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Abstract
For the special linear group SL2(C) and for the singular quadratic Danielewski surface
xy = z2 we give explicitly a finite number of complete polynomial vector fields
that generate the Lie algebra of all polynomial vector fields on them. Moreover, we
give three unipotent one-parameter subgroups that generate a subgroup of algebraic
automorphisms acting infinitely transitively on xy = z2.
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1 Introduction

Several notions have been introduced to quantify that the automorphism group of a
Stein/affine manifold is “large”. Around 2000, Varolin coined the notion of the density
property (see Sect. 2 for details). One of the implications of the density property is the
existence of finitely many complete holomorphic vector fields that span the tangent
space Tx X in every point x ∈ X , which implies transitivity of the group action. In
fact, one can show that the group of holomorphic automorphisms acts m-transitively
for any m ∈ N which is called infinite transitivity. The notion of infinite transitivity
was introduced in 1999 by Kaliman and Zaidenberg [18] in the algebraic category. We
extend the definition to singular spaces:
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Definition 1 Let X be a complex variety and let G be group acting on X through
(algebraic or holomorphic) automorphisms, then we call the action of G infinitely
transitive if G acts on the regular part Xreg m-transitively for any m ∈ N.

In the algebraic category, the situation is slightly different; in particular, flows
of complete algebraic vector fields need not be algebraic. Hence, the notion of the
density property does not help in the study of algebraic automorphisms. Arzhantsev
et al. introduced the notion of flexibility in 2013:

Definition 2 [7] A regular point x ∈ Xreg is called flexible if the tangent space Tx X is
spanned by the tangent vectors to the orbits Hx of one-parameter unipotent subgroups
H ⊆ Aut(X). A complex variety X is called flexible if every regular point x ∈ Xreg
is flexible.

One of their main results [[7], Theorem 0.1] implies that the group of algebraic auto-
morphisms of a flexible variety acts infinitely transitively.

The question whether one can find finitely many one-parameter unipotent sub-
groups that generate a subgroup of automorphisms acting infinitely transitively was
first studied by Arzhantsev, Kuyumzhiyan and Zaidenberg [8] for toric varieties. For
C
n, n ≥ 2, they showed that three one-parameter unipotent subgroups are sufficient.

This was shown independently by the author using a different approach [6]; in the
context of the volume density property, it seems natural instead to find finitely many
complete vector fields with algebraic flows that generate the Lie algebra of all volume
preserving algebraic vector fields. Similarly, one can consider the question of find-
ing finitely many complete vector fields that generate the Lie algebra of all algebraic
vector fields. In this case, the flows won’t necessarily be algebraic anymore.

In this article, we focus on the question of generating the Lie algebra of all poly-
nomial vector fields on the affine varieties SL2(C) and xy = z2. The corresponding
one-parameter subgroups then generate a group that acts infinitely transitively. In
Sect. 2 we provide the necessary tools and the theoretical background.

In Sect. 3 we consider the special linear group SL2(C). Theorem 14 gives explicitly
four complete vector fields that generate the Lie algebra of all polynomial vector fields
on SL2(C).

In Sect. 4 we consider the singular quadratic Danielewski surface {(x, y, z) ∈ C
3 :

xy = z2} which is a normal surface and also a toric variety; it has one isolated singu-
larity at the origin. First, Theorem 19 gives explicitly four complete vector fields that
generate a certain Lie sub-algebra which is smaller than the Lie algebra of polynomial
vector fields, but its flows nonetheless approximate holomorphic automorphisms that
are isotopic to the identity and fix the origin to a certain order. The group generated
by these four flows acts infinitely transitively on the regular locus. Second, Theo-
rem 26 gives explicitly five complete vector fields that generate the Lie algebra of all
polynomial vector fields on {(x, y, z) ∈ C

3 : xy = z2}.
In Sect. 5 we revisit the same surface again, this time focusing on algebraic auto-

morphisms, but no longer on generating the whole polynomial Lie algebra of vector
fields. Our motivation is that [[8], Theorem 5.20] only applies to toric varieties that are
smooth in codimension 2, which does not cover the case of the quadric x · y = z2. In
Theorem31wegive three unipotent one-parameter subgroups that generate a subgroup
of the algebraic automorphisms acting infinitely transitively on x · y = z2.
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As a side note, we remark that the latter proof involves some tools from analysis
such as the implicit function theorem to prove a purely algebraic result.

