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Abstract
The aim of this paper is to give a thorough insight into the relationship between
the Rumin complex on Carnot groups and the spectral sequence obtained from the
filtration on forms by homogeneous weights that computes the de Rham cohomology
of the underlying group.
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1 Introduction

Within the context of Carnot groups, an important algebraic construction that has had
many different applications is that of the Rumin complex. Often denoted by (E∗

0 , dc),
this is a subcomplex of the de Rham complex (�∗, d) of the underlying Carnot group
G which was developed as a more intrinsic choice than the entire de Rham complex
on Carnot groups.

In an intrinsic construction, one would in fact expect the stratification of the Lie
algebra (see Definitions 3.3, 3.4) to play a significant role. Via such a stratification
and the relative homogeneous group dilations, it is possible to introduce a concept
of weights of forms. In other words, the stratified structure of the underlying Carnot
group reflects on the space of smooth forms �∗ and it can be expressed in terms of
their weights. It is important to notice that by taking into consideration the whole de
Rhamcomplex (�∗, d), the extra structure given by the stratification is entirelymissed,

B Francesca Tripaldi
francesca.tripaldi@unibe.ch

Antonio Lerario
lerario@sissa.it

1 SISSA, Mathematics Area, via Bonomea, 265, 34146 Trieste, Italy

2 Mathematisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-023-01259-0&domain=pdf
http://orcid.org/0000-0001-5365-150X


199 Page 2 of 22 A. Lerario, F. Tripaldi

since all possible forms are considered. In this setting, the exterior differential d can be
described as a left-invariant differential operator acting on�∗ whose components have
various homogeneous orders for the Heisenberg calculus (see Lemma 3.10 for a more
precise formulation of this statement). This fact represents an obstacle towards the
creation of a theory of (hypo)elliptic operators on forms on Carnot groups. Indeed, the
notion of hypoellipticity for left-invariant differential operators on nilpotent Lie groups
relies on the Rockland condition of their principal symbols, i.e. the component of the
differential operator of highest Heisenberg order [2]. Since in the case of the exterior
differential the Rockland condition is strongly linked to the de Rham cohomology of
the underlying manifold, it is desirable to have a refinement of the de Rham complex
on Carnot groups which is strongly linked to the Rockland condition [1].

The Rumin complex (E∗
0 , dc) was introduced as a way to obviate this issue by

constructing an appropriate subcomplex that would only include a limited amount of
forms. The specific choice of which forms to use is then dictated by the the strati-
fication of the Lie algebra. This construction was particularly successful in the case
of Heisenberg groups H2n+1. In [6, 7], a complex on H

2n+1 was first defined via the
following two differential ideals:

- I∗ = {γ1 ∧ θ + γ2 ∧ dθ | γ1, γ2 ∈ �∗}, the differential ideal generated by the
contact form θ , and
- J ∗ = {β ∈ �∗ | β ∧ θ = β ∧ dθ = 0}, the annihilator of I∗.

By simply using the properties of the Lefschetz operator L given by the wedge product
with the Kähler form dθ over Ker θ , one can show that

�k/Ik = 0 for k ≥ n + 1 and J k = 0 for k ≤ n, (1)

so that the two subcomplexes (�∗/I∗, dQ) and (J ∗, dQ) are non-trivial in comple-
mentary degrees. Here dQ denotes the exterior differential d that descends to the
quotients �∗/I∗, and restricts to the subspaces J ∗ respectively. Again, by exploiting
the properties of the Lefschetz operator L , it is also possible to construct a second
order differential operator, which Rumin denotes as D, that links the two previous
subcomplexes. We then obtain a new complex of intrinsic forms that computes the de
Rham cohomology of the group H

2n+1:

�0/I0 dQ−→ �1/I1 dQ−→ · · · dQ−→ �n/In D−→ J n+1 dQ−→ J n+2 dQ−→ · · · dQ−→ J 2n+1.

(2)

Since these differential ideals create a filtration on smooth forms 0 ⊂ J ∗ ⊂ I∗ ⊂
�∗ which is stable under d, one can apply the machinery of spectral sequences, which
computes far more information than just the cohomology of the de Rham complex
(�∗, d). In [4], Julg studies precisely this construction over the Heisenberg group
H

2n+1 and the 7-dimensional quaternionic Heisenberg group. It should be noted that
in the latter case, the filtration by differential ideals J ∗

l+1 ⊂ I∗
l ⊂ J ∗

l is slightly
more complicated, since there are three different contact 1-forms. In both groups, the
0th-page quotients of the form J ∗

l /I∗
l = El,∗

0 coincide with the spaces of intrinsic
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forms. Moreover, in the case of H2n+1, the non-trivial differentials ∂0 acting on the
0th-page quotients �k/Ik for k ≤ n and J k for k ≥ n + 1 (see (1)) coincide with
the first order differential operators dQ . Moreover, the only non-trivial differential ∂2
on the second page quotients in degree n coincides with the second order differential
operator D in the complex (2).

Even though on H
2n+1 there is a clear correspondence between the Rumin differ-

entials dQ and D, and the differentials ∂0 and ∂2 of the spectral sequence associated to
the filtration 0 ⊂ J ∗ ⊂ I∗ ⊂ �∗, the same is not true already on the 7-dimensional
quaternionic Heisenberg group. The biggest obstacle in this slightly more general case
is the complication of having to deal with multiple non-trivial differentials ∂r on corre-
sponding quotients over different pages. For example, in the case of the 7-dimensional
quaternionic Heisenberg group, already on 1-forms one has that both the operators ∂0
on E0,1

0 = J 1
0 /I1

0 and ∂2 on E0,1
2 are non-trivial.

In [9], Rumin generalises the construction of this subcomplex of intrinsic forms
fromHeisenberg groups to arbitraryCarnot groupsG. The subspace of intrinsic Rumin
forms E∗

0 is now defined in terms of d0, the algebraic part of the exterior differential
d, which coincides with the Chevalley–Eilenberg differential on forms. The notation
d0 is chosen to emphasise that this operator does not increase the weight of the form
it acts on, i.e. given a differential form α of weight p, the weight of d0α is still p
(assuming d0α 	= 0). Since d0◦ d0 = 0, it is possible to consider the cohomology of the
complex (�∗, d0). Once ametric onG is introduced, one can define the subspace E∗

0 =
Ker d0∩

(
Im d0

)⊥ ⊂ �∗ of Rumin forms.After defining the homotopical equivalence
�E between (�∗, d) and a second subcomplex (E∗, d), and the orthogonal projection
�E0 : �∗ → E∗

0 , one obtains the exact subcomplex (E∗
0 , dc = �E0d�E ) which is

conjugated to (E∗, d). The crucial point in this construction is the introduction of the
operator d−1

0 , the inverse map of d0, which can only be defined once we have a metric
on G.

