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Abstract
In this article, we consider the length functional defined on the space of immersed
planar curves. The L2(dsγ ) Riemannian metric gives rise to the curve shortening flow
as the gradient flowof the length functional.Motivated by the vanishing of the L2(dsγ )

Riemannian distance, we consider the gradient flow of the length functional with
respect to the H1(dsγ )-metric. Circles with radius r0 shrink with r(t) = √

W (ec−2t )

under the flow, whereW is the LambertW function and c = r20 + log r20 . We conduct a
thorough study of this flow, giving existence of eternal solutions and convergence for
general initial data, preservation of regularity in various spaces, qualitative properties
of the flow after an appropriate rescaling, and numerical simulations.
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1 Introduction

Consider the length functional:

L(γ ) :=
∫

S1

∣∣γ ′∣∣du (1)

defined on Imm1, the space of (once) continuously differentiable curves γ : S1 → R
2

with |γ ′| �= 0. The definition of a gradient ofL requires a notion of direction on Imm1,
that is an inner product or more generally a Riemannian metric 〈·, ·〉. The gradient is
then characterised by dL = 〈gradL, ·〉.

To calculate the (Gateaux) derivative dL take a variation γ : (−ε, ε) × S
1 → R

2,
∂εγ |ε=0 = V and calculate

dLγ V =
∫

S1

〈∂ε∂uγ, ∂uγ 〉
|∂uγ | du

∣∣∣∣
ε=0

= −
∫ L

0
〈Ts, V 〉 dsγ = −

∫ L

0
k〈N , V 〉 dsγ

(2)

Here the inner product is the Euclidean one, u is the given parameter along γ =
(x, y), s is the Euclidean arc-length parameter with associated arc-length derivative
∂s = |∂uγ |−1∂u and measure dsγ = |∂uγ | du, T = (xs, ys) is the unit tangent vector,
k the curvature scalar, and N = (−ys, xs) is the normal vector.

As for the inner product or Riemannianmetric in Imm1, there aremany possibilities.
For instance, we might choose either of

〈v,w〉L2 :=
∫

S1
〈v,w〉 du , or

〈v,w〉L2(dsγ ) :=
∫

S1
〈v,w〉 dsγ =

∫

S1
〈v,w〉 |∂uγ | du

for v,w vector fields along γ . The former is simpler, but from the point of view of
geometric analysis (and in particular geometric flows) the latter is preferable because
it is invariant under reparametrisation of γ , and this invariance carries through to the
corresponding gradient flow (see Sect. 3). Both of the metrics above are Riemannian,
with the flat L2-metric being independent of the base pointwhereas the L2(dsγ )metric
depends on the base point γ through the measure dsγ . We use the superscript γ to
highlight this dependence.

1.1 The Gradient Flow for Length in (Imm1, L2(ds�))

The calculation (2) shows that the gradient flow of length in the L2(dsγ ) metric is the
famous curve shortening flow proposed by Gage–Hamilton [13]:

Xt = Xss = κ = kN (3)
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where X : S × (0, T ) → R
2 is a one-parameter family of immersed regular closed

curves, X(u, t) = (x(u, t), y(u, t)) and s, T , k, N are as above.
The curve shortening flow moves each point along a curve in the direction of the

curvature vector at that point. Concerning local and global behaviour of the flow, we
have:

Theorem 1.1 (Angenent [4], Grayson [15], Gage-Hamilton [13], Ecker-Huisken [10])
Consider a locally Lipschitz embedded curve X0. There exists a curve shortening flow
X : S × (0, T ) → R

2 such that X(·, t) ↘ X0 in the C1/2-topology. The maximal
time of smooth existence for the flow is finite, and as t ↗ T , X(·, t) shrinks to a
point {p}. The normalised flow with length or area fixed exists for all time. It becomes
eventually convex, and converges exponentially fast to a standard round circle in the
smooth topology.

Remark 1.2 In the theorem above, we make the following attributions. Angenent [4]
showed that the curve shortening flow exists with locally Lipschitz data where con-
vergence as t ↘ 0 is in the continuous topology. Ecker-Huisken’s interior estimates
in [10] extend this to the C1/2-topology. Gage-Hamilton [13] showed that a convex
curve contracts to a round point, whereas Grayson [15] proved that any embedded
curve becomes eventually convex. There are a number of ways that this can be proved;
for instancewe alsomentionHuisken’s distance comparison [17] and the novel optimal
curvature estimate method in [1].

The curve shortening flow has been extensively studied and found many applica-
tions. We refer the interested reader to the recent book [2].

1.2 Vanishing Riemannian Distance in (Imm1, L2(ds�))

EveryRiemannianmetric induces a distance function defined as the infimumof lengths
of paths joining two points. For finite dimensional manifolds the resulting path-metric
space has the same topology as the manifold, but for infinite-dimensional manifolds it
is possible that the path-metric space topology is weaker (so-called weak Riemannian
metrics) or even trivial. The first explicit example of this (the L2-Hofer-metric on the
symplectomorphism group) is given in [11].

This was also demonstrated by Michor-Mumford in [22]. The example given by
Michor-Mumford is the space (Q, L2(dsγ )), where Q = Imm1/Diff(S1).1 While
Imm1 is an open subset of C1(S1,R2) and so (Imm1, L2(dsγ )) is a Riemannian
manifold, the action of Diff(S1) is not free (see [22, Sections 2.4 and 2.5]), and so the
quotient Q is not a manifold (it is an orbifold).

Theorem 2.1 (Michor-Mumford [22]) The Riemannian distance in (Q, L2(dsγ )) is
trivial.

This surprising fact is shown by an explicit construction in [22] of a path between
orbits with arbitrarily small L2(dsγ )-length, which for the benefit of the reader we

1 Diff(S1) is the regular Lie group of all diffeomorphisms φ : S
1 → S

1 with connected components
Diff+(S1), Diff−(S1) given by orientation preserving and orientation reversing diffeomorphisms respec-
tively.
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briefly recall in Sect. 2.1. A natural question arising from Michor-Mumford’s work is
if the induced metric topology on the Riemannian manifold (Imm1, L2(dsγ )) is also
trivial. This was confirmed in [5] as a special case of a more general result.

Theorem 2.2 The Riemannian distance in (Imm1, L2(dsγ )) is trivial.

Here we give a different proof of Theorem 2.2 using a detour through small curves.
The setup and proof is given in detail in Sect. 2.1.

We can see from (2) that the curve shortening flow (3) is indeed the L2(dsγ )-
gradient flow of the length functional in Imm1, not the quotientQ. Theorem 2.2 yields
that the underlying metric space that the curve shortening flow is defined upon is
trivial, and therefore this background metric space structure is useless in the analysis
of the flow.

While it could conceivably be true that the triviality of the Riemannian metric
topology on (Imm1, L2(dsγ )) is important for the validity of Theorem 1.1 and the
other nice properties that the curve shortening flow enjoys, one naturally wonders if
this is in fact the case. What do gradient flows of length look like on Imm1, with other
choices of Riemannian metric? For instance, we can ask whether these flows avoid
the finite-time singularities of the classical curve shortening flow, whether they have
unique asymptotic profiles formore general data,whether they reduce the isoperimetric
deficit, and so on.

1.3 The Gradient Flow for Length in (Imm1,H1(ds�))

We wish to choose a metric that yields a non-trivial Riemannian distance. One way of
doing this (similar to that described byMichor–Mumford [22]) is to view the L2(dsγ )

Riemannian metric as an element on the Sobolev scale of metrics (as the H0(dsγ )

metric). The next most simple choice is therefore the H1(dsγ ) metric:

〈v,w〉H1(dsγ ) := 〈v,w〉L2(dsγ ) + 〈vs, ws〉L2(dsγ ) (4)

Note that we have set the parameter A from [22, Section 3.2, Equation (5)] to 1 and we
are considering the full space, not the quotient. In contrast to the (Q, L2(dsγ )) case, it is
shown in [22] that the Riemannian distance on (Q, H1(dsγ )) is non-trivial. Therefore
the Riemannian distance also does not vanish on the larger space (Imm1, H1(dsγ )).2

The H1(dsγ )-gradient flow for length is our primary object of study in this paper.

Remark 1.3 We remark that, as will be discussed in Sect. 3, the H1(dsγ ) metric is not
scale invariant or even homogeneous. Homogeneous metrics can be constructed by
introducing appropriate factors of L(γ ) into (4). At least at a first glance, the presence
of such factors appears to complicate things. Therefore, we defer investigation of the
gradient flows of length with respect to such metrics to a future paper.

2 Note that this does not guarantee that themetric is non-degenerate–theremay still exist distinct immersions
with zero geodesic distance between them.
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Remark 1.4 There is an expanding literature on the multitude of alternative metrics
proposed for quantitative comparison of shapes in imaging applications (see for exam-
ple [6, 7, 12, 18, 20, 22, 24, 28–33]). It might be interesting to compare the dynamical
properties of the gradient flows of length on Imm1 with respect to other Rieman-
nian metrics. Although our paper is the first study of the analytical properties of the
H1(dsγ )-gradient flow on Imm1, the study of Sobolev type gradients is far from new.
We mention the comprehensive book on the topic by Neuberger [25], and the flow
studied in [29] for applications to active contours is closely related to the one we study
here. A recurring theme seems to be better numerical stability for the Sobolev gradient
compared to its L2 counterpart.

The steepest descent H1(dsγ )-gradient flow for length (called the H1(dsγ ) curve
shortening flow) onmaps in Imm1 is a one-parameter family ofmaps X : S1× I → R

2

(I an interval containing zero) where for each t , X(·, t) ∈ Imm1 and

∂t X(s, t) = −
(
gradH1(dsγ )LX(·,t)

)
(s)

= −X(s, t) −
∫ L(X)

0
X(s̃, t)G(X; s, s̃)ds̃X (5)

where ds̃X = |∂u X |(ũ, t)dũ and G is given by

G(X; s, s̃) =
cosh

(
|s − s̃| − L(X)

2

)

2 sinh(−L(X)
2 )

for 0 ≤ s, s̃ ≤ L(X).

Note that above X is often used to denote X(·, t). Our derivation of this is contained
in Sect. 4.1.

An instructive example of the flow’s behavior is exhibited by taking any standard
round circle as initial data. The circlewill shrink self-similarly to a point under the flow,
taking infinite time to do so. Circle solutions can be extended uniquely and indefinitely
in negative time as well, that is, they are eternal solutions (see also Sect. 4.1).

The flow (5) makes sense on the larger space H1(S1,R2) \ C where C is the space
of constant maps. It cannot be characterised as the gradient flow of length with respect
to the H1(dsγ ) metric on this larger space, because the metric is not well-defined on
curves that are not immersed. However, this does not cause an issue for the existence
and uniqueness of the flow: we are able to obtain eternal solutions for any initial data
X0 ∈ H1(S1,R2) \ C. This is Theorem 4.14, which is the main result of Sect. 4.2:

Theorem 4.14 For each X0 ∈ H1(S1,R2) \ C there exists a unique eternal H1(dsγ )

curve shortening flow X : S1×R → R
2 in C1(R; H1(S1,R2)\C) such that X(·, 0) =

X0.

There is a similar statement for the flow on immersions (with X0 ∈ Imm1), see
Corollary 4.15.

In Sect. 4.3 we study convergence for the flow, showing that the flow is asymptotic
to a constant map in C.
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Fig. 1 Left: (a),(b),(c) initial side lengths 1,2,4 respectively, time step 0.2, every 5th out of 50 steps shown.
Right: evolution of the isoperimetric ratio

Theorem 4.21 Let X be an H1(dsγ ) curve shortening flow. Then X converges as
t → ∞ in H1(S1,R2) to a constant map X∞ ∈ H1(S1,R2).

Numerical simulations of the flow show fascinating qualitative behavior for solu-
tions. Figures1 and 2 exhibit three important properties: first, that there is no smoothing
effect - it appears to be possible for corners to persist throughout the flow. Second,
that the evolution of a given initial curve is highly dependent upon its size, to the
extent that a simple rescaling dramatically alters the amount of re-shaping along the
flow. Third, the numerical simulations in Figs. 1 and 2 indicate that the flow does not
uniformly move curves closer to circles. The scale-invariant isoperimetric ratio I is
plotted alongside the evolutions and for an embedded barbell it is not monotone.3 We
have given some comments on our numerical scheme in Sect. 5.2.

Despite the lack of a generic smoothing effect, what we might hope is that a generic
preservation effect holds. In Sect. 5.4 we consider this question in the Ck regularity
spaces (here k ∈ N), and show that this regularity is indeed preserved by the flow.
We consider the question of embeddedness in Sect. 5.7, with the main result there

3 This is also the case for the classical curve shortening flow, as explained in [14].
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5.5

6.0

6.5

Fig. 2 Evolution for a barbell inital curve. 70 steps of size 0.1

showing that curves with small length relative to their chord-arc length ratio will
remain embedded.