Questions Can we find finitely many complete polynomial vector fields that generate
the Lie algebra of all polynomial vector fields on

(1) smooth Danielewski surfaces {(x, y, z) ∈ C
3 : xy = p(z)} where p : C → C is

a polynomial with simple roots,
(2) singular quadrics {(z1, z2, . . . , zn) ∈ C

n : z21 + z22 + · · · + z2n = 0}, and
(3) other simple Lie groups than SL2(C)?

Note that the defining equation in Question (2) is equivalent to xy = z2 by a linear
change of coordinates if n = 3.

2 Background and Tools

Definition 3 Let X be a complex variety and let V be a holomorphic vector field on
X . We call V complete or C-complete if its flow map exists for all times t ∈ C. We
call V R-complete if its flow map exists for all times t ∈ R.

Since the flow satisfies the semi-group property, any time-t map of aR- orC-complete
vector field is a holomorphic automorphism.

The density property for complex manifolds was introduced and studied by Varolin
in [22, 23] around 2000:

Definition 4 [22]

(1) Let X be a Stein manifold. We say that X has the density property if the Lie
algebra generated by the complete holomorphic vector fields on X is dense (in
the compact-open topology) is the Lie algebra of all holomorphic vector fields on
X .

(2) Let X be an affine manifold. We say that X has the algebraic density property, if
the Lie algebra generated by the complete algebraic vector fields on X coincides
with the Lie algebra of all algebraic vector fields on X .

By a standard application of Cartan’s Theorem B and Cartan–Serre’s Theorem A,
the algebraic density property implies the density property (see e.g. [19], Proposition
6.2 which also covers the singular case). Since flows of algebraic vector fields don’t
need to be algebraic, there is no direct advantage in proving the algebraic density prop-
erty over the density property. But polynomial vector fields are much more amenable
to algebraic manipulations, and thus the algebraic density property is usually easier to
prove directly and can be used a useful tool for establishing the density property.

Example 5 Examples of Stein manifolds with the density property include Cn, n ≥ 2
which are a special case of affine homogeneous spaces of linear algebraic groups. The
connected components of these homogeneous spaces enjoy the density property except
for C and (C∗)n [9, 17]. Whether or not (C∗)n has the density property is not known.
Other classes of affinemanifoldswith the density property include smoothDanielewski
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surfaces {(x, y, z) ∈ C
3 : xy = p(z)} where p is a polynomial with simple zeroes

[15]. Moreover, the Koras–Russel cubic threefold [21], Calogero–Moser spaces [5]
and a large class of Gizatullin surfaces [3, 4] also enjoy the density property. For
details and a comprehensive list we refer the reader to the recent survey by Forstnerič
and Kutzschebauch [13].

Let X be a complex manifold of complex dimension n. We call a complex differ-
ential form of bi-degree (n, 0) on X a volume form if it is nowhere degenerate.

Let X be a complex variety. We denote its group of holomorphic automorphisms
by Aut(X). If X is smooth and if there exists a volume form ω on X , we denote the
group of ω-preserving holomorphic automorphisms by Autω(X).

Definition 6 (1) Let X be a Stein manifold with a holomorphic volume form ω. We
say that (X , ω) has the volume density property if the Lie algebra generated by the
complete ω-preserving holomorphic vector fields on X is dense (in the compact-
open topology) in the Lie algebra of all ω-preserving holomorphic vector fields
on X . [22]

(2) Let X be an affine manifold with an algebraic volume form ω. We say that (X , ω)

has the algebraic volume density property if the Lie algebra generated by the
complete ω-preserving algebraic vector fields on X coincides with the Lie algebra
of all ω-preserving algebraic vector fields on X . [16]

Again, the algebraic volume density property implies the volume density property;
however, the proof is not straightforward and can be found in [16] by Kaliman and
Kutzschebauch.

The main result for manifolds with density property is the following theoremwhich
was first stated for star-shaped domains ofCn by Andersén and Lempert in 1992, then
generalized to Runge domains by Forstnerič and Rosay in 1993 and finally extended
to manifolds with the density property by Varolin:

Theorem 7 [2, 10, 11, 22] Let X be a Stein manifold with the density property or
(X , ω) be a Stein manifold with the volume density property, respectively. Let � ⊆ X
be an open subset and ϕ : [0, 1] × � → X be a C1-smooth map such that

(1) ϕ0 : � → X is the natural embedding,
(2) ϕt : � → X is holomorphic and injective for every t ∈ [0, 1] and, respectively,

ω-preserving, and
(3) ϕt (�) is a Runge subset of X for every t ∈ [0, 1].
Then for every ε > 0 and for every compact K ⊂ � there exists a continuous family
� : [0, 1] → Aut(X) or (respectively) � : [0, 1] → Autω(X), such that �0 = idX
and ‖ϕt − �t‖K < ε for every t ∈ [0, 1].