We have therefore obtained an exact subcomplex (E∗
0 , dc) which is better adapted

to the stratification of the Carnot group considered, and which computes the de Rham
cohomology of the underlying manifold. Even though some connections between the
Rumin complex and spectral sequences can easily be drawn, it is difficult to identify an
abstract algebraic framework within which one should consider the Rumin complex
in order to obtain a deeper understanding into the geometric intuition behind this
construction.

By considering homogeneous weights on forms, it is possible to construct a
decreasing filtration over �∗ by the spaces F p of forms of weight ≥ p

FT+1 = 0 ⊂ FT ⊂ FT−1 ⊂ · · · ⊂ F2 ⊂ F1 ⊂ F0 = �∗, (3)

where T is the homogeneous dimension of the Carnot group G. It is easy to check
that (3) is also stable under the action of the exterior differential d, i.e. d(F p) ⊂ F p.
It is then possible to consider its associated spectral sequence to compute the de
Rham cohomology (�∗, d) of the underlying Carnot group. Firstly, the first page
quotients E p,∗

1 coincide with the Rumin forms E∗
0 (once we consider them as quotients

Ker d0/Im d0). Moreover, Rumin points out that in some very special cases (for
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example on Heisenberg groups) the Rumin differential dc coincides with a differential
in the weight spectral sequence (we refer to [10, 11] for the precise statement).

In this paper, we extend the study of the relationship between the Rumin differen-
tials dc and the differentials in the weight spectral sequence to full generality. More
precisely, we prove the following result (Theorem 1.1).

Theorem 1.1 GivenanarbitraryCarnot groupG, once ametric is fixed, the differential
part of the Rumin differentials dc coincides with the sum of the differentials ∂r that
appear in the multicomplex spectral sequence generated by considering the filtration
(3) by weights over the space of smooth forms.

We are able to prove this result by considering the weight filtration (3) within the
context of multicomplexes. In Sect. 3, we show how the de Rham complex (�∗, d) on
an arbitrary Carnot groupG is a multicomplex and the filtration given by its associated
total complex is indeed the filtration by weights. We can then use the work of Livernet,
Whitehouse and Ziegenhagen [5], where they present the formulae of the differentials
∂r for r ≥ 1 for this spectral sequence. By comparing the explicit expressions of the
∂r with the Rumin differentials dc, we are able to show in Sect. 4 that, morally, the
Rumin differentials dc coincide with the sum

∑
r≥1 ∂r of all the differentials ∂r that

appear in the weight spectral sequence. It is important to notice that in the case of the
Rumin complex (E∗

0 , dc), we are considering subspaces E∗
0 = Ker d0 ∩ (Im d0)⊥,

and not quotients, and this is the central point where the introduction of a metric on
G (or equivalently the definition of d−1

0 ) becomes necessary.
It is therefore possible to view the Rumin complex within the more abstract frame-

work of spectral sequences. Clearly, because of the filtration, the spectral sequence
computes the cohomology of G, which can also be done by other simpler means.
However, this is an algebraic machinery which also produces additional information
on the structure of forms and their cohomology (for example, as pointed out in Sect. 4,
at step 1 we obtain the Lie algebra cohomology of G with coefficients in C∞(G)).
Morally, the idea behind the spectral sequence construction is to compute the de Rham
cohomology of the underlying Carnot group by taking progressively smaller subcom-
plexes, whereas in the Rumin complex we consider all of these subcomplexes at the
same time as acting on the first page of the spectral sequence.

2 The Spectral Sequence Associated to aMulticomplex

In this section we will present the construction of the spectral sequence associated
to a multicomplex. In particular, we are interested in the explicit formulation of the
differentials ∂r that appear at the r th-step of this spectral sequence. This discussion
follows the one produced in [5], but with a slight modification in order to adapt the
construction to the more mainstream approach adopted when discussing differential
forms on Carnot groups. Indeed, in our paper we will be considering multicomplexes
with differential maps di : C → C of bidegree |di | = (i, 1 − i), instead of the first
quadrant multicomplexes with differentials di : C → C of bidegree |di | = (−i, i −1)
that are more commonly studied in homology theory.
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Definition 2.1 A multicomplex (also called a twisted chain complex) is a (Z,Z)-
graded k-module C equipped with maps di : C → C for i ≥ 0 of bidegree |di | =
(i, 1 − i) such that

∑

i+ j=n

di d j = 0 for all n ≥ 0. (4)

For C a multicomplex and (a, b) ∈ Z × Z, we write Ca,b for the k-module in
bidegree (a, b).

If the maps di : C → C all vanish for i ≥ 1, we obtain a chain complex with an
additional grading. Instead in the case where di = 0 for i ≥ 2, we retrieve the usual
notion of a bicomplex.

Given a multicomplex C , one could consider a priori different possible total com-
plexes, however as already discussed in [5], we will focus on the following choice for
the total complex.

Definition 2.2 For a multicomplex C , its associated total complex TotC is the chain
complex with

(
TotC

)
h =

( ∏

a+b=h
a≤0

Ca,b

)
⊕

( ⊕

a+b=h
a>0

Ca,b

)
=

( ⊕

a+b=h
b≤0

Ca,b

)
⊕

( ∏

a+b=h
b>0

Ca,b

)
.

The differential on TotC is given for an arbitrary element c ∈ (TotC)h by:

(dc)a =
∑

i≥0

di (c)a−i . (5)

Here (c)a denotes the projection of c ∈ (TotC)h to Ca,∗ = ∏
b,a+b=h Ca,b.

In general, when working with (TotC)h , it is not always possible to consider the
direct product total complex

∏
a+b=h Ca,b in degree h, as the formula (5) may involve

infinite sums. However in this paper, we will apply this construction of the total
complex TotC to the space of differential forms on Carnot groups. As we will see, in
this case the range for a, which will be referred to asweights, is finite and takes integer
values between 0 and the Hausdorff dimension Q of the Carnot group considered.
Therefore, in this particular setting the associated total complex takes the simpler
form

(
TotC

)
h =

⊕

a+b=h
a≥0

Ca,b , with differential (dc)a =
∑

i≥0

di (c)a−i . (6)
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Definition 2.3 Given a multicomplex C and its associated total complex D := TotC ,
we can define for each h the following subcomplexes

(
FpD

)
h =

⊕

a+b=h
a≥p

Ca,b. (7)

By definition, as the value of p varies, the subcomplexes FpD form a filtration of
TotC , that is D is a filtered complex.

