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Abstract
We study norm-estimates for the ∂̄-equation on non-reduced analytic spaces. Ourmain
result is that on a non-reduced analytic space, which is Cohen–Macaulay and whose
underlying reduced space is smooth, the ∂̄-equation for (0, 1)-forms can be solved
with L p-estimates.
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1 Introduction

Various estimates for solutions of the ∂̄-equation on a smooth complex manifold
are known since long ago. The paramount methods are the L2-methods, going back
to Hörmander, Kohn, and others, and integral representation formulas, first used by
Henkin and by Skoda. Starting with [28, 29],there has been an increasing interest for
L2- and L p-estimates for ∂̄ on non-smooth reduced analytic spaces in later years,
see, e.g., [13, 19, 23, 27, 31]. In [6, 15, 16], there are results about L2-estimates of
extensions from non-reduced subvarieties. In this paper, we try to initiate the study of
L p-estimates for the ∂̄-equation on a non-reduced analytic space.

Let X be an analytic space of pure dimension n with structure sheaf OX . Locally
then we have an embedding i : X → U ⊂ C

N and a coherent ideal sheaf J ⊂ OU
of pure dimension n such that OX = O�/J in X ∩ U . In [7], we introduced a notion
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of smooth (0, ∗)-forms on X and proved that if the underlying reduced space Xred

is smooth and in addition OX is Cohen–Macaulay, then there is a smooth solution
to ∂̄u = φ if φ is smooth and ∂̄φ = 0. More generally, we defined sheaves A q

X of
(0, q)-forms on X that are closed under multiplication by smooth (0, ∗)-forms and
coincides with E 0,q

X where Xred is smooth and OX is Cohen–Macaulay, such that

0 → OX → A 0
X → · · · → A n

X → 0

is a fine resolution of OX . The solutions to the ∂̄-equation are obtained by intrinsic
integral formulas on X . Variants of the ∂̄-equation on non-reduced spaces have also
been studied by Henkin–Polyakov [20, 21].

In [5], it was introduced a pointwise norm | · | on forms φ ∈ E 0,∗
X . That is, |φ(x)|X

is non-negative function on Xred which vanishes in a neighborhood of a point x0 if
and only if φ vanishes there. It was proved that OX is complete with respect to the
topology of uniform convergence on compacts induced by this norm. In this paper, we
will only discuss spaces where Xred is smooth. In [5], it is defined an intrinsic coherent
leftOXred -moduleNX of differential operatorsOX → OXred , and the pointwise norm
is defined as

|φ(x)|2X =
∑

k

|(Lkφ)(x)|2,

where L j is a finite set of local generators for NX . Clearly another set of generators
will give rise to an equivalent norm. In particular, it becomes meaningful to say that φ
vanishes at a point x ∈ X . The norm extends to smooth (0, ∗)-forms. By a partition of
unity, we patch together and define a fixed global | · |X . Let us also choose a volume
element dV on Xred . We define L p

0,∗;X as the (local) completion of E 0,∗
X with respect

to the L p-norm. In the same way, we define C0,∗;X as the completion with respect to
the uniform norm. Our main result is

Theorem 1.1 Let X be an analytic space such that OX is Cohen–Macaulay and Xred

is smooth. Assume that 1 ≤ p < ∞. Given a point x, there are neighborhoods
V ′ ⊂⊂ V ⊂ X and a constant C p such that if φ ∈ L p

0,1(V) and ∂̄φ = 0, then there is

ψ ∈ L p
0,0(V ′) such that ∂̄ψ = φ and

∫

V ′
red

|ψ |p
X dV ≤ C p

p

∫

Vred

|φ|p
X dV .

Moreover, there is a constant C∞ such that if φ ∈ C0,1(V) and ∂̄φ = 0, then there is
a solution ψ ∈ C0,0(V ′) such that

sup
V ′

red

|ψ |X ≤ C∞ sup
Vred

|φ|X .

By standard sheaf theory, and the fact that ψ ∈ L p
0,0;X and ∂̄ψ = 0 implies that

ψ ∈ OX , see Lemma 4.8 and (5.1), we get the following corollaries.
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Corollary 1.2 Assume that X is a compact analytic space such that OX is Cohen–
Macaulay, Xred is smooth. If φ ∈ L p

0,1(X), ∂̄φ = 0 and the cohomology class of φ in

H1(X ,OX ) vanishes, then there is ψ ∈ L p
0,0(X) such that ∂̄ψ = φ. If φ ∈ C0,1(X),

then there is a solution ψ ∈ C0,0(X).

Notice that φ defines a Čech cohomology class in H1(X ,OX ) through (ψ j − ψk) j,k ,
where (ψ j ) are local ∂̄-solutions on a covering U j of X .

Corollary 1.3 Assume that X is an Stein space such that OX is Cohen–Macaulay and
Xred is smooth. If φ ∈ L p

0,1,loc(X) is ∂̄-closed, then there is ψ ∈ L p
0,0,loc(X) such that

∂̄ψ = φ. If φ ∈ C0,1(X), then there is a solution ψ ∈ C0,0(X).

The proof of Theorem 1.1 relies on the integral formulas in [7] in combination with
a new notion of sheaves of C0,∗X of (0, ∗)-currents on X which provide a fine resolution
ofOX (see Sect. 4). These sheaves should have an independent interest. In Remark 5.4,
we give a heuristic argument for Theorem 1.1 which relies on these sheaves but with
no reference to integral formulas.

We first consider a certain kind of “simple” non-reduced space for which we prove
these L p-estimates for all (0, q)-forms, see Sect. 9. We then prove the general case
by means of a local embedding X → X̂ , where X̂ is simple. To carry out the proof,
we need comparison results between the constituents in the integral formulas for the
two spaces. One of them is provided by [22], whereas another one, for the so-called
Hefer mappings, is new, see Sect. 8. The proof of Theorem 1.1 is in Sect. 10. Technical
difficulties restrict us, for the moment, to the case with (0, 1)-forms.

We have no idea of whether one could prove Theorem 1.1, e.g., in case p = 2, by
L2-methods.

The assumption that Xred be smooth and X be Cohen–Macaulay is crucial in this
paper. In the reduced case, considerable difficulties appear already with the presence
of an isolated singularity, besides the references already mentioned above, see, e.g.,
[17, 18, 25, 26, 32]. In the non-reduced case even when Xred is smooth, an isolated
non-Cohen–Macaulay point offers new difficulties. We discuss such an example in
Sect. 11.

Throughout this paper, X is a non-reduced space of pure dimension n and the
underlying reduced space Z = Xred is smooth, if nothing else is explicitly stated.

2 Some Preliminaries

Let Y and Y ′ be complex manifolds and f : Y ′ → Y a proper mapping. If τ is a
current on Y , then the pushforward, or direct image, f∗τ is defined by the relation
f∗τ.ξ = τ. f ∗ξ for test forms ξ . If α is a smooth form on Y , then we have the simple
but useful relation

α ∧ f∗τ = f∗( f ∗α ∧ τ). (2.1)

In [9, 11], was introduced the sheaf of pseudomeromorphic currents on Y . Roughly
speaking, a pseudomeromorphic current is the direct image under a holomorphic map-
ping of a smooth form times a tensor product of one-variable principal value current
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1/zm
j and ∂̄(1/zm′

k ). This sheaf is closed under ∂̄ and under multiplication by smooth
forms. If a pseudomeromorphic current τ has support on a subvariety V and the holo-
morphic function h vanishes on V , then h̄τ = 0 and dh̄ ∧ τ = 0. This leads to the
crucial dimension principle

Proposition 2.1 Let τ be a pseudomeromorphic current of bidegree (∗, q), and assume
that the support of μ is contained in a subvariety of codimension > q. Then τ = 0.

We say that a current a is almost semi-meromorphic in Y if there is a modification
π : Y ′ → Y , such that a is the direct image of a formα/ f , whereα is smooth and f is a
holomorphic section of some line bundle on Y ′. Assume thatμ is pseudomeromorphic,
a is an almost semi-meromorphic current,χε = χ(|F |2/ε), whereχ is a smooth cutoff
function, and F is a tuple of holomorphic functions such that {F = 0} contains the
set where a is not smooth. Then the limit

lim
ε→0

χεa ∧ μ (2.2)

exists and defines a pseudomeromorphic current a∧μ that is independent of the choice
of χ . We define ∂̄a ∧ μ := ∂̄(a ∧ μ) − (−1)deg aa ∧ ∂̄μ. It is readily verified that
∂̄a∧μ = limε→0 ∂̄χε ∧a∧μ. By Hironaka’s theorem, any almost semi-meromorphic
current is pseudomeromorphic.

Let U ⊂ C
N be an open set, let Z be a submanifold of dimension n < N , and

let κ = N − n. The OU -sheaf of Coleff–Herrera currents, CHZ
U , see [14], consists

of all ∂̄-closed (N , κ)-currents in U with support on Z that are annihilated by J̄Z ,
i.e., by all h̄ where h is in JZ . If J ⊂ OU is an ideal sheaf with zero set Z , then
Hom(OU/J , CHZ

U ) is the subsheaf of μ in CHZ
U that are annihilated by J . It is well

known that Hom(OU/J , CHZ
U ) is coherent, cf. e.g., [4, Theorem 1.5]

Remark 2.2 If Z is not smooth, then CHZ
U is defined in the same way, but one needs

an additional regularity condition, the so-called standard extension property, SEP, see,
e.g., [7, Section 2.1]. When Z is smooth, the currents in CHZ

U (with the definition
given here) admit an expansion as in [3, (3.4)], and so the SEP follows.

Let us recall some properties of residue currents associated to a locally free reso-
lution

0 → O (EN0)
fN0→ O(EN0−1) · · · f1→ O(E0) → 0 (2.3)

of a coherent (ideal) sheaf OU/J . The precise definitions and claimed results can all
be found in [10]. Let us denote the complex (2.3) by (E, f ). Assume that the vector
bundles Ek are equippedwithHermitianmetrics. The corresponding complex of vector
bundles is pointwise exact on U \ Z , where Z = Z(J ). There are associated currents
U and R. The current U is almost semi-meromorphic on U and smooth on U \ Z , and
takes values in Hom (E, E). The current R is a pseudomeromorphic current on U that
takes values in Hom (E0, E) and has support on Z . One may write R = ∑

k Rk , where
Rk is a (0, k)-current that takes values in Hom (E0, Ek). They satisfy the relation

( f − ∂̄) ◦ U + U ◦ ( f − ∂̄) = IE − R. (2.4)
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Here we use the compact notation E = ⊕Ek , f = ∑
fk . By the dimension principle

Rk = 0 if k < κ = codimJ . In particular, since ( f − ∂̄)2 = 0, it follows by (2.4)
that ( f − ∂̄)R = 0, so

fκ Rκ = ∂̄ Rκ−1 = 0. (2.5)

Moreover, R is annihilated by J̄Z , and it satisfies the duality principle

R = 0 if and only if  ∈ J . (2.6)

We will typically assume that the resolution is chosen to be minimal at level 0, i.e.,
such that E0 ∼= O . Thus, Hom (E0, Ek) ∼= Ek , so we may consider Rk as an Ek-
valued current. If OU/J is Cohen–Macaulay, then we can choose the resolution so
that N0 = κ . Then it follows that R consists of the only term Rκ that takes values in
Eκ , and from (2.4) that ∂̄ Rκ = 0. We conclude that the components μ1, . . . , μρ of
Rκ , ρ = rank Eκ , are in the sheafHom(OU/J , CHZ

U ). It is proved in [4, Example 1]
that these components μ j actually generate this sheaf. It follows from (2.6) that

μ = 0, μ ∈ Hom(OU/J , CHZ
U ), if and only if  ∈ J . (2.7)

By continuity (2.7) holds everywhere if J is has pure dimension.