Moreover, each of the automorphisms�t can be chosen to be compositions of flows
of generators of a dense Lie subalgebra in the Lie algebra of all holomorphic vector
fields on X.

One of the two main ingredients in the proof of Theorem 7 is the following propo-
sition which has been found by Varolin [22], but is stated best as a stand-alone result
in the textbook of Forstneric [12].
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Proposition 8 [[12], Corollary 4.8.4] Let V1, . . . , Vm be R-complete holomorphic
vector fields on a complex manifold X. Denote by g the Lie subalgebra generated by
the vector fields {V1, . . . , Vm} and let V ∈ g. Assume that K is a compact set in X and
t0 > 0 is such that the flow ϕt (x) of V exists for every x ∈ K and for all t ∈ [0, t0].
Then ϕt0 is a uniform limit on K of a sequence of compositions of time-forward maps
of the vector fields V1, . . . , Vm.

For the proof of Theorem 31 where we can’t make use of the density property, we
will need to use Proposition 8 directly.

As one of many standard applications of Theorem 7 we obtain the following. It is
implicit in the paper of Varolin [23], but can also be found with a detailed proof in
[[6], Lemma 7 and Corollary 8].

Proposition 9 Let X be a Stein manifold with the density property resp. (X , ω) be
a Stein manifold with the volume density property with dimC X ≥ 2. Let g be a
Lie algebra that is dense in the Lie algebra of all holomorphic vector fields on X
resp. in the Lie algebra of all ω-preserving holomorphic vector fields on X. Then the
group of holomorphic automorphisms generated by the flows of completely integrable
generators of g acts infinitely transitively on X.

The following lemma can be found in the proof of [[14], Corollary 2.2] by Kaliman
and Kutzschebauch. Its proof is a straightforward calculation.

Lemma 10 (Kaliman–Kutzschebauch formula) Let � and � be holomorphic vector
fields and f , g, h be holomorphic functions on a complex space. Then the following
holds:

[h · f · �, g · �] − [ f · �, h · g · �] = −g f �(h) · � − f g�(h) · � (KK)

The power of this formula lies in the observation that if all the vector fields on the
l.h.s. are in a certain Lie algebra and if in addition �(h) = 0, then we found a new
vector field on the r.h.s. that is a multiple of � and lies the same Lie algebra.

The notion of the density property was extended to singular varities by
Kutzschebauch, Liendo and Leuenberger [19]. Following them, we introduce these
notations: Let X be a normal reduced Stein space and let Xsing be its singular locus.
Let A ⊆ X be a closed analytic subvariety containing Xsing and let IA ⊆ O(X) be the
vanishing ideal of A. Let VFhol(X , A) be theO(X)-module of vector fields vanishing
in A. Let Liehol(X , A) be the Lie algebra generated by all the complete vector fields
in VFhol(X , A).

Definition 11 [[19], Definition 6.1] Let X be a normal reduced Stein space and let
A ⊂ X be a closed subvariety. We say that X has the (strong) density property relative
to A if the Lie algebra generated by the complete holomorphic vector fields vanishing
in A is dense in the Lie algebra of all holomorphic vector fields vanishing on A.
Furthermore, we say that X has the weak density property relative to A if there exists
	 ≥ 0 such that I	

A · VFhol(X , A) ⊆ Liehol(X , A).
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Theorem 12 [[19], Theorem6.3]Let X beanormal reducedStein space and let A ⊂ X
be a closed analytic subvariety that contains the singularity locus of X. Assume that
X has the weak relative density property with respect to A for some 	 ≥ 0. Let � ⊆ X
be an open subset and ϕ : [0, 1] × � → X be a C1-smooth map such that

(1) ϕ0 : � → X is the natural embedding,
(2) ϕt : � → X is holomorphic and injective for every t ∈ [0, 1],
(3) ϕt (�) is a Runge subset of X for every t ∈ [0, 1], and
(4) ϕt fixes A up to order 	 where 	 is such that I	

A · VFhol(X , A) ⊆ Liehol(X , A).

Then for every ε > 0 and for every compact K ⊂ � there exists a continuous family
� : [0, 1] → Aut(X), fixing A pointwise, such that �0 = idX and ‖ϕt − �t‖K < ε

for every t ∈ [0, 1].
Moreover, these automorphisms can be chosen to be compositions of flows of gen-

erators of a dense Lie subalgebra in the Lie algebra of all holomorphic vector fields
on X, see Varolin [22].