Remark 2.4 It should be noted that

FpD =
r−1⊕

i=0

Cp+i,∗ ⊕ Fp+r D,

so that an arbitrary element x ∈ FpD can be written as

x = (x)p + (x)p+1 + · · · + (x)p+r−1 + u, (8)

where u ∈ Fp+r D and (x)p+i denotes the projection of x to Cp+i,∗.

Let us now consider the spectral sequence associated to this filtered complex FpD.
For r ≥ 0, the r th-page of the spectral sequence is a bigraded module E p,∗

r (D) with
a map δr of bidegree (r , 1 − r) for which δr ◦ δr = 0. Moreover, we have that the
spaces E p,∗

r can be expressed as the quotients

E p,∗
r (D) ∼= Z p,∗

r (D)/B p,∗
r (D),

where the r -cycles are given by

Z p,∗
r (D) : = FpD ∩ d−1(Fp+r D),

and the r -boundaries are given by

{
B p,∗
0 (D) : = Z p+1,∗

0 (D) and

B p,∗
r (D) : = Z p+1,∗

r−1 (D) + dZ p−(r−1),∗
r−1 (D) for r ≥ 1.

Given an element x ∈ Z p,∗
r (D), we will denote by [x]r its image in E p,∗

r (D), so
that

δr ([x]r ) = [dx]r , for any [x]r ∈ E p,∗
r (D).

Expanding on the expressions for Z p,∗
r (D) and B p,∗

r (D), one can introduce the
following definition.
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Definition 2.5 Let x ∈ Cp,∗ and let r ≥ 1. We define the graded submodules Z p,∗
r

and B p,∗
r of Cp,∗ as follows:

x ∈ Z p,∗
r ⇐⇒ for 1 ≤ j ≤ r − 1 there exists z p+ j ∈ Cp+ j,∗ such that,

d0x = 0 and dnx =
n−1∑

i=0

di z p+n−i for all 1 ≤ n ≤ r − 1 (9)

x ∈ B p,∗
r ⇐⇒ for 0 ≤ k ≤ r − 1 , there exists cp−k ∈ Cp−k,∗ such that

{
x = ∑r−1

k=0 dkcp−k and

0 = ∑r−1
k=l dk−l cp−k for 1 ≤ l ≤ r − 1.

(10)

Remark 2.6 In order to justify the first definition, let us consider an arbitrary element
x ∈ Cp,∗. Then there exists an element x ∈ FpD such that x = (x)p. Moreover, if
we consider the expression (8), we will have

x = x + ξp+1 + ξp+2 + · · · + ξp+r−1 + u, (11)

where ξp+ j = (x)p+ j for 1 ≤ j ≤ r − 1 and u ∈ Fp+r D. We then have that

dx = d
(
x + ξp+1 + ξp+2 + · · · + ξp+r−1 + u

)

= d0x︸︷︷︸
Cp,∗

+ d1x + d0ξp+1︸ ︷︷ ︸
Cp+1,∗

+ d2x + d1ξp+1 + d0ξp+2︸ ︷︷ ︸
Cp+2,∗

+ · · ·

+ dr−1x + dr−2ξp+1 + · · · + d0ξp+r−1︸ ︷︷ ︸
Cp+r−1,∗

+ dr x + dr−1ξp+1 + · · · + d1ξp+r−1 + du
︸ ︷︷ ︸

Fp+r D

.

Therefore x ∈ Z p,∗
r for r ≥ 1 if and only if dx ∈ Fp+r D, that is

d0x = 0

d1x + d0ξp+1 = 0 → d1x = d0(−ξp+1)

d2x + d1ξp+1 + d2ξp+2 = 0 → d2x = d0(−ξp+2) + d1(−ξp+1)

...

dr−1x + dr−2ξp+1 + · · · + d0ξp+r−1 = 0 → dr−1x =
r−2∑

i=0

di (−ξp+r−1−i ).

By imposing z p+ j = −ξp+ j ∈ Cp+ j,∗ we then recover the expression in (9).

On the other hand, given an element c ∈ Z p−(r−1),∗
r−1 (D) for r ≥ 1, we have that

c = (c)p−r+1 + (c)p−r+2 + · · · + (c)p−1 + (c)p + v,
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with v ∈ Fp+1D and cp−k : = (c)p−k ∈ Cp−k,∗ for 0 ≤ k ≤ r − 1, and dc ∈ FpD.
Therefore,

dc = d0cp−r+1︸ ︷︷ ︸
Cp−r+1,∗

+ d1cp−r+1 + d0cp−r+2︸ ︷︷ ︸
Cp−r+2,∗

+ · · ·

+ dr−2cp−r+1 + dr−3cp−r+2 + · · · + d0cp−1︸ ︷︷ ︸
Cp−1,∗

+

+ dr−1cp−r+1 + dr−2cp−r+2 + · · · + d1cp−1 + d0cp︸ ︷︷ ︸
Cp,∗

+

+ dr cp−r+1 + dr−1cp−r+2 + · · · + d2cp−1 + d1cp + dv
︸ ︷︷ ︸

Fp+1D

,

and since an element e ∈ Z p+1,∗
r−1 (D) is an element e ∈ Fp+1D, we have that x given

in (11) will belong to B p,∗
r (D) = Z p+1,∗

r−1 (D) + dZ p−(r−1),∗
r−1 (D) if

d0cp−r+1 = 0

d1cp−r+1 + d0cp−r+2 = 0

...

dr−2cp−r+1 + dr−3cp−r+2 + · · · + d0cp−1 = 0

dr−1cp−r+1 + dr−2cp−r+2 + · · · + d1cp−1 + d0cp = x,

which are exactly the expressions in (10).

Proposition 2.7 For r ≥ 1 and for all p ∈ Z, we have B p,∗
r ⊆ Z p,∗

r .

Proof Let x ∈ B p,∗
r with cp−k ∈ Cp−k,∗ for 0 ≤ k ≤ r − 1 satisfying equations (10).

Define

z p+ j : = −
r−1∑

i=0

d j+i cp−i ∈ Cp+ j,∗ for 1 ≤ j ≤ r − 1.

Then

d0x = d0

( r−1∑

k=0

dkcp−k

)
=

r−1∑

n=0

( ∑

i+ j=n

di d j

)
cp−n −

r−1∑

l=1

dl

( r−1∑

k=l

dk−l cp−k

)
= 0.

