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Abstract
We study the property of spectral-tightness of Riemannian manifolds, which means
that the bottom of the spectrum of the Laplacian separates the universal covering
space from any other normal covering space of a Riemannian manifold. We prove that
spectral-tightness of a closed Riemannian manifold is a topological property charac-
terized by its fundamental group. As an application, we show that a non-positively
curved, closed Riemannian manifold is spectrally-tight if and only if the dimension
of its Euclidean local de Rham factor is zero. In their general form, our results extend
the state of the art results on the bottom of the spectrum under Riemannian coverings.

Keywords Bottom of spectrum · Schrödinger operator · Riemannian covering ·
Amenable covering · Spectral-tightness
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1 Introduction

The spectrum of the Laplacian of a Riemannian manifold is an interesting isometric
invariant, which attracted much attention over the last years. Aiming to a better com-
prehension of its relations with the geometry of the underlying manifold, its behavior
undermaps between Riemannianmanifolds that respect the geometry of themanifolds
to some extent has been studied. In particular, there are various results on the behavior
of the spectrum under Riemannian coverings and open questions arising from them.

To be more precise, let p : M2 → M1 be a Riemannian covering. Then the bot-
toms of the spectra of the Laplacians satisfy λ0(M1) ≤ λ0(M2). Brooks was the first
one to investigate when the equality holds, and this is closely related to the notion of
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amenability. The covering p is called amenable if the monodromy action of π1(M1)

on the fiber of p is amenable. It is noteworthy that a normal covering is amenable
if and only if its deck transformation group is amenable. Brooks proved in [10] that
the universal covering of a closed (that is, compact and without boundary) manifold
preserves the bottom of the spectrum if and only if it is amenable. This result has been
generalized in various ways over the last years (cf. for instance, the survey [4]). In
[3], we showed that if p is amenable, then λ0(M1) = λ0(M2), without imposing any
assumptions on the geometry or the topology of the manifolds. The converse impli-
cation is not true in general, but holds under a natural condition involving the bottom
λess0 (M1) of the essential spectrum of the Laplacian. More specifically, according to
[20, Theorem 1.2], if λ0(M2) = λ0(M1) < λess0 (M1), then p is amenable. The sit-
uation is very unclear in the case where λ0(M1) = λess0 (M1), as pointed out in [4,
Question 1.5].

Given a normal Riemannian covering p : M2 → M1, besides the aforementioned
inequality, we have that λ0(M2) ≤ λ0(M̃), where M̃ is the universal covering space
of M1. One of the purposes of this paper is to examine the validity of the equality.
This fits into the study of manifolds with maximal bottom of spectrum under some
constraint. Examples of remarkable works on this problem are [19] and [18], which
focus on complete manifolds with Ricci curvature bounded from below and quotients
of symmetric spaces of non-compact type, respectively. This setting, where M2 is a
normal covering space of M1, may seem more restrictive, but our goal is actually
different. In addition to obtaining information about the maximizer M2, we want to
characterize the existence of a maximizer (different from the universal covering space)
in terms of properties of M1.

Our motivation is to investigate to what extent the bottom of the spectrum of the
Laplacian separates the universal covering space from the rest of the normal covering
spaces of a Riemannian manifold. The corresponding question about the exponential
volume growth has been addressed in [23]. To be more precise, if M2 is a normal
covering space of M1, then the exponential volume growths satisfy μ(M1) ≤ μ(M2).
Hence, the universal covering space M̃ of M1 has maximal bottom of spectrum and
maximal exponential volume growth among all the normal covering spaces of M1.
A Riemannian manifold M1 is called spectrally-tight or growth tight if the universal
covering space of M1 is the unique normal covering space of M1 with maximal bottom
of spectrum or maximal exponential volume growth, respectively. Sambusetti proved
in [23] that negatively curved, closed manifolds are growth tight, which yields that
negatively curved, closed, locally symmetric spaces are spectrally-tight. One of the
aims of this paper is to study the notion of spectral-tightness, establish that negatively
curved, closed manifolds enjoy this property, and more generally, characterize this
property for non-positively curved, closed Riemannian manifolds.

To set the stage, we consider Riemannian coverings p : M2 → M1, q : M1 → M0,
with q normal, a Schrödinger operator S0 on M0 and its lifts S1, S2 on M1, M2,
respectively. It turns out that the validity of λ0(S2) = λ0(S1) is intertwined with a
property similar, but weaker than the amenability of the covering.

The covering p is called relatively amenable with respect to q, or for short, q-
amenable if the monodromy action of q∗π1(M1) on the fiber of q ◦ p is amenable. It is
evident that a covering is amenable if and only if it is relatively amenable with respect
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to the identity. The notion of relative amenability is naturally related to the amenability
of the composition. More specifically, the composition q ◦ p is amenable if and only
if q is amenable and p is q-amenable. In general, amenable coverings are relatively
amenable, but there exist relatively amenable coverings that are not amenable, as we
will show by an example. It is worth to point out that if q is finite sheeted or more
importantly, if q ◦ p is normal, then p is q-amenable if and only if it is amenable.
Our first result illustrates the role of this notion in the behavior of the bottom of the
spectrum, extending [3, Theorem 1.2] and [20, Theorem 1.2].

Theorem 1.1 Let p : M2 → M1 and q : M1 → M0 be Riemannian coverings, with q
normal. Consider a Schrödinger operator S0 on M0 and denote by S1, S2 its lift on
M1, M2, respectively. Then:

(i) If p is q-amenable, then λ0(S2) = λ0(S1).
(ii) Conversely, if λ0(S2) = λ0(S1) < λess0 (S0), then p is q-amenable.

It should be noticed that if q is infinite sheeted, then λ0(S1) = λess0 (S1) (cf. for
example [21, Corollary 1.3]). Therefore, the setting of Theorem 1.1 fits into the context
of [4, Question 1.5]. Conceptually, it seems interesting that even in this special case, a
property different from amenability has such an effect on the behavior of the bottom
of the spectrum.