We make three brief remarks. First, the initial condition (6) implies that the initial
curve is embedded. Second, the resultant estimate on the chord-arc length ratio is
uniform in time, and so does not deteriorate as t increases. Finally, since the chord-arc
length ratio is scale-invariant but length is not, the initial condition (6) can always be
satisfied by rescaling the initial data.

The theorem is as follows.

Theorem 5.10 Let k ∈ N. For each X0 ∈ Immk there exists a unique eternal H1(dsγ )

curve shortening flow X : S1 × R → R
2 in C1(R; Immk) such that X(·, 0) = X0.

Furthermore, suppose X0 satisfies

inf
u1,u2∈S

Ch(u1, u2, 0)

S(u1, u2, 0)
>

L2
0

√
2 + ‖X0‖2∞

4
e
L2
0

√
2+‖X0‖2∞
4 (6)

where

Ch(u1, u2, t) := |X(u1, t) − X(u2, t)| ,

S(u1, u2, t) := |sX(·,t)(u1) − sX(·,t)(u2)| ,

and sX(·,t)(ui ) = ∫ ui
0 |∂u X |(u, t) du.

Then there exists a C = C(X0) > 0 such that

inf
u1,u2∈S

Ch(u1, u2, t)

S(u1, u2, t)
> C

for all t .
In particular X (as well as its asymptotic profile and limit Y∞, see below) is a

family of embeddings.

Although the H1(dsγ ) curve shortening flow disappears in infinite time (that is,
as t → ∞ the flow converges to a constant map (a point) as guaranteed by Theorem
4.21) we are interested in identifying if it asymptotically approaches any particular
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shape. In order to do this, we define the asymptotic profile of a given H1(dsγ ) curve
shortening flow Y : S × R → R

2 by

Y (t, u) := et (X(t, u) − X(t, 0)) .

Because of the exponential rescaling bounds for Y and its gradient become more
difficult than for X . On the other hand, scale invariant estimates for X such as the chord-
arc ratio and isoperimetric ratio carry through directly to estimates on Y . Furthermore,
for H1(dsγ ) curve shortening flows on the C2 space the curvature scalar k is well
defined, and we can ask meaningfully if curvature remains controlled along Y (on X ,
it will always blow up).

By considering the asymptotic profilewe hope to be able to identify limiting profiles
Y∞ for the flow. For the flow X , the limit is always a constant map. In stark contrast
to this, possible limits for Y are manifold. We are able to show that the asymptotic
profile Y does converge to a unique limit Y∞ depending on the initial data X0, but it
seems difficult to classify precisely what these Y∞ look like. For the curvature, we
show in Sect. 5.5 that it is uniformly bounded for C2 initial data, and that the profile
limit Y∞ is immersed with well-defined curvature (Theorem 5.7). On embeddedness,
the same result as for X applies due to scale-invariance.

The isoperimetric deficit DY := L(Y )2 − 4π A(Y ) on Y is studied in Sect. 5.6. It
isn’t true that the deficit is monotone, or improving, but at least we can show that the
eventual deficit of the asymptotic profile limit Y∞ is bounded by a constant times the
deficit of the initial data X0. This is sharp.

We summarise these results in the following theorem.

Theorem 5.8 Let k ∈ N0 be a non-negative integer. Set B to H1(S1,R2) \C for k = 0
and otherwise set B to Ck(S1,R2) \ C. For each X0 ∈ B there exists a non-trivial
Y∞ ∈ H1(S1,R2) \ C such that the asymptotic profile Y (t) → Y∞ in C0(S1,R2) as
t → ∞.

Furthermore:

• Y∞ is embedded if at any t ∈ (0,∞) the condition (6) was satisfied for X(t)
• If k ≥ 2, and X(0) is immersed, then Y∞ is immersed with bounded curvature
• There is a constant c = c(‖X(0)‖∞) such that the isoperimetric deficit of Y∞
satisfies

DY∞ ≤ cDX(0).

2 Metrics on Spaces of Immersed Curves

Let Ck(S1,R2) be the usual Banach space of maps with continuous derivatives up to
order k. Our convention is that |S1| = |[0, 1]| = 1. For 1 ≤ k ≤ ∞ we define

Immk := {γ ∈ Ck(S1,R2) : ∣∣γ ′(u)
∣∣ �= 0}.

Note that Immk is an open subset of Ck(S1,R2).

123



On the H1(dsγ )-Gradient... Page 9 of 49 297

The tangent space Tγ Immk ∼= Ck(S1,R2) consists of vector fields along γ . We
define the following Riemannian metrics on Imm1 for v,w ∈ Tγ Imm1:

〈v,w〉L2 :=
∫ 1

0
〈v,w〉du

〈v,w〉H1 := 〈v,w〉L2 + 〈
v′, w′〉

L2

〈v,w〉L2(dsγ ) :=
∫ L(γ )

0
〈v,w〉 dsγ =

∫ 1

0
〈v(u), w(u)〉 |∂uγ | du

〈v,w〉H1(dsγ ) := 〈v,w〉L2(dsγ ) + 〈vs, ws〉L2(dsγ )

=
∫ 1

0
〈v(u), w(u)〉 |∂uγ | du +

∫ 1

0
〈∂uv(u), ∂uw(u)〉 |∂uγ |−1 du.

(7)

The length function (1) is of course well-defined on the larger Sobolev space
H1(S1,R2), as are the L2, H1 and L2(dsγ ) products above. However, the H1(dsγ )

product is not well-defined because of the arc-length derivatives, even if one restricts
to curves which are almost everywhere immersed.

We remark that each of themetrics above are examples ofweak Riemannianmetrics.
That is, the topology induced by the Riemannian metric is weaker than the manifold
topology. This is a purely infinite-dimensional phenomenon. In fact, even for a strong
Riemannian metric, geodesic and metric completeness are not equivalent (as guaran-
teed by the Hopf-Rinow theorem in finite dimensions) and it is not always the case that
points can be joined by minimising geodesics (for an overview of these and related
facts see [9]).

2.1 Vanishing Riemannian Distance in (Imm1, L2(ds�))

Consider curves γ1, γ2 ∈ Imm1 and a smooth path α : [0, 1] → Imm1 with α(0) = γ1
and α(1) = γ2. The L2(dsγ )-length of this smooth path is well-defined and given by

LL2(dsγ )(α) :=
∫ 1

0
‖α′(t)‖L2(dsγ ) dt =

∫ 1

0

(∫ L(α(t))

0
|αt (t, s)|2 dsγ

) 1
2

dt . (8)

As usual, one defines a distance function associated with the Riemannian metric by

dL2(ds)(γ1, γ2) := inf{LL2(dsγ )(α) : α piecewise smooth path from γ1 to γ2}.

Since the L2(dsγ ) metric is invariant under the action of Diff(S1) it induces a Rie-
mannian metric on the quotient space Q (except at the singularities) as follows. Let
π : Imm1 → Q be the projection. Given v,w ∈ T[γ ]Q choose any V ,W ∈ Tγ Imm1

such that π(γ ) = [γ ], Tγ π(V ) = v, Tγ π(W ) = w. Then the quotient metric is given
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by

〈v,w〉[γ ] :=
〈
V⊥,W⊥〉

L2(dsγ )

where V⊥ andW⊥ are projections onto the subspace of Tγ Imm1 consisting of vectors
which are tangent to the orbits. This is just the space of vector fields along γ in the
direction of the normal N to γ , and so V⊥ = 〈V , N 〉N . The length of a path π(α) in
Q according to the quotient metric is then

LQ
L2(dsγ )

(π(α)) =
∫ 1

0

(∫ L

0

∣∣∣α⊥
t

∣∣∣
2
dsγ

) 1
2

dt

and the distance is

dQ
L2(ds)

([γ1], [γ2]) = inf{LQ
L2(dsγ )

(π(α)) : π(α) piecewise smooth path from [γ1] to [γ2]}.

This is the distance function that Michor and Mumford have shown to be identically
zero (Theorem 2.1). They also point out (cf. [22, Section 2.5]) that for any smooth path
α between curves γ1, γ2, there exists a smooth t-dependent family of reparametrisa-
tionsφ : [0, 1] → Diff(S1) such that the reparametrised path4 α̃(t, u) := α(t, φ(t, u))
has path derivative α̃t (t) which is normal to α̃(t). Thus an equivalent definition is

dQ
L2(ds)

([γ1], [γ2]) = inf{LL2(dsγ )(α) : α p.w. smooth with α(0) ∈ [γ1], α(1) ∈ [γ1]}.

Theorem 2.1 (Michor–Mumford [22]) For any ε > 0 and [γ1], [γ2] in the same path
component ofQ there is a path α : [0, 1] → Imm1 satisfying α(0) ∈ [γ1], α(1) ∈ [γ2]
and having length LL2(dsγ )(α) < ε.

Since it is quite a surprising result and an elegant construction, we include a descrip-
tion of the proof. The idea is to show that we may deform any path α in Imm1 to a
new path αn that remains smooth but has small normal projection, and whose endpoint
changes only by reparametrisation.

So, let us consider a smooth path α : [0, 1] → Imm1 such that α(0) = γ1 and
α(1) = γ2. We choose evenly-spaced points θ0, . . . , θn in S

1 and move γ1(θi ), via
α(2t), to their eventual destination γ2(θi ) twice as fast. The in-between points ψi =
(θi−1 + θi )/2 should remain stationary while this occurs. Once half of the time has
passed, and all points θi are at their destination, the points γ1(ψi ) may begin to move
via α. They should also move twice as fast as before. A graphical representation of
this is given in Fig. 3.

The resultant path αn has small normal projection (depending on n) but also longer
length (again depending on n). The key estimate in [22, Section 3.10] shows that the
length of the path αn increases proportional to n and the normal projection decreases

4 Note that as paths in the full space Imm1, α̃ is different to α, but they project to the same path in Q.
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α(0) α 1
2

)
α(1) αn

1
4

)

αn
1
2

)
αn

3
4

)

αn(t, θi)

Fig. 3 The distortion of a path α to one that is shorter, according to the L2(ds)-metric. For the sake of
clarity, only the right sides of the curves on the shorter path αn are pictured

proportional to 1
n . Since the normal projection is squared, this means that the length

of αn is proportional to the length of α times 1
n .

In other words, for any ε > 0 we can connect γ1 to a reparametrisation of γ2 by a
path with L2(dsγ )-length less than ε, and so the distance between them is zero.5

Note that the corresponding result does not immediately follow for the full space
Imm1 because in the full space the tangential component of the path derivative is
also measured. Indeed, we could apply the Michor-Mumford construction to obtain
a path αn whose derivative has small normal component, and then introduce a time-
dependent reparametrisation to set the tangential component to zero, but of course the
reparametrisation changes the endpoint to a reparametrisation of the original endpoint.
However, as we show in the following theorem, it is still possible to get the desired
result by diverting through a sufficiently small curve.

Theorem 2.2 The L2(dsγ )-distance between any two curves in the same path compo-
nent of Imm1 vanishes.

Proof Let γ0, γ1 ∈ C∞(S1,R2) be smooth immersions in the same path component,
and let η0 be another curve in the same component with ‖η′

0‖L∞ <
(

ε
4

)2/3 (for
example, η0 could be a sufficiently small scalar multiple of γ0). By Theorem 2.1
there exists a path α0 from γ0 to η1, where η1 is a reparametrization of η0, with
LL2(dsγ )(α0) < ε

4 . Now let θ ∈ Diff(S1) such that η1(u) = η0(θ(u)) and define a
path α1 from η0 to η1 by

c(t, u) := (1 − t)u + tθ(u)

α1(t, u) := η0(c(t, u))

5 We remark that this phenomenon of triviality of the metric topology induced by the Riemannian L2(dsγ )

metric on the quotient space is also established in higher dimensions, see [21].
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Then

∂tα1 = η′
0(c)ct = η′

0(c)(θ(u) − u)

∂uα1 = η′
0(c)cu

and by (8) the L2(dsγ )-length of α1 is

LL2(dsγ )(α1) =
∫ 1

0

(∫

S1

∣∣η′
0(c)

∣∣3|θ(u) − u|2 dc
)1/2

dt ≤ ‖η′
0‖3/2L∞ ≤ ε

4
.