Moreover, for an arbitrary n ∈ N, we have

d0z p+n = − d0

( r−1∑

i=0

dn+i cp−i

)
= −

r−1∑

l=0

( ∑

i+ j=l+n

di d j

)
cp−l
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+
n−1∑

l=1

dl

( r−1∑

k=0

dn−l+kcp−k

)
+

r−1∑

l=0

dl+n

( r−1−l∑

i=0

di cp−l−i

)

= 0 +
n−1∑

l=1

dl(−z p+n−l) + dn

( r−1∑

i=0

di cp−i

)
+

r−1∑

l=1

dl+n

( r−1∑

k=l

dk−l cp−k

)

︸ ︷︷ ︸
=0 by (10)

= −
n−1∑

l=1

dl z p+n−l + dnx,

so that (9) is satisfied and hence x ∈ Z p,∗
r . ��

Proposition 2.8 The map

ψ : Z p,∗
r (D)/B p,∗

r (D) → Z p,∗
r /B p,∗

r ,

sending [x]r to the class [(x)p] is well defined and it is an isomorphism.

Proof Let us first consider the map

ψ̂ : Z p,∗
r (D) → Z p,∗

r /B p,∗
r

x �−→ ψ̂(x) = [(x)p].

Given an element x ∈ Z p,∗
r = FpD ∩ d−1(Fp+r D), we have that in particular

dx ∈ Fp+r D, which means that (dx)n = 0 for 0 ≤ n ≤ r − 1. Therefore

d0(x)p = 0 and (dx)p+n = dn(x)p +
n−1∑

i=0

di (x)p+n−i = 0 for 1 ≤ n ≤ r − 1.

It is then sufficient to take z p+n−i = −xp+n−i to see that they satisfy (9) in
Definition 2.5 and hence (x)p ∈ Z p,∗

r . By a similar argument, one can show that ψ̂ is
surjective.

Let us now show that ψ̂ is injective. Given x = (x)p + w ∈ Ker ψ̂ with w ∈
Fp+1D, then (x)p ∈ B p,∗

r and hence by (10) there exist cp−k ∈ Cp−k,∗ for 0 ≤ k ≤
r − 1 such that

{
(x)p = ∑r−1

k=0 dkcp−k and

0 = ∑r−1
k=l dk−l cp−k for 1 ≤ l ≤ r − 1.

Let c = ∑r−1
k=0 cp−k ∈ Fp−r+1D, then

(dc)p =
r−1∑

k=0

dkcp−k = (x)p and (dc)p−l =
r−1∑

k=l

dk−l cp−k = 0 for all 1 ≤ l ≤ r − 1,
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which implies that

c ∈ Fp−r+1D and dc ∈ FpD �⇒ c ∈ Z p−r+1,∗
r−1 D.

Moreover, (x)p−dc ∈ Fp+1D and x = dc+ρ, wherewe takeρ = (x)p−dc+w ∈
Fp+1D. Since d2c = 0, we have that dx = dρ ∈ Fp+r D, so that ρ ∈ Z p+1,∗

r−1 (D)

and hence Ker ψ̂ ⊆ B p,∗
r (D).

Conversely, if x ∈ B p,∗
r (D), then x = ρ + dc for some ρ ∈ Z p+1,∗

r−1 (D) and some

c ∈ Z p−r+1,∗
r−1 (D), so that ρ ∈ Fp+1D and dc ∈ FpD. Therefore, (x)p = (dc)p and

(dc)k = 0 for all k < p. This then implies that (x)p ∈ B p,∗
r and B p,∗

r (D) ⊆ Ker ψ̂ .
��

Theorem 2.9 Under the isomorphism

ψ : Z p,∗
r (D)/B p,∗

r (D) → Z p,∗
r /B p,∗

r ,

studied in Proposition 2.8, the r th-differential of the spectral sequence corresponds
to the following map

∂r : Z p,∗
r /B p,∗

r → Z p+r ,∗
r /B p+r ,∗

r

∂r ([x]) =
[
dr −

r−1∑

i=1

di z p+r−i

]
,

where x ∈ Z p,∗
r , and the elements z p+ j ∈ Cp+ j,∗ satisfy (9) for all 1 ≤ j ≤ r − 1.

Proof Given the elements z p+ j ∈ Cp+ j,∗ satisfy (9), we have that x − z p+1 − z p+2 −
· · · − z p+r−1 ∈ FpD and d

(
x − z p+1 − z p+2 − · · · − z p+r−1

) ∈ Fp+r D, so that
[x − z p+1 − · · · − z p+r−1]r ∈ Z p,∗

r (D)/B p,∗
r (D).

By Proposition 2.8, we have that ψ([x − z p+1 − · · · − z p+r−1]r ) = [x], so that

∂r ([x]) = ψ ◦ δr ([x − z p+1 − · · · − z p+r−1]r ) = ψ([d(x − z p+1 − · · · − z p+r−1)]r )

= [(
d(x − z p+1 − · · · − z p+r−1)

)
p+r

] =
[
dr x −

r−1∑

i=1

di z p+r−i

]
.

��

3 Carnot Groups and Their Multicomplexes

In this section we introduce the concept of a stratified group, or Carnot group, and
present the main properties induced by its stratification, namely the concept of weights
of forms and the decomposition of the exterior differential d in terms of these weights.
Finally, we show how these properties can be used to give the de Rham complex
(�∗, d) the structure of a multicomplex.
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Definition 3.1 (The spaces of h-vectors and h-covectors) We will denote by1g∗ the
dual space of a given Lie algebra g, which is the vector space of all linear functionals
on the elements of g and its also referred to as the space of 1-covectors.

Given a basis {X1, . . . , Xn} of g, one can consider its dual basis {θ1, . . . , θn} for
which 〈θi | X j 〉 = δi j for any i, j = 1, . . . , n. Here 〈· | ·〉 denotes the duality
product, that is the action of the linear functional θi ∈ 1g∗ on the element X j ∈ g.
Moreover, one can also introduce an inner product 〈·, ·〉 on 1g∗ such that this dual
basis {θ1, . . . , θn} is orthonormal. We will denote the exterior algebras of g and 1g∗
as

∗g =
n⊕

h=0

hg and ∗g∗ =
n⊕

h=0

hg∗ ,

where for 1 ≤ h ≤ n

hg = spanR{Xi1 ∧ · · · ∧ Xih | 1 ≤ i1 < · · · < ih ≤ n} and

hg∗ = spanR{θ j1 ∧ · · · ∧ θ jh | 1 ≤ j1 < · · · < jh ≤ n},

are the spaces of h-vectors and h-covectors respectively. In particular, we stress that
the inner product defined on 1g∗ extends canonically to each hg∗, making their
bases orthonormal too.