In viewofTheorem1.1, the studyof spectral-tightness becomes quite easier, bearing
in mind that in this theorem, if M2 is simply connected, then p is q-amenable if and
only if it is amenable. More precisely, it follows that spectral-tightness of a closed
manifold is a topological property determined by its fundamental group as follows:

Theorem 1.2 A closed Riemannian manifold is spectrally-tight if and only if the unique
normal, amenable subgroup of its fundamental group is the trivial one.

Drawing heavily from the work of Eberlein [16], as an application of Theorem 1.2,
we characterize the property of spectral-tightness for non-positively curved, closed
Riemannian manifolds.

Theorem 1.3 A non-positively curved, closed Riemannian manifold is not spectrally-
tight if and only if its universal covering space splits as the Riemannian product of a
Euclidean space with another manifold.

The notion of spectral-tightness seems more complicated on non-compact Rieman-
nian manifolds. However, it is worth to mention that we prove the characterization
of Theorem 1.2 for any Riemannian manifold M with λess0 (M) > λ0(M̃), where M̃
is the universal covering space of M . Exploiting this, we present examples demon-
strating that spectral-tightness of a non-compact Riemannian manifold depends on its
Riemannian metric.

As another application of this characterization, we establish the spectral-tightness
of certain geometrically finite manifolds, in the sense of Bowditch [9]. Let M be a
completeRiemannianmanifold of bounded sectional curvature−b2 ≤ K ≤ −a2 < 0.
Then its universal covering space M̃ is a Hadamard manifold, and M is written as a
quotient M̃/�. Denoting by M̃c = M̃ ∪ M̃i the geometric compactification of M̃ , let
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� ⊂ M̃i be the limit set of �. Then � acts properly discontinuously on M̃c � �. The
manifold M is called geometrically finite if the topological manifold (M̃c ��)/� with
possibly empty boundary has finitely many ends and each of them is parabolic. It is
worth to mention that if M is geometrically finite, then λess0 (M) ≥ λ0(M̃), according
to [6, Theorem B].

Corollary 1.4 Let M be a non-simply connected, geometrically finite manifold, and
denote by M̃ its universal covering space. If λess0 (M) > λ0(M̃), then M is not
spectrally-tight if and only if π1(M) is elementary.

The paper is organized as follows: In Sect. 2, we give some preliminaries on
Schrödinger operators, amenable actions and coverings. In Sect. 3, we introduce the
notion of relatively amenable coverings and discuss some basic properties. Section4
is devoted to Theorem 1.1 and some applications. In Sect. 5, we focus on the notion
of spectral-tightness and establish Theorems 1.2, 1.3, and Corollary 1.4.

2 Preliminaries

Throughout this paper, manifolds are assumed to be connected and without boundary,
unless otherwise stated. Moreover, non-connected manifolds are assumed to have at
most countably many connected components.

A Schrödinger operator S on a possibly non-connected Riemannian manifold M
is an operator of the form S = � + V , where � is the Laplacian and V ∈ C∞(M),
such that there exists c ∈ R satisfying

〈S f , f 〉L2(M) ≥ c‖ f ‖2L2(M)

for any f ∈ C∞
c (M). Then the linear operator

S : C∞
c (M) ⊂ L2(M) → L2(M)

is densely defined, symmetric and bounded from below. Hence, it admits Friedrichs
extension. Denote by S̄ this extension and by D(S̄) its domain of definition. Recall
that the spectrum of S is defined as

σ(S) = {λ ∈ R : S̄ − λ : D(S̄) → L2(M) is not bijective},

and is decomposed into the essential spectrum of S, which is given as

σess(S) = {λ ∈ R : S̄ − λ : D(S̄) → L2(M) is not Fredholm},

and into the discrete spectrum σd(S) = σ(S) � σess(S) of S. It is well-known that the
discrete spectrumof S consists of isolated points of the spectrumwhich are eigenvalues
of S̄ of finite multiplicity.

The bottoms of (that is, the infimums) of the spectrum and the essential spectrum of
S are denoted by λ0(S) and λess0 (S), respectively. In the case of the Laplacian (that is,
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V = 0), these sets and quantities are denoted by σ(M), σess(M) and λ0(M), λess0 (M),
respectively. We have by definition that λess0 (S) = +∞ if σess(S) is empty, and we
then say that S has discrete spectrum.

The Rayleigh quotient of a non-zero f ∈ Lipc(M) with respect to S is defined by

RS( f ) =
∫

M (‖ grad f ‖2 + V f 2)
∫

M f 2
. (1)

The Rayleigh quotient of f with respect to the Laplacian is denoted byR( f ). Accord-
ing to the following proposition, the bottom of the spectrum of S is expressed as an
infimum of Rayleigh quotients. This is a straightforward consequence of Rayleigh’s
theorem and standard approximations, and may be found for instance in [20, Propo-
sition 3.2].

Proposition 2.1 Let S be a Schrödinger operator on a possibly non-connected Rie-
mannian manifold M. Then the bottom of the spectrum of S is given by

λ0(S) = inf
f
RS( f ),

where the infimum is taken over all f ∈ C∞
c (M)�{0}, or over all f ∈ Lipc(M)�{0}.

In the case where M is connected, the bottom of the spectrum of S is characterized
as the maximum of the positive spectrum of S (cf. for instance [4, Theorem 3.1] and
the references therein).

Proposition 2.2 Let S be a Schrödinger operator on a Riemannian manifold M. Then
λ0(S) is the maximum of all λ ∈ R such that there exists a positive ϕ ∈ C∞(M)

satisfying Sϕ = λϕ.

It should be emphasized that the positive, smooth functions involved in this propo-
sition are not required to be square-integrable.

