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Abstract

We study norm-estimates for the 3-equation on non-reduced analytic spaces. Our main
result is that on a non-reduced analytic space, which is Cohen—-Macaulay and whose
underlying reduced space is smooth, the d-equation for (0, 1)-forms can be solved
with LP-estimates.
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1 Introduction

Various estimates for solutions of the d-equation on a smooth complex manifold
are known since long ago. The paramount methods are the L2-methods, going back
to Hormander, Kohn, and others, and integral representation formulas, first used by
Henkin and by Skoda. Starting with [28, 29],there has been an increasing interest for
L?- and LP-estimates for d on non-smooth reduced analytic spaces in later years,
see, e.g., [13, 19, 23, 27, 31]. In [6, 15, 16], there are results about L2-estimates of
extensions from non-reduced subvarieties. In this paper, we try to initiate the study of
LP-estimates for the d-equation on a non-reduced analytic space.

Let X be an analytic space of pure dimension n with structure sheaf Ox. Locally
then we have an embedding i : X — U C CV and a coherent ideal sheaf J C Oy,
of pure dimension n such that Oy = Oq/J in X NU. In [7], we introduced a notion
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of smooth (0, x)-forms on X and proved that if the underlying reduced space X,.q
is smooth and in addition O is Cohen—Macaulay, then there is a smooth solution
to du = ¢ if ¢ is smooth and 3¢ = 0. More generally, we defined sheaves 42/;(1 of
(0, g)-forms on X that are closed under multiplication by smooth (0, *)-forms and
coincides with 52"1 where X,.q4 is smooth and O is Cohen—Macaulay, such that

O—>ﬁx—>£%£—>-'-—>b<zf§'—>0

is a fine resolution of @y. The solutions to the d-equation are obtained by intrinsic
integral formulas on X. Variants of the d-equation on non-reduced spaces have also
been studied by Henkin—Polyakov [20, 21].

In [5], it was introduced a pointwise norm | - | on forms ¢ € éa}?’*. That is, |¢ (x)|x
is non-negative function on X,y which vanishes in a neighborhood of a point xg if
and only if ¢ vanishes there. It was proved that &y is complete with respect to the
topology of uniform convergence on compacts induced by this norm. In this paper, we
will only discuss spaces where X .4 is smooth. In [5], it is defined an intrinsic coherent
left O,,,-module Ny of differential operators 0x — O, and the pointwise norm
is defined as

red?’

D)% =Y (L)),
k

where £; is a finite set of local generators for Nx. Clearly another set of generators
will give rise to an equivalent norm. In particular, it becomes meaningful to say that ¢
vanishes at a point x € X. The norm extends to smooth (0, x)-forms. By a partition of
unity, we patch together and define a fixed global | - |x. Let us also choose a volume
element dV on X,.;. We define Lg’ wx 35 the (local) completion of (5’)?’* with respect
to the L”-norm. In the same way, we define Cp .. x as the completion with respect to
the uniform norm. Our main result is

Theorem 1.1 Let X be an analytic space such that O is Cohen—Macaulay and X .4
is smooth. Assume that 1 < p < oo. Given a point x, there are neighborhoods
V' CCV C X and a constant C, such that if ¢ € Lg,l (V) and 3¢ = O, then there is

¥ e Lg’O(V’) such that 3y = ¢ and

[ wikav=cp [ oty

red red

Moreover, there is a constant C, such that if ¢ € Co 1(V) and 3¢ = 0, then there is
a solution ¥ € Co,0(V') such that

sup [¥|x < Coo SUp |@|x.

V}"ed Vred

By standard sheaf theory, and the fact that ¢ € Lg o.x and 3y = 0 implies that
Y € Oy, see Lemma 4.8 and (5.1), we get the following corollaries.
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Corollary 1.2 Assume that X is a compact analytic space such that Oy is Cohen—
Macaulay, X,eq is smooth. If ¢ € Lg’l(X), d¢ = 0 and the cohomology class of ¢ in
H'(X, Ox) vanishes, then there is { € Lg’O(X) such that 3y = ¢. If ¢ € Co.1(X),
then there is a solution ¥ € Co o(X).

Notice that ¢ defines géech cohomology class in HY(X, O%) through (V; — ¥ «,
where (1) are local 9-solutions on a covering U; of X.

Corollary 1.3 Assume that X is an Stein space such that Ox is Cohen-Macaulay and
Xyed is smooth. If ¢ € L0 11oc(X) is d-closed, then there is € LS’O,IOC(X) such that

81# =¢. If ¢ € Co,1(X), then there is a solution y € Cp o(X).

The proof of Theorem 1.1 relies on the integral formulas in [7] in combination with
a new notion of sheaves of Cg)(’* of (0, x)-currents on X which provide a fine resolution
of Ox (see Sect.4). These sheaves should have an independent interest. In Remark 5.4,
we give a heuristic argument for Theorem 1.1 which relies on these sheaves but with
no reference to integral formulas.

We first consider a certain kind of “simple” non-reduced space for which we prove
these L”-estimates for all (0, ¢)-forms, see Sect. 9. We then prove the general case
by means of a local embedding X — X, where X is simple. To carry out the proof,
we need comparison results between the constituents in the integral formulas for the
two spaces. One of them is provided by [22], whereas another one, for the so-called
Hefer mappings, is new, see Sect. 8. The proof of Theorem 1.1 is in Sect. 10. Technical
difficulties restrict us, for the moment, to the case with (0, 1)-forms.

We have no idea of whether one could prove Theorem 1.1, e.g., in case p = 2, by
L%-methods.

The assumption that X,.4y be smooth and X be Cohen—Macaulay is crucial in this
paper. In the reduced case, considerable difficulties appear already with the presence
of an isolated singularity, besides the references already mentioned above, see, e.g.,
[17, 18, 25, 26, 32]. In the non-reduced case even when X,.4 is smooth, an isolated
non-Cohen—-Macaulay point offers new difficulties. We discuss such an example in
Sect. 11.

Throughout this paper, X is a non-reduced space of pure dimension n and the
underlying reduced space Z = X,.4 is smooth, if nothing else is explicitly stated.

2 Some Preliminaries

Let Y and Y’ be complex manifolds and f: Y’ — Y a proper mapping. If 7 is a
current on Y, then the pushforward, or direct image, f,.7 is defined by the relation
fuT.E = T.f*E for test forms €. If « is a smooth form on Y, then we have the simple
but useful relation

a A fiT = fiul(fFa AT). 2.1)

In [9, 11], was introduced the sheaf of pseudomeromorphic currents on Y. Roughly
speaking, a pseudomeromorphic current is the direct image under a holomorphic map-
ping of a smooth form times a tensor product of one-variable principal value current
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1/ Z;" and 9(1 /ZZI,). This sheaf is closed under 8 and under multiplication by smooth
forms. If a pseudomeromorphic current t has support on a subvariety V and the holo-
morphic function / vanishes on V, then ht = 0 and dh A T = 0. This leads to the
crucial dimension principle

Proposition 2.1 Let t be a pseudomeromorphic current of bidegree (x, q), and assume
that the support of | is contained in a subvariety of codimension > q. Then T = 0.

We say that a current a is almost semi-meromorphic in Y if there is a modification
7: Y — Y,suchthata is the direct image of a form &/ f, where « is smooth and f is a
holomorphic section of some line bundle on Y. Assume that 1 is pseudomeromorphic,
a is an almost semi-meromorphic current, x. = x (| F|?/€), where x is a smooth cutoff
function, and F is a tuple of holomorphic functions such that {FF = 0} contains the
set where a is not smooth. Then the limit

lim xea A 2.2)
e—0

exists and defines a pseudomeromorphic current a A u that is independent of the choice
of x. We define da A p = d(a A u) — (—1)%8% A dpu. It is readily verified that
da A = lime_0 d xe Aa A . By Hironaka’s theorem, any almost semi-meromorphic
current is pseudomeromorphic.

Let i/ C CV be an open set, let Z be a submanifold of dimension n < N, and
let « = N — n. The Oy;-sheaf of Coleff-Herrera currents, CHf,, see [14], consists
of all d-closed (N, k)-currents in 2/ with support on Z that are annihilated by 7,
i.e., by all h where h is in Jz. If J C Oy is an ideal sheaf with zero set Z, then
Hom(Cy ) T, C'HLZ{) is the subsheaf of u in C'Hf{ that are annihilated by 7. It is well
known that Hom (G / T, CHf,) is coherent, cf. e.g., [4, Theorem 1.5]

Remark 2.2 If Z is not smooth, then C’Hé is defined in the same way, but one needs
an additional regularity condition, the so-called standard extension property, SEP, see,
e.g., [7, Section 2.1]. When Z is smooth, the currents in CHLZ, (with the definition
given here) admit an expansion as in [3, (3.4)], and so the SEP follows.