Finally, in order to relate the spaces hg and hg∗, we will also consider the
following maps

∗ : hg → hg∗ such that 〈X∗ | Y 〉 = 〈X ,Y 〉 ∀ Y ∈ hg and
∗ : hg∗ → hg such that 〈θ∗ | α〉 = 〈θ, α〉 ∀ α ∈ hg∗.

In both cases, we will refer to X∗ ∈ hg∗ and θ∗ ∈ hg∗ as the dual of X ∈ hg
and θ ∈ hg∗ respectively.

Definition 3.2 (Grading) We say that a Lie algebra g is graded when it admits a vector
space decomposition

g =
∞⊕

j=1

Vj such that [Vi , Vj ] ⊂ Vi+ j ,

and all but finitely many of the subspaces Vj s are {0}.
Definition 3.3 (Stratification) We say that a Lie algebra g is stratified when g admits
a grading in which the first layer V1 generates the whole Lie algebra. In other words,
every element of g can be written as a linear combination of iterated Lie brackets of
various elements of V1. In this case, a stratification (or Carnot grading) of step s for
the Lie algebra g can be expressed as

g = V1 ⊕ · · · ⊕ Vs , [V1, Vi ] = Vi+1 , Vs 	= 0 and Vk = 0 for k > s. (12)
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Definition 3.4 (Carnot groups) A stratified or Carnot group G of nilpotency step s
is a connected, simply-connected Lie group whose Lie algebra g of dimension n is
equipped with a step s stratification.

It should be stressed that in the case of a grading on g, one can define homogeneous
dilations δλ : G → G on the underlying Lie group for any λ > 0. These dilations
represent group homomorphisms and can be used to introduce the concept of homo-
geneous weights on the space of differential forms. Even though such homogeneous
weights can be defined for any grading, sincewewill be exclusivelyworking onCarnot
groups G, we will only be considering the homogeneous weights that originate from
the stratification of their Lie algebra g.

Definition 3.5 (Weights of covectors) Given θ ∈ 1g∗, we say that θ has pure weight
p if θ∗ ∈ Vp, where Vp denotes the pth-layer of the stratification (12) on g. If this is
the case, we will write w(θ) = p.

In general, given an h-covector ξ ∈ hg∗, we say that ξ as pure weight p and write
w(ξ) = p, if ξ can be expressed as a linear combination of covectors θi1 ∧ · · · ∧ θih
such that w(θi1) + · · · + w(θih ) = p.

Definition 3.6 (Metric adapted to the stratification) In the case of a Carnot group,
without loss of generality, one can consider an orthonormal basis {X1, . . . , Xn}which
is adapted to the stratification (12), that is

V1 = spanR{X1, . . . , Xm1} and Vi = spanR{Xmi−1+1, . . . , Xmi } for 1 ≤ i ≤ s.

In particular, this implies that that the subspaces Vi and Vj are orthogonal whenever
i 	= j . Moreover, its dual basis {θ1, . . . , θn} with 〈θi | X j 〉 = δi j , will also be an
orthonormal basis of 1g∗ which reflects the stratification in terms of weights. In
fact, for any j = 1, . . . ,m1 we have w(θ j ) = 1, and given 1 ≤ i ≤ s we have that
w(θk) = i for any k = mi−1 + 1, . . . ,mi .

Proposition 3.7 Let us consider ξ, η ∈ hg∗ two arbitrary h-covectors. If w(ξ) 	=
w(η), then they are orthogonal, that is 〈ξ, η〉 = 0.

Proof Let us first consider the case of h = 1. Given ξ, η ∈ 1g∗ such that w(ξ) = i
andw(η) = j with i 	= j , then by definition we have ξ∗ ∈ Vi and η∗ ∈ Vj . Therefore,
〈ξ, η〉 = 〈ξ∗ | η〉 = 0, and indeed, as already mentioned in the previous remark, the
subspaces Vi and Vj are orthogonal.

If h > 1, given ξ, η ∈ hg∗ with different weights, then without loss of generality
one can take ξ = θi1 ∧ · · · ∧ θih and η = θ j1 ∧ · · · ∧ θ jh with

w(ξ) = w(θ11) + · · · + w(θih ) 	= w(η) = w(θ j1) + · · · + w(θ jh ).

This means that there is at least an index l ∈ {1, . . . , h} such that w(θil ) 	= w(θ jl ),
that is θ∗

il
∈ Vi and θ∗

jl
∈ Vj belong to different layers and therefore

〈θi1 ∧ · · · ∧ θih , θ j1 ∧ · · · ∧ θ jh 〉 = 〈θ∗
i1 ∧ · · · ∧ θ∗

ih | θ j1 ∧ · · · ∧ θ jh 〉 = 0.

��
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As a consequence, the space hg∗ of h-covectors can be expressed as a direct sum
of subspaces which depend on the weight:

hg∗ =
⊕

a+b=h

a,bg∗,

where a,bg∗ denotes the space of a + b = h-covectors of weight a.
Moreover, it should be noted that the nilpotency of the Carnot group G translates

into the fact that the range of the possible weights is finite. Given its n-dimensional
Lie algebra g, the maximal weight will be attained by the n-covectors, and w(θ1 ∧
· · · ∧ θn) = w(θ1) + · · · + w(θn) = Q coincides with the Hausdorff dimension of the
underlying Carnot group G. If we assign weight zero to 0-covectors 0g∗ = R, then
all the possible weights will be contained in the discrete set {0, . . . , Q} ⊂ N.

All the considerations we have made so far for h-covectors can be extended to
smooth h-forms, so we can express the space of smooth forms inG as a multicomplex.

In the case of a Lie group G, one can consider the subcomplex of the de Rham
complex consisting of the left-invariant differential forms. A left-invariant h-form
is uniquely determined by its value at the identity, where it defines a linear map
hg → R, by identifying the tangent space at the identity with the Lie algebra g. In
other words, we can think of a left-invariant h-form as an element of hg∗.

Moreover, in the case of a connected Lie group G, we can identify the tangent
space TxG to G at any point x ∈ G with g by means of the isomorphism dLx , where
Lx denotes the left-translation by x . For θ ∈ hg∗ and f ∈ C∞(G), we can regard
θ ⊗ f as a smooth h-form by (θ ⊗ f )x = f (x)(dL−1

x )θ . This then gives rise to an
isomorphism

HomR

(
hg,C∞(G)

) ∼= hg∗ ⊗ C∞(G) → �h,

where �h denotes the space of smooth h-forms.