Wenowfocus on the essential spectrumof aSchrödinger operator S ona (connected)
Riemannian manifold M . The decomposition principle asserts that

σess(S) = σess(S, M � K )

for any smoothly bounded, compact domain K of M . This is well known in the
case where M is complete (compare with [15, Proposition 2.1]), but also holds if
M is non-complete, as explained for example in [4, Theorem A.17]. This yields the
following expression for the bottom of the essential spectrum of S (cf. for instance
[8, Proposition 3.2] for complete Riemannian manifolds. The proof for non-complete
manifolds is identical, since the decomposition principle holds).

Proposition 2.3 Let S be a Schrödinger operator on a Riemannian manifold M, and
(Kn)n∈N an exhausting sequence of M consisting of compact domains of M. Then the
bottom of the essential spectrum of S is given by

λess0 (S) = lim
n

λ0(S, M � Kn).
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Consider a positive ϕ ∈ C∞(M)with Sϕ = λϕ for some λ ∈ R. Denote by L2
ϕ(M)

the L2-space of M with respect to the measure ϕ2 dv, where dv stands for the volume
element of M induced from its Riemannian metric. It is immediate to verify that the
map mϕ : L2

ϕ(M) → L2(M) defined by mϕ( f ) = f ϕ, is an isometric isomorphism.
It is easily checked that mϕ intertwines S − λ with the diffusion operator

L = m−1
ϕ ◦ (S − λ) ◦ mϕ = � − 2 grad ln ϕ.

The operator L is called the renormalization of S with respect to ϕ. The Rayleigh
quotient of a non-zero f ∈ C∞

c (M) with respect to L is defined as

RL( f ) =
〈L f , f 〉L2

ϕ(M)

‖ f ‖2
L2

ϕ(M)

=
∫

M ‖ grad f ‖2ϕ2
∫

M f 2ϕ2
.

Proposition 2.4 The Rayleigh quotients of any non-zero f ∈ C∞
c (M) are related by

RL( f ) = RS( f ϕ) − λ. In particular, we have that

λ0(S) − λ = inf
f
RL( f ),

where the infimum is taken over all non-zero f ∈ C∞
c (M).

Proof The first equality follows from a straightforward computation, using the defi-
nition of L and that mϕ is an isometric isomorphism. This, together with Proposition
2.1, implies the second statement. ��

Even though ourmain results involvemanifolds without boundary, it is quite impor-
tant to consider manifolds with boundary in intermediate steps. Let M be a possibly
non-connected Riemannian manifold with smooth boundary, and denote by ν the out-
ward pointing, unit normal to the boundary. Then the Laplacian on M regarded as

� : { f ∈ C∞
c (M) : ν( f ) = 0 on ∂ M} ⊂ L2(M) → L2(M)

admits Friedrichs extension, being densely defined, symmetric and bounded from
below. The spectrum of the Friedrichs extension of this operator is called the Neu-
mann spectrum of M , and its bottom is denoted by λN

0 (M). We recall the following
expression for the bottom of the Neumann spectrum, whereR( f ) is defined as in (1)
with V = 0. This may be found for instance in [20, Proposition 3.2].

Proposition 2.5 Let M be a possibly non-connected Riemannian manifold with smooth
boundary. Then the bottom of the Neumann spectrum of M is given by

λN
0 (M) = inf

f
R( f ),

where the infimum is taken over all non-zero f ∈ C∞
c (M).

It should be noticed that in this proposition, the test functions f ∈ C∞
c (M) do not

have to satisfy any boundary condition.
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2.1 Amenable Actions and Coverings

Let X be a countable set and consider a right action of a discrete, countable group �

on X . This action is called amenable if there exists an invariant mean on �∞(X); that
is, a linear functional μ : �∞(X) → R such that

inf f ≤ μ( f ) ≤ sup f and μ(g∗ f ) = μ( f )

for any f ∈ �∞(X) and g ∈ �, where g∗ f (x) := f (xg) for any x ∈ X . It should
be observed that if the action of � on the orbit of some x ∈ X is amenable, then the
action of � on X is amenable.

A group� is called amenable if the right action of� on itself is amenable. Standard
examples of amenable groups are solvable groups and finitely generated groups of
subexponential growth. It is worth to mention that the free group in two generators,
as well as any group containing it, is non-amenable. It is not difficult to see that if �

is an amenable group, then any action of � is amenable.
The following characterization of amenability is due to Følner in the case of groups

[17,MainTheoremandRemark], and extended to actions byRosenblatt [22, Theorems
4.4 and 4.9].

Proposition 2.6 The right action of � on X is amenable if and only if for any ε > 0 and
any finite subset G of � there exists a finite subset F of X such that |Fg � F | < ε|F |
for any g ∈ G.

In particular, it follows that the right action of � on X is amenable if and only if
the right action of any finitely generated subgroup of � on X is amenable. Moreover,
if the action of � on X has finitely many orbits Xi , 1 ≤ i ≤ n, then the action of � on
X is amenable if and only if the action of � on Xi is amenable for some 1 ≤ i ≤ n.

Let p : M2 → M1 be a smooth covering, where M1 has possibly empty, smooth
boundary and M2 is possibly non-connected. Fix a point x ∈ M1 and consider the fun-
damental group π1(M1) with base point x . For g ∈ π1(M1), let γg be a representative
loop of g based at x . Given y ∈ p−1(x), let γ̃g be the lift of γg starting at y and denote
its endpoint by yg. In this way, we obtain a right action of π1(M1) on p−1(x), which
is called the monodromy action of the covering. The covering p is called amenable if
its monodromy action is amenable. It is easy to see that if M2 is connected and p is
normal, then p is amenable if and only if its deck transformation group is amenable.

Example 2.7 For any smooth covering p : M2 → M1, the covering

p � Id : M2 � M1 → M1

is amenable.

