣
2

+
〈
J
d f

dθ
,
d f

dr

〉
= λ

〈
d f

dr
, ν

〉
.

By the conformality of f , we have | d fdθ | = | d fdr |. And hence

0 ≤ λ

〈
d f

dr
, ν

〉

As the image of D is inside the region N ,
〈
d f
dr , ν

〉
is non-negative. Therefore, λ is also

non-negative. ��
The index estimates is based on the construction of (1,0) holomorphic sections.

Any such sections would give negative values on the index form. The construction
is divided into two part. The first one is the existence of at least 2n holomorphic
sections which are real on the boundary. We use the technique in [2] to show the
existence considering a system of partial differential equations. The difference is that
we consider the pullback tangent bundle f ∗T N ⊗ C instead of the normal bundle
so that 2n would be the lower bound. The second part is the construction of (1,0)
holomorphic section using those 2n holomorphic section.

3.1 Holomorphic Sections

The bundle f ∗(T N ) over D is topologically trivial and, therefore, admit global basis
s1, . . . , s2n , where n = dimCN . Any section of f ∗T N ⊗ C can be written as W =∑2n

i=1 f i si , where f i are complex valued function. ByMalgrange theorem, f ∗T N⊗C

admit a holomorphic structure and ∂W = ∇zWdz.
Let ∂si = ai j s j , where ai j is (0,1) form. We are looking for section W satisfies

∂W = 0 on	
Im W = 0 on∂	

The corresponding system of partial differential equations is

∂ f i +
2n∑

j=1

f j a ji = 0 for allionD

Im f i = 0 on ∂D

Consider the operator A : V → L2
(0,1)(	) defined by

(A f )i = ∂ f i +
2n∑

j=1

a ji f
j
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where V = { f ∈ H1(	,Cn) | Im f = 0 on ∂	} and L2
(0,1)(	) is the space

of (0, 1)-form on 	 in L2 class. Any element in the kernel of A corresponds to
holomorphic section that is real on the boundary and we have the following lemma in
estimating the dimension of solutions space.

Lemma 3.2 (cf.[3]) The operator A is Fredholm operator and the index of A is 2n. It
follows that the dimension of {W ∈ 
( f ∗(T N ) ⊗ C) : ∂W = 0 on	, Im(W ) =
0 on∂	} is at least 2n over R.

Proof It follows from the index estimation of the operator A in ( [2], [3]). In our case,
we consider the domain in H1(	,Cn) instead of H1(	,Cn−2) ��

3.2 Index Estimates

We now prove the index theorem using those holomorphic sections in Lemma 3.2. Let
W1, . . . ,W2n be linearly independent solution over R to lemma 3.2. Since (Wi ,Wj )

is holomorphic function on 	 and real on the boundary, it is real constant over 	.
Moreover, if Wi is zero on the boundary, Wi is zero over 	 as it is holomorphic.
Apply rescaling and rotation if necessary, we then select a subset {Wi1 , . . . ,Win } of
{W1, . . . ,W2n} such that {Wi1, JWi1 . . . ,Win , JWin } is a orthonormal basis of f ∗T N
on the boundary

Lemma 3.3 Let Vi j = Wi j − i JWi j . Then we have the following:

(1) Vi j is non vanishing except finitely many points.
(2) Vi1 , . . . , Vin are linearly independent over C.

Proof By the construction, ∇ d
dz̄
Vi j = ∇ d

dz̄
Wi j − i J∇ d

dz̄
Wi j = 0, so it is holomorphic

section over 	.

(1) Vi j �= 0 on the boundary sinceWi j is real and nonzero on the boundary. Therefore,
Vi j only has finitely many zero points over 	 since it is holomorphic by the
construction.

(2) Suppose
∑n

k=1 ckVik = 0, ck = uk + ivk are complex numbers. Then on the
boundary,

n∑

k=1

(uk + ivk)(Wik − i JWik ) = 0

Considering the real part of the equation, we have

ukWik + vk JWik = 0.