Nowwe concatenateα0 withα1(−t) to form a path p from γ0 to η0 withLL2(dsγ )(p) <
ε
2 . By the same method we construct a path q from γ1 to η0 with LL2(dsγ )(q) < ε

2
and then the concatenation of p with q(−t) is a path from γ0 to γ1 with arbitrarily
small L2(dsγ )-length. We assumed γ0, γ1 were smooth, but since the smooth curves
are dense in C1 and ‖αt‖L2(dsγ ) ≤ c‖αt‖C1‖αu‖L2 for any path α, we can also join
any pair of curves in Imm1 by a path with arbitrarily small L2(dsγ )-length. ��
Remark 2.3 As mentioned in the introduction, an alternative proof of a more general
result is outlined in [5]. The proof relies on another theorem of Michor and Mumford
[21] (extended in eg. [8]) showing that the right invariant L2 metric on diffeomorphism
groups gives vanishing distance.

3 Symmetries of Metrics and Gradient Flows

The standard curve shortening flow (3) enjoys several important symmetries:

• Isometry of the plane: if A : R2 → R
2 is an isometry and X : S1 × [0, T ) → R

2

is a solution to curve shortening flow then A ◦ X is also a solution.
• Reparametrisation: if φ ∈ Diff(S1) and X(u, t) is a solution to curve shortening
flow then X(φ(u), t) is also a solution.

• Scaling spacetime: if X(u, t) is a solution to curve shortening flow then so is
λX(u, t/λ2), with λ > 0.

It is interesting to note that these symmetries can be observed directly from sym-
metries of the length functionalL and the H0(dsγ )Riemannian inner product without
actually calculating the gradient.

Lemma 3.1 Suppose there is a free group action of G on (M, g) which is an isometry
of the Riemannianmetric g and which leaves E : M → R invariant. Then the gradient
flow of E with respect to g is invariant under the action.

Proof Since E(p) = E(λp) for all λ ∈ G, p ∈ M , we have

dEp = dEλpdλp

then equating
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dEpV = 〈grad Ep, V 〉p = 〈dλp grad Ep, dλpV 〉λp
dEλpdλpV = 〈grad Eλp, dλpV 〉λp

shows that dλp grad Ep = grad Eλp (dλp has full rank because the action is free).
Therefore if X is a solution to Xt = − grad EX then

(λX)t = −dλX grad EX = − grad EλX

so λX is also a solution. ��
To demonstrate we observe the following symmetries of the H1(dsγ ) gradient flow.
Isometry. An isometry A : R2 → R

2 induces A : Imm1(S1,R2) → Imm1(S1,R2)

by Aγ = A ◦ γ . Since an isometry is length preserving

L(Aγ ) = L(γ ) �⇒ dLAγ d Aγ = dLγ (9)

and similarly for the arc-length functions sAγ = sγ �⇒ dsAγ = dsγ . Hence, in the
H1(dsγ ) metric:

〈
d Aγ (ξ), d Aγ (η)

〉
H1(dsAγ )

=
∫

〈d Aγ (ξ), d Aγ (η)〉dsAγ

+
∫

〈 d
ds d Aγ (ξ), d

ds d Aγ (η)〉dsAγ

= 〈ξ, η〉H1(dsγ ) .

That is, the inducedmap A : Imm1(S1,R2) → Imm1(S1,R2) is an H1(dsγ ) isometry.
Now by Lemma 3.1 if X is a solution of the H1(dsγ ) gradient flow of L then so is
AX .

Reparametrisation. Given φ ∈ Diff(S1) we have L(γ ) = L(γ ◦ φ) and the map
�(γ ) = γ ◦ φ is linear on Immk(S1,R2) so dLγ = dL�γ �. Assuming w.l.o.g. that
φ′ > 0 we have

〈�ξ, �η〉H1(ds�γ ) =
∫

S1
〈ξ(φ(u)), η(φ(u))〉|γ ′(φ)φ′(u)|du

+
∫

S1

〈
1

|γ ′(φ)φ′(u)|
d
du ξ(φ(u)), 1

|γ ′(φ)φ′(u)|
d
du η(φ(u))

〉
|γ ′(φ)φ′(u)|du

=
∫

S1
〈ξ(φ), η(φ)〉|γ ′(φ)|dφ

+
∫

S1

〈
1

|γ ′(φ)|
d
dφ

ξ(φ), 1
|γ ′(φ)|

d
dφ

η(φ)
〉
|γ ′(φ)|dφ

= 〈ξ, η〉H1(dsγ )

so� is also an H1(dsγ ) isometry and again byLemma3.1 the gradient flow is invariant
under reparametrisation.
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Scaling space-time. For a dilation of R2 by λ > 0 the length function scales like
L(λx) = λL(x). To obtain a space-time scaling symmetry we need the metric to also
be homogeneous. However the H1(dsγ ) metric is not homogeneous:

〈λξ, λη〉H1(dsλγ ) =
∫

〈λξ, λη〉λdsγ +
∫ 〈

1

λ
(λξ)s,

1

λ
(λη)s

〉
λdsγ

= λ3
∫

〈ξ, η〉dsγ + λ

∫
〈ξs, ηs〉dsγ .

Let us give an example of a homogeneous metric that allows us to maps trajectories
of the gradient flow of length in that metric to other trajectories via the space-time
scaling X(u, t) �→ λX(u, t/λ). Consider the metric

〈ξ, η〉H1(ds̄γ ) := 〈ξ, η〉L2(ds̄γ ) + L2〈ξs, ηs〉L2(ds̄γ ) (10)

where

〈ξ, η〉L2(ds̄γ ) = 1

L 〈ξ, η〉L2(dsγ ).

This metric, used in [29], satisfies 〈ξ, η〉H1(ds̄λγ ) = 〈ξ, η〉H1(ds̄γ ) and therefore

〈λξ, λη〉H1(ds̄λγ ) = λ2〈ξ, η〉H1(ds̄γ ).

With this metric, the Riemannian distance between λγ1 and λγ2 is λ times the Rie-
mannian distance between γ1 and γ2, which seems natural. Then

dLλγ ξ = 〈
gradLλγ , ξ

〉
H1(ds̄λγ )

= 〈
gradLλγ , ξ

〉
H1(ds̄γ )

.

Since L(λγ ) = λL(γ ) we have

dLλγ λξ = ∂

∂t
L(λγ + tλξ) = λdLγ ξ

that is, dLλγ = dLγ and so from

dLγ ξ = 〈
gradLγ , ξ

〉
H1(ds̄γ )

we find gradLλγ = gradLγ . Now if X(u, t) is a solution to Xt = − gradLX then
defining X̃(u, t) := λX(u, t/λ) we have

X̃t (u, t) = λλ−1Xt (u, t/λ) = gradLX(u,t/λ) = − gradLX̃ .
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4 The Gradient Flow for Length with Respect to the H1(ds�)
RiemannianMetric

4.1 Derivation, Stationary Solutions and Circles

The H1(dsγ ) gradient of length is defined by

dLγ V = 〈
gradLγ , V

〉
H1(dsγ )

=
∫ 〈

gradLγ , V
〉
dsγ +

∫ 〈
(gradLγ )s, Vs

〉
dsγ

=
∫ 〈

gradLγ − (gradLγ )ss, V
〉
dsγ

Comparing with (2) the gradient of length with respect to the H1(dsγ ) metric must
satisfy distributionally

(gradLγ )ss − gradLγ = Ts, (11)

where we have used the notation T = γs .
We solve this ODE in the arc-length parametrisation using the Green’s function

method. Considering

Gss(s, s̃) − G(s, s̃) = δ(s − s̃) (12)

with C1-periodic boundary conditions and the required discontinuity we find the
Green’s function

G(s, s̃) =
cosh

(
|s − s̃| − L

2

)

2 sinh(−L
2 )

. (13)

(cf. [29] eqn. (12) for the metric (10) above.) Then the solution to (11) is

gradLγ (s) =
∫ L

0
Ts̃ G(s, s̃)ds̃γ . (14)

We can integrate by parts twice in (14) to obtain

gradLγ (s) = γ (s) +
∫ L

0
γ (s̃)G(s, s̃)ds̃γ

and we observe that it is not neccesary for γ to have a second derivative. Indeed, using
integration by parts and (12) we find
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〈
gradLγ , V

〉
H1(dsγ )

=
∫ 〈

γ +
∫

γG ds̃γ , V

〉
+

〈
γs +

∫
γGs ds̃

γ , Vs

〉
dsγ

=
∫ 〈

γ +
∫

γ (G − Gss) ds̃
γ , V

〉
+

∫
〈γs, Vs〉 dsγ

=
∫

〈γs, Vs〉 dsγ

= dLγ V .

Definition Consider a family of curves X : S1 × (a, b) → R
2 where for each t ∈

(a, b) ⊂ R, X(·, t) ∈ Imm1. We term X an H1(dsγ ) curve shortening flow if

∂t X(s, t) = −X(s, t) −
∫ L

0
X(s̃, t)G(X; s, s̃)ds̃X (15)

where G is given by

G(X; s, s̃) =
cosh

(
|s − s̃| − L

2

)

2 sinh(−L
2 )

for 0 ≤ s, s̃ ≤ L. (16)

Here we writeG(X; s, s̃) to emphasize the dependence on the curve X(., t). Similarly,
we havewrittendsX andds̃X to remind the reader that s and s̃ are arc-length parameters
for X . Henceforth we will omit these unless it is needed to avoid ambiguity.

Remark 4.1 The H1(dsγ ) curve shortening flow is an ODE. One way to see this is to
note that the convolution G ∗ φ is equal to (1 − ∂2s )−1φ for maps φ, then

∂tγ = (1 − ∂2s )−1∂2s γ = (1 − ∂2s )−1(∂2s γ − γ + γ ) = −γ + (1 − ∂2s )−1(γ ).

The above expression could additionally be helpful in obtaining the local well-
posedness of the flow. We thank the anonymous referee for pointing this out to us.

Remark 4.2 Note that (15) makes sense on the larger space H1(S1,R2) \ C where

C := {X ∈ H1(S1,R2) : ‖X ′(u)‖L2 = 0}

is the space of constant maps, provided we do not use the arc-length parametrisation.
That is, we consider

∂t X(u, t) = F(X(u, t); u) (17)
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where F is defined by

F(X; u) := −X(u) −
∫ 1

0
X(ũ)G(X; u, ũ)|X ′(ũ)| dũ, and

G(X; u, ũ) :=
cosh

(
|sX (u) − sX (ũ)| − L(X)

2

)

2 sinh
(

− L(X)
2

) .

(18)

The constant maps (for which length vanishes) are potentially problematic: viewing
G as a map from H1(S1,R2) × S

1 × S
1 → R we see that taking a sequence in

the first variable toward the space of constant maps results in −∞. Then in (18), the
integral involving G along such a sequence may not be well-defined. If we consider
the case of circles, say Xr (u) = r(cos u, sin u), then Xr converges to a constant map
as r ↘ 0, yet F(Xr ; u) → 0 despite G(Xr ; u, ũ) → −∞ (all limits are as r ↘ 0).
For general H1 maps the limiting behavior may be more complicated, however, note
that a-posteriori our results here indicate that this behavior is generically valid.

Most of the results that follow will be proved for this larger space H1(S1,R2) \ C.
However, the interpretation of this flow as the H1(dsγ ) gradient flowof length requires
that we use the space Imm1. This is so that H1(dsγ ) is a Riemannian metric: the
product (7) is not positive definite at curves which are not immersed, and in fact is
not necessarily well-defined because of the arc length derivatives. Moreover, L is not
differentiable outside of Imm1.Neverthelesswe proceed to study the flowmostly in the
space H1(S1,R2)\C, but bear inmind that on this space it is at best a ‘pseudo-gradient’.

We begin our study of the flow by considering stationary solutions and observing
the evolution of circles.

Lemma 4.3 There are no stationary solutions to the H1(dsγ ) curve shortening flow.

Proof From (15), a map X ∈ H1(S1,R2) is stationary if

X(s) = −
∫ L

0
X(s̃)G(s, s̃)ds̃.

The arc-length function is in H1(S1,R) and so G (see (16)) is in turn in H1(S1,R).
Differentiating, we find

Xs(s) = −
∫ L

0
X(s̃)Gs(s, s̃)ds̃,

and so the first derivative of X exists classically. Iterating this with integration by parts
shows that in fact all derivatives of X exist and it is a smooth map.

Furthermore, examining the case of the secondderivative in detail,wefind (applying
(12))

Xss = −
∫ L

0
X(s̃)Gss(s, s̃)ds̃ = −X(s) −

∫ L

0
X(s̃)G(s, s̃)ds̃ = 0. (19)
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Since X is periodic, this implies that X must be the constant map. As explained in
remark 4.2, G is singular at constant maps. ��

Let us now consider the case of a circle. Here, we see a stark difference to the case
of the classical L2(dsγ ) curve shortening flow.

