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Abstract
We establish the maximal operator, Cotlar’s inequality and pointwise convergence in
the Dunkl setting for the (nonconvolution type) Dunkl–Calderón–Zygmund operators
introduced recently in Tan et al. (https://arxiv.org/abs/2204.01886). The fundamen-
tal geometry of the Dunkl setting involves two nonequivalent metrics: the Euclidean
metric and the Dunkl metric deduced by finite reflection groups, and hence the clas-
sical methods do not apply directly. The key idea is to introduce truncated singular
integrals and the maximal singular integrals by the Dunkl metric and the Euclidean
metric. We show that these two kind of truncated singular integrals are dominated by
the Hardy–Littlewood maximal function, which yields the Cotlar’s inequalities and
hence the boundedness of maximal Dunkl–Calderón–Zygmund operators. Further, as
applications, two equivalent pointwise convergences for Dunkl–Calderón–Zygmund
operators are obtained.
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1 Introduction

On the Euclidean space R
N there is exactly one weight function ω(x) associated with

a normalized root system R and a multiplicity function κ ≥ 0 such that the Dunkl
measure is defined by

dω(x) =
∏

α∈R

|〈α, x〉|κ(α)dx,

where dx stands for the Lebesgue measure inR
N . We denote byN = N +∑

α∈R κ(α)

the homogeneous dimension of the systemandbyG the reflectionsσα ∈ G, α ∈ R. Let
E(x, y) be the associated Dunkl kernel, in [7] Dunkl introduced the Dunkl transform,
which enjoys properties similar to the classical Fourier transform, and is defined by

f̂ (x) = c−1
κ

∫

RN
E(x,−iy) f (y)dω(y),

cκ = ∫
RN e−‖x‖2/2dω(x).

Particularly, the Dunkl transform satisfies the Plancherel identity, namely, ‖ f̂ ‖2 =
‖ f ‖2 and if the function κ = 0, then theDunkl transformbecomes the classical Fourier
transform. In [16] the translation operator related to Dunkl transform is defined by

τ̂y f (x) = E(y,−i x) f̂ (x)

for all x, y ∈ R
N . When the function f is in the Schwartz class S(RN ), the above

equality holds pointwise. It is possible to define τx f for L p(RN , dω)-functions, but
as a distribution, see [3]. As an operator on L2(RN , dω), τx is bounded. However, it
is not at all clear whether they are bounded on L p(RN , dω) for p �= 2. For f , g ∈
L2(RN , dω), their convolution can be defined in terms of the translation operator by

f ∗κg(x) =
∫

RN
f (y)τx g

∨(y)dω(y),

where g∨(y) = g(−y).

In the Dunkl setting, the Euclidean metric is defined by ‖x − y‖ = { N∑
j=1

|x j −

y j |2
} 1
2 and the distance between two G-orbits O(x) and O(y) is given by d(x, y) =

min
σ∈G ‖x − σ(y)‖. Obviously, d(x, y) = d(y, x) and d(x, y) � d(x, z) + d(z, y) for

all x, y, z ∈ R
N . However, d(x, y) = 0 when σ(y) for σ ∈ G and thus, d(x, y) is not

a metric. We still call d(x, y) by the Dunkl metric and note that d(x, y) � ‖x − y‖
and hence, d(x, y) and ‖x − y‖ are Not equivalent.

Consider the Dunkl setting as the Euclidean space R
N , together with the Euclidean

metric ‖x − y‖ and the Dunkl measure dω. Then (RN , ‖ · ‖, dω) becomes a space of
homogeneous type in the sense of Coifman and Weiss (see [5, 6]), since dω satisfies
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the doubling and reverse doubling properties, that is, there is a constant C > 0 such
that for all x ∈ R

N , r > 0, λ � 1,

C−1λNω(B(x, r)) � ω(B(x, λr)) � CλNω(B(x, r)). (1.1)

Moreover, ω(B(x, r)) ∼ ω(B(y, r)) when ‖x − y‖ ∼ r and ω(B(x, r)) �
ω(Bd(x, r)) � |G|ω(B(x, r)), where B(x, r) := {y ∈ R

N : ‖x − y‖ <

r}, Bd(x, r) := {y ∈ R
N : d(x, y) < r}, and the notion a ∼ b, 0 < a, b < ∞,

means that there exits two constant c1 and c2 such that c1 � a
b � c2.

The Dunkl operators Tj are defined by

Tj f (x) = ∂ j f (x) +
∑

α∈R+

κ(α)

2
〈α, e j 〉 f (x) − f (σα(x))

〈α, x〉 ,

where e1, . . . , eN are the standard basis of R
N .