3 The Special Linear Group SL2(C)

Throughout this section, we will use the coordinates a, b, c, d for SL2(C) in the
following way:

SL2(C) =
{(

a b
c d

)
: a, b, c, d ∈ C, ad − bc = 1

}

The vector fields corresponding to left-multiplication by

(
1 t
0 1

)
and

(
1 0
t 1

)
, respec-

tively, are:

V = c
∂

∂a
+ d

∂

∂b

W = a
∂

∂c
+ b

∂

∂d

H = c
∂

∂c
+ d

∂

∂d
− a

∂

∂a
− b

∂

∂b
= [V ,W ]

We have the commutation relations [H , V ] = 2V and [H ,W ] = −2W .
Similar to the case of the singular quadratic Danielewski surface, we obtain the

following:

[V , bW ] = dW + bH

[V , dW + bH ] = 2dH − 2bV

[V , 2dH − 2bV ] = −6dV

[V , aW ] = cW + aH

[V , cW + aH ] = 2cH − 2aV
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[V , 2cH − 2aV ] = −6cV

[W , dV ] = bV − dH

[W , bV − dH ] = −2bH − 2dW

[W ,−2bH − 2dW ] = −6bW

[[V , bkW ], bW ] = −(k + 3)bk+1W

Using the above, we find the following lemma.

Lemma 13 The Lie algebra generated by V ,W , (b + c)W , dW contains all linear
combinations of V ,W , H with polynomial coefficients of degree one.

Proof

[W , (b + c)W ] = aW

[V , [V , [V , aW ]]] = −6cV

[V , [V , [V , (b + c)W ] = −6dV

[W , dW ] = bW

From here, we now obtain also cW = (b + c)W − bW . Next,

[V , cW ] = cH

[W , cH ] = aH + 2cW

yields aH and cH . We get the other terms in front of H by proceeding symmetrically
with dW :

[V , dW ] = dH

[W , dH ] = bH + 2dW

The missing term in front of V then follow from:

[V , aH ] = cH − 2aV

[V , bH ] = dH − 2bV
	


The following higher powers are easily obtained:

[[V , bkW ], bW ] = −(k + 3)bk+1W

[[V , akW ], aW ] = −(k + 3)ak+1W

[[W , ckV ], cV ] = −(k + 3)ck+1V

[[W , dkV ], dV ] = −(k + 3)dk+1V
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Next we obtain ak H , bk H , ck H , dk H using Equation (KK):

[cW , ckV ] = kackV − ck+1H

[cW , ckV ] − [W , ck+1V ] = −ackV

By taking linear combinations,weobtain ck+1H .Analogously,we treatak+1H , bk+1H
and dk+1H .

Recall that

H = c
∂

∂c
+ d

∂

∂d
− a

∂

∂a
− b

∂

∂b

It is now easy to see that Lie brackets of the form

[cmH , ak H ] = (k + m) · akcmH

will give us the following vector fields:

akcmH , akdnH , b	cmH , b	dnH

for any k, 	,m, n ∈ N0. Next,

[akcmH , b	dnH ] = (−k + m − 	 + n) · akb	cmdnH

yields all monomials in front of H except those with m + n = k + 	. The missing
terms can be obtained e.g. using again Equation (KK):

[a · akcmH , b	dnH ] − [akcmH , a · b	dnH ] = 2akb	c	dnH for − 	 + n − 1 �= 0

and

[b · akcmH , b	dnH ] − [akcmH , b · b	dnH ] = 2akb	c	dnH for − k + m − 1 �= 0

We can then transfer these powers to the terms with V andW . If both −	+ n− 1 = 0
and−k+m−1 = 0, thenm+n �= k+	, hence we obtained all monomial coefficients
of H . We can transfer these terms now to V and W by

[V , akb	c	dnH ] = V (akb	c	dn)H + 2akb	c	dnV

and subtracting V (akb	c	dn)H , since all such terms are known. Similarly, we proceed
for W and finally, we obtain all polynomial coeffients in front of V , W and H . Since
these three vector fields span sl2(C) as a vector space, the following theorem is now
a standard application of Cartan–Serre’s Theorem B.

Theorem 14 The four complete vector fields V ,W , (b + c)W , dW generate the Lie
algebra of all polynomial vector fields on SL2(C).
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Corollary 15 The group of holomorphic automorphisms generated by the flows of V ,
W, (b + c)W and dH acts infinitely transitively on SL2(C).

Proof Theorem 14 implies the (algebraic) density property for SL2(C). This corollary
then follows from Proposition 9.