Lemma 4.4 Under the H1(dsγ ) curve shortening flow, an initial circle in H1(S1,R2)

with any radius and any center will

(i) exist for all time; and
(ii) shrink homothetically to a point as t → ∞.

Proof We can immediately conclude from the symmetry of the length functional and
the symmetry of the circle that the flow must evolve homothetically (see Lemma 3.1).
We must calculate the evolution of the radius of the circle.

So, suppose that X is an H1(dsγ ) curve shortening flow of the form

X(u, t) = r(t)(cos u, sin u) (20)

with r(0) > 0. Here u is the arbitrary parameter and not the arc length variable. Then
X(s, t) = r(t)(cos( sr ), sin(

s
r )) and Xss = − 1

r2
X . Therefore

Xt (s, t) = −
∫

Xs̃s̃(s̃, t)G(s, s̃)ds̃ = 1

r2

∫
X(s̃, t)G(s, s̃)ds̃ .

Applying (12) and integrating by parts gives

Xt = − 1

r2
Xt − 1

r2
X .

Differentiating (20) gives Xt = ṙ
r X and then substituting into the above leads to the

ODE for r(t):

ṙ = − r

r2 + 1
.

Using separation of variables yields r2er
2 = e−2t+c (here c = log(r2(0)er

2(0))) which
has solutions

r(t) = ±
√
W (ec−2t )

whereW is the LambertW function (the inverse(s) of xex ). Since t �→ √
W (ec−2t ) is

a monotonically decreasing function converging to zero as t → ∞, this finishes the
proof. ��
Remark 4.5 If we consider the steepest descent H1(ds̄γ ) gradient flow for length (this
is the 2-homogeneous metric, see equation (10)), the behavior of the flow on circles
changes from long-time existence to finite-time extinction. The length of the solution
in this case decreases linearly with time.
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4.2 Existence and Uniqueness

Now we turn to establishing existence and uniqueness for the H1(dsγ ) curve short-
ening flow.

For the initial data, we take it to be on the largest possible (Hilbert) space for which
(15)makes sense. As explained in Remark 4.2, this is the space ofmaps H1(S1,R2)\C
where

C := {X ∈ H1(S1,R2) : ‖X ′(u)‖L2 = 0}

is the space of constant maps. We note that C is generated by the action of translations
in R2 applied to the orbit of the diffeomorphism group at any particular constant map
in H1(S1,R2). Since the orbit of the diffeomorphism group applied to a constant map
is trivial, the space C turns out to be two-dimensional only.

The main result of this section is the following.

Theorem 4.14 For each X0 ∈ H1(S1,R2) \ C there exists a unique eternal H1(dsγ )

curve shortening flow X : S1×R → R
2 in C1(R; H1(S1,R2)\C) such that X(·, 0) =

X0.

This is proven in two parts.

4.2.1 Local Existence

We begin with a local existence theorem.

Theorem 4.6 For each X0 ∈ H1(S1,R2)\C there exists a T0 > 0 and unique H1(dsγ )

curve shortening flow X : S1 × [−T0, T0] → R
2 in C1([−T0, T0]; H1(S1,R2)\C)

such that X(·, 0) = X0.

The flow (15) is essentially a first-order ODE and so wewill be able to establish this
result by applying the Picard-Lindelöf theorem in H1(S1,R2) \ C. (see [34, Theorem
3.A]). Note that this means we should not expect any kind of smoothing effect or
other phenomena associated with diffusion-type equations such as the L2(dsγ ) curve
shortening flow. Of course, we will need to show that the flow a-priori remains away
from the problematic set C.

Recalling (18), we observe the following regularity for F in our setting.

Lemma 4.7 For any X ∈ H1(S1,R2) \ C consider F and G as defined in (18). Then
F(X) ∈ H1(S1,R2).

Proof The weak form of equation (12) implies continuity and symmetry of the Greens
function G, as well as

∫ L

0
G(s, s̃) ds = −1.
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Note that there is a discontinuity in the first derivative of G with respect to either
variable. Since G is strictly negative we have

∫ L
0 |G(s, s̃)|ds̃ = 1. Now

F(X) = −X −
∫ L

0
X(s̃)G(s, s̃) ds̃

=
∫ L

0
(X(s) − X(s̃))G(s, s̃) ds̃

=
∫ L

0

∫ s

s̃
Xs ds G(s, s̃) ds̃

therefore

|F(X)| ≤
∫ L

0
|s − s̃||G(s, s̃)| ds̃ ≤ L(X) (21)

and we have

‖F(X)‖L2(du) ≤ L(X). (22)

For the derivative with respect to u, using Gs = −Gs̃ and integration by parts we find

F(X; u)u = −Xu − |Xu |
∫ L

0
X(s̃)Gs(s, s̃) ds̃

= −Xu − |Xu |
∫ L

0
Xs̃(s̃)G(s, s̃) ds̃ . (23)

This implies

‖F(X)u‖L2 ≤ 2‖Xu‖L2 (24)

Since our convention is that |S1| = 1, we haveL(X) ≤ ‖X‖L2 , and so the inequalities
(22) and (24) together show that F(X) ∈ H1(S1,R2). ��

The H1 regularity of F from Lemma 4.7 is locally uniform (for given initial data),
with a Lipschitz estimate in H1, as the following lemma shows.

Lemma 4.8 Given X0 ∈ H1(S1,R2) \ C let

Qb = {X ∈ H1(S1,R2) \ C ‖X − X0‖H1 ≤ b < L(X0)}

where b > 0 is fixed. Then there exist constants L ≥ 0 and K > 0 depending on
‖X0‖H1 such that

‖F(X)‖H1 < K , for all X ∈ Qb

‖F(X) − F(Y )‖H1 ≤ L‖X − Y‖H1 , for all X ,Y ∈ Qb.
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Proof To obtain the estimates and remain away from the problematic set C it is neces-
sary that the length of each X ∈ Qb is bounded away from zero. This is the reason for
the upper bound on b. Indeed if X ∈ Qb then (note that |S1| = 1 in our convention)

∣∣‖X ′‖L1 − ‖X ′
0‖L1

∣∣ ≤ ‖X ′ − X ′
0‖L1 ≤ ‖X ′ − X ′

0‖L2 ≤ ‖X − X0‖H1 ≤ b

hence

L(X0) − b ≤ L(X) ≤ L(X0) + b (25)

and L(X0) − b > 0 by assumption. It follows that G(X; u, ũ) exists on Qb and since
sX (u) ≤ L(X) we deduce

|G(X; u, ũ)| ≤ cosh(L(X)
2 )

2 sinh(L(X)
2 )

= 1

2
coth

(L(X)
2

)
. (26)

We will also need the derivative

∂uG(X; u, ũ) =
sinh

(
|sX (u) − sX (ũ)| − L(X)

2

)

2 sinh(−L(X)
2 )

sgn(u − ũ)|X ′(u)| (27)

which obeys the estimate

|∂uG(X; u, ũ)| ≤ 1

2
|X ′(u)|. (28)

Since G is well-defined on Qb, we may use (22) and (24) from the proof of Lemma
4.7 to obtain

‖F(X)‖H1 ≤ c‖X‖H1 ≤ cb + c‖X0‖H1 =: K (29)

for a constant c > 0 and all X ∈ Qb.
As for the Lipschitz estimate, we will begin by studying the Lipschitz property for

G. First note that the arc length function is Lipschitz as a function on H1(S1,R2):

∣∣∣sX (u) − sY (u)

∣∣∣ ≤
∫ u

0

∣∣ |X ′(a)| − |Y ′(a)| ∣∣ da ≤
∫ u

0

∣∣X ′(a) − Y ′(a)
∣∣ da

≤ ‖X − Y‖H1

and setting u = 1 we also have

|L(X) − L(Y )| ≤ ‖X − Y‖H1 .
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For the numerator of G, note that cosh is smooth and its domain here is bounded via
(25), and so there is a c1 > 0 such that

∣∣∣∣cosh
(∣∣∣sX (u) − sX (ũ)

∣∣∣ − L(X)

2

)
− cosh

(∣∣∣sY (u) − sY (ũ)

∣∣∣ − L(Y )

2

)∣∣∣∣

≤ c1

∣∣∣∣
∣∣∣sX (u) − sX (ũ)

∣∣∣ − L(X)

2
−

∣∣∣sY (u) − sY (ũ)

∣∣∣ + L(Y )

2

∣∣∣∣

≤ 3c1‖X − Y‖H1 .

A similar argument applies to the denominator sinh(−L(X)/2) andmoreover inequal-
ity (25) ensures that sinh(−L(X)/2) is bounded away from zero. Since the quotient of
two Lipschitz functions is itself Lipschitz provided the denominator is bounded away
from zero, we have that G is Lipschitz, i.e. there is a constant c2 > 0 such that

|G(X; u, ũ) − G(Y ; u, ũ)| ≤ c2‖X − Y‖H1 .

Now we have

F(X)(u) − F(Y )(u)

= −X(u) + Y (u) −
∫ 1

0
X(ũ)G(X; u, ũ)|X ′(ũ)| − Y (ũ)G(Y ; u, ũ)|Y ′(ũ)| dũ

= −(X(u) − Y (u))

−
∫ 1

0
(X − Y )G(X)|X ′| + YG(X)

(|X ′| − |Y ′|) + Y |Y ′| (G(X) − G(Y )) dũ .

By (25) and (26) there exists c0 such that |G(X; u, ũ)| ≤ c0 for all X ∈ Qb. Then
using the Lipschitz condition for G we find

|F(X) − F(Y )|

≤ |X − Y | +
∫ 1

0
c0|X − Y ||X ′| + c0|Y ||X ′ − Y ′| + c2|Y ||Y ′|‖X − Y‖H1 dũ

≤ |X − Y | + c0‖X − Y‖L2‖X ′‖L2 + c0‖Y‖L2‖X ′ − Y ′‖L2

+ c2‖Y‖L2‖Y ′‖L2‖X − Y‖H1 .

Therefore, recalling that X ,Y ∈ Qb satisfy ‖X‖, ‖Y‖ ≤ ‖X0‖1 + b, integrating the
above gives

‖F(X) − F(Y )‖L2 ≤ const‖X − Y‖H1 . (30)

We need a similar result for

123



On the H1(dsγ )-Gradient... Page 23 of 49 297

F(X)′(u) − F(Y )′(u)

= −X ′(u) + Y ′(u) −
∫ 1

0
(X − Y )∂uG(X)‖X ′‖ + Y ∂uG(X)

(‖X ′‖ − ‖Y ′‖)

+Y‖Y ′‖ (∂uG(X) − ∂uG(Y )) dũ. (31)

Comparing (27), define

A(X; u, ũ) :=
sinh

(
|sX (u) − sX (ũ)| − L(X)

2

)

2 sinh(−L(X)
2 )

so that

∂uG(u, ũ) = A(X; u, ũ)‖X ′(u)‖ sgn(u − ũ).

Then as in (28) we have |A(X)(u, ũ)| ≤ 1
2 and arguing as for G above we also have

that A is Lipschitz:

|A(X; u, ũ) − A(Y ; u, ũ)| ≤ const‖X − Y‖H1 .

Now

∫ 1

0
|∂uG(X) − ∂uG(Y )|dũ =

∫ 1

0

∣∣A(X)
∣∣X ′(u)

∣∣ − A(Y )
∣∣Y ′(u)

∣∣∣∣dũ

=
∫ 1

0

∣∣(A(X) − A(Y ))
∣∣X ′(u)

∣∣∣∣

+ A(Y )
(∣∣X ′(u)

∣∣ − ∣∣Y ′(u)
∣∣)dũ

≤ ∣∣X ′(u)
∣∣
∫ 1

0
|A(X) − A(Y )| dũ

+ ∣∣X ′(u) − Y ′(u)
∣∣
∫ 1

0
|A(Y )|dũ

≤ const
∣∣X ′(u)

∣∣‖X − Y‖H1 + 1
2

∣∣X ′(u) − Y ′(u)
∣∣ .