3 Pointwise Norm on a Non-reduced Space X

Recall that X is a non-reduced space of pure dimension n with smooth underlying
manifold Xred = Z .

Consider a local embedding i : X → U ⊂ C
N and assume that π : U → Z ∩ U

is a submersion. Possibly after shrinking U , we can assume that we have coordinates
(ζ, τ ) = (ζ1, . . . , ζn, τ1, . . . , τκ ) in U so that Z ∩U = {τ = 0} and π is the projection
(ζ, τ ) �→ ζ . Let dζ = dζ1 ∧ . . . , dζn .

If μ is a section of Hom(OU/J , CHZ
U ) in U , then

π∗(φμ) =: Lφ dζ (3.1)

defines a holomorphic differential operatorL : O(X ∩U) → O(Z ∩U). Following [5,
Section 1] we define NX as the set of all such local operators L obtained from some
μ inHom(OU/J , CHZ

U ) and a local submersion. It follows from (2.1) and (3.1) that
if ξ is in OZ , then ξLφ = L(π∗ξφ). Thus NX is a left OZ -module. It is coherent, in
particular locally finitely generated, and if L j is a set of local generators, then φ = 0
if and only if L jφ = 0 for all j , see [5, Theorem 1.3]. If L j is a finite set of local
generators, therefore

|φ|2X =
∑

j

|L jφ|2 (3.2)

defines a local norm, and any other finite set of local generators gives rise to an
equivalent local norm.
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Example 3.1 Assume we have a local embedding and local coordinates (ζ, τ ) as above
in U . Let M = (M1, . . . , Mκ) be a tuple of non-negative integers and consider the
ideal sheaf

I =
〈
τ

M1+1
1 , . . . , τ Mκ+1

κ

〉
.

Let X̂ be the analytic space with structure sheaf OX̂ = OU/I. Consider the tensor
product of currents

μ̂ = ∂̄
dτ1

τ
M1+1
1

∧ · · · ∧ ∂̄
dτκ

τ
Mκ+1
κ

, (3.3)

where dτ j/τ
M j +1
j is the principal value current. We recall that if ϕ = ϕ0(ζ, τ )dζ ∧d ζ̄

is a test form, then

μ̂.ϕ = ∂̄
dτ1

τ
M1+1
1

∧ . . . ∧ ∂̄
dτκ

τ
Mκ+1
κ

.ϕ = (2π i)κ

M !
∫

ζ

∂ϕ0

∂τ M
(ζ, 0)dζ ∧ d ζ̄ , (3.4)

where M ! = M1! · · · Mκ !. It follows, e.g., by [3, Theorem4.1] that μ̂∧dζ is a generator
for theOU -module (andOX̂ -module)Hom(O/I, CHZ

U ). For a multiindex m, we will
use the shorthand notation

∂̄
dτ

τm
= ∂̄

dτ1

τ
m1
1

∧ . . . ∧ ∂̄
dτκ

τ
mκ
κ

. (3.5)

Moreover, m ≤ M means that m j ≤ M j for j = 1, . . . , κ . It is readily verified that

τβ ∂̄
dτ

τα
= ∂̄

dτ

τα−β
(3.6)

if β ≤ α. Any ψ in OX̂ has a unique representative in U of the form

ψ =
∑

m≤M

ψ̂m(ζ )τm . (3.7)

By [5, Proposition 3.1],

Lm,β := ∂ |m|+|β|

∂τm∂ζβ

∣∣∣
τ=0

, m ≤ M, |β| ≤ |M − m|,

is a generating set for NX̂ . If �(ζ, τ ) is any representative in U for ψ , thus, cf. (3.2),

|ψ |X̂ ∼
∑

m≤M, |β|≤|M−m|

∣∣∣
∂

∂τm∂ζβ
�(ζ, 0)

∣∣∣ ∼
∑

m≤M, |β|≤|M−m|

∣∣∣
∂ψ̂m

∂ζβ

∣∣∣. (3.8)
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Let us now return to the setting of a local embedding i : X → U ⊂ C
N as above.

Notice that if M is large enough in the example, then I ⊂ J . Let μ1, . . . , μρ be local
generators for the coherent OU -moduleHom(OU/J , CHZ

U ). Then we have a natural
mapping OU/I → OU/J , that is, a mapping ι∗ : OX̂ → OX . It is natural to say that
we have an embedding

ι : X → X̂ .

It is well known, see, e.g., [4, Theorem 1.5] that there are holomorphic functions
γ1, . . . , γρ (possibly after shrinking U) such that

μ j = γ j μ̂, j = 1, . . . , ρ. (3.9)

From [5, Theorem 1.4] we have that

|φ|X ∼
ρ∑

j=1

|γ jφ|X̂ . (3.10)

In this way, the norm | · |X is thus expressed in terms of the simpler norm | · |X̂ .

3.1 The NormWhen X is Cohen–Macaulay

So far we have only used the assumption the Z is smooth. Let us now assume in
addition thatOX is Cohen–Macaulay. Then one can find monomials 1, τα1 , . . . , ταν−1

such that each φ in OX has a unique representative

φ̂ = φ̂0(z) ⊗ 1 + · · · + φ̂ν−1(z) ⊗ ταν−1 , (3.11)

where φ̂ j are in OZ , see, e.g., [7, Corollary 3.3]. In this way, OX becomes a free OZ -
module (in a non-canonical way). Let | · |X ,π be the norm obtained from the subsheaf
NX ,π of NX , consisting of operators L obtained, cf. (3.1), from the submersion π

such that (ζ, τ ) �→ ζ in U . It turns out that

|φ|2X ,π ∼ |φ̂0(z)|2 + · · · + |φ̂ν−1(z)|2, (3.12)

cf. [5, Theorem 1.5]. By [5, Proposition 3.4], the whole sheaf NX is generated by
NX ,π for a finite number of generic submersions πι. It follows that

|φ|X ∼
∑

ι

|φ|X ,πι . (3.13)

3.2 The Sheaf E 0,∗
X of Smooth Forms on X

Assume that we have a local embedding i : X → U ⊂ C
N . If  is in E 0,∗

U , we say

that i∗ = 0, or equivalently  is in Ker i∗, if  is in E 0,∗
U J + E 0,∗

� J̄Z + E 0,∗
U dJ̄Z
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on Xreg , where JZ is the radical sheaf of Z and we by Xreg denote the set of points
of X where Z is smooth and OX is Cohen–Macaulay.

Remark 3.2 If the underlying reduced space Xred is not smooth, or OX is not Cohen–
Macaulay, then this definition of Ker i∗ is not valid. Instead is used as definition that
 ∧ μ = 0 for all μ in Hom(OU/J , CHZ

U ). However, it is true that i∗ = 0 if
i∗ = 0 where Xred is smooth and X is Cohen–Macaulay. See [7, Lemma 2.2].

We define E 0,∗
X = E 0,∗

U /Ker i∗ and have the natural mapping i∗ : E 0,∗
U → E 0,∗

X .

By standard arguments, one can check that the OX -module E 0,∗
X so defined does not

depend on the choice of local embedding.
Each L ∈ NX extends to a mapping E 0,∗

X → E 0,∗
Z so that (3.1) holds, see [5,

Lemma 8.1]. If we choose a Hermitian metric on the tangent space T Z , we get an
induced norm on E 0,∗

Z , and so we get a pointwise norm by (3.2) of smooth (0, ∗)-forms
on X . In particular, if φ and ξ are smooth forms on X , then

|ξ ∧ φ|X ≤ Cξ |φ|X , (3.14)

cf. the remark after [5, (4.23)]. Choosing an embedding ι : X → X̂ as above, (3.14)
follows from (3.8) and (3.10).

If OX is Cohen–Macaulay and i : X → U is a local embedding with coordinates
(ζ, τ ) and a monomial basis τα� , then we have a unique local representation (3.11) of
each φ in E 0,∗

X with φ̂� in E 0,∗
Z , and the other statements in Sect. 3.2 hold verbatim,

with the same proofs, for smooth (0, ∗)-forms.

4 Intrinsic Currents on X

In the reduced case, one can define currents just as dual elements of smooth forms. In
the non-reduced case, one has to be cautious because there are two natural kinds of
currents:suitable limits of smooth forms and dual elements of smooth forms. We have
to deal with both kinds. In this paper, the former type appears as (0, ∗)-currents, while
the latter appears as (n, ∗)-currents. In [8], we study the ∂̄-equation on a non-reduced
space for general (p, q)-forms, and then both type of currents appear in arbitrary
bidegrees.

4.1 The Sheaf of Currents CZ
U

LetU ⊂ C
N be an open subset and Z a submanifold as before. Let CZ

U be theOU -sheaf
of all (N , ∗)-currents in U that are annihilated by J̄Z and dJ̄Z . Clearly these currents
have support on Z .

Lemma 4.1 If (ζ, τ ) are local coordinates inU so that Z = {τ = 0}, then each current
μ in CZ

U has a unique representation

μ =
∑

α≥0

aα(ζ ) ∧ ∂̄
dτ

τα+1 ∧ dζ, (4.1)
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where aα are in C0,∗Z and the sum is finite, and we use the shorthand notation (3.5).

Proof Since τ̄ jμ = 0 for all j , μ must have support on Z . Since it is a current, there
is a tuple M of positive integers such that τα ∧ μ is non-zero only when α ≤ M . Let
π be the projection (ζ, τ ) �→ ζ . We claim that (4.1) holds with

aα(ζ ) ∧ dζ = ± 1

(2π i)p
π∗(ταμ). (4.2)

In fact, given a test form φ with Taylor expansion

φ(ζ, τ ) =
∑

α≤M

1

α!
∂αφ

∂τα
(ζ, 0)τα + O(τ̄ , d τ̄ ) + O(τ

M1+1
1 , . . . , τ Mκ+1

κ ),

and using (3.4), we see that

μ.φ =
∑

α≤M

μ.
1

α!
∂αφ

∂τα
(ζ, 0)τα =

∑

α≤M

1

(2π i)p
π∗(ταμ) ∧ ∂̄

dτ

τα+1 .φ.

It follows from (4.2) that if μ has the expansion (4.1), then ∂̄μ has an expansion

∂̄μ =
∑

α≥0

∂̄aα(ζ ) ∧ ∂̄
dτ

τα+1 ∧ dζ.

In particular, ∂̄μ = 0 if and only if each aα(ζ ) is ∂̄-closed. It is also readily verified
that a sequence μk tends to 0 if and only if the associated sums (4.1) have uniformly
bounded length and their coefficients ak,α tend to 0 for each fixed α.

4.2 The Intrinsic Sheaf Cn,∗
X

Wedefine the sheaf Cn,∗
X of intrinsic (n, ∗)-currents on X as the dual ofE 0,n−∗

X . Assume

that i : X → U is a local embedding. Since E 0,n−∗
X = E 0,n−∗

U /Ker i∗ and Ker i∗ is
closed, the elements in Cn,∗

X are represented by the currents in U that vanish when
acting on test forms with a factor in J , J̄Z , dJ̄Z , which in turn are the currents in U
that are annihilated by J , J̄Z , dJ̄Z , that is,Hom(OU/J , CZ

U ). Therefore,we have the
isomorphism

i∗ : Cn,∗
X

�→ Hom(OU/J , CZ
U ).

LetωX be the subspace of ∂̄-closed elements in Cn,0
X . We then obtain the isomorphism

i∗ : ωX
�→ Hom(OU/J , CHZ

U ).