Recall that Følner’s condition characterizes the amenability of an action in terms
of the action of finitely generated subgroups. In the context of coverings, this yields
the following characterization in terms of smoothly bounded, compact domains.
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Proposition 2.8 ( [4, Proposition 2.14]) Let p : M2 → M1 be a smooth covering,
where M2 is possibly non-connected, and (Kn)n∈N an exhausting sequence of M1
consisting of smoothly bounded, compact domains. Then p is amenable if and only
the restriction p : p−1(Kn) → Kn is amenable for any n ∈ N.

This demonstrates the importance of considering non-connected covering spaces,
since p−1(K ) does not have to be connected even if M2 is connected.

Finally, we briefly recall some results on the bottom of the spectrum under Rieman-
nian coverings, which will be used in the sequel. Let p : M2 → M1 be a Riemannian
covering, with M2 possibly non-connected, S1 a Schrödinger operator on M1 and S2
its lift on M2. From Proposition 2.2 it is not hard to see that the bottoms of the spectra
satisfy

λ0(S1) ≤ λ0(S2). (2)

The validity of the equality is closely related to the amenability of the covering.

Theorem 2.9 Let p : M2 → M1 be an amenable Riemannian covering, with M2 pos-
sibly non-connected. Consider a Schrödinger operator S1 on M1 and its lift S2 on M2.
Then λ0(S2) = λ0(S1).

In the case where M2 is connected, this coincides with [3, Theorem 1.2]. With
very slight modifications, its proof extends [3, Theorem 1.2] to the case where M2 is
possibly non-connected. This may be found also in [5, Theorem A], which involves
Riemannian coverings of orbifolds, where the covering space may be non-connected.

Amenability of a Riemannian covering of a compact manifold with smooth bound-
ary is characterized in terms of the Neumann spectrum, according to the following
analogue of Brooks’ result [10].

Theorem 2.10 Let p : M2 → M1 be a Riemannian covering, where M1 is compact
with smooth boundary and M2 is possibly non-connected. Then p is amenable if and
only if λN

0 (M2) = 0.

Proof The converse implication is knownby [20, Theorem4.1]. For the other direction,
consider a Riemannian metric on M1 such that its boundary has a neighborhood
isometric to a cylinder ∂ M1 × [0, ε), and endow M2 with the lifted metric. Since this
metric is uniformly equivalent to the original, it suffices to show that λN

0 (M2) = 0with
respect to this metric. Denote by 2Mi the Riemannian manifold obtained by gluing
two copies of Mi along their boundaries, i = 1, 2. Then p : M2 → M1 extends to
a Riemannian covering 2p : 2M2 → 2M1. Choose x ∈ ∂ M1 ⊂ 2M1 as base point
for π1(2M1), and observe that any loop c based at x is written as c = c2n� . . . �c1
for some paths (not necessarily loops, since ∂ M1 may be non-connected) ci , with the
image of c2i−1 contained in M1, and the image of c2i in 2M1 � M◦

1 , 1 ≤ i ≤ n.
Denote by c′

i the reflection of ci along ∂ M1, and observe that the lifts of ci and c′
i

starting from the same point also have the same endpoint. It is now apparent that given
y ∈ (2p)−1(x) = p−1(x), the lifts of c and c′

2n�c2n−1� . . . �c′
2�c1 starting at y have

the same endpoint. Since the image of the latter loop is contained in M1, it is now easy
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to verify that 2p is amenable, p being amenable. Since 2M1 is closed, we derive from
Theorem 2.9 that λ0(2M2) = 0. In view of Proposition 2.1, this means that for any
ε > 0 there exists f ∈ C∞

c (2M2) � {0} with R( f ) < ε. Without loss of generality,
we may assume that f is not identically zero neither on M2 nor on 2M2 � M2. Indeed,
otherwise onemay extend f beyond ∂ M2 to obtain a function invariant under reflection
along ∂ M2, with the same Rayleigh quotient and the aforementioned property. Then
we readily see from Proposition 2.5 that

ε > R( f ) ≥ min{R( f |M2),R( f |2M2�M◦
2
)} ≥ min{λN

0 (M2), λ
N
0 (2M2 � M◦

2 )}.

Because M2 and 2M2 � M◦
2 are isometric, we conclude that λN

0 (M2) = 0. ��
By virtue of the preceding theorem, wemay reformulate Proposition 2.8 as follows.

Corollary 2.11 Let p : M2 → M1 be Riemannian covering, with M2 possibly non-
connected, and (Kn)n∈N an exhausting sequence of M1 consisting of smoothly
bounded, compact domains. Then p is amenable if and only if λN

0 (p−1(Kn)) = 0
for any n ∈ N.

3 Relatively Amenable Coverings

In this section, we introduce the notion of relatively amenable coverings and present
some of their properties.

Definition 3.1 Let p : M2 → M1 and q : M1 → M0 be smooth coverings, where q
is normal. Fix a base point x ∈ M1 and set x0 = q(x). The covering p is called
relatively amenable with respect to q, or for short, q-amenable if the monodromy
action of q∗π1(M1) on (q ◦ p)−1(x0) is amenable.

In the setting of this definition, to provide another description of this action, denote
by � the deck transformation group of q. Let s ∈ π1(M1) and γs a representative loop
of s based at x . It is clear that for any z ∈ (q ◦ p)−1(x0), there exists a unique g ∈ �,
such that z ∈ p−1(gx). Then xs is the endpoint of the lift of g ◦ γs starting at z.

For g ∈ �, consider the covering pg : M2 → M1 defined by pg = g−1 ◦ p, and
denote by p̂ : M̂ → M1 the induced covering

�g∈� pg : �g∈� M2 → M1.

From the above discussion, we arrive at the following characterization of relatively
amenable coverings.

Lemma 3.2 The covering p is q-amenable if and only if the induced covering p̂ is
amenable.

Proof It is easily checked that the monodromy action of p̂ coincides with the mon-
odromy action of q∗π1(M1) on (q ◦ p)−1(x0). ��
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In view of the preceding lemma, it is evident that amenable coverings are relatively
amenable. Furthermore, we readily see that if q is finite sheeted, then p is q-amenable
if and only if it is amenable. We now discuss an analogue of Corollary 2.11.