We must have uk = vk = 0 for all k since {Wi1 , JWi1 . . . ,Win , JWin } is basis on
the boundary

��
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Now we are ready to prove the index theorem.

Proof of Theorem 1.2 By Lemma (3.3), we have a linearly independent set {Vi1 , . . . ,
Vin } over C and each Vi j is holomorphic section of the holomorphic tangent bundle.

By the assumption f is not holomorphic, then d f
dz̄

(1,0)
is not vanishing over 	. We

have
〈〈
Vik ,

d f
dz̄

〉〉
not identically zero for some k since {Wi1, JWi1 . . . ,Win , JWin }

is a othornormal basis on the boundary. Then we define Uj =
〈〈
Vik ,

d f
dz̄

〉〉
Vi j −

〈〈
Vi j ,

d f
dz̄

〉〉
Vik for each j �= k. Uj is orthogonal to d f

dz̄ with respect to 〈〈, 〉〉, so
Re(Uj ) and Im(Uj ) are variation vector fields by Proposition (2.1). And by lemma
2.2,

I (Uj ,Uj ) = 2
∫

D
‖∇ d

dz̄
U j‖2 −

〈〈
R(Uj ,

d f

dz
)
d f

dz̄
,Uj

〉〉
dx ∧ dy

+ 1

2

∫

∂D

〈〈
∇UjU j ,

d f

dr
+ J

d f

dθ

〉〉
dθ − i

2

∫

∂D

〈〈
∇ d

dθ
Uj + i JU j ,Uj

〉〉
dθ

As∇ d
dz̄
U j = 0 andUj is a section of the holomorphic tangent bundle, the only nonva-

nishing term is
〈〈

∇UjU j ,
d f
dr + J d f

dθ

〉〉
. By proposition 3.1, d f

dr + J d f
dθ = λν for some

nonnegative functionλ on the boundary and hencewe have
〈〈

∇UjU j ,
d f
dr + J d f

dθ

〉〉
< 0

by the pseudoconvexity. Then 0 > I (Uj ,Uj ) = I
(
Re(Uj ),Re(Uj )) + I (Im(Uj ),

Im(Uj )
)
. Hence either Re(Uj ) or Im(Uj ) would give negative value in index form

I (·, ·). Moreover, {Vi1 , . . . , Vin } is linearly independent over C, so is {Uj } j �=k . There-
fore, the index is at least n-1. ��

4 Extension to Kähler Manifold with Positive Bisectional Curvature,
k-pseudoconvex

4.1 k-pseudoconvex

A compact hypersurface M in Riemannian manifold is k-convex if for each point
p ∈ M , the trace of the second fundamental form � with respect to inward normal
restricted to any k plane of TpM is positive, i,e

TrU (�) > 0

for any k-dimensional subspace U of TpM . We can define k-pseudoconvex in an
analogous way. Suppose now that � = {z ∈ Cn : ρ(z) < 0} is a compact domain
with C2 boundary in C

n or Kähler manifold with positive bisectional curvature. For
each point p on the boundary, we denote Wp the subspace of holomorphic tangent
space such that V (ρ) = 0 for any V ∈ W . The second fundamental form � extended
linearly give a Hermitian form on each Wp

123



271 Page 12 of 18 C. F. Chau

�(X ,Y ) = −〈∇XY , ν〉

where ν is unit outward normal to ∂�.

Definition 4.1 (k-pseudoconvexity) The domain � is strictly k-pseudoconvex if for
every point p ∈ ∂�,

TrU (�) > 0

for any k-dimensional subspace U of Wp

In the construction of holomorphic section, we obtain n−1 holomorphic variations.
And that provides a general index theorem in k-pseudoconvex domain.

Theorem 4.1 Let D be unit disk and N be strictly k-pseudoconvex domain in Cn. Let
f : D → N be a smooth map, with f (∂D) ⊂ ∂N. Suppose f is critical point of
∂-energy. If f is not holomorphic, then f has index at least n − k for the ∂-energy.