In case X is reduced, ωX is the well-known Barlet sheaf of holomorphic n-forms on
X , cf. [7, Section 5] and [12].
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4.3 Representations ofOX and E
0,∗
X

Assume thatwe have a local embedding i : X → �. Notice that we have awell-defined
mapping

OX → Hom
(Hom(OU/J , CHZ

U ),Hom(OU/J , CHZ
U )

)
, φ �→ (μ �→ φμ).

(4.3)
It follows from (2.7) that (4.3) is injective.

Remark 4.2 It is in fact an isomorphism where X is Cohen–Macaulay (or more gen-
erally where X is S2), see [7, Theorem 7.3].

Let μ1, . . . , μρ be generators for Hom(OU/J , CHZ
U ), and consider an element

 inHom
(Hom(OU/J , CHZ

�),Hom(OU/J , CZ
U )

)
. Moreover, let us choose coordi-

nates (ζ, τ ) in U as before. Since each (μ j ) is in Hom(OU/J , CZ
U ),it has a unique

representation (4.1), and if we choose M such that τ M1+1
1 , . . . , τ

Mκ+1
κ ∈ J , then the

sum only runs over α ≤ M . Thus, is represented by the tuple ̃ ∈ (C0,∗Z )r consisting
of all the aα(ζ ) for the currents (μ j ), j = 1, . . . , ρ.

Now assume that X is Cohen–Macaulay and choose a monomial basis τα� as in
Sect. 3.1. Each φ ∈ OX is then, cf. (3.11), represented by a tuple φ̂ ∈ (OZ )ν . Thus the
mapping (4.3) defines a holomorphic sheaf morphism (matrix) T : (OZ )ν → (OZ )r .
It is injective by (2.7), so T is generically pointwise injective. In fact, we have, [7,
Lemma 4.11]:

Lemma 4.3 The morphism T is pointwise injective.

We can thus (locally) choose a holomorphic matrix A such that

0 → Oν
Z

T→ Or
Z

A→ Or ′
Z (4.4)

is pointwise exact, and holomorphic matrices S and B such that

I = T S + B A. (4.5)

In the same way,we have a natural mapping

E 0,∗
X → Hom

(Hom(OU/J , CHZ
U ),Hom(OU/J , CZ

U )
)
, φ �→ (μ �→ φ ∧ μ).

(4.6)
If φ is in E 0,∗

X , then the coefficients in the expansion (4.1) of φ ∧ μ are in E 0,∗
Z so the

image ofφ in (4.6) is represented by an element in (E 0,∗
Z )r . If X is Cohen–Macaulay,we

have the unique representation (3.11) with φ̂� in E
0,∗
Z and hence (4.6) defines an E 0,∗

Z -

linear morphism (E 0,∗
Z )ν → (E 0,∗

Z )r that coincides with T for holomorphic φ. Since
(4.4) is pointwise exact, we have the exact complex

0 → (E 0,∗
Z )ν

T→ (E 0,∗
Z )r A→ (E 0,∗

Z )r ′
. (4.7)
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We now consider what happens with these representations when we change coor-
dinates.

Lemma 4.4 Let (ζ, τ ) and (ζ ′, τ ′) be two coordinate systems in U as before. There is
a matrix L of holomorphic differential operators such that if μ ∈ Hom(OU/J , CZ

U ),
and (aα) and (a′

α) are the coefficients in the associated expansions (4.1), then (a′
α) =

L(aα).

Proof Let π and π ′ be the projections (ζ, τ ) �→ ζ and (ζ ′, τ ′) �→ ζ ′, respectively. Fix
a multiindex α. Recall that a′

α ∧ dζ ′ = ±(2π i)−1π ′∗((τ ′)αμ), cf. (4.2). We can write

(τ ′)α =
∑

ρ

bρ(ζ )τρ,

where bρ are holomorphic. After a preliminary change of coordinates in the ζ -
variables, which only affects the coefficients by the factor dζ/dζ ′, we may assume
that ζ ′ = ζ when τ ′ = 0 so that

ζ ′
j = ζ j +

∑

k

τkb jk(ζ, τ ).

If ϕ = ∑′
|I |=∗ ϕI (ζ )d ζ̄I is a test form in Z of bidegree (0, ∗), then

(π ′)∗ϕ =
′∑

|I |=∗
ϕI (ζ

′)d ζ̄ ′
I + O(τ̄ , d τ̄ )

=
′∑

|I |=∗

∑

γ,δ

cγ,δ(ζ )
∂ |γ |ϕI

∂ζ γ
(ζ )d ζ̄I τ

δ + O(τ̄ , d τ̄ )

=
∑

γ,δ

cγ,δ(ζ )
∂ |γ |π∗ϕ

∂ζ γ
τ δ + O(τ̄ , d τ̄ ).

Since τ̄μ = 0 and d τ̄ ∧ μ = 0, and bρ and cγ,δ only depend on ζ ,

π ′∗((τ ′)αμ).ϕ = μ.(τ ′)α(π ′)∗ϕ =
∑

ρ,γ,δ

± ∂ |γ |

∂ζ γ

(
cγ,δ ∧ bρ ∧ π∗(τρ+δμ)

)
.ϕ

which means that

a′
α =

∑

ρ,γ,δ

± ∂ |γ |

∂ζ γ

(
cγ,δ ∧ bρ ∧ aρ+δ

)
. (4.8)

Note that the expansion of (π ′)∗ϕ is infinite, but it only runs over γ such that |γ | ≤ |δ|.
Since τ δμ = 0 if |δ| is large enough, the series (4.8) defining a′

α is thus in fact a finite
sum. Thus a′

α is obtained from a matrix of holomorphic differential operators applied
to (aβ).
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Corollary 4.5 Assume that X is Cohen–Macaulay. Let (ζ, τ ) and (ζ ′, τ ′) be coordinate
systems as above, and let τα� and (τ ′)α′

� be bases as in Sect.3.1. There is a matrix L
of holomorphic differential operators such that if (φ̂ j ) ∈ (E 0,∗)ν and (φ̂′

j ) ∈ (E 0,∗)ν

are the coefficients with respect to these two bases of the same element φ ∈ E 0,∗
X , then

(φ̂′
j ) = L(φ̂ j ). (4.9)

Proof Consider φ ∈ E 0,∗
X and let  be its image in Hom

(Hom(OU/J , CHZ
U ),

Hom(OU/J , CZ
U )

)
. Given generators μ1, . . . , μρ for Hom(OU/J ), CHZ

U ), let T ′
and S′ be the mappings T and S but with respect to the new variables (ζ ′, τ ′) and basis
(τ ′)α

′
j . Then T (φ̂ j ) and T ′(φ̂′

j ) are the coefficients with respect to (ζ, τ ) and (ζ ′, τ ′),
respectively, of (μ j ), j = 1, . . . , ρ.

According to Lemma 4.4, T ′(φ̂′
j ) = L̃(T (φ̂ j )), where L̃ is a matrix of holomorphic

differential operators. Thus, cf. (4.5), (φ̂′
j ) = S′ ◦ T ′(φ̂′

j ) = S′ ◦ L̃(T (φ̂ j )), which
defines the desired matrix L.

4.4 The Sheaf C0,∗
X of (0, ∗)-Currents

Let us assume now that X is Cohen–Macaulay. We want C0,∗X to be an OX -sheaf

extension of E 0,∗
X so that E 0,∗

X is dense in a suitable topology. The idea is to define a
(0, ∗)-current φ as something that for each choice of coordinates (ζ, τ ) and basis τα�

as in Sect. 3.1 has a representation (3.11) where (φ̂ j ) are in (C0,∗Z )ν , and transform by

(4.9). However, to get a more invariant definition, we will represent C0,∗X as a subsheaf
of the OX -sheaf

F := Hom
(Hom(OU/J , CHZ

U ),Hom(OU/J , CZ
U )

)
.

Let us fix (ζ, τ, τα�). Given an expression (3.11), where φ̂0, . . . φ̂ν−1 are in C0,∗Z ,
we get a mapping

CHZ
U → CZ

U , μ �→ φ̂ ∧ μ, (4.10)

by expressing μ as in (4.1) and performing the multiplication formally term by term.

Lemma 4.6 The mapping (4.10) defines an element in F that is zero if and only if all
φ̂� vanish.

All such images in F form a coherent subsheaf F ′ of F that is independent of the
local choice (ζ, τ, τα�).

Proof We first claim that J (φ̂ ∧ μ) = 0 if Jμ = 0. Let (φ̂�,ε) be tuples in (E 0,∗
Z )ν

obtained by regularizing each entry φ̂�, and let φ̂ε denote the corresponding smooth
forms in E 0,∗

X . Then φ̂ε ∧μ → φ̂ ∧μ as currents, and since J (φ̂ε ∧μ) = 0, the claim
follows. Thus (4.10) defines an element in F .

Let μ1, . . . , μρ be generators for Hom(OU/J , CHZ
U ). Then the coefficients of

φ̂ ∧ μ j , j = 1, . . . , ρ, are given by T (φ̂�) ∈ (C0,∗Z )r , where T is the matrix in (4.7).
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Indeed, this holds for the smooth φ̂ε and hence for φ̂. Since T is pointwise injective,
the induced mapping is injective as well. If the image of (4.10) vanishes therefore the
tuple φ̂� vanishes.

For each multiindex γ ,

τγ =
∑

�

c�(ζ )τα�

for unique c� inOZ . For ξ inOX ,therefore there is a (unique)matrix Aξ ofOZ -functions
such that

(ψ̂�) = Aξ (φ̂�) (4.11)

for any smooth φ̂ if ψ = ξφ. Moreover,

ξ(φ̂ ∧ μ) = ψ̂ ∧ μ (4.12)

since both sides are the equal to the current ξφ ∧ μ. If now (φ̂�) is in (C0,∗Z )ν and
(ψ̂�) is defined by (4.11), then by a regularization as above we see that still (4.12)
holds. Thus the image of (C0,∗Z )ν is a locally finitely generated OX -module and hence
a coherent subsheaf F ′ of F .

It remains to check the independence of the choice of (ζ, τ, τα�). Thus assume
(ζ ′, τ ′, (τ ′)α′

� ) is another choice, cf. Corollary 4.5. If (φ̂′
�) = L(φ̂�) and (φ̂′

j,ε) =
La(φ̂�,ε), then φ̂′

ε → φ̂. Since φ̂′
ε ∧ μ = φ̂ε ∧ μ we conclude that φ̂′ ∧ μ = φ̂ ∧ μ.

Definition 4.7 The sheaf of (0, ∗)-currents C0,∗X is defined as the sheaf F ′.

Given (ζ, τ, τα�), thus each element φ in C0,∗X has a unique representation (3.11).
However, in view of Lemma 4.6, the current φ ∧μ has an invariant meaning. We have
natural mappings ∂̄ : C0,qX → C0,q+1

X , defined by (φ̂�) �→ (∂̄φ̂�). They are well defined
since ∂̄ commutes with the transition matrices L in the preceding proof. We thus get
the complex

0 → OX → C0,0X
∂̄→ C0,1X

∂̄→ · · · . (4.13)

Proposition 4.8 The sheaf complex (4.13) is exact.

Proof First assume that φ is in C0,0X . Given (ζ, τ, τα�), we then have a unique repre-

sentation (3.11) with φ̂ j ∈ C0,∗Z . If ∂̄φ = 0, then all ∂̄ φ̂� = 0, so φ̂� ∈ OZ , and thus

φ ∈ OX . If φ is in C0,q+1
X , then ∂̄φ = 0 means that each ∂̄ φ̂� = 0, and thus,we have

local solutions to ∂̄ û� = φ̂� in C0,qZ . It follows that u defined by û� is a solution to
∂̄u = φ.