Proposition 3.3 Let p : M2 → M1 and q : M1 → M0 be Riemannian coverings,
where q is normal with deck transformation group �, and fix an exhausting sequence
(Kn)n∈N of M1 consisting of smoothly bounded, compact domains. Then p is q-
amenable if and only if

inf
g∈�

λN
0 (p−1(gKn)) = 0

for any n ∈ N.

Proof It is obvious that p̂−1(K ) is isometric to the disjoint union of p−1(gK ) with
g ∈ �, for any smoothly bounded, compact domain K of M1. In particular, the bottoms
of the Neumann spectra are related by

λN
0 ( p̂−1(K )) = inf

g∈�
λN
0 (p−1(gK )).

The proof is completed by Corollary 2.11 and Lemma 3.2. ��
Corollary 3.4 Let p : M2 → M1 and q : M1 → M0 be smooth coverings, with q and
q ◦ p normal. Then p is q-amenable if and only if it is amenable.

Proof It is clear that if p is amenable, then it is q-amenable. For the converse implica-
tion, endow M0 with a Riemannian metric and M1, M2 with the lifted metrics. Denote
by � the deck transformation group of q and let (Kn)n∈N be an exhausting sequence
of M1 consisting of smoothly bounded, compact domains. Then Proposition 3.3 states
that

inf
g∈�

λN
0 (p−1(gKn)) = 0

for any n ∈ N. Since q ◦ p is normal, we deduce that any g ∈ � can be lifted
to an isometry of M2. Indeed, given x ∈ M2, write x0 = (q ◦ p)(x) and observe
that (q∗ ◦ g∗ ◦ p∗)(π1(M2, x)) = (q∗ ◦ p∗)(π1(M2, x)). Therefore, we derive that
(q∗ ◦ g∗ ◦ p∗)(π1(M2, x)) = (q∗ ◦ p∗)(π1(M2, y)) for any y ∈ p−1(gp(x)), q ◦ p
being normal. Keeping in mind that q∗ : π1(M1, gp(x)) → π1(M0, x0) is injective,
this implies that (g∗ ◦ p∗)(π1(M2, x)) = p∗(π1(M2, y)). It now follows from the
lifting theorem that g can be lifted to a local isometry of M2 mapping x to y. Since
x ∈ M2, g ∈ � and y ∈ p−1(gp(x)) are arbitrary, we readily see that the lift is
invertible, and hence, an isometry. In particular, we derive that p−1(gKn) is isometric
to p−1(Kn) for any g ∈ � and n ∈ N, which yields that

λN
0 (p−1(Kn)) = inf

g∈�
λN
0 (p−1(gKn)) = 0

for any n ∈ N. We conclude from Corollary 2.11 that p is amenable. ��
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4 SpectrumUnder Relatively Amenable Coverings

In this section we study the behavior of the bottom of the spectrum under relatively
amenable coverings, and give some applications and examples.

Proof of Theorem 1.1 Suppose first that p is q-amenable. Then the induced covering
p̂ is amenable, from Lemma 3.2. Denoting by Ŝ the lift of S1 on M̂ , we derive from
Theorem 2.9 that λ0(Ŝ) = λ0(S1). Moreover, bearing in mind that S1 is the lift of S0,
we readily see that S1 is invariant under deck transformations of q. Therefore, any
connected component of M̂ is isometric to M2 via an isometry that identifies Ŝ with
S2. This yields that λ0(Ŝ) = λ0(S2), which establishes the asserted equality.

To prove the second assertion, notice that the assumption that λess0 (S0) > λ0(S1),
together with Proposition 2.3, implies that there exists a compact domain D0 of M0
such that

λ0(S0, M0 � D0) > λ0(S1).

Let (Km)m∈N be an exhausting sequence of M1 consisting of smoothly bounded,
compact domains, such that D0 is contained in the interior of q(K1).

Assume to the contrary that p is not q-amenable, and denote by � the deck trans-
formation group of q. By virtue of Proposition 3.3, there exists m ∈ N and c > 0,
such that

λN
0 (p−1(gKm)) ≥ c

for any g ∈ �. Set K = Km and D = q(Km).
We know from Proposition 2.2 that there exists a positive ϕ1 ∈ C∞(M1) satisfying

S1ϕ1 = λ0(S1)ϕ1. Denote by ϕ2 the lift of ϕ1 on M2 and by L the renormalization
of S2 with respect to ϕ2. Since λ0(S2) = λ0(S1), we derive from Proposition 2.4 that
there exists ( fn)n∈N ⊂ C∞

c (M2) with ‖ fn‖L2
ϕ2

(M2)
= 1 and RL( fn) → 0.

According to the gradient estimate [14, Theorem 6], there exists C > 0 such that

max
K

ψ ≤ C min
K

ψ

for any positive ψ ∈ C∞(M1) with S1ψ = λ0(S1)ψ . For ψ = ϕ1 ◦ g, this means that

max
p−1(gK )

ϕ2 = max
gK

ϕ1 ≤ C min
gK

ϕ1 = C min
p−1(gK )

ϕ2

for any g ∈ �. Using this and Proposition 2.5, we compute
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∫

p−1(gK )

‖ grad fn‖2ϕ2
2 ≥ (

min
p−1(gK )

ϕ2
2

)
∫

p−1(gK )

‖ grad fn‖2

≥ 1

C2

(
max

p−1(gK )
ϕ2
2

)
λN
0 (p−1(gK ))

∫

p−1(gK )

f 2n

≥ c

C2

∫

p−1(gK )

f 2n ϕ2
2 (3)

for any n ∈ N and g ∈ �.
Since K is compact, it is clear that there exists k ∈ N such that any point of M1

belongs to at most k different translates gK of K , with g ∈ �. Thus, any point of M2
belongs to at most k different p−1(gK ), with g ∈ �. This, together with (3), gives the
estimate