For the case k = 1, the domain is pseudoconvex and the above theorem coincide
with theorem 1.2.

Proof We defineU1, . . . ,Un−1 as the holomorphic variations in the proof of theorem
1.2. As {U1, . . . ,Un−1} is linearly independent over C, for any point p on ∂�, any
{Ui1, . . . ,Uik } with 1 ≤ i1 < . . . < ik ≤ n would span a k-dimensional subspace of
Wp. Then by k-pseudoconvex,

k∑

j=1

I (Ui j ,Ui j ) =
k∑

j=1

∫

∂D

〈〈
∇Ui j

Ui j , ν
〉〉

< 0

Therefore, there is at least one j , 1 ≤ j ≤ k such that I (Ui j ,Ui j ) < 0 and the index
would be at least n − k. ��

4.2 Positive Bisectional Curvature

In C
n , the metric is flat and the curvature vanishes in the formula of index form.

However, We can extend the theorem 1.2 to a Kähler manifold M with nonnegative
holomorphic bisectional curvature,

Definition 4.2 (Holomorphic Bisectional Curvature) Let X , Y be two unit tangent
vector at a point in M . The holomorphic bisectional curvature is defined as

BHR(X ,Y ) = R(J X , X ,Y , JY ) = R(ξ, η, η, ξ)

where ξ =
√
2
2 (X − i J X) and η =

√
2
2 (Y − i JY ).
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From the formula in lemma 2.2, the curvature term is holomorphic bisectional
curvaturewhenV is a section of f ∗T (1,0)N . And the construction of (1,0) holomorphic
variation can be done on any Kähler manifold. Therefore, we have index theorem on
pseudoconvex domain in Kähler manifold with nonnegative holomorphic bisectional
curvature.

Theorem 4.2 Let D be a disk and N be a strictly pseudoconvex domain in n-dimension
Kähler manifold with nonnegative bisectional curvature. Let f : D → N be a smooth
map, with f (∂D) ⊂ ∂N. Suppose f is critical point of ∂-energy. If f is not holomor-
phic, then f has index at least n-1 for the ∂-energy.

Proof Let Uj be the holomorphic variations constructed in the proof of theorem 1.2.
Then by lemma 2.2,

I (Uj ,Uj ) = 2
∫

D
−

〈〈
R

(
Uj ,

d f

dz

)
d f

dz̄
,Uj

〉〉
dx ∧ dy

+ 1

2

∫

∂D

〈〈
∇UjU j ,

d f

dr
+ J

d f

dθ

〉〉
dθ

SinceUj ∈ 
( f ∗(T (1,0)N )),
〈〈
R

(
Uj ,

d f
dz

)
d f
dz̄ ,Uj

〉〉
=

〈〈
R

(
Uj ,

d f
dz

(0,1)) d f
dz̄

(1,0)
,Uj

〉〉

which is holomorphic bisectional curvature and hence nonnegative. Therefore,
I (Uj ,Uj ) < 0. ��

5 Minimal Disks in Pseudoconvex Domain inC
2

In this section, we discuss examples of free boundary minimal disk for energy and
∂-energy in pseudoconvex domains in C

2. We identify C
2 = (z1, z2) as R

4 =
(x1, x2, y1, y2) with the usual almost complex structure J such that J d

dxi
= d

dyi
for

i = 1, 2. The domain M = {(x1, x2, y1, y2) | x21 + x22 < 1} is a strictly pseudoconvex
domain in C

2. The first example is a stable disk for energy but not for ∂-energy. Let
f1 : D → M be a map defined by

f1(x, y) = (x, y, 0, 0)

f1 does not minimize the ∂-energy as there is a continuous deformation of f1 to a holo-
morphic disk f2(x, y) = (x, y, y,−x) which is given by Ft (x, y) = (x, y, t y,−t x)
and the ∂-energy is decreasing as t increase. That deformation also shows that f1 is not
even a critical point of ∂-energy. To see that f1 is a stable free boundary minimal disk,
consider the projection π to the first two coordinate (x1, x2). Any surface homotopic
to f1 in M would be mapped to a unit disk in R