Definition 4.9 A sequence φk in C0,∗X converges to φ if φk ∧ μ → φ ∧ μ for all μ in
Hom(OU/J , CHZ

U ).

Notice that ∂̄(φ ∧ μ) = ∂̄φ ∧ μ. Thus φk → φ implies that ∂̄φk → ∂̄φ.
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Lemma 4.10 Let (ζ, τ, τα�) be a local basis in U and assume that

φk =
∑

φ̂�kτ
α�, φ =

∑
φ̂�τ

α� . (4.14)

The sequence φk in C0,∗X converges to φ in U if and only if φ̂�k → φ̂� for each �.

It follows that E 0,∗
X is dense in C0,∗X , since E 0,∗

Z is dense in C0,∗Z .

Proof If φ̂�k → φ̂� for each �, then φk ∧μ → φ ∧μ. For the converse, let us choose a
generating set μ1, . . . , μρ as above. If φk → φ, then in particular φk ∧ μ j → φ ∧ μ j

for each j = 1, . . . , ρ. This means that T (φ̂�k) → T (φ̂�) for each �. Since the matrix
T is pointwise injective, therefore φ̂�k → φ̂� for each �.

Remark 4.11 From the very definition, cf. Sect. 3.2, a sequence φk ∈ E 0,∗
X tends to 0 at

a given point x if and only if given a small local embedding i : X → U at x there are
representatives k ∈ E 0,∗

U such that k → 0 in U . If τα� is a local basis and φ̂�k → 0
for each �, then

k(ζ, τ ) :=
∑

�

φ̂�k(ζ )τα� → 0

in U and hence φk → 0 in E 0,∗(X ∩ U). Also the converse is true. In fact, if k are
representatives in U and k → 0 in U , then each of the coefficients of k ∧ μ j in
the representation (4.1) tends to 0 in E 0,∗(Z ∩ U) for each j . This precisely means
that T (φ̂�k) tend to 0 in E 0,∗(Z ∩ U). Since T is pointwise injective,this implies that
φ̂�k → 0 in E 0,∗(Z ∩ U) for each �.

Remark 4.12 We only define C0,∗X on the part where Z is smooth, as we there need to
embed L p

0,∗(X) into a larger space that allows for more flexibility. We do not know

what an appropriate definition of C0,∗X would be over the singular part of Z . In [7], we

introduce a sheafW0,∗
X of pseudomeromorphic (0, ∗)-currents on X with the so-called

standard extension property, also when Z is singular. On the part where Z is smooth,
W0,∗

X is a subsheaf of C0,∗X , and consists of currents which admit a representation (3.7),

where the ψ̂m are inW0,∗
Z ⊆ C0,∗Z .

Remark 4.13 We do not know if the embedding C0,∗X → F is an isomorphism, i.e., if
F ′ = F . For any h inF that can be approximated by smooth forms hε inF , it follows
as above that h is in F ′, but it is not clear that this is possible for an arbitrary h in F .
An analogous statement for the subsheafW0,∗

X is indeed true, see [7, Lemma 7.5], but

the proof relies on the fact that elements in W0,∗
Z are in a suitable sense generically

smooth and does not generalize to C0,∗X .

5 Lp-Spaces

Assume that X is Cohen–Macaulay and that the underlying manifold Z = Xred

is smooth. Recall that we have chosen a Hermitian metric on Z and let dV be the
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associated volume form. Assume 1 ≤ p < ∞. If K ⊂ X is a compact subset and φ

is in E 0,∗(X) then

(∫

Kred

|φ|p
X dV

)1/p

is finite and defines a semi-norm on E 0,∗(X). We define the sheaf L p
loc;0,∗ as the

completion of E 0,∗
X with respect to these semi-norms. In particular,we get the spaces

L p
0,∗(K ) for any compact subset K ⊂ X . For a relatively compact open subset V ⊂⊂

X ,we let L p
0,∗(V) = L p

0,∗(V). Clearly these spaces are independent of the choice of

| · |X and Hermitian structure on Z . In the same way,we define the sheaf C0,∗
X as the

completion of E 0,∗
X with respect to the semi-norms supK |φ|X .

Proposition 5.1 Let i : X → U ⊂ C
N be a local embedding and let V = X ∩ U .

If φ ∈ L p
0,∗(V), then φ ∈ C0,∗(V). Given coordinates and basis (ζ, τ, τα�), each

φ ∈ L p
0,∗(V) has a unique representation (3.11) where φ̂� ∈ L p(Vred). If φk → φ in

L p
0,∗(V), then φ̂k� → φ̂� in L p

0,∗(Vred) for each �.

If φk are smooth and tend to φ in L p
0,∗(V), it follows that φk → φ in C0,∗(V) and

hence
L p

loc;0,∗;X ⊂ C0,∗X . (5.1)

Proof If φ ∈ L p
0,∗(V), then by definition, there are smooth φk such that ‖φ −

φk‖L p(V) → 0. Since we have unique representations

φk =
∑

�

φ̂k�(ζ )τα�,

it follows from (3.12) and (3.13) that k �→ φ̂�k is a Cauchy sequence in L p(Vred) for
each � andhence converges to a function φ̂� ∈ L p(Vred). Thuswehave a representation
(3.11) for φ, where φ̂� ∈ L p(Vred). The last statement now follows from (3.12) and
(3.13).

Example 5.2 Let X̂ be the space in Example 3.1 and let V̂ = U ′ ∩ X̂ , where U ′ is
a relatively compact subset of U . Let L j,p(V̂red) be the Sobolev space of all (0, ∗)-
currents whose holomorphic derivates up to order j are in L p(Z). It follows from
(11.5) that L p(V̂) can be realized as all expressions of the form (3.7), where ψm ∈
L |M−m|,p
0,∗ (V̂red).

For a general Cohen–Macaulay space X ,there is no such simple way to describe
L p(X) locally in terms of a single choice of (ζ, τ, τα�).

Remark 5.3 Assume that φ ∈ C0,∗(V) and that its coefficients φ̂ι,� with respect to
each of the bases (ζ ι, τ ι, (τ ι)α

ι�
), cf. (3.13), are in L p(Vred). We do not know if this

implies that φ is in L p
0,∗(V). Consider the coefficients φ̂ι,� with respect to a fixed basis
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(ζ ι, τ ι, (τ ι)α
ι�
). If one approximates these coefficients in L p by smooth forms, then

we get convergence in the norm | · |X ,πι , cf. (3.12). However, there is no reason to
believe that they converge in the other norms in the right-hand side of (3.13). The
problem is that the transition matrix (4.9) involves derivatives.

Notice that if we have an embedding ι : X → X̂ as in Sect. 3, then, with the notation
used there,

‖φ‖L p(X∩U) ∼
∑

j

‖γ jφ‖L p(X̂∩U)
.

Remark 5.4 Here is a heuristic proof of Theorem 1.1. For simplicity, let us assume that
only two submersions π1 and π2 are needed in (3.13). Assume that φ is in L p

0,1(V).

Thenwe canfind a solution uι inC0,0(V) to ∂̄uι = φ so that the coefficientswith respect
to (ζ ι, τ ι, (τ ι)α

ι�
) of uι are in L p(Vred). This means that |uι|X ,πι is in L p(Vred) for

each ι. Now h = u2−u1 is ∂̄-closed, thus holomorphic, and hence bounded. It follows
that also |u2|X ,π1 = |u1+h|X ,π1 is in L p(Vred). In view of (3.13),onemight conclude
that u2 actually is in L p

0,0(V) if we disregard the problem pointed out in Remark 5.3.
Clearly, this argument breaks down if φ has bidegree (0, q + 1), q ≥ 1.

It is not clear to us if it is possible to make this outline into a strict argument. In any
case, we will prove Theorem 1.1 by means of an integral formula from [7]. Besides
being a closed formula for a solution, it also makes sense at non-Cohen–Macaulay
points and offers a possibility to obtain a priori estimates, cf. Sect. 11. Hopefully,it
could lead to results for general (0, q)-forms.

6 Koppelman Formulas on X

6.1 Koppelman Formulas inCN

Let U ⊂ C
N be a domain, and let U ′ ⊂⊂ U . Moreover, let δη be contraction by the

vector field

2π i
N∑

j=1

(ζ j − z j )
∂

∂ζ j

in Uζ × U ′
z and let ∇η = δη − ∂̄ . Assume that g = g0,0 + · · · + gn,n is a smooth form

such that gk,k has bidegree (k, k) and only contains holomorphic differentials with
respect to ζ . We say that g is a weight in U with respect to U ′ if ∇ηg = 0 and g0,0 is
1 when ζ = z. Notice that if g and g′ are weights, then g′ ∧ g is again a weight. The
basic observation is that if g is a weight, then

φ(z) =
∫

gφ, z ∈ U ′ (6.1)
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if φ is holomorphic in U , see, [1, Proposition 3.1].
IfU is pseudoconvex, following [2, Example 1], we can find aweight g, with respect

to U ′, with compact support in U , such that g depends holomorphically on z and has
no anti-holomorphic differentials with respect to z. For our purpose, we can assume
that these domains are balls with center at 0 ∈ U . Then we can take

g = χ − ∂̄χ ∧ σ

∇ησ
= χ − ∂̄χ ∧

N∑

�=1

1

(2π i)�
ζ · d ζ̄ ∧ (dζ · d ζ̄ )�−1

(|ζ |2 − ζ̄ · z)�
, (6.2)

where

σ = 1

2π i

ζ · d ζ̄

|ζ |2 − ζ̄ · z
.

Here χ is a cutoff function in U that is 1 in a neighborhood of U ′. It is convenient to
choose it of the form χ = χ̃ (|ζ |2) where χ̃ (t) is identically 1 close to 0 and 0 when t
is large.

Elaborating this construction, one can obtain Koppelman formulas for ∂̄ . Let

b = 1

2π i

∑N
j=1(ζ j − z j )dζ j

|ζ − z|2

so that δηb = 1 where ζ �= z, and

B = ∇ηb

∂̄b
= b + b ∧ ∂̄b + · · · + b ∧ (∂̄b)N−1 (6.3)

is the full Bochner–Martinelli form, cf. [1, Section 2]. Then ∇η B = 1 − [�]′, where
[�]′ is the component with full degree in dζ of the current of integration over the
diagonal � ⊂ U × U ′. Now

Kφ =
∫

ζ

g ∧ B ∧ φ (6.4)

defines integral operators E 0,∗+1(U) → E 0,∗(U ′) such that φ = ∂̄Kφ +K(∂̄φ) in U ′.
The integral in (6.4) is, by definition, the pushforward π∗(g ∧ B ∧ φ), where π is the
natural projection U × U ′ → U ′.

6.2 Hefer Morphisms

Let (E, f ) be a locally free resolution as in (2.3). As in [2] and elsewhere, we equip
E := ⊕Ek with a superstructure, by splitting into the part ⊕E2k of even degree and
the part ⊕E2k+1 of odd degree. An endomorphism α ∈ End(E) is even if it preserves
the degree, and odd if it switches the degree. The total degree degα of a form-valued
morphism α is the sum of the endomorphism degree and the form degree of α. For
instance, f is an odd endomorphism. The contraction by δη is a derivation (and has
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odd degree) that takes the total degree into account, so if α and β are two morphisms,
then δη(αβ) = δηα + (−1)degααδηβ.