Let us recall some properties of residue currents associated to a locally free reso-
lution

f
0= O(Eng) 2 0(Eny_1)--- 2 0(E) > 0 23)

of a coherent (ideal) sheaf &7,/ .7. The precise definitions and claimed results can all
be found in [10]. Let us denote the complex (2.3) by (E, f). Assume that the vector
bundles Ej are equipped with Hermitian metrics. The corresponding complex of vector
bundles is pointwise exact on i/ \ Z, where Z = Z (7). There are associated currents
U and R. The current U is almost semi-meromorphic on ¢/ and smooth on i/ \ Z, and
takes values in Hom (E, E). The current R is a pseudomeromorphic current on I/ that
takes values in Hom (Ep, E) and has support on Z. One may write R = ), Ry, where
Ry is a (0, k)-current that takes values in Hom (Ey, Ey). They satisfy the relation

(f=oU~+Uo(f—23)=1Ig—R. (2.4)
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Here we use the compact notation E = @&E, f = Y fi. By the dimension principle
Ry = 0if k < k = codim J. In particular, since (f — 3)> = 0, it follows by (2.4)
that (f — )R =0, so

feRe =0Rc—1 =0. (2.5)

Moreover, R is annihilated by 7, and it satisfies the duality principle
R® =0 ifandonlyif ® € J. (2.6)

We will typically assume that the resolution is chosen to be minimal at level 0, i.e.,
such that Eg = 0. Thus, Hom (Eg, Ex) = Ej, so we may consider Ry as an Ej-
valued current. If ¢3,/J is Cohen—Macaulay, then we can choose the resolution so
that No = k. Then it follows that R consists of the only term R, that takes values in
E,, and from (2.4) that R, = 0. We conclude that the components 1, ..., Mo of
Ry, p = rank E,, are in the sheaf Hom(0y;/ 7, C’Hfl). Itis proved in [4, Example 1]
that these components (. ; actually generate this sheaf. It follows from (2.6) that

pnd =0, n e Hom(Oy/J,CHE), ifandonlyif @ € J. .7

By continuity (2.7) holds everywhere if 7 is has pure dimension.

3 Pointwise Norm on a Non-reduced Space X

Recall that X is a non-reduced space of pure dimension n with smooth underlying
manifold X,.; = Z.

Consider a local embedding i: X — Y/ ¢ CN and assume that 7: U — ZNU
is a submersion. Possibly after shrinking ¢/, we can assume that we have coordinates
¢, =, - &, T1,-..,T)inU sothat ZNU = {r = 0} and 7 is the projection
&, v)—~ ¢. Letde =dgy A ..., dg,.

If 14 is a section of Hom (0y;/ T, CHLZ,) in U, then

T (pp) =: L d¢ (3.1

defines a holomorphic differential operator L: &(X NU) — O(ZNU). Following [5,
Section 1] we define Ny as the set of all such local operators £ obtained from some
win Hom(Cy ] T, CHf,) and a local submersion. It follows from (2.1) and (3.1) that
if £isin Oy, then ELp = L(*E¢p). Thus Ny is a left &z-module. It is coherent, in
particular locally finitely generated, and if £; is a set of local generators, then ¢ = 0
if and only if £;¢ = 0 for all j, see [5, Theorem 1.3]. If £; is a finite set of local
generators, therefore

6% =Y I1L;6” (32)
J

defines a local norm, and any other finite set of local generators gives rise to an
equivalent local norm.
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Example 3.1 Assume we have a local embedding and local coordinates (¢, 7) as above
inU. Let M = (My, ..., M) be a tuple of non-negative integers and consider the
ideal sheaf

_ [ Mi+1 M +1
I—<rl s T >

Let X be the analytic space with structure sheaf &y = 0y/Z. Consider the tensor
product of currents

. - dr - dt,
=20 M1+l/\~~/\8w, (3.3)
T, Te

where dt;/ tij i is the principal value current. We recall that if ¢ = @0 (¢, 7)d¢ AdE

is a test form, then

. - dt - dt, Qi) BRI -
,u.<p=8tM]H/\.../\ rMH.(p: i /;BTM(g,O)dC AdC, (3.4
1 K

where M! = M!--- M,\.Itfollows,e.g., by [3, Theorem 4.1] that L Ad¢ is a generator
for the 074-module (and &'y -module) Hom (0 /Z, CHZ?{). For a multiindex m, we will
use the shorthand notation

-dt -drty -dt,
Bt—m=8w/\.../\8u?1x. 3.5)
Moreover, m < M means thatm; < M; for j =1, ..., k. Itis readily verified that
-dt - drt
Bt _
D =0 (3.6)
if B < «. Any ¥ in O has a unique representative in ¢/ of the form
Y=Y P 3.7)

m<M
By [5, Proposition 3.1],

glml+IBl

Em,ﬂ = —afmaé'ﬂ

y MM, 1Bl < IM —ml,
T=

is a generating set for V, % If W(¢, 7) is any representative in U for ¥, thus, cf. (3.2),

v~ Y [t veol~ Y |2 e

marp B
meM. ip1eid—m) 0T 08 m=M. (preid—m 0%
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Let us now return to the setting of a local embedding i : X — ¢ C CV as above.
Notice that if M is large enough in the example, thenZ C J.Let 1, ..., u, be local
generators for the coherent &7,-module Hom (Cy/ T, C’Hf{). Then we have a natural
mapping Oy /7 — Oy /J, thatis, amapping (*: 0y — Ox. Itis natural to say that
we have an embedding

X > X,

It is well known, see, e.g., [4, Theorem 1.5] that there are holomorphic functions
Y1, ..., ¥p (possibly after shrinking ¢/) such that

wi=yil, j=1,...,p. 3.9

From [5, Theorem 1.4] we have that
P
Blx ~ Y lyidly- (3.10)
j=1

In this way, the norm | - |x is thus expressed in terms of the simpler norm | - | ;.

3.1 The Norm When X is Cohen-Macaulay

So far we have only used the assumption the Z is smooth. Let us now assume in
addition that Oy is Cohen—Macaulay. Then one can find monomials 1, ¢, ..., 7!
such that each ¢ in Oy has a unique representative

d=PoD T+ +dy1(2) ® TV, 3.11)
where ¢3 j are in Oz, see, e.g., [7, Corollary 3.3]. In this way, Ox becomes a free 0z-
module (in a non-canonical way). Let | - | x  be the norm obtained from the subsheaf

Nx » of N, consisting of operators £ obtained, cf. (3.1), from the submersion 7
such that (¢, ) — ¢ in Y. It turns out that

1013 ~ 1do @)%+ + dv_1 (@)%, (.12)

cf. [5, Theorem 1.5]. By [5, Proposition 3.4], the whole sheaf Ny is generated by
N 5 for a finite number of generic submersions 7*. It follows that

Blx ~ D I$lx .. (3.13)

3.2 The Sheaf 5)?’* of Smooth Forms on X

Assume that we have a local embedding i: X — ¢/ ¢ CN.If ® is in é"g’*, we say
that i*® = 0, or equivalently ® is in Ker i*, if  is in & T + &7 Tz + &1 d Tz

@ Springer



237 Page8of37 M. Andersson, R. Larkang

on X,.g, where J7 is the radical sheaf of Z and we by X,., denote the set of points
of X where Z is smooth and Oy is Cohen—Macaulay.

Remark 3.2 1If the underlying reduced space X,.q is not smooth, or O is not Cohen—
Macaulay, then this definition of Ker i* is not valid. Instead is used as definition that
® A p = 0 forall uin Hom(0y /T, CHZ%[). However, it is true that i*® = 0 if
i*® = 0 where X,.4 is smooth and X is Cohen—Macaulay. See [7, Lemma 2.2].

We define &3 = éﬁ* /Ker i* and have the natural mapping i*: @“’Lg’* — &0,
By standard arguments, one can check that the &y-module é‘}?’* so defined does not
depend on the choice of local embedding.

Each £ € Ny extends to a mapping 5)?’* — é"g’* so that (3.1) holds, see [5,
Lemma 8.1]. If we choose a Hermitian metric on the tangent space T Z, we get an
induced norm on &’ g’*, and so we get a pointwise norm by (3.2) of smooth (0, *)-forms
on X. In particular, if ¢ and & are smooth forms on X, then

1§ A plx = Celdlx, (3.14)

cf. the remark after [5, (4.23)]. Choosing an embedding ¢: X — X as above, (3.14)
follows from (3.8) and (3.10).

If O is Cohen—Macaulay and i : X — U is a local embedding with coordinates
(¢, 7) and a monomial basis t*, then we have a unique local representation (3.11) of
each ¢ in (f)(()* with ¢y in (g’g’*, and the other statements in Sect. 3.2 hold verbatim,
with the same proofs, for smooth (0, *)-forms.

4 Intrinsic Currents on X

In the reduced case, one can define currents just as dual elements of smooth forms. In
the non-reduced case, one has to be cautious because there are two natural kinds of
currents:suitable limits of smooth forms and dual elements of smooth forms. We have
to deal with both kinds. In this paper, the former type appears as (0, *)-currents, while
the latter appears as (1, s)-currents. In [8], we study the d-equation on a non-reduced
space for general (p, ¢)-forms, and then both type of currents appear in arbitrary
bidegrees.

4.1 The Sheaf of Currents szt

Letd C CN be an open subset and Z a submanifold as before. Let Cg be the 0y4-sheaf
of all (N, %)-currents in I/ that are annihilated by 77 and d.7z. Clearly these currents
have support on Z.

Lemma 4.1 If (¢, t) are local coordinates inU so that Z = {t = 0}, then each current
nin Cé has a unique representation

- d
=Y () AD—g AL, (“.1)

a>0
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where ay are in C%* and the sum is finite, and we use the shorthand notation (3.5).