4 Quadratic Singular Danielewski Surface

Definition 16 We consider the following singular quadratic Danielewski surface

M = {(x, y, z) ∈ C
3 : xy = z2}

and the following complete vector fields

� = 2z
∂

∂x
+ y

∂

∂z

� = 2z
∂

∂ y
+ x

∂

∂z

H = 2y
∂

∂ y
− 2x

∂

∂x
= [�,�]

Note that [H ,�] = 2� and [H , �] = −2�, i.e. � and � form a sl2-pair. However,
the singular surface M is not a homogeneous space of SL2(C).

We will need the following equations where we act with � and �, respectively,
from the left.

[�, x�] = 2z� + xH (1)

[�, [�, x�]] = 2y� + 4zH − 2x� (2)

[�, [�, [�, x�]]] = 6yH − 12z� (3)

[�, [�, [�, [�, x�]]]] = −24y� (4)

[�, y�] = 2z� − yH (5)

[�, [�, y�]] = 2x� − 4zH − 2y� (6)

[�, [�, [�, y�]]] = −6xH − 12z� (7)

[�, [�, [�, [�, y�]]]] = −24x� (8)

Note that if not sending it directly to zero, none of �, � and H can reduce the
polynomial degree. We therefore need � and � (or a linear combination thereof) for
sure, since they can’t be produced otherwise. Also note that the r.h.s. of the equations
(2) and (6) only differ by a sign. The above computation shows that �, � and x� can
generate y�. Similarly, �, � and y� can generate x�.

Lemma 17 The Lie algebra generated by �,�, x� contains

H , xk�, yk� for all k ∈ N
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Proof By induction in k ∈ N we obtain all terms of the form xk�:

[[�, xk�], x�] = [2kxk−1z� + xk H , x�] = −(2k + 4) · xk+1�

From equations (1)–(4) we obtain y� and proceed with the calculation analogous to
the above, where we reverse the roles of � and � as well as x and y, respectively.

Note that the flows of �,�, x� are all algebraic. If we also allow holomorphic
flows of complete algebraic vector fields, then we can generate a larger Lie algebra
containing the above, if we take �,�, z�, zH as generators:

Lemma 18 The Lie algebra generated by �,�, zH , z� contains all the vector fields
with all polynomial coefficients of degree one in front of �,�, H.

Proof We proceed step by step as follows:

[�, z�] = y� + zH (9)

[�, y� + zH ] = 2yH − 2z� (10)

[�, 2yH − 2z�] = −6y� (11)

After obtaining y�, we use the equations from (5) to (8) to obtain x�. By taking linear
combinations of (10) and (5), we obtain yH and z�. Equation (1) gives us also xH .
Finally, using zH and equation (9) we obtain y�. Analogous to (9) we have

[�, z�] = x� − zH

and thus obtain x�.

Theorem 19 The four complete vector fields �,�, z�, zH generate the Lie algebra

{ f · � + g · � + h · H : f , g, h ∈ C[M]}

on the singular quadratic Danielewski surface M := {(x, y, z) ∈ C
3 : xy− z2 = 0}.

Remark 20 The Lie algebra generated by �, � and H as a C[M]-module is smaller
than the Lie algebra of all polynomial vector fields on M . To see this, consider the
following vector field

 := 2x
∂

∂x
+ z

∂

∂z

which induces aC∗-action, hence is complete. Consider the values of dz: We have that
dz(�) = x , dz(�) = y and dz(H) = 0. On the other hand, we obtain dz() = z.
Hence, can’t be written as a polynomial linear combination of�,�, H . See Lemma
25 below for a description of all polynomial vector fields on M .
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Proof of Theorem 19 (1) Using Lemma 17 and Lemma 18 we obtain the following
(actually complete) vector fields for all k ∈ N0:

[y�, xk�] = −2zxk�

[x�, yk�] = −2zyk�

(2) Next, we obtain all vector fields of the form zk�. We proceed by induction in k.
However, the induction step breaks down when passing from z2� to z3�.