In order to construct division–interpolation formulas with respect to (E, f ), in [2]
was introduced the notion of an associated family H = (H �

k ) of Hefer morphisms.
Here H �

k are holomorphic (k − �)-forms with values in Hom (Eζ,k, Ez,�) so they are
even. They are connected in the following way: To begin with, H �

k = 0 if k − � < 0,
and H �

� is equal to IE�
when ζ = z. In general,

δη H �
k+1 = H �

k fk+1(ζ ) − f�+1(z)H �+1
k+1 . (6.5)

Let R and U be the associated currents, see Sect. 2. The basic observation is that
g′ = f1(z)H1U + H0R is a kind of non-smooth weight so that if  is holomorphic,
then

(z) =
∫

ζ

g′ ∧ g = f1(z)
∫

ζ

H1U ∧ g +
∫

ζ

H0R ∧ g, z ∈ U ′. (6.6)

When defining these integral operators, we tacitly understand that only components
of the integrands that contribute to the integral should be taken into account.

6.3 Local Koppelman Formulas on X

Now assume that our non-reduced space X is locally embedded in a pseudoconvex
domain U . Let V = X ∩ U and V ′ = X ∩ U ′ ⊂⊂ V . Let (E, f ) be a locally free
resolution of OX as in (2.3). Then R = 0 if  = 0, cf. (2.6), and hence (6.6) is an
intrinsic representation formula

φ(z) =
∫

ζ

p(ζ, z)φ(ζ ), z ∈ V ′,

for φ ∈ O(V ′). Following [9] and [7], one can define operators

Kφ(z) =
∫

ζ

g ∧ B ∧ H0R ∧ φ, z ∈ V ′ (6.7)

mapping (0, ∗ + 1)-forms in V to (0, ∗)-forms in V ′. However, not even in ’good’
cases,the formula (6.7), as it stands, produces a form that is smooth in U ′, cf. [7,
Remark 10.4], so the precise definition of Kφ is somewhat more involved, cf. [7,
Section 9]: If μ ∈ Hom(OU/J , CHZ

U ) in U ′, then μ(z) ∧ R(ζ ) is a well-defined
pseudomeromorphic current in U × U ′. Moreover, B is almost semi-meromorphic in
U×U ′ and smooth outside the diagonal. Henceμ(z)∧g∧ B∧ H0R∧φ is well defined
in U × U ′, as the limit of μ(z) ∧ g ∧ Bε ∧ H0R ∧ φ, where Bε = χ(|ζ − z|2/ε)B,
cf. (2.2). The equality (6.7) is to be interpreted as the fact that there is a unique
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pseudomeromorphic current u = Kφ in V ′ such that

μ ∧ u =
∫

ζ

μ(z) ∧ g ∧ B ∧ H0R ∧ φ,

for all μ ∈ Hom(OU/J , CHZ ) in U ′. By [7, Theorem 9.1] the operators so defined
satisfy the Koppelman formula

φ = ∂̄Kφ + K(∂̄φ) (6.8)

in V ′. It turns out, [7, Theorem 10.1], that K maps E 0,∗+1(V) → E 0,∗(V ′) if Z is
smooth and X is Cohen–Macaulay.

Remark 6.1 In general,Kφ is not necessarily smooth in V ′, so one has to replace E 0,∗
X

by the sheaves A 0,∗
X , cf. Introduction, [7] and Sect. 11.

Let us now assume that Z = Xred is smooth. By shrinking U , we can assume
that we have coordinates (ζ, τ ) in U as usual, and we let (z.w) be the corresponding
’output’ coordinates in U ′. If in addition X is Cohen–Macaulay, we can choose (E, f )

so that the associated free resolution (2.3) of OU/J has length κ = N − n. Then R
has just one component Rκ . For a smooth (0, ∗ + 1)-form φ in V , then

Kφ(z, w) =
∫

ζ,τ

(g ∧ B)n ∧ H0
κ Rκ ∧ φ, (z, w) ∈ V ′, (6.9)

where B is the Bochner-Martinelli form with respect to (ζ, τ ; z, w), and ( )n denotes
the component of bidegree (n, n − ∗ − 1) in (ζ, τ ).

7 Extension of Koppelman Formulas to Currents

We keep the notation from the preceding section.

Proposition 7.1 The operator K : E 0,∗+1(V) → E 0,∗(V ′) in (6.9) extends to an oper-
ator C0,∗+1(V) → C0,∗(V ′) and the Koppelman formula (6.8) still holds in V ′.

The proposition gives a new proof of the exactness of (4.13).

Proof Let us choose a basis τα� for OX in U , as in Sect. 3.1. If we represent φ ∈
C0,∗+1(V) by  = ∑

φ̂�(ζ )τα� , where φ̂�(ζ ) ∈ C0,∗+1(Z ∩ U), and regularize each
φ̂� by φ̂ε

� , we obtain smooth ε , representing smooth φε that tend to φ. Note that the
weight g defining K has support in the ζ -variable in a fixed compact set K ⊂ U , and
thusKφε is definedwhen ε is small enough.Wewant to show thatKφ := limε→0 Kφε

is a well-defined object in C0,∗(V ′).
By assumption,B is of the form (6.3), where

b = 1

2π i

∑n
j=1(ζ j − z j )dζ j + ∑κ

i=1(τi − wi )dτi

|ζ − z|2 + |τ − w|2 . (7.1)
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Take μ = μ(z, w) ∈ Hom(OU/J , CHZ
U ). Since R is annihilated by τ̄ and d τ̄ , and μ

is annihilated by w̄ and dw̄, see Sect. 2, we have that

μ(z, w) ∧ Kφε = μ(z, w) ∧
(∫

ζ,τ

g(ζ, z) ∧ B(ζ, z) ∧ H0
κ Rκ ∧ φε

)
, (7.2)

where B(ζ, z) is the Bochner-Martinelli kernel with respect to the variables ζ, z, and
g(ζ, z) only depends on ζ and z (provided that it is chosen as in (6.2), but for (ζ, τ ) and
(z, w), however, this special choice of g is not important). More precisely, in view of
the representation (4.1) of Rκ , its action involves holomorphic derivatives with respect
to τ followed by evaluation at τ = 0, cf. (3.4). Therefore,all terms involving τ̄ can
be canceled without affecting the integral. For the same reason, all terms involving w̄

disappear.
Therefore, H is the only factor in the integral that depends on w. Using the expan-

sions of the form (3.7) of φ together with the fact that Rκ is annihilated by J , and the
expansion (4.1) of Rκ , and evaluating the τ -integral in the right-hand side of (7.2) we
get

μ(z, w) ∧
(∫

ζ

g(ζ, z) ∧ B(ζ, z) ∧
ν−1∑

�′=0

h�′(ζ, z, w)φ̂ε
�′

)
,

for appropriate holomorphic functions h�′ . If we express each occurrence of w in the
basis wα� as in (3.11) modulo J (with w instead of τ ) and using that μ is annihilated
by J , we get

μ ∧ Kφε = μ(z, w) ∧
ν−1∑

�=0

wα�

∫

ζ

g(ζ, z) ∧ B(ζ, z) ∧
ν−1∑

�′=0

h�′,�(ζ, z)φ̂ε
�′,

where h�′,� are polynomials in ζ, z. Thus

μ(z, w) ∧ Kφε = μ(z, w) ∧
∑

�

K�(φ̂
ε)wα�,

where theK�(φ̂
ε) is the result ofmultiplying the tuple (φ̂ε

�′)by amatrix of smooth forms
in ζ, z followed by convolution by the Bochner-Martinelli form B(ζ ). Therefore, each
limit limε→0 K�(φ̂

ε) =: K�(φ) exists in the sense of currents on Z and is independent
of the regularization φ̂ε , and we see that K(φ) = ∑

� K�(φ)wα� = limK(φε) is well
defined. Since the Koppelman formula holds for φε , it follows that it also holds for φ

by letting ε → 0.

8 Comparison of Hefer Mappings

We will use an instance of the following general result.

123



Norm Estimates for the ∂̄-Equation on a Non-reduced Space Page 21 of 37 237

Lemma 8.1 Let a : (Ê, f̂ ) → (E, f ) be a morphism of complexes, and let Ĥ and H
denote holomorphic Hefer mappings associated to (Ê, f̂ ) and (E, f ), respectively.

Then (locally) there exist holomorphic (k − � + 1)-forms C�
k with values in

Hom (Êζ,k, Ez,�) such that

C�
k = 0, k < �, (8.1)

δηC�
� = H �

� a�(ζ ) − a�(z)Ĥ �
� , (8.2)

and
δηC�

k = H �
k ak(ζ ) − a�(z)Ĥ �

k − C�
k−1 f̂k(ζ ) − f�+1(z)C

�+1
k . (8.3)

Here, just as in [22], we consider a as a morphism in End(⊕(Êk ⊕ Ek)), and thus
a is a morphism of even degree, cf. Sect. 6.2.

Proof Since H �
� and Ĥ �

� are the identity mappings on E�,z and Ê�,z , respectively,
when ζ = z, one can solve the equation (8.2) by [2, Lemma 5.2]. We now proceed by
induction over k − �. We know the lemma holds if k − � ≤ 0 so let us assume that it is
proved for k −� ≤ m and assume k −� = m +1. By [2, Lemma 5.2], it is then enough
to see that the right-hand side of (8.3) is δη-closed. To simplify notation,we suppress
indices and variables. By (6.5), δH = H f − f H and δ Ĥ = Ĥ f̂ − f̂ Ĥ . In addition,
f a = a f̂ and since f is of odd degree, while a is of even degree, δ f = − f δ and
δa = aδ. We then have, using that f f = 0 and f̂ f̂ = 0,

δ
(
Ha − aĤ − (C f̂ − f (z)C)

)

= (H f − f H)a − a(Ĥ f̂ − f̂ Ĥ) − (Ha − aĤ − f C) f̂ + f (Ha − aĤ − C f̂ )

and using the relations above,it is readily verified that the right-hand side vanishes.

9 Lp-Estimates in Special Cases

In this section,we consider the space X̂ , OX̂ = OU/I, in Example 3.1 where, in a
local embedding and suitable coordinates (ζ, τ ) in U , I = 〈

τ M+1
〉
.

Since I is a complete intersection, the Koszul complex provides a resolution of
OU/I. That is, if e1, . . . , eκ is a nonsense basis for the trivial vector bundle Ê1 �
C

κ × U , then the resolution is generated by (Ê, f̂ ), where Êk = �k Ê1, each f̂k is
contraction by

τ
M1+1
1 e∗

1 + · · · + τ Mκ+1
κ e∗

κ ,

and e∗
j is the dual basis. The associated residue current is

R̂κ = ∂̄
1

τ
M1+1
1

∧ . . . ∧ ∂̄
1

τ
Mκ+1
κ

∧ e1 ∧ · · · ∧ eκ ,
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see for example [3, Corollary 3.5]. In U × U ′ we use the coordinates (ζ, τ ; z, w). If

h = 1

2π i

∑

j

∑

0≤α j ≤M j

τ
α j
j w

M j −α j
j dτ j ∧ e∗

j ,

then it is readily checked that a choice of Hefer forms Ĥ �
k is given by contraction by

∧k−�h. In particular,

Ĥ0
κ = ± 1

(2π i)κ
∑

0≤α≤M

wατ M−αdτ1 ∧ . . . dτκ ∧ (e1 ∧ · · · ∧ eκ)∗,

where we use the multiindex notation wα = w
α1
1 · · · wακ

κ .

In particular, with the notation (3.5), and the formula (3.6),

Ĥ0
κ R̂κ = 1

(2π i)κ
∑

0≤α≤M

wα∂̄
dτ

τα+1 .