Proof Since 7;u = 0 for all j, . must have support on Z. Since it is a current, there
is a tuple M of positive integers such that T A p is non-zero only when o < M. Let
7 be the projection (¢, t) + ¢. We claim that (4.1) holds with

1
ANdE = 4.2
aq(§) Ndg (2 Y (T ). (4.2)
In fact, given a test form ¢ with Taylor expansion
%9

(€, 0t + O(F,d7) + 0", Mty

PC. 1=, o

a<M

and using (3.4), we see that

1 dt
o=y ,aa@ >“=Z(2 TR M)Aaa_,_l(ﬁ

a<M

It follows from (4.2) that if u has the expansion (4.1), then 9 1 has an expansion

I = Zaaa(;)Aad AdC.

a>0
In particular, d = 0 if and only if each ag (¢) is d-closed. It is also readily verified

that a sequence puy tends to O if and only if the associated sums (4.1) have uniformly
bounded length and their coefficients ay  tend to O for each fixed .

4.2 The Intrinsic Sheaf C)'*

We define the sheaf C;’* of intrinsic (n, *)-currents on X as the dual of &’ 0.n=% Assume

that i: X — U is a local embedding Since éoo e @‘”0” */Ker i* and Ker i*
closed, the elements in Cy’ X * are represented by the currents in U that vanish when
acting on test forms with a factor in 7, J. 7,d J 7, which in turn are the currents in U

that are annihilated by 7, J 7, d J 7, thatis, Hom (0 T, Cé). Therefore,we have the
isomorphism

ix: Cy™ = Hom (O] T, Cé).
Let Wy be the subspace of d-closed elements in C’;’O. We then obtain the isomorphism

iv: Wx = Hom(Oy /T, CHE).

In case X is reduced, wy is the well-known Barlet sheaf of holomorphic n-forms on
X, cf. [7, Section 5] and [12].
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4.3 Representations of Oy and éj? o

Assume that we have alocal embedding i : X — €. Notice that we have a well-defined
mapping

Ox — Hom(Hom(Oy /T .CHE). Hom(Oy /T .CHE)). ¢+ (u > pp).
4.3)
It follows from (2.7) that (4.3) is injective.

Remark 4.2 1t is in fact an isomorphism where X is Cohen—Macaulay (or more gen-
erally where X is $7), see [7, Theorem 7.3].

Let (1, ..., 1y be generators for Hom(Oy /T, C’Hf,), and consider an element
® in Hom (Hom(ﬁu/j, CHSZZ), Hom (G T, Cﬁ)). Moreover, let us choose coordi-
nates (¢, 7) in U as before. Since each ® (i) is in Hom (0 / T , Cé),it has a unique
representation (4.1), and if we choose M such that rlM ‘+1, R r,ﬁw e J, then the

sum only runs over @ < M. Thus, ® is represented by the tuple ® € (C(Z)’*)’ consisting
of all the a,(¢) for the currents ®(u;), j =1,..., p.

Now assume that X is Cohen—Macaulay and choose a monomial basis 7% as in
Sect.3.1. Each ¢ € O is then, cf. (3.11), represented by a tuple qAb € (O7z)". Thus the
mapping (4.3) defines a holomorphic sheaf morphism (matrix) 7: (Oz)" — (Oz)".
It is injective by (2.7), so T is generically pointwise injective. In fact, we have, [7,
Lemma 4.11]:

Lemma 4.3 The morphism T is pointwise injective.
We can thus (locally) choose a holomorphic matrix A such that
0 oy 5 o, 4 oy (4.4)
is pointwise exact, and holomorphic matrices S and B such that
I =TS+ BA. 4.5)
In the same way,we have a natural mapping
é"}?’* — Hom(Hom(Oy /T, C’Hé), Hom(Oy | T, CLZ,)), o (L ¢ A

(4.6)
If ¢ isin copo’*, then the coefficients in the expansion (4.1) of ¢ A w are in co@g’* so the

image of ¢ in (4.6) is represented by an element in (éog’*)’ .If X is Cohen—Macaulay,we
have the unique representation (3.11) with qAﬁg in éag’* and hence (4.6) defines an éag’*-
linear morphism (éag’*)" — (5’3’*)r that coincides with 7' for holomorphic ¢. Since

(4.4) is pointwise exact, we have the exact complex

NN xr A sy 1
0= (EH)Y = (E0H) 5 (&9 4.7)
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We now consider what happens with these representations when we change coor-
dinates.

Lemma4.4 Let (¢, t) and (¢', ©') be two coordinate systems in U as before. There is
a matrix L of holomorphic differential operators such that if u € Hom(0y/J, Cﬁ),
and (ay) and (a},) are the coefficients in the associated expansions (4.1), then (a,,) =
L(ay).

Proof Let and 7’ be the projections (¢, ) — ¢ and (¢/, /) > ¢/, respectively. Fix
a multiindex . Recall that a, Ad¢’ = +Q2ri) 'l ((r))* ), cf. (4.2). We can write

() = by(0),
P

where b, are holomorphic. After a preliminary change of coordinates in the ¢-
variables, which only affects the coefficients by the factor d¢/d¢’, we may assume
that ¢’ = ¢ when t/ = 0 so that

Gi=¢i+ kabjk(C, 7).
k
Ifo = Ziu:* @1(¢)de; is a test form in Z of bidegree (0, %), then
/
T)'e = @il + O(%.dT)
[ |=x

Z Z M(f) (§)d§1T + 0(7,dT)

=+ y.8

3“/‘71*(,0
:chﬁ({) PY3s
Y,0

%+ 0, d7).

Since T = 0and dt A =0, and b, and ¢, s only depend on ¢,

/ o INOC TN % 3|y| p+6
T(E W = @ @0 = Y o (ers Abp AT W) g
psY-8
which means that »
vy
a,= >y j:agy (cys Abp Adpys). 4.8)

PV

Note that the expansion of (7r/)*¢ is infinite, but it only runs over y such that |y| < |§].
Since T 11 = 0if |8] is large enough, the series (4.8) defining a], is thus in fact a finite
sum. Thus &, is obtained from a matrix of holomorphic differential operators applied
to (ag).
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Corollary 4.5 Assume that X is Cohen—Macaulay. Let (¢, ) and (', ©') be coordinate
systems as above, and let T*¢ and (t')%t be bases as in Sect.3.1. There js a matrix L
of holomorphic differential operators such that if (¢;) € (&%) and (d)}) € (&0

are the coefficients with respect to these two bases of the same element ¢ € & 2’*, then
@) = L(@)). 4.9)

Proof Consider ¢ € éo)?‘* and let ® be its image in Hom(Hom(ﬁu/J , CHf,),
Hom(ﬁ’u/j,CLZ,)). Given generators i, ..., u, for Hom(ﬁu/j),CHf{), let 7’
and S’ be the mappings T and S but with respect to the new variables (¢’, T) and basis
(‘(/)a}. Then T(qgj) and T/((;AS}) are the coefficients with respect to (¢, ) and (¢/, t/),
respectively, of ®(u;), j=1,...,p

According to Lemma 4.4, T’ (é}) = Z(T(qg 7)), where L is a matrix of holomorphic
differential operators. Thus, cf. (4.5), ((13;.) =50 T’(dg}.) =50 Z(T(dA)j)), which
defines the desired matrix L.

4.4 The Sheaf C;’* of (0, *)-Currents

Let us assume now that X is Cohen—Macaulay. We want C%* to be an Oyx-sheaf
extension of éao’* so that 50’* is dense in a suitable topology. The idea is to define a
(0, *)-current ¢ as somethmg that for each choice of coordmates (¢, t) and basis ¥
as in Sect. 3.1 has a representation (3.11) where (¢ j) are in (CZ )V, and transform by

(4.9). However, to get a more invariant definition, we will represent o ¥ as asubsheaf
of the Ox-sheaf

F :=Hom(Hom(COy /T, CHLZ,), Hom(Oy | T, Cﬁ)).

Let us fix (¢, 7, t%). Given an expression (3.11), where ¢30, ... ¢A>v—1 are in Cg’*,
we get a mapping
CHE, = CfL, ne A, (4.10)

by expressing w as in (4.1) and performing the multiplication formally term by term.

Lemma 4.6 The mapping (4.10) defines an element in F that is zero if and only if all
qgg vanish.

All such images in F form a coherent subsheaf F' of F that is independent of the
local choice (¢, T, T*).

Proof We first claim that j(qg Ap) =0if Ju = 0. Let ((]35 ¢) be tuples in (éag *yv

obtained by regulanzmg each entry ¢g, and let qﬁe denote the correspondlng smooth
forms in éa . Then ¢€ Al —> ¢ A [ as currents, and since J (qu A ) = 0, the claim
follows. Thus (4.10) defines an element in F.

Let uy, ..., o be generators for Hom (0 /T, CHf,). Then the coefficients of

¢A> Auj, j=1,...,p,are given by T(¢A>g) € (C%*)’, where T is the matrix in (4.7).
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Indeed, this holds for the smooth ¢A>E and hence for q3 Since T is pointwise injective,
the induced mapping is injective as well. If the image of (4.10) vanishes therefore the
tuple 43g vanishes.

For each multiindex y,

= c(§)T™

14

forunique c; in Oz. For & in O therefore there is a (unique) matrix A¢ of 0'z-functions
such that

W) = Ae(do) 4.11)
for any smooth ¢3 if Y = £¢. Moreover,

EGAR) =V Ap (4.12)

since both sides are the equal to the current £¢ A w. If now (dA)g) is in (C%*)" and

(I/Afg) is defined by (4.11), then by a regularization as above we see that still (4.12)
holds. Thus the image of (C%*)” is a locally finitely generated ¢y -module and hence
a coherent subsheaf F’ of F.