[zk�, y�] = (2 − k)zk+1�

[z�, yH ] − [�, [z�, y�]] = z2H

[�, z2�] = 2xy� − z2H

[z�, yz�] = 2z3�

(3) Similarly, we can obtain all vector fields of the form zk�.
(4)

(k + 1)[zk�, yH ] − 2[�, zk+1�] = 2kzk+1H

(5) Let f (y), g(x), h(z) be any polynomial in y, x, z, respectively.
We apply the Kaliman–Kutzschebauch formula (KK) twice:

[z f (y)�, h(z)H ] − [ f (y)�, zh(z)H ] = − f (y)h(z)yH

[zg(x)�,− f (y)h(z)yH ] − [g(x)�,−z · f (y)h(z)yH ] = xy · g(x) f (y)h(z)H

Similarly, we can also obtain

[zg(x)�, h(z)H ] − [g(x)�, zh(z)H ] = −g(x)h(z)xH

By taking linear combinations, we obtain all polynomial coefficients in front of
H .
Similarly,weobtain a result for�,while the calculation for�wouldbe completely
analogous to �:

[y f (y)�, g(x)h(z)H ] − [ f (y)�, yg(x)h(z)H ]
= −2y f (y)g(x)h(z)�[x f (y)�, g(x)h(z)H ] − [ f (y)�, xg(x)h(z)H ]
= 2x f (y)g(x)h(z)� − 2z f (y)g(x)h(z)H

Thus, we have obtained all polynomial coefficients in front of �, � and H .
	


Lemma 21 The vector fields �,�, H together span the tangent space of {(x, y, z) ∈
C
3 : xy = z2} in each point except the origin.
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Proof Let us recall the definition of these vector fields:

� = 2z
∂

∂x
+ y

∂

∂z

� = 2z
∂

∂ y
+ x

∂

∂z

H = 2y
∂

∂ y
− 2x

∂

∂x
= [�,�]

On each point of {x �= 0}∩{y �= 0} the vector fields� and� are linearly independent
in C

3 and hence must span the 2-dimensional tangent space. On {x = 0} ∩ {y �= 0}
the vector fields � and H span, and on {y = 0} ∩ {x �= 0} the vector fields � and H
span, by the same argument.

Remark 22 One might also decide to work with �, � and some of their pullbacks
instead: Pulling back � with the flow of � for fixed time t – and vice versa, we obtain
new vector fields �̃t , �̃t . A direction calculation yields:

�̃t = 2t(x − t z)
∂

∂x
+ 2(z − t y)

∂

∂ y
+ (x − t2y)

∂

∂z
= � − t H − t2�,

�̃t = 2(z − t x)
∂

∂x
+ 2t(y − t z)

∂

∂ y
+ (y − t2x)

∂

∂z
= � − t H − t2�,

which shows that these pullbacks are already in the span of �,� and H .
This can also be compared to a result on algebraic ellipticity in the monograph of

Alarcón, Forstnerič andLópez [[1], Proposition 1.15.3]where vector fieldsV 1, V 2, V 3

with polynomial flows are given explicitly in coordinates (z1, z2, z3) ∈ C
3 on the

quadric z21 + z22 + z23 = 0; they are related by

V 3 = 1

2
[V 1, V 2] − 1

4
[V 1 + V 2, [V 1, V 2]]

By a global linear change of coordinates, we can map our +i
2 � and −i

2 � to those V 1

and V 2, respectively:

(z1 + i z2, z1 − i z2, i z3) = (x, y, z)

Corollary 23 The group of the holomorphic automorphisms generated by the flows of
�, �, z� and zH acts infinitely transitively on the regular locus of {(x, y, z) ∈ C

3 :
xy = z2}.
Proof Theorem 19 implies theweak algebraic relative density property for {(x, y, z) ∈
C
3 : xy = z2} using the flows of the generators above. This corollary then follows

from the same proof as in Proposition 9, but we instead have to use relative version
with respect to the singularity in the origin.
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Remark 24 The strong algebraic density property of xy = z2 relative to the origin is
known (but not with finitely many generators) due to [[19], Corollary 5.5] with d =
2, e = 1. We can now give another proof of this fact using finitely many generators:

Lemma 25 The Lie algebra of the polynomial vector fields on the singular quadratic
Danielewski surface M := {(x, y, z) ∈ C

3 : xy − z2 = 0} equals

{ f · � + g · � + h · H + k ·  : f , g, h ∈ C[M], k ∈ C}.

Proof Let� be any polynomial vector field on M . Since M has an isolated singularity
in the origin,�must vanish there as well. In particular, each sumand of dz(�)must be
divisible by at least one of the monomials x , y or z. We now observe that dz(�) = x ,
dz(�) = y and dz() = z. Hence, we find f , g, k ∈ C[x, y, z] such that

�̃ = � − f � − g� − k

satisfies dz(�̃) = 0. We can write

�̃ = a
∂

∂x
+ b

∂

∂ y

for some a, b ∈ C[x, y, z]. The requirement to be tangent to M is then equivalent to

ya + xb = q · (xy − z2)

for some q ∈ C[x, y, z]. This implies that x | a, y | b and xy | q. Writing a = xa′
and b = yb′, we obtain that a′ = −b′ mod (xy − z2). Thus,

�̃ = a′x ∂

∂x
− a′y ∂

∂ y
= −1

2
a′ · H on M .