Using this estimate in (31), together with (28) gives

∣∣F(X)′(u) − F(Y )′(u)
∣∣

≤ ∣∣X ′(u) − Y ′(u)
∣∣ + 1

2

∣∣X ′(u)
∣∣‖X − Y‖L2‖X ′‖L2 + 1

2

∣∣X ′(u)
∣∣‖Y‖L2‖X ′ − Y ′‖L2

+ (
const

∣∣X ′(u)
∣∣‖X − Y‖H1 + 1

2

∣∣X ′(u) − Y ′(u)
∣∣) ‖Y‖L2‖Y ′‖L2

and then

‖F(X)′ − F(Y )′‖L2

≤ ‖X − Y‖L2 + 1
2‖X ′‖2L2‖X − Y‖L2 + 1

2‖X ′‖L2‖Y‖L2‖X ′ − Y ′‖L2
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+const‖X ′‖L2‖Y‖L2‖Y ′‖L2‖X − Y‖H1 + 1
2‖X ′ − Y ′‖L2‖Y‖L2‖Y ′‖L2

≤ const‖X − Y‖H1 . (32)

Combining (30) and (32) gives the required estimate, there exists L such that

‖F(X) − F(Y )‖H1 ≤ L‖X − Y‖H1

for all X ,Y ∈ Qb. ��
Proof of Theorem 4.6 According to the generalised (to Banach space) Picard-Lindelöf
theorem in [34] (Theorem 3.A), the estimates in Lemma 4.8 guarantee existence and
uniqueness of a solution on the interval provided KT0 < b. ��

4.2.2 Global Existence

We may extend the existence interval by repeated applications of the Picard-Lindelöf
theorem from [34].

There are two issues to be resolved for this. First, the constants K and L from
Lemma 4.8 depend on the H1-norm of X0. When we attempt to continue the solution,
we must show that in the forward and backward time directions this norm does not
explode in finite time to +∞.

Second, the flow must remain within Qb for some b; as the evolution continues
forward, length is decreasing, and so the amount of time that we can extend depends
not only on the H1-norm of the solution but also the length bound from below. In the
backward time direction length is in fact increasing, so this second issue does not arise
there.

First, we study the L∞-norm of the solution.

Lemma 4.9 Let X be an H1(dsγ ) curve shortening flow defined on some interval
(−T , T ). Then ‖X(t)‖∞ is non-increasing on (−T , T ). Furthermore, we have the
estimate

‖X(t)‖∞ ≤ e−2t‖X(0)‖∞, for t < 0.

Proof In the forward time direction, we proceed as follows for the uniform bound. For
any t0 ∈ (−T , T ) there exists u0 such that ‖X(t0)‖∞ = |X(t0, u0)| and then

d

dt
|X(t, u)|2

∣∣∣∣
(t0,u0)

= 2〈X(t0, u0), Xt (t0, u0)〉

= −2|X(t0, u0)|2 − 2

〈
X(t0, u0),

∫
X(t0, s̃)G(s0, s̃)d s̃

〉

= −2‖X(t0)‖2∞ − 2

〈
X(t0, u0),

∫
X(t0, s̃)G(s0, s̃)d s̃

〉

≤ −2‖X(t0)‖2∞ + 2‖X(t0)‖2∞
∫

G(s0, s̃)d s̃

≤ 0.
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Now let t1 = sup{t ≥ t0 : ‖X(t)‖L∞ = |X(t, u0)|}. By the inequality above
‖X(t)‖∞ is non-increasing for all t ∈ [t0, t1), and by the continuity of X in t ,
limt→t1‖X(t)‖L∞ = ‖X(t1)‖L∞ . Since t0 was arbitrary, it follows that ‖X(t)‖∞
cannot increase at any t .

In the backward time direction, we need an estimate from below. Let us calculate
d

dt

(
et X(t, u)

) = et
(
(−X(t, u) + X(t, u)) −

∫
X(t, s̃)G(s, s̃) ds̃

)

= −et
∫

X(t, s̃)G(s, s̃) ds̃

so (u0 as before)
d

dt

(
e2t |X(t, u)|2)

∣∣∣∣
(t0,u0)

= −2e2t0
〈
X(t0, u0),

∫
X(t0, s̃)G(s0, s̃) ds̃

〉

≥ −2e2t0‖X(t0)‖2∞ = −2e2t0 |X(t0, u0)|2 .

Hence

d

dt

(
e4t |X(t, u)|2

) ∣∣∣∣
(t0,u0)

≥ 0

and integrating from t to 0 (assuming t < 0, and u0 changing as necessary) this
translates to

‖X(t)‖2∞ ≤ e−4t‖X(0)‖2∞.

This is the claimed estimate in the statement of the lemma. ��
Lemma 4.10 Let X be an H1(dsγ ) curve shortening flow defined on some interval
(−T , T ). Then ‖Xu(t)‖L2 is non-increasing on (−T , T ). Furthermore, we have the
estimate

‖Xu(t)‖L2 ≤ e−t‖Xu(0)‖L2 , for t < 0.

Proof As in (23)

Xtu = −Xu − |Xu(u)|
∫ L

0
Xs̃G ds̃

and therefore, recalling that
∫ L
0 |G(s, s̃)|ds̃ = 1,

d

dt

∫ 1

0
|Xu |2 du = 2

∫ 1

0
〈Xut , Xu〉 du

= −2
∫ 1

0
〈Xu, Xu〉 du − 2

∫ 1

0

〈

Xu, |Xu |
∫ L

0
Xs̃G ds̃

〉

du

≤ −2‖Xu‖2L2 + 2
∫ 1

0
|Xu |2

∫ L

0
|G| ds̃ du
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≤ 0 .

This settles the forward time estimate. As before, for the backward time estimate we
need a lower bound. We calculate

d

dt

(
e2t

∫ 1

0
|Xu |2 du

)
= 2e2t

∫ 1

0

〈

Xu, |Xu |
∫ L

0
Xs̃G ds̃

〉

du

≥ −2e2t‖Xu‖2L2 .

The same integration as in the backward time estimate for Lemma 4.9 yields the
claimed backward in time estimate. ��

The estimates of Lemmata 4.9, 4.10 yield the following control on the H1-norm of
the solution.

Corollary 4.11 Let X be an H1(dsγ ) curve shortening flow defined on some interval
(−T , T ). Then

‖X(t)‖2H1 ≤ ‖X(0)‖2H1 , for all t ∈ [0, T ),

and

‖X(t)‖2H1 ≤ ‖X(0)‖2H1e
−4t , for all t ∈ (−T , 0).

A similar technique allows us to show also that if the initial data for the flow is an
immersion, it remains an immersion.

Lemma 4.12 Let X be an H1(dsγ ) curve shortening flow defined on some interval
(−T , T ) with X(0) ∈ Imm1. Then X(t) ∈ Imm1 for all t ∈ (−T , T ).

Proof Using (23) we have

d

dt
|Xu |2 = 2〈Xut , Xu〉 = −2|Xu |2 − 2|Xu |〈Xu,

∫ L

0
Xs̃G ds̃〉. (33)

Now since
∫ L
0 Xs dsγ = 0 we have

∫ L

0
Xs(s̃)G dsγ =

∫ L

0
Xs(s̃)G(s, s̃)ds̃ − G(s, s)

∫ L

0
Xs(s̃) ds̃

=
∫ L

0
Xs(G(s, s̃) − G(s, s)) ds̃

=
∫ L

0
Xs

∫ s̃

s
Gτ (s, τ )dτds̃
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so using |Gs | ≤ 1
2 (cf. (28)) we find

∣∣∣∣

∫ L

0
Xs(s̃)G dsγ

∣∣∣∣ ≤
∫

1

2
|s − s̃| ds̃ ≤ L2/2. (34)

Using this estimate with (33) yields

(−2 − L2)|Xu | ≤ d

dt
|Xu |2 ≤ (−2 + L2)|Xu |2 . (35)

From dL
dt = −‖gradLX‖2

H1(dsγ )
we know thatL is non-increasing and so rearranging

the inequality on the left and multiplying by an exponential factor gives

0 ≤ d

dt

(
e(2+L(0)2)t |Xu |2

)
.

Now integrating from 0 to t > 0 gives

|Xu(0, u)|2e−(2+L(0)2)t ≤ |Xu(t, u)|2. (36)

Then since Xu is initially an immersion, it remains so for t > 0. The estimate backward
in time is analogous but we instead use the second inequality in (35) and integrate
from t < 0 to 0. The statement is

|Xu(0, u)|2e−(L(0)2−2)t ≤ |Xu(t, u)|2 (37)

for t < 0. ��
Corollary 4.13 Let X be an H1(dsγ ) curve shortening flow defined on some interval
(−T , T ) with T < ∞. Then there exists ε > 0 such that L(X(t)) > ε for all
t ∈ (−T , T ).

Proof For t ≥ 0, taking the square root in (36) and then integrating over u gives

L(0)e−(1+L(0)2/2)t ≤ L(t).

Since L(t) is non-increasing the result follows. ��
Theorem 4.14 Any H1(dsγ ) curve shortening flow defined on some interval (−T , T )

with T < ∞ may be extended to all t ∈ (−∞,∞).

Proof Take T to be the maximal time such that the flow X can be extended forward:
t ∈ (−T , T ). In view of Lemma 4.8 and Theorem 4.6, if T < ∞, then one or more
of the following have occurred:

• L(X(t)) ↘ 0 as t ↗ T ;
• ‖X(t)‖H1 → ∞ as t ↗ T .
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The first possibility is excluded by Corollary 4.13, and the second is excluded by
Corollary 4.11 (we use T < ∞ here). This is a contradiction, so we must have that
T = ∞.

The argument in the backward time direction is completely analogous: suppose T
is the maximal time such that the flow X can be extended backward: t ∈ (T , T ). If
T > −∞, then one or more of the following have occurred:

• L(X(t)) → 0 as t ↘ T ;
• ‖X(t)‖H1 → ∞ as t ↘ T .

The first possibility is excluded by the fact that the flow decreases length. The second
is excluded by Corollary 4.11 (we again use T > −∞ here). This is a contradiction,
so we must have that T = −∞. ��

Due to Lemma 4.12, Theorem 4.14 implies a similar statement for the H1(dsγ )

curve shortening flow on Imm1, on which space it is a legitimate gradient flow:

Corollary 4.15 For each X0 ∈ Imm1 there exists a unique eternal H1(dsγ ) curve
shortening flow X : S1 × R → R

2 in C1(R; Imm1) such that X(·, 0) = X0.

4.3 Convergence

In this subsection, we examine the forward in time limit for the flow. The backward
limit is not expected to have nice properties. One way to see this is in the H1(dsγ )

length of the tail of an H1(dsγ ) curve shortening flow. (We will see in Lemma 4.20
that the H1(dsγ ) length of any forward trajectory is finite.) For instance, a circle
evolving under the flow has radius r(t) = √

W (ec−2t ). The H1(dsγ ) length is larger
than the L2(dsγ ) length, and this grows (as t → −∞) linear in W (ec−2t ). This is not
bounded, and so in particular the H1(dsγ )-length of any negative tail is unbounded.
The H1(ds̄γ )-length of the negative time tail for the gradient flowof lengthwith respect
to the 2-homogeneous metric (see Eq. (10) and Remark 4.5) is similarly unbounded.

Throughout we let X : (−∞,∞) → H1(S1,R2) be a solution to the H1(dsγ )

curve shortening flow (15).Wewill prove limt→∞ X(t) exists and is equal to a constant
map. In order to use the H1(dsγ ) gradient (see Remark 4.2) we present the proof
for the case where X(t) is immersed, but the results can be extended to the flow in
H1(S1,R2) \ C as described in Remark 4.23 below.

It will be convenient to define K by

K (s) := cosh(|s| − L/2)

2 sinh(L/2)
, s ∈ [0,L],

so that G = −K (|s − s̃|), K (s) > 0 and
∫ L
0 K (s) ds = 1. We take the periodic

extension of K to all of R, which we still denote by K , and then

∫ L

0
K (s − s̃)ds =

∫ L−s̃

−s̃
K (s)ds = 1. (38)
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Define, for any γ ∈ H1(S1,R2),

(γ ∗ K )(s) :=
∫

S1
γ (s̃)K (s − s̃) ds̃.

This is a so-called ‘nonlinear’ (in γ ) convolution. We have the following version of
Young’s convolution inequality.

Lemma 4.16 For any γ ∈ H1(S1,R2) and K ,∗ as above, we have

‖γ ∗ K‖L2(dsγ ) ≤ ‖γ ‖L2(dsγ ) . (39)

Proof Write

|γ (s̃)||K (s − s̃)| =
(
|γ (s̃)|2|K (s − s̃)|

) 1
2 |K (s − s̃)| 12

then by the Hölder inequality and (38)

∫ L

0
|γ (s̃)||K (s − s̃)| ds̃γ ≤

(∫
|γ (s̃)|2|K (s − s̃)| ds̃γ

) 1
2

.

Hence

‖γ ∗ K‖2L2(dsγ )
≤

∫ (∫
|γ (s̃)||K (s − s̃)| ds̃

)2

dsγ

≤
∫ ∫

|γ (s̃)|2|K (s − s̃)| ds̃γ dsγ

≤
∫

|γ (s̃)|2
∫

|K (s − s̃)| dsγ ds̃γ

≤ ‖γ ‖2L2(dsγ )
.

��
The convolution inequality implies the following a-priori estimate in L2.