It remains to check the independence of the choice of (¢, T, 7*¢). Thus assume
&, (7)) is another choice, cf. Corollary 4.5. If (¢A>,§) = L(¢¢) and (qAﬁ;.’e) =

£a(¢A>g,€), then qgé — ¢. Since qAbé A = de A we conclude that ¢’ A = ¢ A p.
Definition 4.7 The sheaf of (0, *)-currents C?(’* is defined as the sheaf F.

Given (¢, T, T%), thus each element ¢ in C%* has a unique representation (3.11).
However, in view of Lemma 4.6, the current ¢ A u has an invariant meaning. We have
natural mappings 9 : C%q — Cg)(’q—H , defined by (¢e) > (0bp). They are well defined
since  commutes with the transition matrices £ in the preceding proof. We thus get
the complex

0> 0x > 5% S (4.13)
Proposition 4.8 The sheaf complex (4.13) is exact.

Proof First assume that ¢ is in C?(’O. Given (¢, t, T*), we then have a unique repre-
sentation (3.11) with ¢; € CY*. If 3¢ = 0, then all 3¢ = 0, 50 §¢ € Oz, and thus
¢ € Ox.If ¢pisin C?(’qﬂ, then 3¢ = 0 means that each 5(;3@ = 0, and thus,we have
local solutions to diiy = ¢y in Cg’q. It follows that u defined by iy is a solution to
u = ¢.

Definition 4.9 A sequence ¢ in C?(’* converges to ¢ if o A u — ¢ A for all win
Hom(Oy | T, CHé).

Notice that 3(¢ A ) = 3¢ A . Thus ¢ — ¢ implies that dgy — dep.
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Lemma4.10 Let (¢, T, ) be a local basis in U and assume that
b= ut™, o= dir. (4.14)

The sequence ¢y in Cg)(’* converges to ¢ in U if and only iquﬁgk — (]3( for each L.
It follows that éa)?’* is dense in C?(’*, since é’g’* is dense in C%*.

Proof If ¢3@k — ég for each £, then ¢4 At — ¢ A 1. For the converse, let us choose a

generating set w1, ..., U, as above. If ¢y — ¢, then in particular gp A u; — ¢ A
foreach j =1, ..., p. This means that T(q}gk) — T(dA)@) for each £. Since the matrix

T is pointwise injective, therefore (]Sgk — ¢y for each £.

Remark 4.11 From the very definition, cf. Sect. 3.2, a sequence ¢ € é@?’* tends to O at
a given point x if and only if given a small local embedding i : X — I/ at x there are
representatives Oy € éoz?[’* such that ®; — 0in /. If ¢ is a local basis and qAbgk -0
for each £, then

(. T) = ) u(§)T =0
£

in ¢ and hence ¢y — 0 in &%*(X NU). Also the converse is true. In fact, if &y are
representatives in ¢/ and ®; — 0 in U/, then each of the coefficients of ®; A u; in
the representation (4.1) tends to 0 in & 0,% (Z NU) for each j. This precisely means
that T((;Aﬁgk) tend to 0 in £&%*(Z NU). Since T is pointwise injective,this implies that
qASgk — 01in &%*(Z NUY) for each ¢.

Remark 4.12 We only define C())(’* on the part where Z is smooth, as we there need to
embed Lg, ,(X) into a larger space that allows for more flexibility. We do not know
what an appropriate definition of Cg)(’* would be over the singular part of Z. In [7], we

introduce a sheaf W?(’* of pseudomeromorphic (0, *)-currents on X with the so-called
standard extension prO]gerty, also when Z is singular. On the part where Z is smooth,
Wg)(’* is a subsheaf of C X’*, and consists of currents which admit a representation (3.7),

where the v, are in Wg’* - C%*.

Remark 4.13 We do not know if the embedding C?(’* — JF is an isomorphism, i.e., if
F’ = F.Forany h in F that can be approximated by smooth forms /4. in F, it follows
as above that / is in F7, but it is not clear that this is possible for an arbitrary & in F.
An analogous statement for the subsheaf Wg)(* is indeed true, see [7, Lemma 7.5], but

the proof relies on the fact that elements in Wg’* are in a suitable sense generically
smooth and does not generalize to C?(’*.

5 LP-Spaces

Assume that X is Cohen—Macaulay and that the underlying manifold Z = X;.q4
is smooth. Recall that we have chosen a Hermitian metric on Z and let dV be the
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associated volume form. Assume 1 < p < oo. If K C X is a compact subset and ¢

is in &%*(X) then
1/p
Kyea

is finite and defines a semi-norm on &%*(X). We define the sheaf Lﬁ) 0.4 35 the
completion of @@)(()’* with respect to these semi-norms. In particular,we get the spaces
Lg’*(K ) for any compact subset K C X. For a relatively compact open subset V CC
X,we let Lg’ V) = Lg, *(V). Clearly these spaces are independent of the choice of
| - |x and Hermitian structure on Z. In the same way,we define the sheaf C%* as the

completion of é’g’* with respect to the semi-norms supg [¢|x.

Proposition 5.1 Leti: X — U C CV be a local embedding and let V = X NU.
If ¢ € Lg’*(V), then ¢ € CO*(V). Given coordinates and basis (¢, T, T*), each
¢ € Lgﬁ*(V) has a unique representation (3.11) where dA)g € LPVyeq)- If o — ¢ in
L{ V), then bre — by in L{ ,(Vrea) for each ¢.

If ¢ are smooth and tend to ¢ in Lg,*(V), it follows that ¢ — ¢ in C%*(V) and
hence 0
Llliic;O,*;X - CX* (.1
Proof If ¢ € Lg’ .(V), then by definition, there are smooth ¢ such that ||¢ —
@rllLr vy — 0. Since we have unique representations

¢ =Y dre ()T,
14

it follows from (3.12) and (3.13) that k — (;Aﬁgk is a Cauchy sequence in L? (V,.q) for
each £ and hence converges to a function ¢y € L?(V,4). Thus we have arepresentation
(3.11) for ¢, where ¢y € LP(V,q). The last statement now follows from (3.12) and
(3.13).

Example 5.2 Let X be the space in Example 3.1 and let VY = U N X, where U/ is
a relatively compact subset of /. Let LJ*P (Vsq) be the Sobolev space of all (0, x)-
currents whose holomorphic derivates up to order j are in L”(Z). It follows from
(11.5) that L? (f)) can be realized as all expressions of the form (3.7), where v, €

M—m]|, @
L‘O,* | p(Vred)~

For a general Cohen—Macaulay space X there is no such simple way to describe
L?(X) locally in terms of a single choice of (¢, t, %¢).

Remark 5.3 Assume that ¢ € C%*(V) and that its coefficients q?)[,g with respect to
each of the bases (¢*, ¢, (TH*Y), cf. (3.13), are in LPA(Vred). We do not know if this
implies that ¢ is in Lg,* (V). Consider the coefficients ¢, , with respect to a fixed basis
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(¢, t, (t‘)“%). If one approximates these coefficients in L? by smooth forms, then
we get convergence in the norm | - |x ¢, cf. (3.12). However, there is no reason to
believe that they converge in the other norms in the right-hand side of (3.13). The
problem is that the transition matrix (4.9) involves derivatives.

Notice that if we have an embedding ¢: X — X asin Sect. 3, then, with the notation
used there,

Illrxezn ~ Y170 ok
J

Remark 5.4 Here is a heuristic proof of Theorem 1.1. For simplicity, let us assume that
only two submersions 77! and 772 are needed in (3.13). Assume that ¢ is in Lg’l ).
Then we can find a solution ' in C%?(V) to du* = ¢ so that the coefficients with respect
to (¢4, 74, (t9)%Y) of u' are in LP (V,¢q). This means that [u|x 7t is in LP (Vyeq) for
eacht. Now h = u?—ulis 9-closed, thus holomorphic, and hence bounded. It follows
that also |u? Ix 71 = lul + hlx 1isin LP (Vyeq). In view of (3.13),0ne might conclude
that u? actually is in Lg’O(V) if we disregard the problem pointed out in Remark 5.3.
Clearly, this argument breaks down if ¢ has bidegree (0, g + 1), g > 1.

It is not clear to us if it is possible to make this outline into a strict argument. In any
case, we will prove Theorem 1.1 by means of an integral formula from [7]. Besides
being a closed formula for a solution, it also makes sense at non-Cohen—Macaulay
points and offers a possibility to obtain a priori estimates, cf. Sect. 11. Hopefully,it
could lead to results for general (0, g)-forms.

6 Koppelman Formulas on X
6.1 Koppelman Formulas in CV

Let 4 C CV be a domain, and let 4’ CcC U. Moreover, let 8y be contraction by the
vector field

i a
2wi ) (G —2zj)—
=l 9¢;

inly x Z/IZ/ and let V,, =8, — 9. Assume that g = 80,0 + -+ gn,n 1s a smooth form
such that g x has bidegree (k, k) and only contains holomorphic differentials with
respect to £. We say that g is a weight in &/ with respect to U’ if V,,¢ = 0 and go ¢ is
1 when ¢ = z. Notice that if g and g’ are weights, then g’ A g is again a weight. The
basic observation is that if g is a weight, then

¢>(Z)=fg¢, zeld (6.1)
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if ¢ is holomorphic in U, see, [1, Proposition 3.1].