2 and the energy of f1 is same as the
area of the unit disk. Since the image has smaller area under the projection and the
energy is always greater than or equal to the area, f1 therefore minimizes the energy. A
holomorphic disk in pseudoconvex domain does not necessarily minimize the energy.
As mentioned above, f2 is a holomorphic disk and hence minimizes ∂-energy, but f2
does not minimize the energy as it has larger area than f1.
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The next example is a critical point for ∂-energy that is not holomorphic. Let
M = {(x1, x2, y1, y2) | x21 + x22 + y21 + y22 < 1} be a unit ball in R

4. It is a strictly
pseudoconvex domain since it is convex. Let f3 : D → M be defined by

f3(x, y) = (x, 0,−y, 0)

On the boundary of the disk, the outward unit normal to ∂M at (x, 0,−y, 0) is
(x, 0,−y, 0). And

d f3
dr

+ J
d f3
dθ

= 2(x, 0,−y, 0)

which is parallel to the outward unit normal. Moreover, f3 is harmonic. By the first
variation formula of ∂-energy, f3 is a critical point of ∂-energy. But f3 is not holomor-
phic and also not minimizing the ∂-energy. Moreover, f3 is unstable for both energy
and ∂-energy.

Finally, we will give an example of a stable free boundary disk for ∂-energy in
a weakly pseudoconvex domain. It illustrates that strictly pseudoconvex condition
is essential to the instability of critical points of ∂-energy. Let M be the domain
{(x1, x2, y1, y2)|(x1 − y2)2 + (x2 + y1)2 < 1} which is weakly pseudoconvex and
f4 : D → M be a map defined by f4(x, y) = (x,−y, 0, 0). Since d f4

dr + J d f4
dθ =

(x,−y,−y,−x) that is parallel to the outward normal to ∂M and f4 is harmonic,
f4 is a critical point of ∂-energy. We will prove the stability of f4 in ∂-energy by
starting with construction of deformation of f4. Let σ , ϕ, ψ , η be smooth function on
D with σ = 0 on ∂D. Using spherical coordinate x = r cos θ , y = r sin θ , we define
a continuous deformation of f4 by

Ft (r , θ) =
(

(1 + tσ)r cos(θ − tϕ) + r cos θ

2
+ tψ,

−(1 + tσ)r sin(θ − tϕ) − r sin θ

2
+ tη,

−(1 + tσ)r sin(θ − tϕ) + r sin θ

2
− tη,

−(1 + tσ)r cos(θ − tϕ) + r cos θ

2
+ tψ

)

Then dFt
dt |t=0 = σ

2 (x,−y,−y,−x)+ ϕ
2 (y, x, x,−y)+ψ(1, 0, 0, 1)+η(0, 1,−1, 0).

As {(y, x, x,−y), (1, 0, 0, 1), (0, 1,−1, 0)} are orthogonal basis to tangent space of
∂M at the boundary of the disk and σ = 0 on ∂D, Ft is a valid variation of f4 for small
t . The ∂-energy of Ft is

∫
D |∂Ft |2 = ∫

D | dFtdx +J dFt
dy |2. Using d

dx = cos θ d
dr − 1

r sin θ d
dθ

and d
dy = sin θ d

dr + 1
r cos θ d

dθ , we then have

dFt
dx

=
(1 + A

2
+ tψx ,

B

2
+ tηx ,

B

2
− tηx ,

1 − A

2
+ tψx

)

and

dFt
dy

=
(C
2

+ tψy,
D − 1

2
+ tηy,

D + 1

2
− tηy,

−C

2
+ tψy

)
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where

A = (1 + tσ) cos(tϕ) + (1 + tσ)r t cos θ sin(θ − tϕ)
dϕ

dr
+ r t cos θ cos(θ − tϕ)

dσ

dr

− (1 + tσ)t sin θ sin(θ − tϕ)
dϕ

dθ
− t sin θ cos(θ − tϕ)