We conclude that

� = f � + g� + k − 1

2
a′ · H

Finally, we observe that the following identities hold on M :

x = z� − xH

y = z�

z = x�

This means that the polynomial k can in fact be chosen to be a constant.

Combining the preceding lemma with Theorem 19 above, we obtain the following
result:
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Theorem 26 The five complete vector fields�,�, z�, zH , generate the Lie algebra
of all polynomial vector fields on the singular quadratic Danielewski surface M :=
{(x, y, z) ∈ C

3 : xy − z2 = 0}. In particular, M has the strong algebraic density
property relative to the origin.

5 Quadratic Singular Danielewski Surface with Unipotent Subgroups

In this sectionwe discuss how to find finitelymany unipotent one-parameter subgroups
that generate a subgroup of the algebraic automorphisms that acts infinitely transitively
on M := {(x, y, z) ∈ C

3 : xy = z2}. We first consider two obvious approaches that
do not quite work.

Remark 27 Outside the singularity in the origin, M is equipped with an algebraic
volume form

ω := dx ∧ dz

x
= −dy ∧ dz

y
(12)

Recall that by Lemma 17 the Lie algebra generated by �,�, x� contains

H , xk�, yk� for all k ∈ N.

Each of the vector fields �,�, x� is a locally nilpotent derivation that preserves the
algebraic volume form ω. However, it is not clear how other volume preserving vector
fields of the form zk H could be obtained as Lie combinations or even be approximated.
Thus, unlike in [6] any kind of transitivity result can’t follow from an application of
the volume density property.

Remark 28 According to the result of Arzhantsev et al. [[7], Theorem 2.5] a subgroup
generated by algebraic one-parameter subgroups which is saturated and acts with an
open orbit, is in fact acting infinitely transitively on that open orbit.

All the polynomial shears (or, in the terminology of [7]: replicas) of the locally
nilpotent derivations � and � are of the form f (x)� and g(y)�, respectively. Let
G be the group generated by their flows. Then we can’t expect that the conjugates
of f (x)� and g(y)� by group elements in G can be obtained by Lie combinations
of f (x)� and g(y)�. Hence, the saturation condition of [[7], Theorem 2.5] is not
satisfied.

In the following, let S := {x = 0}∪{y = 0} be the set where� and� are not spanning
the tangent space.

Lemma 29 Let B1, . . . , Bm ⊂ C
3 be balls of radius ε > 0 centered in p1, . . . , pm ∈

M\S respectively, with pairwise different projections to the x-axis and with pairwise
different projections to the y-axis, and let v0 ∈ Tpm . For sufficiently small ε > 0 and
for any δ > 0 there exist polynomials f , g ∈ C[z] such that the following hold for the
vector field V := f (x)� + g(y)�.

(1) ‖V ‖Bj < δ for j = 1, . . . ,m − 1
(2) ‖V − v0‖Bm < δ
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Proof For small enough ε > 0, the projection of the union of B1, . . . , Bm ⊂ C
3 to

the x-axis and to the y-axis is Runge. By the Runge approximation theorem, we find
holomorphic functions f̃ , g̃ : C → C such that f̃ (x)� + g̃(y)� satisfies the desired
approximation with an estimate of δ/2 instead of δ. For point (2) observe that � and
� are spanning the tangent space in M \ S. Finally, Taylor expand f̃ and g̃ inside
a large enough disk P ⊂ C that contains the projections of B1, . . . , Bm , such that
for their respective Taylor polynomials f and g we have that ‖ f − f̃ ‖P < δ/2 and
‖g − g̃‖P < δ/2. Then f and g are the desired polynomials.

Proposition 30 Let p1 = q1, p2 = q2, . . . , pm−1 = qm−1 and pm �= qm be pairwise
different points in M \ S. Then there exists an algebraic automorphism F : M → M
that is a finite composition of time-1 maps of locally nilpotent derivations of the form
f (x)� and g(y)� and such that F(p1) = q1 = p1, . . . , F(pm−1) = qm−1 =
pm−1, F(pm) = qm �= pm.

Proof Since M \ S is connected, we can choose a path γ in M \ S from pm to qm
that avoids p1, p2, . . . , pm−1. Choose ε0 > 0 s.t. min

j=1,...,m−1
inf
t

‖γ (t) − p j‖ > ε0

and min
j �=k

‖p j − pk‖ > 2ε0. Let B1, . . . , Bm be closed balls in C3 of radius ε ∈ (0, ε0)

around p1, . . . , pm , respectively. Set K = ⋃m
j=1 Bj .