Definition 3.8 Weights of smooth forms Given α ∈ �1, we say that α has pure weight
p if

α =
∑

j

θ j ⊗ f j where f j ∈ C∞(G) and θ j ∈ p,−p+1g∗,

and we will write w(α) = p.
In general, given an h-form β ∈ �h , we say that β has pure weight p and write

w(β) = p, if β can be expressed as a linear combination of h-forms θ j1 ∧· · ·∧θ jh ⊗ f j
for which each θ j1 ∧ · · · ∧ θ jh has weight p and hence belongs to p,−p+hg∗.

For the sake of brevity, from now on we will use the most commonly used notation
for an arbitrary smooth h-form α = ∑

j f jθ j1 ∧· · ·∧θ jh expressed in terms of a basis
of left-invariant forms {θ1, . . . , θn} (for example the one considered in Definition 3.6).
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Remark 3.9 The space of smooth forms �∗ inherits the direct sum decomposition of
∗g∗ given by the weight. In order to highlight this relationship, we will use the
following notation

�h =
⊕

a+b=h

�a,b, (13)

where �a,b denotes the space of smooth a + b = h-forms of weight a.

Lemma 3.10 Given a Carnot group G of nilpotency step s, the decomposition of dif-
ferential forms based on weights (13) induces a decomposition of the exterior de Rham
differential d which can be easily expressed, for an arbitrary h-form α ∈ �p,−p+h of
pure weight p, as

dα = d0α + d1α + · · · + dsα,

where each di denotes the part of d which increases the weight of the form α by i , that
is

diα ∈ �p+i,−i−p+h+1 for i = 0, . . . , s.

In particular, the operator d0 is algebraic.

Proof Given an arbitrary h-form of weight p, α = ∑
j f jθhj with θhj ∈ p,h−pg∗, the

exterior differential applied to α will have the following expression:

d

⎛

⎝
∑

j

f jθ
h
j

⎞

⎠ =
∑

j

(
d f j ∧ θhj + f j dθhj

) =
∑

j

d f j ∧ θhj +
∑

j

f j dθhj .

By considering the orthonormal basis {X1, . . . , Xn} of Definition 3.6, we obtain a
very explicit expression for the first addend, that is

∑

j

d f jθ
h
j =

∑

j

n∑

l=1

Xl f j θl ∧ θhj =
s∑

i=1

∑

Xl∈Vi

∑

j

Xl f j θl ∧ θhj =
s∑

i=1

diα.

For each i = 1, . . . , s we see that

diα =
∑

Xl∈Vi

∑

j

Xl f j θl ∧ θhj ∈ �p+i,−i−p+h+1 since Xl ∈ Vi .

Regarding the second addend, one can easily see that unless dθhi vanishes, then
w(dθhj ) = w(θhj ) = p, that is it keeps the weight constant. In the case of Carnot
groups, one can prove this by either using the group’s dilations [3], or the relationship
between the stratification of a Carnot group and the lower central series {g(i)} of its Lie
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algebra [12]. Indeed, once we fix an orthonormal basis {X1, . . . , Xn} as in Definition
3.6, we get that, for a left-invariant 1-form θ ∈ 1g∗ of pure weight p

〈dθ | Xi ∧ X j 〉 = −〈θ | [Xi , X j ]〉 = 0 if w(X∗
i ) + w(X∗

j ) 	= p.

The same result extends to any left-invariant h-form θh ∈ hg∗ by using the
Leibniz rule of the exterior differential d.

If we use the notation d0 to indicate this second addend, we get

d0α =
∑

j

f j dθhj ∈ �p,−p+h+1. (14)

��
Proposition 3.11 The de Rham complex (�∗, d) on a Carnot group of nilpotency step
s is a multicomplex with maps di : �∗ → �∗ of bidegree |di | = (i, 1 − i) with
i = 0, . . . , s.

Proof As already shown in Remark 3.9, each �a,b is a C∞(G)-module with bidegree
(a, b) ∈ Z×Z. Moreover, we have already established the existence of the differential
maps di : �∗ → �∗ of bidegree |di | = (i, 1 − i) in the previous lemma, so we are
then left to show (4) holds.

This equality follows directly from the fact that (�∗, d) is a complex, that isd2α = 0
for any smooth form α ∈ �p,−p+h . In fact, is we expand this formula by gathering
all the different terms according to their weight we get

d2α = d(d0α + d1α + · · · + dsα)

= (d0 + d1 + · · · + ds)(d0α + d1α + · · · + dsα)

= d20α + (d0d1 + d1d0)α + (d0d2 + d1d1 + d2d0)α + · · · + d2s α

=
2s∑

n=0

∑

i+ j=n

di d jα = 0.

Furthermore, for each n = 0, . . . , 2s we have
∑

i+ j=n di d jα ∈ �p+n,−p−n+h+2,
that is each addend has different weight. Since we know that forms of different weight
are orthogonal, this implies that each addend will be zero. ��

The de Rham complex (�∗, d) on a Carnot group G of nilpotency step s and
Hausdorff dimension Q is a multicomplex, and therefore we can study its associated
total complex Tot� for which

(Tot�)h =
Q⊕

a=0

�a,−a+h with differential (dα)a =
s∑

i=0

di (α)a−i .
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In particular, we will be interested in the spectral sequence associated to the its
filtration defined in (7) which is given by

(Fp�)h =
⊕

a+b=h
a≥p

�a,b =
Q⊕

a=p

�a,−a+h = {α ∈ �h | w(α) ≥ p}. (15)

Remark 3.12 As pointed out by the referee, the same statement holds on Carnot–
Carathéodory spaces and not just Carnot groups. Namely, its associated finite filtration
gives the de Rham complex (�∗, d) the structure of a multicomplex, and therefore the
explicit expression of the differentials ∂r (seeTheorem2.9, Remark 4.4 below) can also
be obtained in this more general setting. The comparison between this construction
and the Rumin complex on Carnot–Carathéodory spaces [8] requires, however, more
technical details that will be addressed in a future paper.

4 The Rumin Differentials as the Differentials of the Spectral
Sequence on this Multicomplex

The purpose of this section is to shed light into the relationship between the differential
operators that appear in the Rumin complex (E∗

0 , dc) of a Carnot group and the various
differentials which appear in the various pages of the spectral sequence obtained from
the weight filtration on forms.We will not get into the details of the construction of the
subcomplex (E∗

0 , dc), and we will only give a short presentation of its main properties
and focus in particular on the explicit formulation of the differentials dc. For a more
detailed presentation we refer to Rumin’s paper [9] or the expository article [3].