∫

(q◦p)−1(D)

‖ grad fn‖2ϕ2
2 ≥ 1

k

∑

g∈�

∫

p−1(gK )

‖ grad fn‖2ϕ2
2 ≥ c

kC2

∫

(q◦p)−1(D)

f 2n ϕ2
2 ,

where we used that (q ◦ p)−1(D) is the union of p−1(gK ) with g ∈ �. Bearing in
mind that ‖ fn‖L2

ϕ2
(M2)

= 1 and RL( fn) → 0, this yields that

∫

(q◦p)−1(D)

f 2n ϕ2
2 → 0 and

∫

M2�(q◦p)−1(D)

f 2n ϕ2
2 → 1. (4)

Let χ0 ∈ C∞
c (M0) with χ0 = 1 in a neighborhood of D0 and suppχ0 contained in

the interior of D. Set χ2 = χ0 ◦ q ◦ p and set hn = (1 − χ2) fn ∈ C∞
c (M2). In view

of (4), it is immediate to verify that

∫

M2

h2
nϕ

2
2 → 1 and

∫

M2

‖ grad hn‖2ϕ2
2 → 0,

which shows that that RL(hn) → 0, and thus, RS2(hnϕ2) → λ0(S1), by Proposition
2.4. Since hnϕ2 is compactly supported in M2 � (q ◦ p)(D0), Proposition 2.1 implies
that

RS2(hnϕ2) ≥ λ0(S2, M2 � (q ◦ p)−1(D0)) ≥ λ0(S0, M0 � D0) > λ0(S1),

where the intermediate inequality follows from (2) applied to the restriction of q ◦ p
over any connected component of M0 � D0. This is a contradiction, which completes
the proof. ��

The next example illustrates that in Theorem 1.1(ii), the covering p is q-amenable,
but not necessarily amenable, and in particular, that relative amenability is indeed a
weaker property than amenability. This example also demonstrates that in Corollary
3.4, the assumption that q ◦ p is normal cannot be replaced with p being normal.
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Example 4.1 Let N be a closed Riemannian manifold of dimension n ≥ 3 with non-
amenable fundamental group. Fix two sufficiently small open balls Bi with disjoint
closures and ∂ Bi diffeomorphic to the sphere Sn−1, i = 1, 2. Denote by M0 the
closed manifold obtained by gluing a cylinder Sn−1 × [0, 1] along the boundary of
N � (B1 ∪ B2), so that Sn−1 ×{0} gets identified with ∂ B1, and Sn−1 ×{1} with ∂ B2.
Endow M0 with a Riemannian metric.

Consider now the disjoint union of copies Nk of N � (B1 ∪ B2), with k ∈ Z. For
each k ∈ Z, glue a cylinder Sn−1 × [0, 1] along the boundary of this disjoint union,
so that Sn−1 × {0} gets identified with ∂ B1 in Nk , and Sn−1 × {1} with ∂ B2 in Nk+1.
In this way, we obtain a manifold M1 on which Z acts via diffeomorphsms and the
quotient is diffeomorphic to M0. That is, we have a covering q : M1 → M0 with deck
transformation group Z. We endow M1 with the lift of the Riemannian metric of M0.

Let F be a fundamental domainofq which is diffeomorphic to N0 with twocylinders
Sn−1 × [0, 1/2] attached along its boundary. Then π1(F) is non-amenable and ∂ F
has two connected components C1 and C2, which are diffeomorphic to Sn−1. Hence,
the universal covering p : F̃ → F of F is non-amenable. It should be noticed that the
restriction of p on any connected component of ∂ F̃ is a covering over a connected
component of ∂ F . Since the connected components of ∂ F are diffeomorphic to Sn−1,
where n ≥ 3, we derive that p restricted to any connected component of ∂ F̃ is an
isometry. This means that p−1(Ci ) is a disjoint union of copies of Ci , i = 1, 2. Write
M1 � F◦ = D1 � D2, with Ci contained in Di , i = 1, 2. Denote by M2 the manifold
obtained by gluing a copy of Di to F̃ along any connected component of p−1(Ci ),
i = 1, 2.We readily see that the covering p : F̃ → F is extended to a normal covering
p : M2 → M1 with the same deck transformation group. Therefore, p : M2 → M1 is
non-amenable.

It remains to establish that p : M2 → M1 is q-amenable. To this end, we endow M2
with the lift of the Riemannian metric of M1, and by virtue of Theorem 1.1, it suffices
to prove that λ0(M2) = 0. Since q is amenable, Theorem 2.9 states that λ0(M1) = 0.
From Proposition 2.1, for any ε > 0 there exists a non-zero f ∈ C∞

c (M1) with
R( f ) < ε. Then there exists a deck transformation g of q, such that supp( f ◦ g) is
contained in the interior of D1, supp f being compact. It is evident thatR( f ◦ g) < ε,
and since D1 is isometric to a domain of M2, the corresponding f2 ∈ C∞

c (M2)

satisfies R( f2) < ε. Since ε > 0 is arbitrary, we conclude from Proposition 2.1 that
λ0(M2) = 0, as we wished.

Based on the preceding example, we now present examples of amenable smooth
coverings p : M2 → M1 with M2 non-connected, such that the restriction of p on any
connected component of M2 is non-amenable.

Example 4.2 Let p : M2 → M1 and q : M1 → M0 be smooth coverings, where q
is normal with deck transformation group �. Suppose that p is q-amenable, but not
amenable. Then the induced covering p̂ : M̂ → M1 is amenable, from Lemma 3.2. It
is evident that the restriction of p̂ on any connected component of M̂ is of the form
pg = g−1 ◦ p : M2 → M1 for some g ∈ �. It follows from Corollary 2.11 that pg is
non-amenable for any g ∈ �, p being non-amenable.