If U is pseudoconvex, following [2, Example 1], we can find a weight g, with respect
to U’, with compact support in I, such that g depends holomorphically on z and has
no anti-holomorphic differentials with respect to z. For our purpose, we can assume
that these domains are balls with center at 0 € /. Then we can take

- o -
gzx—8xAv—=x—8xA , (6.2)
o

n

i 1 ¢-dl A(dg-dD)!
—ri)t (cP -7 -2

where

1 ¢-dt
O = ——F—F7——.
2ni g2 —-¢ -z

Here x is a cutoff function in I/ that is 1 in a neighborhood of {’. It is convenient to
choose it of the form x = ¥ (|¢|%) where ¥ () is identically 1 close to 0 and 0 when ¢
is large.

Elaborating this construction, one can obtain Koppelman formulas for 3. Let

DY RGEENLS
C 2mi ¢ —z|?

so that ,b = 1 where ¢ # z, and

Vb 3 37\N-1
B=%=b+b/\8b+~-~+b/\(8b) (6.3)

is the full Bochner—Martinelli form, cf. [1, Section 2]. Then V; B =1 — [AY, where
[A] is the component with full degree in d¢ of the current of integration over the
diagonal A C U x U'. Now

/C¢=/g/\BA¢ (6.4)
¢

defines integral operators &% *t1 () — &%*U’) such that ¢ = IKp + K (d¢p) inUA'.
The integral in (6.4) is, by definition, the pushforward m..(g A B A ¢), where 7 is the
natural projection U x U' — U'.

6.2 Hefer Morphisms

Let (E, f) be a locally free resolution as in (2.3). As in [2] and elsewhere, we equip
E = ®FE; with a superstructure, by splitting into the part & Ey; of even degree and
the part @ E2+1 of odd degree. An endomorphism o € End(FE) is even if it preserves
the degree, and odd if it switches the degree. The total degree deg « of a form-valued
morphism « is the sum of the endomorphism degree and the form degree of «. For
instance, f is an odd endomorphism. The contraction by §, is a derivation (and has
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odd degree) that takes the total degree into account, so if @ and B are two morphisms,
then 8, (af) = 8o + (—1)%€%as, B.

In order to construct division—interpolation formulas with respect to (E, f), in [2]
was introduced the notion of an associated family H = (H,f) of Hefer morphisms.
Here H ,f are holomorphic (k — ¢)-forms with values in Hom (E; ., E; ¢) so they are
even. They are connected in the following way: To begin with, er =0ifk—-¢ <0,
and H; is equal to /g, when ¢ = z. In general,

Sy H{ = H fir1(0) — fen @QH (6.5)

Let R and U be the associated currents, see Sect.2. The basic observation is that
¢ = fi(x) H'U + HOR is a kind of non-smooth weight so that if ® is holomorphic,
then

(I)(Z)=/g’/\g<I>=fl(z)/HlU/\gCID—i—/HOR/\g@, zeld. (6.6)
¢ ¢ ¢

When defining these integral operators, we tacitly understand that only components
of the integrands that contribute to the integral should be taken into account.

6.3 Local Koppelman Formulas on X

Now assume that our non-reduced space X is locally embedded in a pseudoconvex
domain Y. LetV = XNU and V' = X NU CC V. Let (E, f) be a locally free
resolution of Oy as in (2.3). Then R® = 0 if & = 0, cf. (2.6), and hence (6.6) is an
intrinsic representation formula

¢(2) = / . 209Q), zeV,
¢
for ¢ € 0(V"). Following [9] and [7], one can define operators
lC¢(z)=/gABAHORA¢, zeV (6.7)
¢

mapping (0, * + 1)-forms in V to (0, *)-forms in }’. However, not even in ’good’
cases,the formula (6.7), as it stands, produces a form that is smooth in U’, cf. [7,
Remark 10.4], so the precise definition of KC¢ is somewhat more involved, cf. [7,
Section 9]: If u € Hom(Oy /T, CHé) in U/, then w(z) A R(Z) is a well-defined
pseudomeromorphic current in i/ x U’. Moreover, B is almost semi-meromorphic in
U x U’ and smooth outside the diagonal. Hence u(z) AgABAH OR A ¢ is well defined
inU x U, as the limit of u(z) A g A B A H'R A ¢, where B¢ = x(|¢ — z|?/€)B,
cf. (2.2). The equality (6.7) is to be interpreted as the fact that there is a unique
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pseudomeromorphic current u = K¢ in V'’ such that
uAu=/M(Z)AgABAHORA¢,
¢

for all . € Hom(Cy )T, CH?) inU'. By [7, Theorem 9.1] the operators so defined
satisfy the Koppelman formula

¢ = dKp + K(3¢) (6.8)

in V'. It turns out, [7, Theorem 10.1], that K maps &%+ (V) — &£9*(V') if Z is
smooth and X is Cohen—Macaulay.

Remark 6.1 In general, K¢ is not necessarily smooth in V', so one has to replace a%?’*
by the sheaves o7, 0’*, cf. Introduction, [7] and Sect. 11.

Let us now assume that Z = X,.4 is smooth. By shrinking ¢/, we can assume
that we have coordinates (¢, 7) in I/ as usual, and we let (z.w) be the corresponding
’output’ coordinates in{’. If in addition X is Cohen—Macaulay, we can choose (E, f)
so that the associated free resolution (2.3) of 07,/ J has length k = N — n. Then R
has just one component R, . For a smooth (0, * 4+ 1)-form ¢ in V, then

K¢(Z’ w) = / (g AN B)n A H;?RK A ¢’ (Za w) € V/, (69)
gt

where B is the Bochner-Martinelli form with respect to (¢, t; z, w), and ( ), denotes
the component of bidegree (n,n — % — 1) in (¢, 7).

7 Extension of Koppelman Formulas to Currents

We keep the notation from the preceding section.

Proposition 7.1 The operator K: &%*F1 (V) — £%*(V') in (6.9) extends to an oper-
ator CO*t1 (V) — CO*(V') and the Koppelman formula (6.8) still holds in V.

The proposition gives a new proof of the exactness of (4.13).

Proof Let us choose a basis 7% for Ox in U, as in Sect.3.1. If we represent ¢p €
CO* V) by ® = Y ¢e(£)T*, where ¢y (¢) € CO*+1(Z NUf), and regularize each
qAS/g by qgg, we obtain smooth ®€, representing smooth ¢€ that tend to ¢. Note that the
weight g defining K has support in the ¢-variable in a fixed compact set K C U, and
thus /€ is defined when € is small enough. We want to show that K¢ := lim¢_, o o€
is a well-defined object in C%* (V).

By assumption, B is of the form (6.3), where

- L.Z?:l(gj —zj)dg;+ 35 (T — wi)dr". (7.1)
2mi |§—Z|2+|T—UJ|2
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Take u = u(z, w) € Hom(Oy /T, CHLZ,). Since R is annihilated by 7 and d7, and pu
is annihilated by w and dw, see Sect.2, we have that

w(z, w) A Ko = u(z, w) A </

8(5.2) AB(L,2) A HPRe A ¢€> . (12)
Z,T

where B(¢, z) is the Bochner-Martinelli kernel with respect to the variables ¢, z, and
g(¢, z) only depends on ¢ and z (provided that it is chosen as in (6.2), but for (¢, 7) and
(z, w), however, this special choice of g is not important). More precisely, in view of
the representation (4.1) of Ry, its action involves holomorphic derivatives with respect
to t followed by evaluation at t = 0, cf. (3.4). Therefore,all terms involving 7 can
be canceled without affecting the integral. For the same reason, all terms involving w
disappear.

Therefore, H is the only factor in the integral that depends on w. Using the expan-
sions of the form (3.7) of ¢ together with the fact that R, is annihilated by .7, and the
expansion (4.1) of R,, and evaluating the t-integral in the right-hand side of (7.2) we
get

v—1
iz, w) A <f gL, DABE DAY he(, 2, w>¢3z> ,
¢

=0

for appropriate holomorphic functions &y . If we express each occurrence of w in the
basis w*t as in (3.11) modulo J (with w instead of t) and using that u is annihilated
by J, we get

v—1 v—1

uA KPS =z, w) A w™ /g(;, DABE DAY he oG, P,

£=0 ¢ =0

where hy , are polynomials in ¢, z. Thus

wiz w) AKPS =z, w) A Y Ke@w™,
t

where the Ky ((;Abé) is the result of multiplying the tuple (cj;z,) by a matrix of smooth forms
in ¢, z followed by convolution by the Bochner-Martinelli form B(¢). Therefore, each
limit lime_.o KCp (qASE) =: IC¢(¢) exists in the sense of currents on Z and is independent
of the regularization #¢, and we see that K(¢) = Do Ke(@)w*t = 1im K(¢€) is well
defined. Since the Koppelman formula holds for ¢¢, it follows that it also holds for ¢
by letting € — 0.

8 Comparison of Hefer Mappings

We will use an instance of the following general result.
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Lemma 8.1 Leta : (E f) — (E, f) be a morphism of complexes, and let H and H
denote holomorphic Hefer mappings associated to (E f ) and (E, f ), respectively.
Then (locally) there exist holomorphic (k — € + 1)-forms Ck with values in

Hom (Eg»,k, E; ¢) such that

C,f =0, k<{¢, 8.1)
8,Ct = Hiay () —ar(2) HY, (8.2)

and R
8,Ct = Hiax(¢) — ay(2)HY — Cf_ 1fk(§) - fz+1(z)Ce+l. (8.3)

Here, just as in [22], we consider a as a morphism in End(ea(lg"k @ Ey)), and thus
a is a morphism of even degree, cf. Sect.6.2.