Definition 4.1 (The Rumin complex) Given a Carnot groupG of nilpotency step s with
a fixed metric as in Definition 3.6, the Rumin complex (E∗

0 , dc) is a subcomplex of
the de Rham complex (�∗, d) where

• Eh
0 = Ker d0 ∩ (

Im d0
)⊥ ∩ �h ;

• dc = �E0d�E , where �E0 = I d − d0d
−1
0 − d−1

0 d0 is the projection on the
subspace E0.
A thorough explanation of d−1

0 is given in Definition 4.2. Moreover, the operator d
here is the exterior de Rham differential, and the projection �E = I d −dPd−1

0 −
Pd−1

0 d is defined in terms of d−1
0 , as well as the differential operator P presented

in Definition 4.3.

(E∗
0 , dc) is conjugated to the de Rham complex (�∗, d), that is it computes the

same cohomology as the de Rham cohomology of the underlying Carnot group G.
The map d0 in Rumin’s construction is exactly the operator defined in (14), i.e.

the part of the exterior differential d that does not change the weight of the forms. It
is important to stress the fact that d0 coincides with the action of d on left-invariant
forms, which means not only that (�∗, d0) is a complex, but also that the quotient
Ker d0/Im d0 is the Lie algebra cohomology of the Carnot groupG with coefficients
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in C∞(G). Moreover, seen within the context of the spectral sequence that originates
from considering the filtration by weights (15), these quotients coincide with the
quotients E p,∗

1 that appear from the multicomplex (�∗, d). By Proposition 2.8 and
Definition 2.5, we know

E p,∗
1 = Z p,∗

1 /B p,∗
1 = {α ∈ �p,∗ | d0α = 0}

{α ∈ �p,∗ | ∃β ∈ �p,∗ such that d0β = α} ,

so that

Ker d0 : �h → �h+1

Im d0 : �h−1 → �h
=

Q⊕

p=0

E p,−p+h
1 .

Within the context of the Rumin complex however, we would like to consider
these forms as subspaces of differential forms, and not quotients. In order to achieve
this, it is sufficient to introduce a metric on G and consider instead the subspace
Ker d0∩(Im d0)⊥. There aremany differentways of defining subspaces of differential
forms. For example, one may consider the kernel of a linear map defined over �∗,
such as the de Rham Laplace operator.

The notation E∗
0 to denote such subspaces was indeed inspired by the language of

spectral sequences, however it may be slightly confusing within this context since
each Eh

0 corresponds to
⊕Q

p=0 E
p,−p+h
1 on the first page, and not the quotients

⊕Q
p=0 E

p,−p+h
0 .

Definition 4.2 (The operator d−1
0 ) In order to define an “inverse” of the operator d0,

one can exploit the map

d0 : hg∗ −→ h+1g∗,

so that by taking an arbitrary β ∈ h+1g∗ with β 	= 0, there exists a unique α ∈
hg∗ ∩ (Ker d0)⊥ such that d0α = β + ξ , with ξ ∈ (Im d0)⊥. Therefore, we can
define

d−1
0 : h+1g∗ −→ hg∗ ∩ (Ker d0)

⊥

β �→ d−1
0 β = α.

Just like we did for the operator d0 in (14), one can extend this operator to the space
of all smooth forms �h = �(hg∗). It is important to notice that d−1

0 also preserves
the weight of the form, so that

d−1
0 : �h+1 → �h , d−1

0

(
�a,−a+h+1) ⊂ �a,−a+h . (16)
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Definition 4.3 (The operator P) The definition of the operator P is based on the
following differential operator:

d−1
0 d = d−1

0

(
d0 + d1 + · · · + ds

) = d−1
0 d0 + d−1

0 (d − d0),

where here we are using the splitting of the exterior differential d that was already
presented in Lemma 3.10.

It is clear that by the nilpotency of the Carnot group G conside, there exists an
N ∈ N for which [d−1

0 (d − d0)]N ≡ 0. We then define the differential operator P as
follows:

P : =
N∑

k=0

(−1)k[d−1
0 (d − d0)]k . (17)

Remark 4.4 Let us point out that once we introduce a metric onG, then for any r ≥ 1,
the condition x ∈ Z p,∗

r of (9) can be rephrased in terms of the operator d−1
0 once we

require the elements z p+ j ∈ Cp+ j,∗ to be orthogonal to the Ker d0.
In otherwords, given x ∈ Z p,∗

r , we have that there exist z p+ j ∈ Cp+ j,∗∩(Ker d0)⊥
with 1 ≤ j ≤ r − 1 such that

z p+1 = d−1
0 d1x

z p+2 = d−1
0 (d2x − d1z p+1) = d−1

0 d2x − d−1
0 d1d

−1
0 d1x

z p+3 = d−1
0 (d3x − d2z p+1 − d1z p+2)

= d−1
0 d3x − d−1

0 d2d
−1
0 d1x − d−1

0 d1d
−1
0 d2x + d−1

0 d1d
−1
0 d1d

−1
0 d1x,

and so on.
If we introduce the multi-index notation

(d−1
0 d)

I jm
: = (d−1

0 di1)(d
−1
0 di2) · · · (d−1

0 dim ),

where I jm = (i1, . . . , im) ∈ N
m+ for which |I jm | = i1 + i2 + · · · + im = j , then for any

j = 1, . . . , r − 1, we have the expression

z p+ j =
j∑

m=1

(−1)m−1
∑

I jm

(d−1
0 d)

I jm
x . (18)

For example, in the case where j = 4, we would have

z p+4 =
4∑

m=1

(−1)m−1
∑

I 4m

(d−1
0 d)I 4m

x

= d−1
0 d4x − (d−1

0 d1d
−1
0 d3 + d−1

0 d2d
−1
0 d2 + d−1

0 d3d
−1
0 d1)x+
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+ (d−1
0 d2d

−1
0 d1d

−1
0 d1 + d−1

0 d1d
−1
0 d2d

−1
0 d1 + d−1

0 d1d
−1
0 d1d

−1
0 d2)x+

− (d−1
0 d1d

−1
0 d1d

−1
0 d1d

−1
0 d1)x .

Remark 4.5 By using the explicit expression (18) of the z p+ j ∈ Cp+ j,∗ ∩ (
Ker d0

)⊥
in terms of x found in Remark 4.4, it is possible to obtain the following expression for
the r th-differential of the spectral sequence:

∂r ([x]) =
[
dr x −

r−1∑

i=1

di

( r−i∑

m=1

(−1)m−1
∑

I r−i
m

(d−1
0 d)I r−i

m

)
x

]
. (19)

For example, for r = 2 we will have

∂2[x] =
[
d2x − d1

(
(−1)0

∑

I 11

(d−1
0 d)I 11

)
x

]
= [

d2x − d1d
−1
0 d1x

]
.