We end this section with a characterization of the amenability of a composition of
coverings.
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Corollary 4.3 Let p : M2 → M1 and q : M1 → M0 be smooth coverings, with q
normal. Then q ◦ p is amenable if and only if q is amenable and p is q-amenable.

Proof Endow M0 with a Riemannian metric and M1, M2 with the lifted metrics. Let
S0 be a Schrödinger operator on M0 with discrete spectrum (for instance, S0 = �+V ,
where V has compact sublevels), and denote by S1, S2 its lift on M1, M2, respectively.

If q ◦ p is amenable, then λ0(S0) = λ0(S2), from Theorem 2.9. Furthermore, we
know from (2) that λ0(S0) ≤ λ0(S1) ≤ λ0(S2). As a consequence, we obtain that
λ0(S1) = λ0(S0) < λess0 (S0), which yields that q is amenable, from [20, Theorem
1.2]. Since λ0(S2) = λ0(S1) < λess0 (S0), Theorem 1.1 implies that p is q-amenable.

Conversely, if q is amenable and p is q-amenable, then λ0(S2) = λ0(S1) = λ0(S0),
where we used Theorem 1.1 for the first equality, and Theorem 2.9 for the second one.
Since S0 has discrete spectrum, [20, Theorem 1.2] states that q ◦ p is amenable. ��

5 Spectral-Tightness of RiemannianManifolds

In this section we study the notion of spectral-tightness of Riemannian manifolds.
Recall that a Riemannianmanifold M is called spectrally-tight if λ0(M ′) < λ0(M̃) for
any non-simply connected, normal covering space M ′ of M , where M̃ is the universal
covering space of M . We begin with a straightforward consequence of Theorem 1.1.

Corollary 5.1 Let M be a Riemannian manifold with λ0(M̃) < λess0 (M), where M̃ is
the universal covering space of M. Then M is spectrally-tight if and only if the unique
normal, amenable subgroup of π1(M) is the trivial one.

Proof If M is not spectrally-tight, then there exists a normal covering q : M ′ → M
with λ0(M ′) = λ0(M̃) and M ′ non-simply connected. In view of Theorem 1.1, the
universal covering p : M̃ → M ′ is q-amenable. Since q ◦ p is normal, Corollary 3.4
asserts that p is amenable, or equivalently, that π1(M ′) is amenable. It is clear that
π1(M ′) is a non-trivial, normal subgroup of π1(M).

Conversely, if π1(M) has a non-trivial, amenable, normal subgroup �, then the
action of � on M̃ gives rise to an amenable Riemannian covering p : M̃ → M̃/�.
We deduce from Theorem 2.9 that λ0(M̃) = λ0(M̃/�), while M̃/� is a non-simply
connected, normal covering space of M . ��
Proof of Theorem 1.2 It is an immediate consequence of Corollary 5.1, since the spec-
trum of the Laplacian on a closed Riemannian manifold is discrete. ��

Before proceeding to the proof of Theorem 1.3, we recall some terminology from
[16]. Let M be a non-positively curved, closed Riemannian manifold. The Euclidean
local de Rham factor of M is the maximum of all n ∈ N ∪ {0} such that the universal
covering space M̃ of M splits as the Riemannian productRn ×N for someRiemannian
manifold N (under the convention that if M̃ cannot be written as R × N , then this
number is zero). According to [16, Theorem], the Euclidean local de Rham factor of
M coincides with the rank of the unique maximal normal abelian subgroup of π1(M).

Finally,we recall thewell-known result ofBieberbach.An isometry of theEuclidean
space R

n is of the form ϕ(x) = Ax + v, where A is an orthogonal transformation
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and v ∈ R
n . An isometry is called translation if it is of the form ϕ(x) = x + v. A

Bieberbach group � is a discrete group of isometries ofR
n such thatRn/� is compact.

According to Bieberbach’s result, the subgroup G consisting of the translations in �

is the unique maximal normal abelian subgroup of � (cf. for instance [1, § 9]).

Proof of Theorem 1.3 Let M be a non-positively curved, closed Riemannian manifold.
Suppose first that the dimension of the Euclidean local de Rham factor of M is non-
zero. We derive from [16, Theorem] that there exists a non-trivial, normal abelian
subgroup of π1(M). By virtue of Theorem 1.2, this shows that M is not spectrally-
tight.

Conversely, if M is not spectrally-tight, then there exists a non-trivial, normal
amenable subgroup � of π1(M), according to Theorem 1.2. We obtain from [12,
Corollary 2] that � is a Bieberbach group. Denote by G the subgroup of translations in
�. It should be noticed thatG is non-trivial, since otherwise,� is finite and in particular,
there exist non-trivial elements of finite order in π1(M), which is a contradiction.
Furthermore, it is known that G is the unique maximal normal abelian subgroup of �,
and thus, a characteristic subgroup of �. Since � is a normal subgroup of π1(M), we
readily see that so is G. Since G is isomorphic to Z

n for some n ∈ N, we conclude
that the rank of the unique normal maximal abelian subgroup of π1(M) is non-zero
and the proof is completed by [16, Theorem]. ��

We now recall some notions on manifolds of non-positive curvature, which may
be found in [1]. Let g be an isometry of a Hadamard manifold M . The displacement
function dg : M → R of g is defined as dg(x) = d(x, gx). Then g is called:

• elliptic if minM dg = 0,
• axial if minM dg > 0,
• parabolic if dg does not achieve its infimum.

It is evident that g is elliptic if and only if it fixes a point of M . If g is axial, then it
acts as translation by minM dg along a geodesic of M (cf. [1, Lemma 6.5]). Finally, if
g is parabolic, then it fixes a point of the ideal boundary Mi and all horospheres (as
sets) centered at that point (see [1, Lemma 6.6.]).

A discrete group G of isometries of M is called:

• elliptic if G fixes a point of M ,
• axial if G fixes a geodesic of M (as a set) but does not fix any point of M ,
• parabolic, if G fixes a point x ∈ Mi and horospheres centered at x (as sets), but
does not fix any point of M ∪ Mi � {x},

• elementary if G is elliptic, axial or parabolic.