Proof Since Hf and I:If are the identity mappings on E, ; and Eg,z, respectively,
when ¢ = z, one can solve the equation (8.2) by [2, Lemma 5.2]. We now proceed by
induction over k — £. We know the lemma holds if kK — £ < 0 so let us assume that it is
proved for k — ¢ < m and assume k — ¢ = m+ 1. By [2, Lemma 5.2], it is then enough
to see that the right-hand side of (8.3) is 8,-closed. To simplify notation,we suppress
indices and variables. By (6.5), §H = Hf — fH and §H = I:If — fI:I In addition,
fa = af and since f is of odd degree, while a is of even degree, § f = — f§ and
da = aé. We then have, using that ff = 0 and ff =0,

§(Ha—aH — (Cf — f(2)0))
= (Hf — fHYa—a(Hf — fH) — (Ha —aH — fC)f + f(Ha —aH — C f)

and using the relations above,it is readily verified that the right-hand side vanishes.

9 LP-Estimates in Special Cases

In this section,we consider the space X s ﬁ;( = Oy/Z, in Example 3.1 where, in a
local embedding and suitable coordinates (¢, 7) inUf, Z = (tM*1).

Since 7 is a complete intersection, the Koszul complex provides a resolution of
Oy /L. That is, if eq, ..., e, is a nonsense ba51s for the tr1v1a1 vector bundle E 1 X
C* x U, then the resolutlon is generated by (E f ), where Ek — AKE 1, each fk is
contraction by

Mi+1
7 1+ *+ +TM+1 *,

and e;f is the dual basis. The associated residue current is

- 1
M /\.../\am/\el/\"‘/\elc,
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see for example [3, Corollary 3.5]. In U/ x U’ we use the coordinates (¢, 7; z, w). If

1 v Mo
h:z—z Z r]:’wj’ "’drj/\e;f,
i
J 0=a;=M;

then it is readily checked that a choice of Hefer forms I-AI,iZ is given by contraction by
A=tp In particular,

0 1

H =+—— Z Wt A dTe Aer A - A e),
2mi)~
0<a<M
where we use the multiindex notation w® = w{' - - wi*.

In particular, with the notation (3.5), and the formula (3.6),

A A 1 - drt
0 _ o
H R, = —(Zm')" Z w araﬂ.
0<a<M

Using the notation from Sect. 6.3 and Sect. 7, we consider the operators

Ky =| gABAH'R Ay 9.1)
Z,T

fory € &4 N X). As was noted in Sect. 8, only the parts of B and g depending
on z, ¢ are relevant. In view of (3.4) we therefore get

A 10
Ky (zw) =) wa/g(C,z)/\B(Lz)/\——I'/,(C,O).
¢

aldt¥
a<M

Since B(¢, z) only depends on ¢ — z, by a change of variables, we see that

O ¢ - 9 _ov
Fomazr Y@ 0= > /{B(C,Z)/\Cﬂ’,ﬂ”azﬂ,ag_ﬂ,,g(é,z)/\3§$8tm(§,0)

B+ +o=y
9.2)

for appropriate constants cgr g». Since B(¢, z) is uniformly integrable in ¢ and z, and
g is smooth, it follows by, e.g., [30, Appendix B], that

Ky Ay
Ty &0 SO (R0 9.3)
wroz Lrzowy =y 196797 LP(znU)
From (9.3) and (3.8) it follows that there is a constant C), such that
Ko ke, < Col¥ ooy 1 <P < 00 94)
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Example 9.1 Let X = C" x X be an analytic space which is the product of C" with
a space X whose underlying reduced space is a single point 0 € C¥, i.e., such that
Ox = @c?xq /T, where J = 7*Jp, and Jo C Ocx is an ideal such that Z(Jp) = 0
and 7 is the projection 7 (£, T) = t. Note in particular that this includes the basic
examples X asin Example 3.1.

Since the operator K maps 7% to w?, it maps J to Jy,, where 7, denotes the ideal
J in the (z, w)-coordinates. Furthermore, it maps 7 and d7j to 0, so it descends to an
operator K : &0+ UNX) — &%*U' N X). Note that one may choose y1, . . ., Yp
in (3.9) that only depend on 7. Thus, if ¥ € &%*t1(U/ N X), then

K(y(0)¥) = y(w)Ky. (9.5)

By (3.10), (9.4),and (9.5), it follows that

||/€W||Lﬂ(xmu’) <Cpl¥llLrxnuy, 1= p =<oc. 9.6)

We can now prove

Proposition 9.2 Let X be a space of the form C" x X as in Example 9.1. The operators
K: &%t Y(X Ny — £%9(X NU') extend to bounded operators L(‘;qJrl XNn) —

Lg)q(X NU", g > 0,1 < p < oo, so that the Koppelman formula (6.8) holds.
The same statements hold for C%4 instead of Lg’ e

In particular, if ¥ € L{, (X NU) and dy = 0, then Ky = v in X N’ by
(6.8). Thus Theorem 1.1 holds for all ¢ when X is of the form as in Example 9.1.

Proof If Y € Lg,q+l(X NU), then by definition there is a sequence Yy € &%t (xn
U) such that ||y — YllLr(xnuy — 0. It follows from (9.4) that Ky is a Cauchy
sequence in Lg’ q (X NU") and hence has a limit K. Clearly this limit satisfies (9.6).

Moreover, it is in C%9 (X N2{’). Thus these extended operators satisfy the Koppelman
formula, see Proposition 7.1. The statements about C%¢ follow in exactly the same
way.

Remark 9.3 We use the intrinsic integral formulas on X NU here for future reference.
To obtain the theorem, one can just as well solve the d-equation with relevant L”-
Sobolev norms in X N U for each coefficient in the expansion (3.7). However, this is
naturally done by an integral formula on Z N U/, and the required computations are
basically the same.

We finish this section with an example showing that the spaces in Example 9.1
may not necessarily be written in the simple form as in Example 3.1 after a change of
coordinates, even if 7 is a complete intersection.

Example 9.4 Let J be generated by (w?, w% + wg). Then we claim that one cannot
find local coordinates 71, 72 near O such that 7 is generated by (rf, 1:5”). Indeed, since
the multiplicity of J is 9, £m = 9. The assumptions imply that

3 ¢
wy | bubn || - . o
|:w12+w§:| B |:b21 b22:| |:t§”i| and 7; = ajiwy +ajpws, for j =1,2,
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where the a j; and b j; are holomorphic. One may exclude the case £ = m = 3 since the
above equations would imply that w% belongs to the ideal generated by (w1, w2)3. The
case { = 1, m = 9 may be excluded as that would imply that 71 = ¢ w? +cz(w]2 + wg)
for some holomorphic functions ¢, which would contradict the fact that 7y is part of
a coordinate system near 0.

10 LP-Estimates at Cohen-Macaulay Points

Assume that we have a local embedding X — U where Z N U is smooth and X is
Cohen—Macaulay. Moreover, assume that we have coordinates (¢, t) in ¢/ such that
Z ={r1 =--- =1 =0}, and a basis t% for O over 0z. We may also assume that
we have a Hermitian resolution (E, f) of Ox = 074/ J of minimal length, so that its
associated residue current is R = R,.

In general, if X is Cohen—Macaulay, and the underlying space Z is smooth, it is not
possible to choose coordinates so that X becomes a product space as in Example 9.1,
even if the space is defined by a complete intersection.

Example 10.1 Let 7 C @C?,m]‘mz be generated by g = (w%, zwy + w%), and Ox =
0/J.Then Z(J) = {w = 0}, s0 J is a complete intersection ideal, and X is Cohen—
Macaulay. We claim that one cannot choose new local coordinates (¢, 71, t2) near 0
such that 7 = 7* 7y, where Jy C (C% is an ideal such that Z(Jy) = {t = 0} and
(i, 7)=r1.

Indeed, assume that there are such coordinates. First of all, from any set of generators
of an ideal, one may select among them a minimal subset of generators, and the number
isindependent of the choice of generators. Thus, one may assume that 7 is generated by
f1(7), f2(7).Since f and g generate 7, there is an invertible matrix A of holomorphic
functions such that f = Ag and g = A~! f. Note that if m is the maximal ideal of
functions vanishing at {z = w = 0}, then g belongs to mJz. Since f = A~ !g, the
same must hold for f. Since {r = 0} = {w = 0}, one may write t = Bw for some
holomorphic matrix B. Note also that since f only depends on 7, f = Ct mod 7. 22
for some constant matrix C. Since f belongs to mJz, we must have that C = 0, i.e.,
f =0 mod jZZ. Thus, also g = 0 mod jzz, which yields a contradiction.

Let us assume that we have coordinates (¢, ) in ¢/ and choose a simple ideal Z as
in Sect. 9, such that 7 C 7, and hence, as in Sect. 3, get the embedding

A

X - X, (10.1)

where 0 = Oy /T.LetV = X NU and V' = X N U’ as before and letV =X NU

and V' = X NU/. Here is our principal result.

Proposition 10.2 Let V and V' be as above and K as in Sect. 6.3.
(i) There are constants Cp, 1 < p < 00, such that if ¢ is a smooth (0, 1)-form and
3¢ = 0, then

I Lravy < ChlldllLray- (10.2)

@ Springer



Norm Estimates for the 3-Equation on a Non-reduced Space Page 250f37 237

(i) If ¢ is in LS ,(V), p < 00, and 0¢ = 0. Then K¢ is in L ,(V"), IKp = ¢, and
(10.2) holds. If ¢ € Co,1 (V) and 3¢ = 0, then K € Co.o(V'), 0K$ = ¢, and

IKpllcony < Cxolldllcyy-

Clearly Theorem 1.1 follows from this proposition. The rest of this section is devoted
to its proof.