Using the notation from Sect. 6.3 and Sect. 7, we consider the operators

K̂ψ =
∫

ζ,τ

g ∧ B ∧ Ĥ0
κ R̂κ ∧ ψ (9.1)

for ψ ∈ E 0,∗+1(U ∩ X̂). As was noted in Sect. 8, only the parts of B and g depending
on z, ζ are relevant. In view of (3.4) we therefore get

K̂ψ(z, w) =
∑

α≤M

wα

∫

ζ

g(ζ, z) ∧ B(ζ, z) ∧ 1

α!
∂ψ

∂τα
(ζ, 0).

Since B(ζ, z) only depends on ζ − z, by a change of variables, we see that

∂

∂wm∂zγ
K̂ψ(z, 0)=

∑

β ′+β ′′+δ=γ

∫

ζ

B(ζ, z) ∧ cβ ′,β ′′
∂

∂zβ ′
∂ζβ ′′ g(ζ, z) ∧ ∂ψ

∂ζ δ∂τm
(ζ, 0)

(9.2)
for appropriate constants cβ ′,β ′′ . Since B(ζ, z) is uniformly integrable in ζ and z, and
g is smooth, it follows by, e.g., [30, Appendix B], that

∥∥∥∥∥
∂K̂ψ

∂wm∂zγ
(z, 0)

∥∥∥∥∥
L p(Z∩U ′)

�
∑

δ≤γ

∥∥∥∥
∂ψ

∂ζ δ∂τm
(ζ, 0)

∥∥∥∥
L p(Z∩U)

. (9.3)

From (9.3) and (3.8) it follows that there is a constant C p such that

‖K̂ψ‖L p(X̂∩U ′) ≤ C p‖ψ‖L p(X̂∩U)
, 1 ≤ p ≤ ∞. (9.4)
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Example 9.1 Let X = C
n × X0 be an analytic space which is the product of Cn with

a space X0 whose underlying reduced space is a single point 0 ∈ C
κ , i.e., such that

OX = OC
n
ζ ×Cκ

τ
/J , where J = π∗J0, and J0 ⊂ OCκ

τ
is an ideal such that Z(J0) = 0

and π is the projection π(ζ, τ ) = τ . Note in particular that this includes the basic
examples X̂ as in Example 3.1.

Since the operator K̂ maps τα to wα , it maps J to Jw, where Jw denotes the ideal
J in the (z, w)-coordinates. Furthermore, it maps τ̄k and d τ̄k to 0, so it descends to an
operator K̂ : E 0,∗+1(U ∩ X) → E 0,∗(U ′ ∩ X). Note that one may choose γ1, . . . , γρ

in (3.9) that only depend on τ . Thus, if ψ ∈ E 0,∗+1(U ∩ X), then

K̂(γk(τ )ψ) = γk(w)K̂ψ. (9.5)

By (3.10), (9.4),and (9.5), it follows that

‖K̂ψ‖L p(X∩U ′) ≤ C p‖ψ‖L p(X∩U), 1 ≤ p ≤ ∞. (9.6)

We can now prove

Proposition 9.2 Let X be a space of the formC
n ×X0 as in Example 9.1. The operators

K : E 0,q+1(X ∩U) → E 0,q(X ∩U ′) extend to bounded operators L p
0,q+1(X ∩U) →

L p
0,q(X ∩ U ′), q ≥ 0, 1 ≤ p < ∞, so that the Koppelman formula (6.8) holds.

The same statements hold for C0,q instead of L p
0,q .

In particular, if ψ ∈ L p
0,q+1(X ∩ U) and ∂̄ψ = 0, then ∂̄Kψ = ψ in X ∩ U ′ by

(6.8). Thus Theorem 1.1 holds for all q when X is of the form as in Example 9.1.

Proof If ψ ∈ L p
0,q+1(X ∩U), then by definition there is a sequence ψk ∈ E 0,q+1(X ∩

U) such that ‖ψ − ψk‖L p(X∩U) → 0. It follows from (9.4) that Kψk is a Cauchy
sequence in L p

0,q(X ∩ U ′) and hence has a limit Kψ . Clearly this limit satisfies (9.6).

Moreover, it is in C0,q(X ∩U ′). Thus these extended operators satisfy the Koppelman
formula, see Proposition 7.1. The statements about C0,q follow in exactly the same
way.

Remark 9.3 We use the intrinsic integral formulas on X̂ ∩U here for future reference.
To obtain the theorem, one can just as well solve the ∂̄-equation with relevant L p-
Sobolev norms in X ∩ U for each coefficient in the expansion (3.7). However, this is
naturally done by an integral formula on Z ∩ U , and the required computations are
basically the same.

We finish this section with an example showing that the spaces in Example 9.1
may not necessarily be written in the simple form as in Example 3.1 after a change of
coordinates, even if J is a complete intersection.

Example 9.4 Let J be generated by (w3
1, w

2
1 + w3

2). Then we claim that one cannot
find local coordinates τ1, τ2 near 0 such that J is generated by (τ �

1 , τm
2 ). Indeed, since

the multiplicity of J is 9, �m = 9. The assumptions imply that

[
w3
1

w2
1 + w3

2

]
=

[
b11 b12
b21 b22

] [
τ �
1

τm
2

]
and τ j = a j1w1 + a j2w2, for j = 1, 2,
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where the a jk and b jk are holomorphic. Onemay exclude the case � = m = 3 since the
above equations would imply thatw2

2 belongs to the ideal generated by (w1, w2)
3. The

case � = 1, m = 9may be excluded as that would imply that τ1 = c1w3
1+c2(w2

1+w3
2)

for some holomorphic functions c j , which would contradict the fact that τ1 is part of
a coordinate system near 0.

10 Lp-Estimates at Cohen–Macaulay Points

Assume that we have a local embedding X → U where Z ∩ U is smooth and X is
Cohen–Macaulay. Moreover, assume that we have coordinates (ζ, τ ) in U such that
Z = {τ1 = · · · = τκ = 0}, and a basis τα� for OX over OZ . We may also assume that
we have a Hermitian resolution (E, f ) of OX = OU/J of minimal length, so that its
associated residue current is R = Rκ .

In general, if X is Cohen–Macaulay, and the underlying space Z is smooth, it is not
possible to choose coordinates so that X becomes a product space as in Example 9.1,
even if the space is defined by a complete intersection.

Example 10.1 Let J ⊂ OC3
z,w1,w2

be generated by g = (w2
1, zw1 + w2

2), and OX =
O/J . Then Z(J ) = {w = 0}, so J is a complete intersection ideal, and X is Cohen–
Macaulay. We claim that one cannot choose new local coordinates (ζ, τ1, τ2) near 0
such that J = π∗J0, where J0 ⊆ C

2
τ is an ideal such that Z(J0) = {τ = 0} and

π(ζ, τ ) = τ .
Indeed, assume that there are such coordinates. First of all, fromany set of generators

of an ideal, onemay select among them aminimal subset of generators, and the number
is independent of the choice of generators. Thus, onemayassume thatJ is generatedby
f1(τ ), f2(τ ). Since f and g generateJ , there is an invertible matrix A of holomorphic
functions such that f = Ag and g = A−1 f . Note that if m is the maximal ideal of
functions vanishing at {z = w = 0}, then g belongs to mJZ . Since f = A−1g, the
same must hold for f . Since {τ = 0} = {w = 0}, one may write τ = Bw for some
holomorphic matrix B. Note also that since f only depends on τ , f = Cτ mod J 2

Z
for some constant matrix C . Since f belongs to mJZ , we must have that C = 0, i.e.,
f = 0 mod J 2

Z . Thus, also g = 0 mod J 2
Z , which yields a contradiction.

Let us assume that we have coordinates (ζ, τ ) in U and choose a simple ideal I as
in Sect. 9, such that I ⊂ J , and hence, as in Sect. 3, get the embedding

ι : X → X̂ , (10.1)

where OX̂ = OU/I. Let V = X ∩ U and V ′ = X ∩ U ′ as before and let V̂ = X̂ ∩ U
and V̂ ′ = X̂ ∩ U ′. Here is our principal result.

Proposition 10.2 Let V and V ′ be as above and K as in Sect.6.3.
(i) There are constants C p, 1 ≤ p ≤ ∞, such that if φ is a smooth (0, 1)-form and
∂̄φ = 0, then

‖Kφ‖L p(V ′) ≤ C p‖φ‖L p(V). (10.2)
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(ii) If φ is in L p
0,1(V), p < ∞, and ∂̄φ = 0. Then Kφ is in L p

0,0(V ′), ∂̄Kφ = φ, and

(10.2) holds. If φ ∈ C0,1(V) and ∂̄φ = 0, then K ∈ C0,0(V ′), ∂̄Kφ = φ, and

‖Kφ‖C(V ′) ≤ C∞‖φ‖C(V).

ClearlyTheorem1.1 follows from this proposition.The rest of this section is devoted
to its proof.

Proof Choose an embedding (10.1) as above. Since the proposition is local we can
assume that we have a basis τα� in U . Let φ be a smooth (0, ∗)-form in V . As in
Sect. 9, let (Ê, f̂ ) be the Koszul complex of I = 〈τ M+1〉 in U . Let us choose a
morphism a : (Ê, f̂ ) → (E, f ) of complexes that extends the natural surjection
OU/I → OU/J and such that a0 is the identity morphism Ê0 � E0, see, e.g., [22,
Proposition 3.1]. By (3.10), we are to estimate the L p(V̂ ′)-norm of

γKφ = γ (z, w)

∫

ζ,τ

g ∧ B ∧ H0
κ Rκ ∧ φ,

where γ is any of the functions in (3.9). (By the way, one can choose γ j as the
components of aκ , cf. [7, Example 6.9]).

Since γKφ is to be considered as an element in E 0,∗(V̂ ′), it is determined by
μ̂ ∧ γKφ, where

μ̂(z, w) = ∂̄
dw

wM+1 ∧ dz.

since μ̂ is a generator for Hom(OU/I, CHZ
U ) in U , cf. Sect. 6.3.

To φ, we associate the representative  = ∑
φ̂�(ζ )τα� in E 0,∗(U), where φ̂� are

in E 0,∗(Z ∩ U), as in (3.11).

Lemma 10.3 We have that

μ̂ ∧ γKφ = μ̂ ∧ γ

∫

ζ,τ

g ∧ B ∧ (Ĥ0
κ + δηC0

κ )R̂κ ∧ . (10.3)

Proof Recall from Sect. 6.3 that μ̂ ∧ γKφ is defined as the limit of

μ̂ ∧ γ

∫

ζ,τ

χεg ∧ B ∧ H0
κ Rκ ∧ , (10.4)

where χ is a cutoff function and χε = χ(|(ζ, τ )− (z, w)|2/ε). By [22, Theorem 4.1],
Rκa0 = aκ R̂κ . Using Lemma 8.1, the fact that a0 is the identity, and that f̂κ R̂κ = 0
by (2.5), we get

H0
κ Rκ = H0

κ aκ R̂κ = (Ĥ0
κ + δηC0

κ )R̂κ + f1(z, w)C1
κ R̂κ . (10.5)
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Since γJ ⊆ I and μ̂ is annihilated by I, we have that γ (z) f1(z, w)μ̂ = 0 so by
(10.5), (10.4) is equal to

μ̂ ∧ γ

∫

ζ,τ

χεg ∧ B ∧ (Ĥ0
κ + δηC0

κ )R̂κ ∧ .

Taking the limit as ε → 0, we obtain (10.3).

Let us choose a holomorphic 1-form � in U such that

δη� = γ (ζ, τ ) − γ (z, w). (10.6)

From (10.3) and (10.6) we get

μ̂ ∧ γKφ = μ̂ ∧
∫

ζ,τ

g ∧ B ∧ (Ĥ0
κ + δηC0

κ )R̂κ ∧ γφ

+ μ̂ ∧
∫

ζ,τ

g ∧ B ∧ (Ĥ0
κ + δηC0

κ )R̂κ ∧ δη� =: μ̂ ∧ T1φ + μ̂ ∧ T2φ.