dσ

dθ

B = (1 + tσ) sin(tϕ) + (1 + tσ)r t cos θ cos(θ − tϕ)
dϕ

dr
− r t cos θ sin(θ − tϕ)

dσ

dr

− (1 + tσ)t sin θ cos(θ − tϕ)
dϕ

dθ
+ t sin θ sin(θ − tϕ)

dσ

dθ

C = (1 + tσ) sin(tϕ) + (1 + tσ)r t sin θ sin(θ − tϕ)
dϕ

dr
+ r t sin θ cos(θ − tϕ)

dσ

dr

+ (1 + tσ)t cos θ sin(θ − tϕ)
dϕ

dθ
+ t cos θ cos(θ − tϕ)

dσ

dθ

D = −(1 + tσ) cos(tϕ) + (1 + tσ)r t sin θ cos(θ − tϕ)
dϕ

dr
− r t sin θ sin(θ − tϕ)

dσ

dr

+ (1 + tσ)t cos θ cos(θ − tϕ)
dϕ

dθ
− t cos θ sin(θ − tϕ)

dσ

dθ

Therefore,

dFt
dx

+ J
dFt
dy

=
( E

2
+ tψx + tηy,

F

2
+ tηx − tψy ,

F

2
− tηx + tψy ,

−E

2
+ tψx + tηy

)

where

E = 2(1 + tσ) cos(tϕ) − (1 + tσ)r t sin(tϕ)
dϕ

dr
+ r t cos(tϕ)

dσ

dr
− (1 + tσ)t cos(tϕ)

dϕ

dθ

− t sin(tϕ)
dσ

dθ

F = 2(1 + tσ) sin(tϕ) − (1 + tσ)r t cos(tϕ)
dϕ

dr
+ r t sin(tϕ)

dσ

dr
− (1 + tσ)t sin(tϕ)

dϕ

dθ

+ t cos(tϕ)
dσ

dθ

Then

∣∣∣
dFt
dx

+ J
dFt
dy

∣∣∣
2 =

(
E

2
+ tψx + tηy

)2

+ (
F

2
+ tηx − tψy)

2 +
(
F

2
− tηx + tψy

)2

+
(−E

2
+ tψx + tηy

)2

= 2
((

E

2

)2

+
(
F

2

)2

+ (tψx + tηy)
2 + (tηx − tψy)

2)
)

= 1

2
(E2 + F2) + 2t2(ψx + ηy)

2 + 2t2(ηx − ψy)
2
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And

E2 + F2 = 4 + 8tσ + 4t2σ 2 + 4(1 + tσ)r t
dσ

dr
− 4(1 + tσ)2t

dϕ

dθ

+
(

(1 + tσ)r t
dϕ

dr
+t

dσ

dθ

)2

+
(
r t
dσ

dr
− (1 + tσ)t

dϕ

dθ

)2

Since

∫

D
8tσ + 4t2σ 2 + 4(1 + tσ)r t

dσ

dr
=

∫ 2π

0

∫ 1

0
8r tσ + 4r t2σ 2 + 4(1 + tσ)r2t

dσ

dr
drdθ

=
∫ 2π

0

∫ 1

0

d

dr
(4r2tσ + 2r2t2σ 2) drdθ

= 0,

we have
∫

D
|dFt
dx

+ J
dFt
dy

|2 =
∫

D

1

2

(
4 − 4(1 + tσ)2t

dϕ

dθ
+ t2((1 + tσ)r

dϕ

dr
+ dσ

dθ
)2

+ t2(r
dσ

dr
− (1 + tσ)

dϕ

dθ
)2

)
+ 2t2(ψx + ηy)

2 + 2t2(ηx − ψy)
2

and d
dt

∣∣∣
t=0

∫
D | dFtdx + J dFt

dy |2 = 0 which agrees the fact that f4 is critical point of

∂-energy. We then compute the second derivative of ∂-energy at t = 0,

d2

dt2

∣∣∣
t=0

∫

D
|dFt
dx

+ J
dFt
dy

|2 =
∫

D
−8σ

dϕ

dθ
+

(
r
dϕ

dr
+ dσ

dθ

)2

+
(
r
dσ

dr
− dϕ

dθ

)2

+ 4(ψx + ηy)
2 + 4(ηx − ψy)