Suppose that G acts freely on M . Then G is elliptic if and only if it is the trivial group.
If G is axial, taking into account that any element of G acts by translation along the
same geodesic, it is not hard to see that G is abelian. According to [9, Proposition
4.1], parabolic groups are virtually nilponent. It is worth to point out that these groups
are amenable, being of subexponential growth.

Finally, we recall another definition (equivalent to the one stated in the Introduction)
of geometrically finite manifolds, in the sense of Bowditch [9]. Let M be a complete
Riemannian manifold of bounded sectional curvature −b2 ≤ K ≤ −a2 < 0. Then
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the universal covering space M̃ of M is a Hadamard manifold, and M is the quotient
M̃/�, for some discrete group � of isometries of M̃ . Let M̃i be the ideal boundary of
M̃ and consider the compactification M̃c = M̃ ∪ M̃i . Denote by � ⊂ M̃i the limit set
of � and by H the convex hull of �. The set C = (H ∩ M̃)/� is called the convex
core of M , and M is called geometrically finite if some/any tubular neighborhood of
C has finite volume. The reader may consult the seminal paper of Bowditch [9] for
more details on geometrically finite manifolds, or [6, Section 3] for a brief exposition.

Before proceeding to the proof of Corollary 1.4, we need the following observation,
which will be also exploited in the examples in the sequel.

Lemma 5.2 Let M be a geometrically finite manifold. If π1(M) contains a non-trivial,
amenable normal subgroup, then π1(M) is elementary.

Proof Denote by M̃ the universal covering space of M and write M = M̃/�. Let G
be a non-trivial, amenable normal subgroup of �. It follows from [7, Corollary 1.2]
that G is elementary. Since G is non-trivial and acts freely on M̃ , this yields that G is
either parabolic or axial.

Suppose first that G is parabolic and contained in the stabilizer of a point x of the
ideal boundary of M̃ . Given h ∈ �, using that hgh−1 ∈ G, we readily see that G fixes
h−1x . This shows that h−1x = x for any h ∈ �, and thus, � is parabolic and fixes x .

Assume now thatG is axial and contained in the stabilizer of the image of a geodesic
γ : R → M̃ joining two points of the ideal boundary of M̃ . Then for any g ∈ G, there
exists tg ∈ R such that g(γ (t)) = γ (t + tg) for any t ∈ R. Given h ∈ �, there exists
t ′ ∈ R such that hgh−1(γ (t)) = γ (t + t ′) for any t ∈ R, since hgh−1 ∈ G. Then G
fixes the image of the geodesic h−1 ◦ γ , which implies that the images of h−1 ◦ γ and
γ coincide for any h ∈ �. We conclude that � is axial and fixes the image of γ . ��
Proof of Corollary 1.4 If M is not spectrally-tight, we derive from Corollary 5.1 that
there exists a non-trivial, amenable normal subgroup of π1(M). Then π1(M) is ele-
mentary, by Lemma 5.2. Conversely, if π1(M) is elementary, then λ0(M) = λ0(M̃),
in view of Theorem 2.9, π1(M) being amenable. Since M is non-simply connected,
this means that M is not spectrally-tight. ��

Even though spectral-tightness of closed Riemannian manifolds is a topological
property, the next examples illustrate that for non-compact manifolds, this property
depends on the Riemannian metric.

Example 5.3 Let M be a non-compact surface of finite typewith non-cyclic fundamen-
tal group, and denote by M̃ its universal covering space. Since M is diffeomorphic to a
closed surface with finitely many points removed, it is not hard to see that M carries a
complete Riemannian metric which is flat outside a compact domain. We derive from
Proposition 2.3 that λess0 (M) = 0. Furthermore, there exists a compact K ⊂ M such
that the fundamental group of any connected component of M � K is amenable (as a
matter of fact, cyclic). We deduce from [21, Corollary 1.6] that λ0(M̃) = 0, and thus,
M is not spectrally-tight with respect to this Riemannian metric.

It follows from [2, Proposition 1.5 and (1.3)] that M carries a complete Riemannian
metric such that λess0 (M) > λ0(M̃). We now show that M is spectrally-tight with
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respect to this Riemannian metric. Otherwise, we obtain from Theorem 5.1 that there
exists a non-trivial, amenable normal subgroup of π1(M). It is known that M admits
a complete hyperbolic metric, and with respect to such a metric, M is geometrically
finite (cf. for instance [2, Example 1.4]). It now follows from Lemma 5.2 that π1(M)

is elementary, and thus, cyclic, M being two-dimensional, which is a contradiction.

Although this gives a quite wide class of examples, it seems reasonable to present
a more explicit one.

Example 5.4 Let M be a two-dimensional torus with a cusp attached. Initially, we
endow M with a complete Riemannian metric, so that the cusp D is isometric to a
domain of a flat cylinder. Then it is clear that λ0(M) = λ0(D) = λess0 (M) = 0. Since
the fundamental group of D is amenable, it follows from [21, Corollary 1.6] that
λ0(M) = λ0(M̃), where M̃ stands for the universal covering space of M . Therefore,
M endowed with this Riemannian metric is not spectrally-tight.

We now endow M with a complete Riemannian metric, so that the cusp is isometric
to the surface of revolution generated by e−tα with t ≥ 1, for some α > 1. Then
the spectrum of M is discrete (cf. [11, Theorem 2]) and Corollary 5.1 characterizes
spectral-tightness. It should be observed that π1(M) is the free group F2 in two gener-
ators. Since the fundamental group of any negatively curved, closed manifold contains
a subgroup isomorphic to F2, [13, Theorem 1] shows that any amenable subgroup of
F2 is cyclic. It is not difficult to verify that the unique normal, cyclic subgroup of F2
is the trivial one. Hence, M endowed with this Riemannian metric is spectrally-tight,
from Corollary 5.1.
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