Notice that we can write φ rather than  in μ̂ ∧ T1φ, since R̂κγ annihilates J . Now
T1φ = T11φ + T12φ, where

T11φ =
∫

ζ,τ

g ∧ B ∧ Ĥ0
κ R̂κ ∧ γφ

and

T12φ =
∫

ζ,τ

g ∧ B ∧ (δηC0
κ )R̂κ) ∧ γφ.

Lemma 10.4 Let A be a holomorphic (κ+1, 0)-form in dζ, dτ , ψ = ψ(ζ, τ ) a smooth
(0, ∗)-form on U . Then

μ̂ ∧
∫

ζ,τ

g ∧ B ∧ (δη A)R̂κ ∧ ψ = μ̂ ∧
∫

ζ,τ

g ∧ AR̂κ ∧ ψ

− μ̂ ∧
∫

ζ,τ

g ∧ B ∧ AR̂κ ∧ ∂̄ψ − μ̂ ∧ ∂̄z,w

∫

ζ,τ

g ∧ B ∧ AR̂κ ∧ ψ.

Proof As in the proof of Lemma 10.3,

μ̂ ∧
∫

ζ,τ

g ∧ B ∧ (δη A)R̂κ ∧ ψ = lim
ε→0

μ̂ ∧
∫

ζ,τ

χεg ∧ B ∧ (δη A)R̂κ ∧ ψ.
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Let ( )k denote the component of degree k in dζ, dτ . Then

(∇η(χεg ∧ B ∧ AR̂κ ∧ ψ))N

= −∂̄ζ,τ χε ∧ (g ∧ B)n−1 ∧ AR̂κ ∧ ψ + χεgn−1 ∧ AR̂κ ∧ ψ

− χε(g ∧ B)n ∧ δη AR̂κ ∧ ψ − χε(g ∧ B)n−1 ∧ AR̂κ ∧ ∂̄ψ

− ∂̄z,w
(
χε(g ∧ B)n−1AR̂κ ∧ ψ

)
,

(10.7)

where we have used that κ + n = N , ∇ηg = 0 since g is a weight, χε∇η B = χε ,
∇η A = δη A since A is holomorphic, R̂κ is ∂̄-closed (0, κ)-current so that ∇η R̂κ = 0,
and finally that g, B and A are the only terms containing differentials in dζ, dτ , and
A has degree κ + 1 in dζ, dτ .

We claim that

lim
ε→0

μ̂ ∧ ∂̄χε ∧ (g ∧ B)n−1 ∧ AR̂κ ∧ ψ = 0. (10.8)

In fact, let us write B = ∑
Bk . Since B has only holomorphic differentials in dζ, dτ ,

Bk has bidegree (k, k − 1), and so

(g ∧ B)n−1 ∧ A =
∑

k≤n−1

gn−k−1 ∧ Bk ∧ A.

In particular, it suffices to show that

lim
ε→0

μ̂ ∧ ∂̄χε ∧ Bk ∧ R̂κ = 0

for k ≤ n − 1. The limit of such a term on the left-hand side is a pseudomeromorphic
current of bidegree (∗, k + 2κ), see the comment after (2.2). Since the support of ∂̄χε

tends to�, the limits have support on�∩(Z × Z) ∼= Z ∩{pt}, which has codimension
κ + (n +κ) = n +2κ . By the dimension principle, Proposition 2.1, therefore the limit
of each such term is 0 since k + 2κ < n + 2κ . Thus the claim holds.

The lemma follows from the claim by applying μ̂∧∫
ζ,τ

to (10.7) and letting ε → 0
since

−(∇η(χεg ∧ B ∧ AR̂κ ∧ ψ ∧ μ̂))N = ∂̄(χεg ∧ B ∧ AR̂κ ∧ ψ ∧ μ̂)N

= d(χεg ∧ B ∧ AR̂κ ∧ ψ ∧ μ̂)N .

so that, by Stokes’ theorem,

μ̂ ∧
∫

ζ,τ

(∇η(χεg ∧ B ∧ AR̂κ ∧ ψ ∧ μ̂))N = 0.
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Using Lemma 10.4 with A = C0
κ , we get that T12φ = T121φ + T122φ + T123φ,

where

T121φ =
∫

ζ,τ

gn−1 ∧ C0
κ R̂κ ∧ γφ,

T122φ = −
∫

ζ,τ

(g ∧ B)n−1 ∧ C0
κ R̂κ ∧ γ ∂̄φ

and

T123φ = ±∂̄z,w

∫

ζ,τ

(g ∧ B)n−1 ∧ C0
κ R̂κ ∧ γφ.

Note that since μ̂ f1(z) = 0 and f̂κ R̂ = 0, we get that

T2φ = μ̂ ∧
∫

ζ,τ

g ∧ B ∧ δη((Ĥ0
κ + δηC0

κ )�)R̂κ ∧ .

Thus, by applying Lemma 10.4 with A = (Ĥ0
κ + δηC0

κ ) ∧ �, we get that T2φ =
T21 + T22 + T23, where

T21 =
∫

ζ,τ

gn−1,∗ ∧ (Ĥ0
κ + δηC0

κ )R̂κ ∧ � ∧ ,

T22 =
∫

ζ,τ

g ∧ B ∧ (Ĥ0
κ + δηC0

κ )R̂κ ∧ � ∧ ∂̄,

and

T23 = ±∂̄z,w

∫

ζ,τ

(g ∧ B)n−1 ∧ (Ĥ0
κ + δηC0

κ )R̂κ ∧ � ∧ .

We can now prove (i). If ∂̄φ = 0, then clearly T22φ and T122φ vanish. If φ has
bidegree (0, 1), then T123φ and T23φ vanish for degree reasons since (g ∧ B)n−1 and
φ are the only terms containing d ζ̄ , d τ̄ . Therefore,

γKφ = T11φ + T121φ + T21. (10.9)

The main term T11φ is precisely K̂(γ φ), so from (9.4) and (3.10),

‖T11φ‖L p(V̂ ′) ≤ C p‖γφ‖L p(V̂)
≤ C ′

p‖φ‖L p(V)

as desired.
The remaining two terms T121φ and T21 in (10.9) are simpler since their integrands

do not contain the factor B.We nowuse that has the form (3.11) and R̂κ only depends
on τ . Integrating with respect to τ therefore does not give rise to any derivates with
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respect to ζ . Thus, the L p(V ′)-norms of these two terms are bounded by integrals of
the form

ν−1∑

�=0

(∫

z

∣∣∣∣
∫

ζ

|ξ�(ζ, z)φ̂�(ζ )|
∣∣∣∣

p)1/p

,

where ξ j (ζ, z) are smooth forms with compact support in Z ∩U . It follows from (3.12)
and (3.13) that these terms are � ‖φ‖L p(V). Thus part (i) is proved.

We now consider part (ii), so assume that φ ∈ L p
0,1(V), p < ∞ and ∂̄φ = 0. We

cannot deduce (ii) directly from (i). The problem is that we do not know whether it is
possible to regularize φ so that the smooth approximands are ∂̄-closed, cf. Remarks 5.3
and 5.4.

By Proposition 7.1,we know that ∂̄Kφ = φ in the current sense. We must show
that actually Kφ is in L p(V ′) and that (10.2) holds. Let φk be a sequence of smooth
(0, 1)-forms in V that converge to φ in L p(V) and let k denote the representatives
in U given by (3.11). Since T123φk and T23φk vanish for degree reasons, we have

γKφk = Gk + G ′(∂̄k), (10.10)

where

Gk = T11φk + T121φk + T21k, G ′
γ (∂̄k) = T122k + T22k .

The proof of part (i) gives the a priori estimate

‖G̃‖L p(V̂ ′) ≤ C p‖φ̃‖L p(V)

for φ̃ in E 0,1(V). We conclude that Gk has a limit G in L p(V̂ ′) and that

‖G‖L p(V̂ ′) ≤ C p‖φ‖L p(V) (10.11)

Next we claim that μ̂ ∧ G ′(∂̄k) → 0. In fact,

∂̄k =
∑

�

(∂̄φ̂k,�)τ
α�,

so arguing as in the proof of Proposition 7.1 the claim follows, since ∂̄ φ̂k,� → 0 for
each �.

Since γKφk → γKφ in C0,1(V ′), it follows from (10.10) that γKφ = G. Thus
γKφ is indeed in L p(V̂ ′) and, cf. (10.11),

‖γKφ‖L p(V̂ ′) ≤ C p‖φ‖L p(V).
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Since this estimate holds for any γ = γ j ,we get cf. (3.10),

‖Kφ‖L p(V ′) ∼
ρ∑

j=1

‖γ jKφ‖L p(V̂ ′) ≤ C p‖φ‖L p(V).

Thus part (ii) holds for p < ∞. The case p = ∞ follows in precisely the same way.
Thus the proposition is proved. ��

Note that if we drop the assumption that φ be a (0, 1)-form, then the terms T123φ
and T23φ no longer vanish, and it is not clear to us how to estimate them. It is also not
clear to us whether the estimate (10.2) holds if φ is not ∂̄-closed.

In the case of product spaces as in Example 9.1, then one may choose C0
κ , Ĥ0

κ and
� such that they only contain holomorphic differentials dτ . In that case, all terms but
T11φ vanish for any (0, q)-form φ, since all the other terms involve integrals of forms
of degree κ + 1 in dτ , which thus vanish for degree reasons. Thus, one in fact has that
γKφ = T11φ = K̂(γ φ), cf. the proof of Proposition 9.2.

11 An ExampleWhere X is not Cohen–Macaulay

In this section, we consider an example where Z = Xred is smooth but X is not
Cohen–Macaulay. Since Xred is smooth, it is still possible to define L p

loc(X) as in
Sect. 5. However, our solutionsKφ are not smooth at the non-Cohen–Macaulay point.
In view of works on L p-estimates on non-smooth reduced spaces, it thereforemight be
natural to define L p(X) as the completion of the space of smooth forms with support
on the Cohen–Macaulay part of X . In any case, we do not pursue this question here,
but just discuss an a priori estimate of the solutions.

Let � = C
4
z,w and J = J (w2

1, w1w2, w
2
2, z2w1 − z1w2), and let X have the

structure sheaf O�/J . Then Z = C
2
z , and X has the single non-Cohen–Macaulay

point (0, 0). Outside that point X is locally of the form discussed in Sect. 9 so that we
have local L p-estimates for ∂̄ for all (0, ∗)-forms there. Thus the crucial question is
what happens at (0, 0). The structure sheaf OX has the free resolution (E, f )

0 → O�
f3−→ O4

�

f2−→ O4
�

f1−→ O� → O�/J → 0,

where

f3 =

⎡

⎢⎢⎣

w2
−w1

z2
−z1

⎤

⎥⎥⎦ , f2 =

⎡

⎢⎢⎣

z2 0 −w2 0
−z1 z2 w1 −w2
0 −z1 0 w1

−w1 −w2 0 0

⎤

⎥⎥⎦

and f1 = [
w2
1 w1w2 w2

2 z2w1 − z1w2
]
.

We equip the vector spaces Ek with the trivial metrics. Consider also the Koszul
complex (F, δw2) generated by w2 := (w2

1, w
2
2), which is a free resolution of O/I,
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where I = 〈w2
1, w

2
2〉. If X̂ has structure sheafOX̂ = O/I, we thus have an embedding

ι : X → X̂ .
We take the morphism of complexes a : F• → E• given by

a2 =

⎡

⎢⎢⎣

0
0
w2
w1

⎤

⎥⎥⎦ , a1 =

⎡

⎢⎢⎣

1 0
0 0
0 1
0 0

⎤

⎥⎥⎦ and a0 = [
1
]
.