Proof Choose an embedding (10.1) as above. Since the proposition is local we can
assume that we have a basis 7% in U. Let ¢ be a smooth (0, x)-form in V. As in
Sect.9, let (E, f) be the Koszul complex of Z = (t™*1) in I/. Let us choose a
morphism a: (E , f ) — (E, f) of complexes that extends the natural surjection
Oy /I — Op/J and such that ag is the identity morphism Eo ~ Ey, see, e.g., [22,
Proposition 3.1]. By (3.10), we are to estimate the L”(])’)—norm of

yKo =y w) | gABAHR: A9,
¢, T

where y is any of the functions in (3.9). (By the way, one can choose y; as the
components of a,, cf. [7, Example 6.9]).

Since y /¢ is to be considered as an element in go’*(f/ ), it is determined by
A yKe, where

R - dw
wiz, w) = am Adz.

since [ is a generator for Hom (0, /T, C'Hfl) in U, cf. Sect.6.3.

To ¢, we associate the representative ® = Zd;z({)‘[w in 50’*(2/1), where qu are
in £9*(Z NU), as in (3.11).

Lemma 10.3 We have that

;l/\leqS:,&/\y/ gABA(H? +8,CHOR, A D. (10.3)
¢, T

Proof Recall from Sect. 6.3 that (i A y K¢ is defined as the limit of

,&/\y/ Xeg A B AHOR, A, (10.4)
¢, T

where yx is acutoff function and x. = x (|(Z, T) — (z, w)|?/€). By [22, Theorem 4.1],
R.ayg = aKR Using Lemma 8.1, the fact that ag is the identity, and that fK e =0
by (2.5), we get

HYR, = H)a R = (H) + 8,CO) R, + f1(z. w)CLR,. (10.5)
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Since yJ C 7 and [ is annihilated by Z, we have that y(z) f1(z, w)ii = 0 so by
(10.5), (10.4) is equal to

;1/\)// Xeg A BA(HY 4+ 8,CHR, A ®.
¢, T

Taking the limit as ¢ — 0, we obtain (10.3).

Let us choose a holomorphic 1-form I' in ¢/ such that

T =y 1) -y w). (10.6)

From (10.3) and (10.6) we get

ﬁcAyICqﬁ:/lA/ SABAHY +8,COR A ye
¢, T

+,1/\f gABAH? +8,COR N8, T® = i ATip + L A Taob.
¢,T

Notice that we can write ¢ rather than ® in 1 A T}¢, since Ié,(y annihilates 7. Now
Ti¢p = T11¢ + T12¢, where

Tig= | gABAHR Ayo

K
(34

and

Tnp= [ gABAGCHOR) AV
¢,T

Lemma 10.4 Let A be a holomorphic (k+1, 0)-formind¢, dt, ¥ = (¢, t) a smooth
(0, x)-form on U. Then

,&/\/ g/\B/\(a,,A)Ié,(szﬁ/\/ gAAR A Y
;’T {

,T

—,&/\/ g/\BAAIéKAélﬁ—/lAE-)Zyw/ gABAAR: A Y.
{T ¢

\T

Proof As in the proof of Lemma 10.3,

/2/\/ gABA(anA)IéKszlim,zAf Xeg A B A (B, A)Re A
é-’.[ e—0 é-

,T
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Let ()i denote the component of degree k in d¢, dt. Then

(Vy(xe8 A B A AR AY)N
= —0rcXe A @A Bt AAR AV + Xegnot AAR A Y
— Xe(§ A By ASyARc AV — Xe(8 A B)uot A AR A DY
—0,0(Xe (g A B)u—tARc AV,

(10.7)

where we have used that k +n = N, V,g = 0 since g is a weight, x.V,B = xe,
V,A = 6, A since A is holomorphic, Ié,( is 9-closed (0, «)-current so that Vi Ié,( =0,
and finally that g, B and A are the only terms containing differentials in d¢, dt, and
A has degree k + 1 ind¢, dr.

We claim that

lin})ﬂAéXeA(g/\B)n_lAAIéKAlp:0. (10.8)
€—>

In fact, let us write B = ) B. Since B has only holomorphic differentials in d¢, d,
By has bidegree (k, k — 1), and so

EABu—1ANA= Z &n—k—1 N By A A.

k<n—1
In particular, it suffices to show that
lim L A dxe A Bx A Re =0
e—0

for k < n — 1. The limit of such a term on the left-hand side is a pseudomeromorphic
current of bidegree (x, k + 2«), see the comment after (2.2). Since the support of 9 Xe
tends to A, the limits have supporton AN(Z x Z) = ZN{pt}, which has codimension
Kk 4+ (n+«) = n+ 2«. By the dimension principle, Proposition 2.1, therefore the limit
of each such term is O since k + 2« < n + 2«. Thus the claim holds.

The lemma follows from the claim by applying i A f“ to (10.7) and lettinge — 0
since

~(Vy(Xe8 ABAARAY AN = 0(xeg ABAARAY A )N
=d(xeg ABAARAY A Q)N

so that, by Stokes’ theorem,

AA | (Vy(xeg ABAARAY A )N =0.
¢, T
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Using Lemma 10.4 with A = C,?, we get that T1o¢ = T1219 + T1220¢ + T1230,
where

T\21¢ = gn—1 A C,(()I%K ANy,
¢, T

Tinp = — (EAB)u—1 A CSRK Aydg
T

and

Ti3¢ = £0, (g A B)u1 ACORe Ay
Z,T

Note that since i f1(z) = 0 and fA,(Ié = 0, we get that
T = o A / gABAS((H? +5,COT)R, A ®.
¢t

Thus, by applying Lemma 10.4 with A = (1:1,? + 8,,C,9) AT, we get that Th¢p =
171D + Ty ® + Tr3P, where

Ty ® = / Gn-1x A (HY +8,CHOR AT A D,
,T

Ty® = / gABAHY +8,COR AT A,
Z,T

and

Tn® =43, | (A B1 AH +68,COHR AT A D.
¢, T

We can now prove (i). If éq‘) = 0, then clearly T22¢ and T122¢ vanish. If ¢ has

bidegree (0, 1), then T123¢ and T3¢ vanish for degree reasons since (g A B),—_1 and
¢ are the only terms containing d¢, d7. Therefore,

yK¢ =Ti¢ + Ti21¢ + o1 ®. (10.9)
The main term 771¢ is precisely I@(yq&), so from (9.4) and (3.10),
1Tl oy < Colly Bl < Cplldlloe)
as desired.
The remaining two terms 7T721¢ and 751 ® in (10.9) are simpler since their integrands

do not contain the factor B. We now use that ® has the form (3.11) and R, only depends
on 7. Integrating with respect to 7 therefore does not give rise to any derivates with
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respect to ¢. Thus, the LP(V')-norms of these two terms are bounded by integrals of

the form
v—1 (/_ p)l/p
=0 ‘Y%

where £ (¢, z) are smooth forms with compact supportin Z N/ It follows from (3.12)
and (3.13) that these terms are < ||¢ ||z (y). Thus part (i) is proved.

We now consider part (ii), so assume that ¢ € L(Iil V), p < oo and 5(;‘) =0. We
cannot deduce (ii) directly from (i). The problem is that we do not know whether it is
possible to regularize ¢ so that the smooth approximands are d-closed, cf. Remarks 5.3
and 5.4.

By Proposition 7.1,we know that d/C¢ = ¢ in the current sense. We must show
that actually KC¢ is in LP()’) and that (10.2) holds. Let ¢ be a sequence of smooth
(0, 1)-forms in V that converge to ¢ in L” (V) and let ®; denote the representatives
in U given by (3.11). Since T123¢% and T>3¢y vanish for degree reasons, we have

/; £8P

yKer = GO+ G'(0), (10.10)
where
GO = Tigk + Tindi + Tu®r, G, (00k) = TinpPs + Toa Py
The proof of part (i) gives the a priori estimate
IG®I o5y < CollliLoy)
for ¢ in &% (V). We conclude that G®;, has a limit G® in L”(f/) and that
IGN oy = Cplldllry) (10.11)
Next we claim that 1 A G'(3®;) — 0. In fact,

D) = Z(édgk,e)‘fw ,
4

so arguing as in the proof of Proposition 7.1 the claim follows, since Z_)qgk, ¢ — 0 for
each £.

Since y K¢ — y K¢ in ™! (V'), it follows from (10.10) that y K¢p = GP. Thus
y K¢ is indeed in L? (V') and, cf. (10.11),

17Kl o, < Collgllr.
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Since this estimate holds for any y = y;,we get cf. (3.10),

P
1K lLoovry ~ Y 17Kl Ly, < ColldlLr)-
j=1

Thus part (ii) holds for p < oo. The case p = oo follows in precisely the same way.
Thus the proposition is proved. O

Note that if we drop the assumption that ¢ be a (0, 1)-form, then the terms 7'23¢
and T23¢ no longer vanish, and it is not clear to us how to estimate them. It is also not
clear to us whether the estimate (10.2) holds if ¢ is not d-closed.

In the case of product spaces as in Example 9.1, then one may choose C,?, I:I,? and
I' such that they only contain holomorphic differentials dt. In that case, all terms but
T11¢ vanish for any (0, g)-form ¢, since all the other terms involve integrals of forms
of degree k + 1 in dt, which thus vanish for degree reasons. Thus, one in fact has that

yKo¢ =T = I@(yq&), cf. the proof of Proposition 9.2.