We now proceed with the same geometric idea as in the proof of [[6], Lemma 7],
but without making use of the (volume) density property, but instead rely on Lemma
29 above.

For each point j ∈ {1, . . . ,m} let V j,x and V j,y be the holomorphic vector fields
defined on K which vanish on B1, . . . , Bj−1, Bj+1, . . . , Bm and agree with the partial

derivative
∂

∂x
and

∂

∂ y
, respectively, on Bj . For small enough time, the flows of V j,x

and V j,y exist on K and can be approximated arbitrarily well by finite compositions
F j,x
t and F j,y

t , respectively, of flows of �,�, x�: Since Lemma 17 established that
the Lie algebra generated by �,�, x� contains all the vector fields f (x)� + g(y)�
with polynomials f and g, we can apply now Proposition 8 on the complex manifold
M \ S to the vector fields produced by the application of Lemma 29 to each of the
vector fields V j,x and V j,y .

Consider the map � : (C2)m → (M \ S)m given by

⎛
⎜⎝

(t1,x , t1,y)
...

(tm,x , tm,y)

⎞
⎟⎠ �→

⎛
⎜⎜⎝
Fm,y
tm,y

◦ Fm,x
tm,x

◦ · · · ◦ F1,y
t1,y ◦ F1,x

t1,x (p1)
...

Fm,y
tm,y

◦ Fm,x
tm,x

◦ · · · ◦ F1,y
t1,y ◦ F1,x

t1,x (pm)

⎞
⎟⎟⎠

For a sufficiently close approximation, this map is submersive in 0 ∈ (C2)m . Now
by the implicit function theorem there exists a neighborhood U1 × · · · × Um of
(p1, . . . , pm) ∈ (M\S)m and a neighborhood V1 × · · · × Vm of (0, . . . , 0) ∈ (C2)m

such that � : V1 × · · · × Vm → U1 × · · · × Um is a surjective (in fact, bijec-
tive) holomorphic map. In particular, for each r ∈ Um =: U we find (t1,x , t1,y) ∈
V1, . . . , (tm,x , tm,y) ∈ Vm s.t.
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⎛
⎜⎜⎜⎜⎝

Fm,y
tm,y

◦ Fm,x
tm,x

◦ · · · ◦ F1,y
t1,y ◦ F1,x

t1,x (p1)
...

Fm,y
tm,y

◦ Fm,x
tm,x

◦ · · · ◦ F1,y
t1,y ◦ F1,x

t1,x (pm−1)

Fm,y
tm,y

◦ Fm,x
tm,x

◦ · · · ◦ F1,y
t1,y ◦ F1,x

t1,x (r)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

p1
...

pm−1
y

⎞
⎟⎟⎟⎠

Note that the choice of the times depends holomorphically on y without any further
control, but the map F := Fm,y

tm,y
◦ Fm,x

tm,x
◦ · · · ◦ F1,y

t1,y ◦ F1,x
t1,x : M\S → M\S is a finite

composition of algebraic automorphisms.
For each point r on the trace of the path γ we can apply the above procedure. Since

this trace is compact, we can cover it by finitely many balls of some radius ε ∈ (0, ε0)
and small enough to apply the implicit function theorem as above. Composing these
maps, we finally obtain an algebraic automorphism that moves pm to qm , but keeps
the other points p1, . . . , pm−1 fixed.

Theorem 31 The subgroup of the algebraic automorphisms generated by the flows of
the locally nilpotent derivations�,� and x� acts infinitely transitively on the regular
locus of {(x, y, z) ∈ C

3 : xy = z2}.
Proof Let 0, p1, . . . , pm ∈ M be pairwise distinct points and let 0, q1, . . . , qm ∈ M
be another pairwise distinct points. Our goal is to find a map F : M → M such that
F(p1) = q1, . . . , F(pm) = qm . After an algebraic change of coordinates G : M →
M , which we obtain by composing the flows for � and for � any generic choice of
times, we may assume that p1, . . . , pm, q1 . . . , qm ∈ M\S. The result now follows
from an inductive application of Proposition 30, moving each point separately, while
keeping the others fixed. Finally, we conjugate the obtained map by G.

Remark 32 The proofs of Proposition 30 and hence of Theorem 31 work in general,
provided one can prove an analog ofLemma29which essentially requires the existence
of some “nice” projections to subvarieties that are contained in the kernels of the locally
nilpotent derivations that span the tangent spaces.
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