Lemma 4.17 Let X be an H1(dsγ ) curve shortening flow. Then ‖X(t)‖L2(dsγ ) is non-
increasing as a function of t .

Proof First note that since Gs = −Gs̃ we have

Xts = −Xs −
∫ L

0
XGs ds̃

X = −Xs −
∫ L

0
Xs(s̃)G dsX .

Then (using d
dt ds

X = 〈Xts, Xs〉 dsX ) we find

d

dt
‖X(t)‖2L2(dsγ )

= 2
∫ L

0
〈Xt , X〉 dsX +

∫ L

0
|X |2〈Xts, Xs〉dsX
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= −2
∫ L

0
|X |2 dsX − 2

∫ L

0

〈

X(s),
∫ L

0
X(s̃)G ds̃X

〉

dsX

−
∫ L

0
|X |2 dsX −

∫ L

0
|X |2

〈

Xs,

∫ L

0
Xs(s̃)G ds̃X

〉

dsX .

Hölder’s inequality and the convolution inequality (39) now yield

d

dt
‖X(t)‖2L2(dsγ )

≤ −3
∫ L

0
|X |2 dsX + 2

∫ L

0
|X ||X ∗ K | dsX

+
∫

|X |2
∫ L

0
|G| ds̃X dsX

≤ 0 .

��
Now we give a fundamental estimate for the H1(dsγ )-gradient of length along the

flow.

Lemma 4.18 Let X be an H1(dsγ ) curve shortening flow. There exists a constant
C > 0 depending on X(0) such that

‖gradH1(dsγ ) LX(t)‖H1(dsγ ) ≥ CL(X(t))
1
2 (40)

for all t ∈ [0,∞).

Proof From (2) and (14), if X is a solution of (15) then

d

dt
L(X) = dLX (− gradH1(dsγ ) LX )

=
∫ L

0
〈Xss(t, s), X(t, s) +

∫ L

0
X(t, s̃)G(s, s̃)ds̃〉dsX .

Integration by parts with (12) gives

d

dt
L(X) = −

∫ L

0
〈Xs, Xs〉dsX +

∫ L

0
〈X , X〉dsX

+
∫ L

0

∫ L

0
〈X(t, s), X(t, s̃)G(s, s̃)〉ds̃XdsX

= −L(X) −
∫ L

0
〈X , Xt 〉dsX . (41)

Since dL
dt = −‖ gradH1(dsγ ) LX‖2

H1(dsγ )
, we have

‖gradH1(dsγ ) LX‖2H1(dsγ )
= L −

∫ L

0

〈
X , gradH1(dsγ ) LX

〉
dsX
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≥ L − ‖X‖L2(dsγ )‖gradH1(dsγ ) LX‖L2(dsγ ) .

The inequality 2ab ≤ εa2 + 1
ε
b2 for all ε > 0 implies

L ≤ ε

2
‖X‖2L2(dsγ )

+
(

1

2ε
+ 1

)
‖gradH1(dsγ ) LX‖2H1(dsγ )

≤ ε

2
‖X‖2∞L +

(
1

2ε
+ 1

)
‖gradH1(dsγ ) LX‖2H1(dsγ )

.

Now Lemma 4.9 yields

L
(
1 − ε

2
‖X(0)‖2∞

)
≤

(
1

2ε
+ 1

)
‖gradH1(dsγ ) LX‖2H1(dsγ )

and choosing ε sufficiently small gives (40). ��
The gradient inequality immediately implies exponential decay of length.

Lemma 4.19 Let X be an H1(dsγ ) curve shortening flow. The length L(X(t)) con-
verges to zero exponentially fast as t → ∞.

Proof Using the gradient inequality (40) we have

−dL
dt

= ‖gradH1(dsγ ) LX‖2H1(dsγ )
≥ CL .

Integrating gives

L(t) ≤ L(0)e−Ct (42)

as required. ��
Another consequence of the gradient inequality is boundedness of the H1(dsγ )

length of the positive trajectory X .

Lemma 4.20 Let X be an H1(dsγ ) curve shortening flow. The H1(dsγ )-length of
{X(·, t) : t ∈ (0,∞)} ⊂ H1(S1,R2) is finite.

Proof From the gradient inequality (40)

d

dt
L = −‖gradH1(dsγ ) LX‖2H1(dsγ )

≤ −‖gradH1(dsγ ) LX‖H1(dsγ )‖Xt‖H1(dsγ )

≤ −CL 1
2 ‖Xt‖H1(dsγ )

i.e.

d

dt
(2L 1

2 ) ≤ −C‖Xt‖H1(dsγ )
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and therefore

2L(t)
1
2 − 2L(0)

1
2 ≤ −C

∫ t

0
‖Xt‖H1(dsγ ) dt , or

∫ t

0
‖Xt‖H1(dsγ ) dt ≤ 2L(0)

1
2

C
. (43)

Taking the limit t → ∞ in the above inequality, the left hand side is the length of the
trajectory X : [0,∞) → H1(S1,R2) measured in the H1(dsγ ) metric. ��

Now we conclude convergence to a point.

Theorem 4.21 Let X be an H1(dsγ ) curve shortening flow. Then X converges as
t → ∞ in H1 to a constant map X∞ ∈ H1(S1,R2).

Proof Recalling (21) we have |Xt | ≤ L and therefore

‖Xt‖2H1 =
∫

|Xt |2du +
∫

|Xtu |2du

≤ L2 +
∫

|Xtu |2du . (44)

Using Gs = −Gs̃ we have

Xts = −Xs −
∫ L

0
XGs ds̃

X = −Xs −
∫ L

0
Xs(s̃)G dsX

and then from (34)

|Xts | ≤ 1 +
∣∣∣∣∣

∫ L

0
Xs(s̃)G dsX

∣∣∣∣∣
≤ 1 + L(X)2

2
. (45)

Hence |Xtu | ≤ |Xu |(1 + L2/2). Recalling (35) and then (42)

(−2 − L(0)2e−2Ct )|Xu |2 ≤ d

dt
|Xu |2 ≤ (−2 + L(0)2e−2Ct )|Xu |. (46)

Using the second inequality, multiply by the integrating factor ep(t) where

p(t) :=
∫ t

0
2 − L2(0)e−2Cτdτ,

and integrate with respect to t to find

|Xu(t)|2 ≤ |Xu(0)|2e−p(t) ≤ |Xu(0)|2e−2t+c3
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for some constant c3. For future reference, we note that the same procedure can be
applied to the lower bound in (46) and then

|Xu(0)|2e−2t−c3 ≤ |Xu(t)|2 ≤ |Xu(0)|2e−2t+c3 . (47)

We therefore have

|Xtu | ≤ |Xu(0)|e−t+c(1 + L2/2)

and then referring back to (44):

‖Xt‖H1 ≤ L + ‖Xu(0)‖L2e−t+c(1 + L2/2) .

Using the gradient inequality (40) and monotonicity of L we obtain

‖Xt‖H1 ≤ c1‖Xt‖2H1(dsγ )
+ c2e

−t+c .

By integrating dL
dt = −‖Xt‖2H1(dsγ )

with respect to t we have

∫ ∞

0
‖Xt‖2H1(dsγ )

dt ≤ L(0).

Hence for all ε > 0 there exists tε such that
∫ ∞
t ‖Xt‖H1dt < ε for all t ≥ tε, and

since
∥∥∥∥X(t2) − X(t1)

∥∥∥∥
H1

=
∥∥∥∥

∫ t2

t1
Xt dt

∥∥∥∥
H1

≤
∫ t2

t1
‖Xt‖H1dt

it follows that Xt converges in H1 to some X∞. By (42) the length of X∞ is zero, i.e.
it is a constant map. ��
Remark 4.22 If (Imm1, H1(dsγ )) were a complete metric space then Lemma 4.20
would be enough to conclude convergence of the flow. However it is shown in [23]
section 6.1 that the H1(dsγ ) geodesic of concentric circles can shrink to a point in
finite time, so the space is not even geodesically complete. Indeed, Theorem 4.21
demonstrates convergence of the flow with finite path length to a point outside Imm1,
proving again that (Imm1, H1(dsγ )) is not metrically complete.

Remark 4.23 To see that the convergence result above holds for initial data X(0) ∈
H1(S1,R2)\C, the main point is to establish equation (41). To do this we can approx-
imate by C2 immersions, as it follows from eg. Theorem 2.12 in [16] that these are
dense in H1(S1,R2). Given X(t0) ∈ H1(S1,R2) \ C we let Xε(t0) be an immersion
such that ‖X(t) − Xε(t)‖H1 ≤ ε for t in a neighborhood of t0. Then following (41)
we have

dL(X)

dt
:= lim

ε→0

(

−L(Xε) −
∫ L

0
〈Xε, (Xε)t 〉dsX

)

.

123



297 Page 34 of 49 P. Schrader et al.

The limit exists because all the terms are bounded by ‖Xε‖H1 (for (Xε)t this follows
from (29)). Similarly dL(X)

dt = −‖F(X)‖2
H1 and we proceed with the rest of the proofs

by writing F(X) or Xt in place of − gradH1(dsγ ) LX .

5 Shape Evolution and Asymptotics

5.1 Generic Qualitative Behavior of the Flow

Computational experiments indicate that the flow tends to reshape the initial data,
gradually rounding out corners and improving regularity. However the scale depen-
dence of the flow introduces an interesting effect: when the length becomes small, the
‘reshaping power’ seems to run out and curves shrink approximately self-similarly,
preserving regions of low regularity. This means that corners of small polygons persist
whereas corners of large polygons round off under the flow (cf. Figure1).

Heuristically, this is because of the behavior of G as L → 0. If we Taylor expand

G(s, s̃) ≈ − 1

2 sinh(L/2)

(
1 + 1

2! (|s − s̃| − L/2)2 + · · ·
)

since |s − s̃| ≤ L, the constant term dominates when L is small. Then

Xt ≈ −X +
∫ L

0

X

2 sinh(L/2)
ds = −X + L

2 sinh(L/2)
X̄

and limL→0
L

2 sinh(L/2) = 1 so each point on the curve moves toward its center.

5.2 Remarks on the Numerical Simulations

The numerical simulations were carried out in Julia using a basic forward Euler
method. Curves are approximated by polygons. For initial data we take an ordered list
of vertices Xi in R2 of a polygon and the length of X is of course just the perimeter of
the polygon. The arc length si at Xi is the sum of distances between vertices up to Xi

and for the arc-length element dsi we use the average of the distance to the previous
vertex and the distance to the next vertex. The Green’s function is then calculated at
each pair of vertices:

Gi j (X) = −cosh(|si − s j | − L(X)/2)

2 sinh(L(X)/2)

and the flow velocity Vi at Xi is

Vi = −Xi −
∑

j

X jGi j (X)ds j
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The new position X̃i of the vertex Xi is calculated by forward-Euler with timestep
h: X̃i = Xi + hVi . No efforts were made to quantify errors or test accuracy, but the
results appear reasonable and stable provided time steps are not too large and there are
sufficiently many vertices. A Jupyter notebook containing the code is available online
[27].

5.3 Evolution and Convergence of an Exponential Rescaling

Definition Let X : [0,∞) → H1(S1,R2) \ C be a solution to the H1(dsγ ) curve
shortening flow (15). We define the asymptotic profile Y of X as

Y (t, u) := et (X(t, u) − X(t, 0)) .

We anchor the asymptotic profile so that Y (t, 0) = 0 for all t . This is not only
for convenience; if the final point that the flow converges to is not the origin, then an
unanchored profile Ỹ = et X would simply disappear at infinity and not converge to
anything.

The aim in this section is to prove that the asymptotic profile converges. Simulations
indicate that there are a variety of possible shapes for the limit (oncewe know it exists);
numerically, even a simple rescaling of the given initial data may alter the asymptotic
profile. As in the previous section we present the results under the assumption that
X is a flow of immersed curves, but they can be extended to H1(S1,R2) \ C by the
method described in Remark 4.23.

We will need the following refinement of the gradient inequality.

Lemma 5.1 Let X be an H1(dsγ ) curve shortening flow. For any α ∈ (0, 1) there
exists tα such that

‖gradH1(dsγ ) LX‖2H1(dsγ )
≥ αL(X)

for all t ≥ tα .

Proof We abbreviate the gradient to gradLX in order to lighten the notation. Equation
(21) implies

‖gradLX‖L1(dsγ ) ≤ L(X)2 (48)

and therefore from (41) and dL
dt = −‖ gradL(X)‖2

H1(dsγ )
:

‖gradLX‖2H1(dsγ )
= L −

∫ L

0
〈X , gradLX 〉 dsX

≥ L − ‖X‖∞‖gradLX‖L1(dsγ )

≥ L − ‖X(0)‖∞L2
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where we have also used Lemma 4.9. Now using (42)

‖gradLX‖2H1(dsγ )
≥ (1 − ‖X(0)‖∞L(0)e−Ct )L(t).