11 An Example Where X is not Cohen-Macaulay

In this section, we consider an example where Z = X,.4 is smooth but X is not
Cohen—Macaulay. Since X, is smooth, it is still possible to define Lﬁ;c(X) as in
Sect. 5. However, our solutions K¢ are not smooth at the non-Cohen—Macaulay point.
In view of works on L7 -estimates on non-smooth reduced spaces, it therefore might be
natural to define L” (X) as the completion of the space of smooth forms with support
on the Cohen—Macaulay part of X. In any case, we do not pursue this question here,
but just discuss an a priori estimate of the solutions.

Let Q = (Ciw and J = j(w%, wiwy, w%, Z2w) — zjwz), and let X have the
structure sheaf 0gq/J. Then Z = (Cg, and X has the single non-Cohen—Macaulay
point (0, 0). Outside that point X is locally of the form discussed in Sect. 9 so that we
have local L?-estimates for 9 for all (0, *)-forms there. Thus the crucial question is
what happens at (0, 0). The structure sheaf &y has the free resolution (E, f)

0 g L5 08 L ot 1 6 60)7 > 0,

where
wy 72 0 —wy O
£ = —wi fr = —Z1 22 wp —w2
2 |’ 0 —z1 0 w
—21 —w] —w2 0 0

and f1 = [w]2 wiwz w% 22w —Z1w2].

We equip the vector spaces Ej with the trivial metrics. Consider also the Koszul
complex (F, 8,2) generated by w? := (w]Z, w%), which is a free resolution of 0 /Z,
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where Z = (w%, w%). If X has structure sheaf ﬁf( = U /7, we thus have an embedding

X > X.
We take the morphism of complexes a : F, — E, given by

0 10
0 00

a=| . a=]01 andag=[1].
w1 00

Let R and R be the residue associated with (E, f) and (F, 8wz), respectively. It is
well known, see, e.g., [7], that R= ﬁz is equal to the Coleff—Herrera product

o = d(1/w) Ad(1/w3).

11.1 The CurrentR

In [7, Example 6.9], we found that

_ _ 1 _ _
,u1=8—/\8w— and puy = (z1w2 + zowp)0 A0
2

wq

S|._
St

1
2
wq

(times dz A dw) generate Hom(Ogq/J, CHé). Here we intend to calculate R =

Ry + R3. Using a comparison with the current ﬁ,it follows from [22, Theorem 3.2,
Lemma 3.4 and (3.10)] that

Ry = (I = f303)az o, (1L.1)

where
1

= —|z|2 TR [11)2 —wi 22 —Zl]

03

is the minimal left-inverse to f3. Since p( is pseudomeromorphic with support on
{w = 0}, w; up = 0, and therefore

¥k —WiZn yal 0 211
I | %% w2 —wiZ1 0 L | zam
Ry =— 2 - - pmo=-—=| = (11.2)
Iz)2 | ** 12| —2222 2221 w) |z|% | Z1m2
xx 2122 P -z | [ w 22

Since X has pure dimension R3 = da3 A Ry, where the left-hand side is the product
of the almost semi-meromorphic current do3 and the pseudomeromorphic current R;,
cf.(2.2)and [7, Section 2]. Since f; isinjective, 03 = (];3*f3)’1f3* = f3*/(|Z|2+|w|2).
Thus, f35'(I— f303) = 0,soinviewof (11.1), R3 = (|z] —|—|w|2)_1f3*R2.Furthermore,
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wjRy =dwj A Ry =0, so we get

21dzy — 22d7y

Eo 1. (11.3)

1
R3:W[00d22 —le]Rz:

11.2 Hefer Forms for (E, f)

Recall that a family H,f : Ex — E; of Hefer morphisms are to satisfy, cf. (6.5),
Hf = Ig, and

8- HE = HE_ | fi(€,T) — for (z, w) HT! (11.4)

for k > £. Due to the superstructure, when considering H and f as matrices, (11.5)
means

8- HE = HE ¢, ©) — (=D fopy (z, wyHETY, (11.5)

cf. [24, (2.12)]. By hands-on calculations, or with the help of Macaulay2, one can
check that

(t1 +wdr + widt
0 1 T1dT) + wadT)
2mi (r2 + w2)dt2
| —G1dT + Gdt + widi — wads
[ do 0 —dn O
1 I | =dg dy dv —dno

=01 o —dn o dn
_—drl —dtn 0 0
[ do
1 —dt;
H} = —
37 2mi | di
| —d{
B wi1di Adty — wadly AdTy !
1O — 1 Odty Adty +wido Adty — wadlp AdT
27 @i (11 + w)dt Adw
L wodty AdT)
B —di ANdT
1l — 1 diy Ndty +do AdTy
37 @ni)? —d¢) Adr
dty ANdm
1
H? = m [wldé'z Adty ANdty — wadly AdTy /\d‘L’z]
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(where Hlo and Hg are written as transposes of matrices just for space reasons) indeed
satisfy (11.5) and are thus components of a Hefer morphism.

11.3 Estimates of Integral Operators

Now choose balls i/’ cc U cc Q = C*

tr with center at (0, 0) and consider the
integral operator

K¢ = gABANHRAQ
¢, T
asin Sect. 6.3 for smooth (0, 1)-formsin )’ = X NU’. We have that K¢ = Krpp+K3¢,
where
Kap = | (30Ba+g AB)AHYRy A (11.6)
,T

and
K3¢(z)=/ XBi A HYR3 A ¢ (11.7)
T

Here gy = x is a cutoff function in ¢/ with compact support that is equal to 1 on I/’,
and g; contains the factor E_Jx, cf. (6.2). Moreover, B = b, B = b A db, where b is
given by (7.1), cf. (6.3). Notice, however, that since Tu; = 0, dT A u; = 0 and that
w; = 0 considered as a smooth form on X, precisely as in Sect.9, we can replace b
by

LZ?:NQ —zj)d¢;
2mi 1 —z|?

in the formula, and we may assume that go and g only depend on ¢ and z.
For smooth (0, x)-forms we have, see [5, Section 6], that

P (z, w)lx ~ ¢(z, 0) + 2]

0
gqb(z, O)' +1L¢(z,0)], (11.8)
where

ad ad
L=z1— +270—.
21 dw; +228w2

Since B A g has no differentials dz;, for degree reasons,we only have to take into
account terms of H that contain the factor d7; Ad 1. By (11.2), but with (¢, 7) instead
of (z, w), and the formula above for Hg the relevant part of (27§ )2H§ R, therefore is

Wil + w2l

|§|2 Mn2,

1 _ _
W(I(zlzm + it + w g + Dwaps) = p1 +
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where in the second equality,we have used that 7y o = ¢ 1. Thus

wily + waly

1
=— B B
K¢ Erny /{’t(go 2+ 81 ABI)A (Ml + e

Mz) AP ANdty ANdTy.

Integrating with respect to T and using that (27 Y 2ua A AdTty AdTy = LO A [T =
0],we get

Wil +walsy

i /\z:¢>). (11.9)

/C2¢=/(goBz+g1 /\Bl)/\(¢+
¢

From (11.3) and the formula for HY,we get

B 1 wi (&1 —21) + w2 (& — 22) (1den — $HdE,
30 =% Gaiy /X C— 2P %

ANdGONdoo NP A s Adty AdTo

1
=+ Gy |

wi (&1 — 21) + w2 (8 — 22) §1dE, — ¢,dC
¢ —z)? lg]*

ANdEy Ndo A (LP)(5,0).
(11.10)

We now estimate K¢ by considering the various parts of the norm, cf. (11.8),
letting K = supp x N Z and keeping in mind that z € X NI’ so that |g;| is bounded.
To begin with

|(K2)(z, 0)] = '/(XBz +81B1) A p (8, 0)‘ |3|<1>(§)|x (1L.11)

cek 16—

Next we have, cf. (9.2),

|z|

0 -
(a_z-’C2¢) (z,O)‘ =12l | B2 A - (XG0 + -

Sl frek TP mo@lx. (11.12)

Finally,

LK) (2, 0)] = | f( (xBa + g1B1) A (%) (L$)(£.0)

< Iz |¢(C)|x (11.13)

cek 1§ — 12— 23 I¢]
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Since K3¢ vanishes when w = 0, the two first terms in the norm (11.8) vanish, and
thus we get the estimate

IKC3olx ~ 1(LE39)(z, 0)]
/ 21001 — 21) + 22(82 — 22) §1dE, — ¢,dE,
’,z

d do N (L ,0
o T NG Ade A (£9)(0)

1
<
SE i ||{|3|¢(§)|X

Thus we have proved

|z| 1 Iz
< _
Kapoix=e [ (140t Kswlx =€ [ ol
(11.14)
By [23, Theorem 4.1], [|K2¢ () lLrvy < Cli@llLrvy if p > 4/3. Following the
argument of that proof, but where || — z|? s everywhere replaced by || — z]|,
it follows that [|C3¢ ()|l Lr(vy < Cll@llLrv) if p > 4. We thus obtain the following
estimate.

Proposition 11.1 Let X be the space above and let ¢ be a smooth (0, x)-form in V.
We have the a priori estimate

1KplILrvy < Clidllry) (11.15)
for4 < p < oo.

If ¢ has bidegree (0, 2), then X3¢ vanishes for degree reasons, so then (11.15) in
fact holds for p > 4/3.
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