Let R and R̂ be the residue associated with (E, f ) and (F, δw2), respectively. It is

well known, see, e.g., [7], that R̂ = R̂2 is equal to the Coleff–Herrera product

μ0 = ∂̄(1/w2
1) ∧ ∂̄(1/w2

2).

11.1 The Current R

In [7, Example 6.9], we found that

μ1 = ∂̄
1

w1
∧ ∂̄

1

w2
and μ2 = (z1w2 + z2w1)∂̄

1

w2
1

∧ ∂̄
1

w2
2

(times dz ∧ dw) generate Hom(O�/J , CHZ
�). Here we intend to calculate R =

R2 + R3. Using a comparison with the current R̂,it follows from [22, Theorem 3.2,
Lemma 3.4 and (3.10)] that

R2 = (I − f3σ3)a2μ0, (11.1)

where

σ3 = 1

|z|2 + |w|2
[
w̄2 −w̄1 z̄2 −z̄1

]

is the minimal left-inverse to f3. Since μ0 is pseudomeromorphic with support on
{w = 0}, w̄iμ0 = 0, and therefore

R2 = 1

|z|2

⎡

⎢⎢⎣

∗ ∗ −w2 z̄2 w2 z̄1
∗ ∗ w1 z̄2 −w1 z̄1
∗ ∗ |z|2 − z2 z̄2 z2 z̄1
∗ ∗ z1 z̄2 |z|2 − z1 z̄1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
0
w2
w1

⎤

⎥⎥⎦ μ0 = 1

|z|2

⎡

⎢⎢⎣

z̄1μ1
z̄2μ1
z̄1μ2
z̄2μ2

⎤

⎥⎥⎦ . (11.2)

Since X has pure dimension R3 = ∂̄σ3 ∧ R2, where the left-hand side is the product
of the almost semi-meromorphic current ∂̄σ3 and the pseudomeromorphic current R2,
cf. (2.2) and [7, Section 2]. Since f3 is injective,σ3 = ( f ∗

3 f3)−1 f ∗
3 = f ∗

3 /(|z|2+|w|2).
Thus, f ∗

3 (I− f3σ3) = 0, so in viewof (11.1), R3 = (|z|2+|w|2)−1 f ∗
3 R2. Furthermore,
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w̄ j R2 = dw̄ j ∧ R2 = 0, so we get

R3 = 1

|z|2
[
0 0 dz̄2 −dz̄1

]
R2 = z̄1dz̄2 − z̄2dz̄1

|z|4 μ2. (11.3)

11.2 Hefer Forms for (E, f)

Recall that a family H �
k : Ek → E� of Hefer morphisms are to satisfy, cf. (6.5),

H �
� = IE�

and

δ(ζ,τ )−(z,w) H �
k = H �

k−1 fk(ζ, τ ) − f�+1(z, w)H �+1
k (11.4)

for k > �. Due to the superstructure, when considering H and f as matrices, (11.5)
means

δ(ζ,τ )−(z,w) H �
k = H �

k−1 fk(ζ, τ ) − (−1)k−�−1 f�+1(z, w)H �+1
k , (11.5)

cf. [24, (2.12)]. By hands-on calculations, or with the help of Macaulay2, one can
check that

H0
1 = 1

2π i

⎡

⎢⎢⎣

(τ1 + w1)dτ1 + w1dτ1
τ1dτ2 + w2dτ1
(τ2 + w2)dτ2

−ζ1dτ2 + ζ2dτ1 + w1dζ2 − w2dζ1

⎤

⎥⎥⎦

t

,

H1
2 = 1

2π i

⎡

⎢⎢⎣

dζ2 0 −dτ2 0
−dζ1 dζ2 dτ1 −dτ2
0 −dζ1 0 dτ1

−dτ1 −dτ2 0 0

⎤

⎥⎥⎦

H2
3 = 1

2π i

⎡

⎢⎢⎣

dτ2
−dτ1
dζ2

−dζ1

⎤

⎥⎥⎦

H0
2 = 1

(2π i)2

⎡

⎢⎢⎣

w1dζ2 ∧ dτ1 − w2dζ1 ∧ dτ1
ζ2dτ1 ∧ dτ2 + w1dζ2 ∧ dτ2 − w2dζ1 ∧ dτ2

(τ1 + w1)dτ1 ∧ dτ2
w2dτ1 ∧ dτ2

⎤

⎥⎥⎦

t

H1
3 = 1

(2π i)2

⎡

⎢⎢⎣

−dζ2 ∧ dτ2
dζ1 ∧ dτ2 + dζ2 ∧ dτ1

−dζ1 ∧ dτ1
dτ1 ∧ dτ2

⎤

⎥⎥⎦

H0
3 = 1

(2π i)3
[
w1dζ2 ∧ dτ1 ∧ dτ2 − w2dζ1 ∧ dτ1 ∧ dτ2

]
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(where H0
1 and H0

2 are written as transposes of matrices just for space reasons) indeed
satisfy (11.5) and are thus components of a Hefer morphism.

11.3 Estimates of Integral Operators

Now choose balls U ′ ⊂⊂ U ⊂⊂ � = C
4
ζ,τ with center at (0, 0) and consider the

integral operator

Kφ =
∫

ζ,τ

g ∧ B ∧ H R ∧ φ

as in Sect. 6.3 for smooth (0, 1)-forms inV ′ = X ∩U ′.We have thatKφ = K2φ+K3φ,
where

K2φ =
∫

ζ,τ

(g0B2 + g1 ∧ B1) ∧ H0
2 R2 ∧ φ (11.6)

and

K3φ(z) =
∫

ζ,τ

χ B1 ∧ H0
3 R3 ∧ φ. (11.7)

Here g0 = χ is a cutoff function in U with compact support that is equal to 1 on U ′,
and g1 contains the factor ∂̄χ , cf. (6.2). Moreover, B1 = b, B2 = b ∧ ∂̄b, where b is
given by (7.1), cf. (6.3). Notice, however, that since τ̄μi = 0, d τ̄ ∧ μi = 0 and that
w̄i = 0 considered as a smooth form on X , precisely as in Sect. 9, we can replace b
by

1

2π i

∑2
j=1(ζ j − z j )dζ j

|ζ − z|2

in the formula, and we may assume that g0 and g1 only depend on ζ and z.
For smooth (0, ∗)-forms we have, see [5, Section 6], that

|φ(z, w)|X ∼ |φ(z, 0)| + |z|
∣∣∣∣

∂

∂z
φ(z, 0)

∣∣∣∣ + |Lφ(z, 0)| , (11.8)

where

L = z1
∂

∂w1
+ z2

∂

∂w2
.

Since B ∧ g has no differentials dτ j , for degree reasons,we only have to take into
account terms of H that contain the factor dτ1∧dτ2. By (11.2), but with (ζ, τ ) instead
of (z, w), and the formula above for H0

2 the relevant part of (2π i)2H0
2 R2 therefore is

1

|ζ |2
(|ζ2|2μ1 + ζ̄1(τ1 + w1)μ2 + ζ̄2w2μ2

) = μ1 + w1ζ 1 + w2ζ 2

|ζ |2 μ2,
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where in the second equality,we have used that τ1μ2 = ζ1μ1. Thus

K2φ = 1

(2π i)2

∫

ζ,τ

(g0B2 + g1 ∧ B1) ∧
(

μ1 + w1ζ 1 + w2ζ 2

|ζ |2 μ2

)
∧ φ ∧ dτ1 ∧ dτ2.

Integrating with respect to τ and using that (2π i)−2μ2 ∧φ ∧ dτ1 ∧ dτ2 = Lφ ∧ [τ =
0],we get

K2φ =
∫

ζ

(g0B2 + g1 ∧ B1) ∧
(
φ + w1ζ 1 + w2ζ 2

|ζ |2 ∧ Lφ
)
. (11.9)

From (11.3) and the formula for H0
3 ,we get

K3φ = ± 1

(2π i)3

∫
χ

w1(ζ1 − z1) + w2(ζ2 − z2)

|ζ − z|2
ζ1dζ 2 − ζ 2dζ 1

|ζ |4
∧ dζ1 ∧ dζ2 ∧ φ ∧ μ2 ∧ dτ1 ∧ dτ2

= ± 1

(2π i)2

∫
χ

w1(ζ1 − z1) + w2(ζ2 − z2)

|ζ − z|2
ζ1dζ 2 − ζ 2dζ 1

|ζ |4 ∧ dζ1 ∧ dζ2 ∧ (Lφ)(ζ, 0).

.

(11.10)

We now estimate K2φ by considering the various parts of the norm, cf. (11.8),
letting K = suppχ ∩ Z and keeping in mind that z ∈ X ∩ U ′ so that |g1| is bounded.
To begin with

|(K2φ)(z, 0)| =
∣∣∣∣
∫

ζ

(χ B2 + g1B1) ∧ φ(ζ, 0)

∣∣∣∣ �
∫

ζ∈K

1

|ζ − z|3 |φ(ζ )|X . (11.11)

Next we have, cf. (9.2),

|z|
∣∣∣∣

(
∂

∂zi
K2φ

)
(z, 0)

∣∣∣∣ = |z|
∣∣∣
∫

B2 ∧ ∂
∂ζi

(χφ(ζ, 0)) + · · ·
∣∣∣

� |z| ∫
ζ∈K

1
|ζ−z|3

1
|ζ | |φ(ζ )|X . (11.12)

Finally,

|LK2φ)(z, 0)| =
∣∣∣∣∣

∫

ζ

(χ B2 + g1B1) ∧
(

z1ζ 1 + z2ζ 2

|ζ |2
)

(Lφ)(ζ, 0)

∣∣∣∣∣

� |z|
∫

ζ∈K

1

|ζ − z|3
1

|ζ | |φ(ζ )|X . (11.13)
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SinceK3φ vanishes when w = 0, the two first terms in the norm (11.8) vanish, and
thus we get the estimate

|K3φ|X ∼ |(LK3φ)(z, 0)|

∼
∣∣∣∣∣

∫

ζ,z
χ

z1(ζ1 − z1) + z2(ζ2 − z2)

|ζ − z|2
ζ1dζ 2 − ζ 2dζ 1

|ζ |4 ∧ dζ1 ∧ dζ2 ∧ (Lφ)(ζ, 0)

∣∣∣∣∣

� |z|
∫

ζ∈K

1

|ζ − z|
1

|ζ |3 |φ(ζ )|X .

Thus we have proved

|K2φ(z)|X≤C
∫

ζ∈K

(
1 + |z|

|ζ |
) 1

|ζ − z|3 , |K3φ(z)|X ≤ C
∫

ζ∈K

1

|ζ − z|
|z|
|ζ |3 |φ(ζ )|X .

(11.14)
By [23, Theorem 4.1], ‖K2φ(z)‖L p(V ′) ≤ C‖φ‖L p(V) if p > 4/3. Following the

argument of that proof, but where ‖ζ − z‖2n−1 is everywhere replaced by ‖ζ − z‖,
it follows that ‖K3φ(z)‖L p(V ′) ≤ C‖φ‖L p(V) if p > 4. We thus obtain the following
estimate.

Proposition 11.1 Let X be the space above and let φ be a smooth (0, ∗)-form in V .
We have the a priori estimate

‖Kφ‖L p(V ′) ≤ C‖φ‖L p(V) (11.15)

for 4 < p ≤ ∞.

If φ has bidegree (0, 2), then K3φ vanishes for degree reasons, so then (11.15) in
fact holds for p > 4/3.
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