If α ≥ 1 − ‖X(0)‖∞L(0) we can find the required tα by solving α = 1 −
‖X(0)‖∞L(0)e−Ctα , otherwise tα = 0. ��

We also need an upper bound for the gradient in terms of length.

Lemma 5.2 For X ∈ H1(S1,R2),

‖gradLX‖2H1(dsγ )
≤ L(X) + 2L(X)3 + L(X)5

4
. (49)

Proof From (21) we have

‖gradLX‖2L2(dsγ )
≤ L3 .

Then (45) implies

‖(gradLX )s‖2L2(dsγ )
≤

∫ (
1 + L2

2

)2

ds ≤ L + L3 + L5

4

and the result follows. ��
We now prove convergence of the asymptotic profile along a subsequence of times

– sometimes this is called subconvergence.

Theorem 5.3 Let X be an H1(dsγ ) curve shortening flow and Y its asymptotic profile.
There is a non-trivial Y∞ ∈ C0(S1,R2) such that Y (t) has a convergent subsequence
Y (ti ) → Y∞ in C0 as i → ∞.

Proof We will show that Y (t) is eventually uniformly bounded in H1. First we claim
that there exist constants c0, c1 > 0 and t0 < ∞ such that

c0 < L(Y (t)) < c1 for all t > t0. (50)

For the upper bound, from L(Y ) = etL(X), (41) and (48)

d

dt
L(Y ) = etL(X) + et

d

dt
L(X) = et

∫ L(X)

0
〈X , gradLX 〉 dsX

≤ ‖X(t)‖∞etL(X)2 ≤ ‖X(0)‖∞etL(X)2. (51)

From Lemma 5.1, for any α ∈ (0, 1) there exists tα such that

d

dt
L(X) ≤ −αL(X), t ≥ tα
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hence L(X(t)) ≤ L(X(tα))e−αt for t > tα. Using this in (51) with eg. α = 3
4 ,

d

dt
L(Y ) ≤ ce− t

2 , t ≥ t3/4

where c is a constant depending on X(0) and L(X(t3/4)). Integrating from t3/4 to t
gives

L(Y (t)) ≤ L(Y (t3/4)) + 2ce−t3/4/2 − 2ce−t/2 (52)

which gives an upper bound forL(Y (t)) for t ≥ t3/4. For the lower bound the estimate
(49) gives

− d

dt
L(X) ≤ L(X) + 2L(X)3 + L(X)5

4
.

Let tβ be such that L(X(t)) < 1 for all t > tβ . (From (42) we can find tβ by solving
1 = L(0)e−Ctβ .)

Then also using the gradient inequality (40) there is a constant c such that

d

dt
L(X) ≥ −L(X) − cL(X)‖gradLX‖2H1(dsγ )

t > tβ.

Recalling (49), this implies (t > max{tβ, t3/4})
d

dt
(etL(X)) ≥ −cetL(X)‖gradLX‖2H1(dsγ )

≥ −ĉetL2(X) ≥ c̃e− 1
2 t .

Integrating with respect to t , there is a constant c0 such that

L(X) ≥ c0e
−t , t > max{tβ, t3/4}

and therefore L(Y ) ≥ c0 for all t > tβ . Choosing t0 to be the greater of t3/4, tβ , we
have established the claim (50). We claim also that

‖Y‖L2 ≤ c1, t > t0. (53)

To see this, note that by the Fundamental Theorem of Calculus followed by the Hölder
inequality applied to each component of Y :

|Y |2 ≤ L
∫ L(Y )

0
|Ys |2dsY = L2(Y )

and so (50) gives ‖Y‖L2 ≤ c1.
Multiplying (47) by e2t gives

|Xu(0, u)|2e−c3 ≤ |Yu(t, u)|2 ≤ |Xu(0, u)|2ec3 . (54)
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We therefore have a uniform bound on ‖Yu‖L p for 1 ≤ p ≤ ∞ in terms of ‖Xu(0)‖L p .
In particular, if X(0) ∈ H1 we have a uniform H1 bound for Y and then by the Arzela-
Ascoli theorem there is a sequence (ti ) and a Y∞ ∈ W 1,∞ such that Y (ti ) → Y∞ in
C0 (cf. [19] Theorems 7.28, 5.37 and the proof of 5.38). ��

This result can be quickly upgraded to full convergence using a powerful decay
estimate.

Theorem 5.4 Let X be an H1(dsγ ) curve shortening flow and Y its asymptotic profile.
There is a non-trivial Y∞ ∈ H1(S1,R2) such that Y (t) → Y∞ in C0 as t → ∞.

Proof For the evolution of Y we calculate

Yt (t, u) =
∫

Y (t, ũ)(G(X; 0, sX (ũ)) − G(X; sX (u), sX (ũ)))|Xũ | dũ.

The 1
2 -Lipschitz property for G (from (28)) implies that

∣∣(G(X; 0, sX (ũ)) − G(X; sX (u), sX (ũ)))
∣∣ ≤ 1

2
|sX (u)| ≤ 1

2
L(Y (t))e−t ≤ ce−t ,

by the estimate (52) in Theorem 5.3. The estimates in the proof of Theorem 5.3 include
||Y ||∞ ≤ c. Using these we find

|Yt (t, u)| =
∣∣∣∣

∫
Y (t, ũ)(G(X; 0, sX (ũ)) − G(X; sX (u), sX (ũ)))|Xũ | dũ

∣∣∣∣

≤ ce−2t ||Y ||∞L(Y (t)) ≤ ce−2t .

Exponential decay of the velocity implies full convergence by a standard argument
(a straightforward modification to C0 of the C∞ argument in [3, Appendix A] for
instance). ��

The convergence result (Theorem 5.4) applies in great generality. If the initial data
X0 is better than a generic map in H1(S1,R2) \ C, for instance if it is an immersion,
has well-defined curvature, or further regularity, then this is preserved by the flow.
That claim is proved in the next section (see Theorem 5.6). In these cases, we expect
the asymptotic profile also enjoys these additional properties. This is established in
the C2 space in the section following that (see Theorem 5.7).

Remark 5.5 The asymptotic shape is very difficult to determine, in particular, it is not
clear if there is a closed-form equation that it must satisfy. As mentioned earlier, we
see this in the numerics. We can also see this in the decay of the flow velocity Yt .
It decays not because the shape has been optimised to a certain point, but simply
because sufficient time has passed so that the exponential decay terms take over. The
asymptotic profile of the flow is effectively constrained to a tubular neighborhood of
Y (0).
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5.4 The H1(ds�)-Flow in Immk Spaces

Observe from (21) and (23) that if γ ∈ C1 then gradLγ is alsoC1.Wemight therefore
consider the flow with Imm1 initial data as an ODE on Imm1 (instead of H1(S1,R2)\
C). In fact the same is true for Imm2 ( and moreover Immk) as we now demonstrate.

Assume X ∈ C2 is an immersion, then

Guu = ∂u(|Xu |Gs) = |Xu |2Gss − 〈Xuu, Xs〉Gs (55)

and using Gss = Gs̃s̃ as well as integrating by parts we obtain

(gradLX )uu = Xuu +
∫

XGuu ds̃

= Xuu + |Xu |2
∫

Xs̃s̃G ds̃ − 〈Xuu, Xs〉
∫

Xs̃G ds̃X . (56)

Now from

Xss = Xuu

|Xu |2 − 〈Xuu, Xu〉 Xu

|Xu |4 (57)

we have that ‖Xss‖∞ is bounded provided |Xu | is bounded away from zero for all u.
Assuming this is the casewe have furthermore from (56) that |(gradLX )uu | is bounded
and gradLX ∈ C2.Wemay therefore consider the flow as anODE in Imm2. Short time
existence requires a C2 Lipschitz estimate. One can estimate ‖gradLX − gradLY ‖C1

much the same as in Lemma 4.8. From (56) and product expansions as in Lemma 4.8:

|(gradLX )uu − (gradLY )uu | ≤ |Xuu − Yuu | + c1| |Xu |2 − |Yu |2| + c2|Xss − Yss |
+ c3|G(X) − G(Y )| + c4|Xuu − Yuu | + c5|Xs − Ys | .

The result now follows from the Lipschitz estimate for G, together with estimates
|Xs − Ys | ≤ c|Xu − Yu | and |Xss − Yss | ≤ c|Xuu − Yuu | which also follow from
product expansions using eg (57).

It follows from (47) that if X(0) isC1, then X(t) isC1 for all t < ∞, and moreover
|Xu(t)| is bounded away from zero for all t < ∞, so we have global existence for the
C1 flow.

Suppose X(t) is C2 for a short time, then from (56)
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d

dt
|Xuu |2 = −2|Xuu |2 − 2|Xu |2

〈
Xuu,

∫
Xs̃s̃G ds̃X

〉

+ 2〈Xuu, Xs〉
〈
Xuu,

∫
Xs̃G ds̃X

〉
.

From (57) notice |Xss | ≤ 2|Xuu | |Xu |−2 and therefore

d

dt
|Xuu |2 ≤ 2|Xuu | (c‖Xuu‖∞ + |Xuu |)

where c = ‖Xu‖∞ supu |Xu |−1. Supposing that at time t0, ‖Xuu‖∞ is attained at u0,
it follows that

d

dt
|Xuu |(u0, t0) ≤ c|Xuu |(u0, t0)

and therefore ‖Xuu(u0, t)‖ ≤ ect . By the short time existence ‖Xuu‖∞ is continuous
in t , so in fact

‖Xuu‖∞ ≤ ect

and we have global C2.
For the Immk case there is little that is novel and much that is tedious. Claim:

∂kuG = |Xu |k∂ks G − 〈∂ku X , Xs〉Gs +
k−1∑

i

Pi (Xu, . . . , ∂
k−1
u X)∂ isG (58)

where each Pi is polynomial in the derivatives of X up to order k − 1. From (55) this
is true for k = 2. Assuming it is true for k we have

∂kuG = |Xu |k+1∂k+1
s G + k|Xu |k−2〈Xuu, Xu〉∂ks G − 〈∂k+1

u X , Xs〉Gs

− 〈∂ku X , Xss〉|Xu |Gs − 〈∂ku X , Xs〉|Xu |Gss + ∂u

(
k−1∑

i

Pi∂
i
sG

)

= |Xu |k+1∂k+1
s G − 〈∂k+1

u , Xs〉Gs +
k∑

i

P̃i∂
i
sG

where each P̃i is polynomial in the derivatives of X up to order k. From (58) and
∂ks G = −∂ks̃ G we can calculate ∂ku (gradLX ) and observe that if X is in Immk then so
is gradLX . We may therefore consider the gradient flow as an ODE in Immk . Short
time existence requires aCk Lipschitz estimate. We claim that such an estimate can be
proved inductively using using ∂ku (gradLX ) by similar methods to those used above
for the C2 case, except with longer product expansions. As it is the same technique
but only with a longer proof, we omit it.

In summary, we have:
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Theorem 5.6 Let k ∈ N be a natural number. For each X0 ∈ Immk there exists a
unique eternal H1(dsγ ) curve shortening flow X : S1 × R → R

2 in C1(R; Immk)

such that X(·, 0) = X0.

5.5 Curvature Bound for the Rescaled Flow

In this subsection, we study the H1(dsγ ) curve shortening flow in the space of C2

immersions. This means that the flow has a well-defined notion of scalar curvature.
Note that while the arguments in the previous section show that the C2-norm of X is
bounded for all t , they do not show that this bound persists through to the limit of the
asymptotic profile Y∞. They need to be much stronger for that to happen: not only
uniform in t , but on X they must respect the rescaling factor.

The main result in this section (Theorem 5.7) states that this is possible, and that
the limit Y∞ of the asymptotic profile in the C2-space enjoys C2 regularity, being an
immersion with bounded curvature.

We start with the commutator of ∂s and ∂t along the flow X(t, u). Given a differ-
entiable function f (u, t):

fst = −〈Xut , Xu〉
|Xu |2

fu + 1

|Xu | fut = fts − 〈Xts, Xs〉 fs . (59)

From Xss = kN we have Xsst = kNt + kt N and then using 〈Nt , N 〉 = 0,

kt = 〈Xsst , N 〉.