In the case of r = 3, we will have

∂3[x] =
[
d3x − d1

( 2∑

m=1

(−1)m−1
∑

I 2m

(d−1
0 d)I 2m

)
x − d2

(
(−1)0

∑

I 11

(d−1
0 d)I 11

)
x

]

=
[
d3x − d1

∑

I 21

(d−1
0 d)I 21

x + d1
∑

I 22

(d−1
0 d)I 22

x − d2d
−1
0 d1x

]

= [
d3x − d1d

−1
0 d2x + d1d

−1
0 d1d

−1
0 d1x − d2d

−1
0 d1x

]
.

Theorem 1.1 GivenanarbitraryCarnot groupG, once ametric is fixed, the differential
part of the Rumin differentials dc coincides with the sum of the differentials ∂r that
appear in the multicomplex spectral sequence generated by considering the filtration
by weights over the space of smooth forms.

Proof The claim follows once we consider the explicit expression of the Rumin
differentials

dc : Eh
0 → Eh+1

0 .

Given an arbitrary h-form α ∈ �h , we have that

dc
(
�E0α

) = �E0d�E�E0α.

If α′ = �E0α ∈ Eh
0 = Ker d0 ∩ (Im d0)⊥ ∩ �h , we have d0α′ = d−1

0 α′ = 0 so
that

�Eα′ = (I d − dPd−1
0 − Pd−1

0 d)α′ = α′ −
N∑

k=0

(−1)k[d−1
0 (d − d0)]kd−1

0 dα′
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= α′ − d−1
0 dα′ + d−1

0 (d − d0)d
−1
0 dα′ − [d−1

0 (d − d0)]2d−1
0 dα′ + · · ·

= α′ − d−1
0 (d − d0)α

′ + [d−1
0 (d − d0)]2α′ − [d−1

0 (d − d0)]3α′ + · · · .

Moreover, given an arbitrary form β ∈ �h ∩ Im d−1
0 , that is β = d−1

0 ξ for some
ξ ∈ �h+1, we have that

�E0dβ = �E0d0β + �E0(d − d0)β =︸︷︷︸
E0⊂(Im d0)⊥

�E0(d − d0)β = �E0(d − d0)
(
d−1
0 ξ

)
,

so that

�E0d�Eα′ = �E0(d − d0)

(

α′ −
N∑

k=0

(−1)k[d−1
0 (d − d0)]kd−1

0 dα′
)

= �E0

N∑

r=1

[
dr −

r−1∑

i=1

di

( r−i∑

m=1

(−1)m−1
∑

I r−i
m

(d−1
0 d)I r−i

m

)]
�E0α,

where we are using the same multi-index notation that was introduced in Remark 4.4.
If we compare this final formulawith the explicit expression for the r th-differentials

of the spectral sequence (19), we can see the clear relationship between the operator
d�E applied to �E0α and the differentials ∂r .

It is however crucial to highlight that even though the explicit formulation of the
operators coincide, the operators dc and ∂r act on different spaces.

As alreadypointed out,wehave a clear correspondence betweenRumin forms Eh
0 =

Ker d0 ∩ (Im d0)⊥ and
⊕

p E
p,∗
1 . Indeed, in the special case of a form α ∈ Z p,−p+h

1
(an h-form of weight p that belongs to Ker d0) for which the Rumin differential of
�E0α has only differential order 1, then

• α ∈ Z p,−p+h
1 ;

• �E0α ∈ Z p,−p+h
1 ∩ (

B p,−p+h
1

)⊥ = Eh
0 ∩ �p,−p+h ;

• dc�E0α = �E0d1�E0α ∈ Z p+1,−p+h
1 ∩ (B p+1,−p+h

1 )⊥ = Eh+1
0 ∩ �p+1,−p+h .

Compare this to the action of ∂1 on the same α ∈ Z p,−p+h
1 :

• α ∈ Z p,−p+h
1 ;

• [α] ∈ Z p,−p+h
1 /B p,−p+h

1 = E p,−p+h
1 ;

• ∂1([α]) = [
d1α

] ∈ E p+1,−p+h
1 = Z p+1,−p+h

1 /B p+1,−p+h
1 .

In order to consider the more general case, let us first point out that by Definition 2.5,
we have the following set of inclusions

B p,∗
1 ⊂ B p,∗

2 ⊂ · · · ⊂ B p,∗
l ⊂ B p,∗

l+1 ⊂ · · ·
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Z p,∗
1 ⊃ Z p,∗

2 ⊃ · · · ⊃ Z p,∗
l ⊃ Z p,∗

l+1 ⊃ · · · .

Let us now assume that for a given form α ∈ Z p,−p+h
1 there exist l1, l2, . . . , lk ∈ N

with l1 < l2 < · · · < lk for which

dc�E0α ∈
k⊕

i=1

�p+li ,−p−li+h+1.

This then implies in particular that α ∈ Zlk , and hence it makes sense to compute
the action of ∂i [α] for i = 1, . . . , lk . However for each i we have that [α] is taken in
a different quotient space E p,−p+h

i :

• α ∈ Z p,−p+h
i ⊂ Z p,−p+h

1 ;

• [α] ∈ E p,−p+h
i = Z p,−p+h

i /B p,−p+h
i ⊂ E p,−p+h

1 ;

• ∂i ([α]) ∈ E p+i,−p−i+h+1
i ⊂ E p+i,−p−i+h+1

1 ,

whereas the operator d�E acts on �E0α ∈ Z p,−p+h
1 ∩ (B p,−p+h

1 )⊥. ��
Remark 4.6 The spectral sequence construction is independent of the choice of ametric
on G, being defined over successive quotients, and only depends on the filtration.
However, in order to obtain an explicit expression of the differentials ∂r over subspaces
of forms, and further compare them to the Rumin differentials dc, a metric is necessary.
As pointed out in Remark 4.4, once a metric is fixed, it is possible to formulate the
elements z p+ j ∈ Cp+ j,∗ (whose existence is guaranteed by the spectral sequence
construction) in terms of x ∈ Z p,∗

r via the operator d−1
0 . In some special cases like the

contact case or free nilpotent Lie groups [10], however, a metric may not be needed to
construct the Rumin complex (E∗

0 , dc). This is also reflected within the framework of
spectral sequences, since in such cases the elements z p+ j = d−1

0 x ∈ Cp+ j,∗ do not
depend on the choice of the metric.
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