2

The first term on the right hand side can be rewritten as follow

∫

D
−8σ

dϕ

dθ
=

∫ 1

0

∫ 2π

0
−8rσ

dϕ

dθ
drdθ

=
∫ 1

0

∫ 2π

0

d

dr

(
−4r2σ

dϕ

dθ

)
+ 4r2

dσ

dr

dϕ

dθ
+ 4r2σ

d2ϕ

drdθ
drdθ

=
∫ 1

0

∫ 2π

0
4r2

dσ

dr

dϕ

dθ
− 4r2

dσ

dθ

dϕ

dr
drdθ

Therefore,

d2

dt2

∣∣∣
t=0

∫

D
|dFt
dx

+ J
dFt
dy

|2 =
∫

D

(
r
dϕ

dr
− dσ

dθ

)2

+
(
r
dσ

dr
+ dϕ

dθ

)2
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+ 4(ψx + ηy)
2 + 4(ηx − ψy)

2

≥ 0

Hence f4 is stable for any variation V = σ
2 (x,−y,−y,−x) + ϕ

2 (y, x, x,−y) +
ψ(1, 0, 0, 1) + η(0, 1,−1, 0). Now we are going to show that f4 is stable to any
arbitrary variation V . Suppose that f4 is unstable to a variation V . Let ε > 0, ρε be a
radical symmetric smooth function on the disk D such that ρε = 0 on Bε2(0), ρε = 1
on D\Bε(0) and | dρε

dr | ≤ 1
r | ln ε| . Then f4 would be stable to the variation ρεV . From

the second variation formula of ∂-energy given by the index form,

0 ≤ I (ρεV , ρεV ) = 1

2

[ ∫

D

〈
∇ d

dx
(ρεV ), ∇ d

dx
(ρεV )

〉
+

〈
∇ d

dy
(ρεV ),∇ d

dy
(ρεV )

〉
dx ∧ dy

+
∫

∂D

〈
∇V V ,

d f

dr
+ J

d f

dθ

〉
+

〈
J∇ d

dθ
V , V

〉
dθ

]

= 1

2

[ ∫

D
‖∇ρε‖2‖V ‖2 + 2ρε

dρε

dx

〈
V , ∇ d

dx
V

〉
+

+ 2ρε
dρε

dy

〈
V , ∇ d

dy
V

〉
+ ρ2ε ‖∇V ‖2 dx ∧ dy

+
∫

∂D

〈
∇V V ,

d f

dr
+ J

d f

dθ

〉
+ 〈J∇ d

dθ
V , V 〉 dθ

]

≤ 1

2

[ ∫

D
‖∇ρε‖2‖V ‖2 + 4ρε‖∇ρε‖‖V ‖‖∇V ‖ dx ∧ dy

]
+ I (V , V )

≤ C
[ ∫

D
‖∇ρε‖2 + 4ρε‖∇ρε‖

]
+ I (V , V )

where the constant C depends on ‖V ‖, ‖∇V ‖. Then

∫

D
‖∇ρε‖2 =

∫ 2π

0

∫ 1

0
‖∇ρε‖2r drdθ

≤
∫ 2π

0

∫ ε

ε2

1

r | ln ε|2 drdθ

≤ C

| ln ε|

and

∫

D
4ρε‖∇ρε‖ ≤

∫ 2π

0

∫ ε

ε2

C

| ln ε| drdθ

≤ Cε

| ln ε|
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Therefore,

0 ≤ C

(
1

| ln ε| + ε

| ln ε|
)

+ I (V , V )

Letting ε to 0, we have I (V , V ) ≥ 0 and contradiction arises. Therefore f4 is a stable
critical point of ∂-energy.
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