Applying (59) twice

Xsst = Xsts − 〈Xts, Xs〉Xss

= (Xts − 〈Xts, Xs〉Xs)s − 〈Xts, Xs〉Xss

= Xtss − 〈Xtss, T 〉T − 〈Xts, kN 〉T − 2〈Xts, T 〉kN

and then

kt = 〈Xtss, N 〉 − 2k〈Xts, T 〉
= −〈(gradLX )ss, N 〉 + 2k〈(gradLX )s, T 〉
= −k − 〈gradLX , N 〉 + 2k〈T + T ∗ G, T 〉
= k − 〈gradLX , N 〉 + 2k〈T ∗ G, T 〉

where (gradLX )ss − gradLX = kN (from (11)) and gradLs = T + T ∗G have been
used. Therefore

d

dt
k2 = 2k2 − 2〈gradLX , kN 〉 + 4k2〈T ∗ G, T 〉. (60)
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Now letting

ϕ(t) := k2Y = e−2t k2

using (21) and (34) to estimate (60), we find

ϕ′(t) ≤ 2e−2t (|k|L + k2L2) ≤ 2e−2t + 5

2
L2ϕ(t).

Note that in the second inequality we used a ≤ 1+ a2/4, which holds for any a ∈ R.
Integration gives

|ϕ(t)| ≤ c1 +
∫ t

0
cL2|ϕ|dτ

and so by the Bellman inequality ( [26] Thm. 1.2.2)

ϕ(t) ≤ ce
∫ t
0 L2 dτ .

Since L(X) decays exponentially (42), we have that ϕ is uniformly bounded.
This gives stronger convergence for Y in the case of C2 data, and we conclude the

following. (Note that the fact Y∞ is an immersion followed already from (54).)

Theorem 5.7 Let X be an H1(dsγ ) curve shortening flow with X(0) ∈ Imm2, and Y
its asymptotic profile. There is a non-trivial Y∞ ∈ Imm2 such that Y (t) → Y∞ in C0

as t → ∞. That is, the asymptotic profile converges to a unique limit that is immersed
with well-defined curvature.

5.6 Isoperimetric Deficit

The goal of the remaining sections of the paper is to prove the following.

Theorem 5.8 Let k ∈ N0 be a non-negative integer. Set B to H1(S1,R2) \C for k = 0
and otherwise set B to Ck(S1,R2) \ C. For each X0 ∈ B there exists a non-trivial
Y∞ ∈ H1(S1,R2) \ C such that the asymptotic profile Y (t) → Y∞ in C0 as t → ∞.

Furthermore:

• Y∞ is embedded if at any t ∈ (0,∞) the condition (6) was satisfied for X(t)
• If k ≥ 2, and X(0) is immersed, then Y∞ is immersed with bounded curvature
• There is a constant c = c(‖X(0)‖∞) such that the isoperimetric deficit of Y∞
satisfies

DY∞ ≤ cDX(0).

In this section, we show that the isoperimetric deficit of the limit of the asymptotic
profile Y∞ is bounded in terms of the isoperimetric deficit of X0. This is in a sense
optimal, because of the great variety of limits for the rescaled flow, it is not reasonable
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to expect that the deficit always improves. Indeed, numerical evidence suggests that
the deficit is not monotone under the flow. Nevertheless, it is reasonable to hope that
the flow does not move the isoperimetric deficit too far from that of the initial curve,
and that’s what the main result of this section confirms.

5.6.1 Area

We start by deriving the evolution of the signed enclosed area. Using (59) we find

Xst = Xts − 〈Xts, Xs〉Xs = Xts − 〈Xts, T 〉T .

Differentiating 〈N , T 〉 = 0 and 〈N , N 〉 = 1 with respect to t yields

〈Nt , T 〉 = −〈N , Xst 〉 , and

〈Nt , N 〉 = 0 .

Therefore

Nt = −〈N , Xst 〉T = −〈N , Xts〉T . (61)

Using the area formula A = − 1
2

∫ L
0 〈X , N 〉dsX , and dsX = |Xu |du implies d

dt ds
X =

〈Xts, Xs〉dsX , we calculate the time evolution of area as

d A

dt
= −1

2

∫ L

0
〈Xt , N 〉 + 〈X , Nt 〉 + 〈X , N 〉〈Xts, Xs〉dsX

= −1

2

∫ L

0
〈Xt , N 〉 − 〈X , T 〉〈N , Xts〉 + 〈X , N 〉〈Xts, Xs〉dsX

= −1

2

∫ L

0
〈Xt , N 〉 + 〈Xts, 〈X , N 〉T − 〈X , T 〉N 〉dsX .

Now since ∂s (〈X , N 〉T − 〈X , T 〉N ) = −N , integration by parts gives

d A

dt
= −

∫ L

0
〈Xt , N 〉dsX . (62)

5.6.2 Estimate for the Deficit

Consider the isoperimetric deficit

D := L2 − 4π A.

From d
dtL = ∫ 〈kN , gradLX 〉ds and (62) we find

d

dt
D =

∫
(2Lk − 4π)〈N , gradLX 〉 dsX .
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With the gradient in the form

gradLX =
∫

(X(s̃) − X(s))G(s, s̃) ds̃X

we use the second order Taylor approximation

G = −1

2 sinh(L/2)

(
1 + 1

2
(|s − s̃| − L/2)2 + o(L4)

)
.

Note that
∫
X(s̃) − X(s)ds̃ = L(X̄ − X(s)) and moreover

∫
(2Lk − 4π)〈N ,L(X − X̄)〉 dsX = −2LD

where the X̄ term vanishes because kN and N are both derivatives and LX̄ is inde-
pendent of s. Hence

d

dt
D = 1

2 sinh(L/2)

(

−LD
(

2 + L2

8

)

−
∫

(2Lk − 4π)〈N ,

∫
(X(s̃) − X(s))

(
1

2
|s − s̃|2 − L|s − s̃| + o(L4)

)
ds̃X dsX

)
.

For the terms involving k we have, for example,

∫ 〈
LkN ,

∫
(X(s̃) − X(s))(s − s̃)2ds̃X

〉
dsX

= −
∫ 〈

LT ,

∫
2(X(s̃) − X(s))(s − s̃) − T (s)(s − s̃)2 ds̃X

〉
dsX

and therefore we estimate

d

dt
D ≤ 1

2 sinh(L/2)

(
−LD

(
2 + L2

8

)
+ o(L5)

)

Because L
2 sinh(L/2) ≤ 1 and D ≥ 0, we have

d

dt
D ≤ − L

2 sinh(L/2)
2D + o(L4).

For the isoperimetric deficit DY of the asymptotic profile Y , we have

DY = e2tD,
d

dt
DY = e2t

d

dt
D + 2DY
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hence

d

dt
DY ≤ 2DY

(
1 − L

2 sinh(L/2)

)
+ o(L4)e2t .

From Lemma 5.1 we can take t ≥ t3/4 such that o(L4)e2t decays like e−t for
t > t3/4. If 3

4 ≥ 1 − ‖X(0)‖∞L(0) we can find the required t3/4 by solving
3
4 = 1− ‖X(0)‖∞L(0)e−Ct3/4 , otherwise t3/4 = 0. The constant C is from the gradi-
ent inequality and also depends on ‖X(0)‖∞. Therefore the estimate for the integral
of the extra terms depends only on X(0).

Integrating with respect to t gives

DY ≤ DY (0)c(X(0))e
∫ t
t3/4

1− L
2 sinh(L/2) dτ

.

The Taylor expansion for x �→ x/(2 sinh(x/2)) yields

DY ≤ DY (0)c(X(0))e
∫ t
t3/4

L2
24 +o(L4) dτ

.

Now using again the exponential decay of L we find

DY ≤ c(X(0))DX (0).

Summarising, we have:

Proposition 5.9 Let X be an H1(dsγ ) curve shortening flow and Y its asymptotic
profile. There is a non-trivial Y∞ ∈ H1(S1,R2) such that Y (t) → Y∞ in C0 as
t → ∞. Furthermore, there is a constant c = c(‖X(0)‖∞) such that the isoperimetric
deficit of Y∞ satisfies

DY∞ ≤ cDX(0).

5.7 A Chord-Length Estimate and Embeddedness

The purpose of this section is to finish the proof of the following:

Theorem 5.10 Let k ∈ N. For each X0 ∈ Immk there exists a unique eternal H1(dsγ )

curve shortening flow X : S1 × R → R
2 in C1(R; Immk) such that X(·, 0) = X0.

Furthermore, suppose X0 satisfies

inf
u1,u2∈S

Ch(u1, u2, 0)

S(u1, u2, 0)
>

L2
0

√
2 + ‖X0‖2∞

4
e

L20

√
2+‖X0‖2∞
4

where

Ch(u1, u2, t) := |X(u1, t) − X(u2, t)| and S(u1, u2, t) := |sX(·,t)(u1) − sX(·,t)(u2)|.

123



297 Page 46 of 49 P. Schrader et al.

Then there exists a C = C(X0) > 0 such that

inf
u1,u2∈S

Ch(u1, u2, t)

S(u1, u2, t)
> C

for all t .
In particular X (as well as its asymptotic profile and limit Y∞) is a family of

embeddings.

What remains is to prove that if the flow is sufficiently embedded (relative to total
length) at any time, it must remain embedded for all future times. Note that this holds
also for the asymptotic profile (the chord-arc ratio is scale-invariant).

We achieve this via a study of the squared chord-arc ratio:

φ := Ch2
S2 .

Let us fix u1, u2 (with u1 < u2) in the below, where we will often write simply Ch and
S. Note for later that S = ∫ u2

u1
|∂u X | du = ∫ s2

s1
dsX . Recalling that

Xt = −X −
∫

XG ds̃X = −X + X̄ −
∫

(X − X̄)G ds̃X

we find

d

dt
Ch2 = −2Ch2 − 2

〈
X(u1) − X(u2),

∫
(X − X̄)(G(s1, s) − G(s2, s)) ds̃

X
〉

and define

Q0 :=
〈
X(u1) − X(u2),

∫
(X − X̄)(G(s1, s) − G(s2, s)) ds̃

X
〉

so that

Ċh = −Ch − 1

Ch Q0.

Since we have S = ∫ s2
s1

dsX and d
dt ds

X = 〈Xts, Xs〉dsX we obtain

Ṡ =
∫ s2

s1
〈−T − T ∗ G, T 〉dsX = −

∫ s2

s1
dsX −

∫ s2

s1
〈T ∗ G, T 〉dsX .

Now let

Q1 :=
∫ s2

s1
〈T ∗ G, T 〉dsX
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and then

Ṡ = −S − Q1.

Therefore the time evolution of the squared chord-arc ratio is given by

φ̇ = 2ChĊh
S2 − 2

C2Ṡ
S3 = 2φ

Ċh
Ch − 2φ

Ṡ
S = −2φ

Q0

Ch2 + 2φ
Q1

S .

Using the estimates (that follow via Poincaré and (34))

|Q0| ≤ L2

2
ChS

|Q1| ≤ L2

2
S

and recalling the length decay estimate (42) we see that

d

dt
φ = −2φ

Q0

Ch2 + 2φ
Q1

S
≥ −L2

√
φ(1 + √

φ) .

Therefore

√
φ

′ ≥ −1

2
L2

√
φ − 1

2
L2.

Lemma 4.19, and choosing the appropriate ε in the proof of Lemma 4.18, implies that

L(t) ≤ L(0)e−β(X0)t

where β(X0) = 1/
√
2 + ‖X0‖2∞.

Now let us impose the following hypothesis on X0:

inf
u1,u2∈S

√
φ(u1, u2, 0) >

L2
0

4β(X0)
e

L20
4β(X0) . (63)

We calculate

d

dt

(
e
1
2

∫ t
0 L2(τ ) dτ

√
φ

)
≥ e

1
2

∫ t
0 L2(τ ) dτ

(
− 1

2
L2

)

≥ −1

2
L2
0e

−2β(X0)t+ 1
2

∫ t
0 L2

0e
−2β(X0)τ dτ

≥ −1

2
L2
0e

−2β(X0)t+ L2
0

4β(X0) = −1

2
L2
0e

L2
0

4β(X0) e−2β(X0)t .

123



297 Page 48 of 49 P. Schrader et al.

Integration gives

e
1
2

∫ t
0 L2(τ ) dτ

√
φ ≥ √

φ0 − L2
0

4β(X0)
e

L2
0

4β(X0) .

By hypothesis (63) the RHS is positive, and so the function
√

φ can never vanish. In
fact, as L decays exponentially, φ is uniformly bounded from below by a constant
depending on X0.

Since the chord-arc length ratio is scale-invariant, the same is true for the asymp-
totic profile Y . Moreover, the hypothesis (63) may be satisfied simply by scaling any
embedded initial data (again, φ is scale-invariant, but the RHS of (63) is not).

Thus (keeping in mind Theorem 5.6) we conclude Theorem 5.10. Moreover The-
orem 5.7, Proposition 5.9 and Theorem 5.10 complete the proof of Theorem 5.8.
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