The Dunkl Laplacian related to R and κ is defined as � =
N∑
j=1

T 2
j , which is

equivalent to

� f (x) = �RN f (x) +
∑

α∈R

κ(α)δα f (x),

where δα f (x) = ∂α f (x)
〈α,x〉 − f (x)− f (σα(x))

〈α,x〉2 . It is self-adjoint on L2(RN , dω) and gen-
erates the Dunkl heat semigroup and further the Poisson semigroup follows from
the subordination formula. All these Dunkl transform, Laplacian and Poisson inte-
gral together with the Dunkl translation and convolution operators opened the door
for developing the harmonic analysis related to the Dunkl setting, which includes
the Littlewood–Paley theory, Hardy spaces and singular integral operators. See for
example [1–3, 8–10, 16] and the references therein.

To be more precise, in [3], the Littlewood–Paley theory was established and the
Hardy space H1(RN ) was characterized by the area integrals, maximal function and
theRiesz transforms, see also [1]. The atomic decomposition of H1(RN )was provided
in [8]. The boundedness and the pointwise convergence of the Hörmander multipliers
and singular integral convolution operators were given by [9] and [10], respectively.

Particularly, we would like to recall the Calderón– Zygmund singular integral
convolution operators given in [10]. For a positive integer s, consider a kernel
K ∈ Cs

(
R

N\{0}) such that

sup
0<a<b<∞

∣∣∣∣
∫

a<‖x‖<b
K (x)dw(x)

∣∣∣∣ < ∞,

and
∣∣∣∣

∂β

∂xβ
K (x)

∣∣∣∣ ≤ C‖x‖−N−|β| for all |β| � s.
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Set

K {t}(x) = K (x)
(
1 − φ

(
t−1x

))
,

where φ is a fixed radial C∞-function supported by the unit ball B(0, 1) such that
φ(x) = 1 for ‖x‖ < 1/2. The authors in [10] proved the following:

Theorem A ([10, Theorems 4.1, 4.2 ]) Suppose that K ( f )(x) = f ∗ K {t}(x) with
the kernel K (x) satisfies the above conditions and the symbol * denotes the Dunkl
convolution. Then for an s, the smallest even positive integer bigger than N

2 , then
there are constants Cp > 0 independent of t > 0 such that

∥∥∥ f ∗ K {t}
∥∥∥
L p(dω)

≤ Cp‖ f ‖L p(dω) for 1 < p < ∞

and

w
({

x ∈ R
N :

∣∣∣ f ∗ K {t}(x)
∣∣∣ > λ

})
� C1λ

−1‖ f ‖L1(dω).

Moreover, under the additional assumption

lim
ε→0+

∫

ε<|x |<1
K (x)dω(x) = L,

where L ∈ C, the limit lim
t→0+ f ∗ K {t}(x) exists and defines a bounded operator on

L p(RN , dω) for 1 < p < ∞, which is of weak type (1, 1).
The authors introduced the maximal operator

K ∗ f (x) = sup
t>0

∣∣∣ f ∗ K {t}(x)
∣∣∣

and provided the following estimate for the maximal operator.

Theorem B ([10, Lemma 5.2 ]) Let p ∈ [1,∞). There is a constant C > 0 such that
for all f ∈ L p(RN , dω) ∩ L∞ and x ∈ R

N we have

K ∗ f (x) � C

( ∑

σ∈G
M(K f )(σ (x)) + ‖ f ‖L∞

)
,

with

M f (x) = sup
x∈B

1

ω(B)

∫

B
| f (y)|dω(y),

where the supremum is taken over all Euclidean balls B which contain x and M is the
noncentred Hardy–Littlewood maximal function defined on the space of homogeneous
type

(
R

N , ‖ · ‖, dω
)
.
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As a consequence of the above theorem, the boundeness of the operator K ∗ f for
L p(RN , dω), 1 < p < ∞ and the weak type (1, 1) are obtained. See [10] for more
details.

Recently, a new class of the Dunkl–Calderón–Zygmund singular integral operators
was introduced in [15]. We first introduce the following:

Definition 1.1 Let Ċη(RN ) be the Hölder space of continuous functions f with

‖ f ‖Ċη := sup
x �=y

| f (x) − f (y)|
‖x − y‖η

< ∞.

We denote Ċη
0 (RN ) by the set of functions in the Hölder space Ċη(RN ) with compact

supports.

The Dunkl–Calderón–Zygmund singular integral operators is defined by

Definition 1.2 ([15]) An operator T : Ċη
0 (RN ) → (Ċη

0 (RN ))′ with η > 0, is said to
be a Dunkl–Calderón–Zygmund singular integral operator if K (x, y), the kernel of
T , satisfies the following estimates: for some 0 < δ � 1,

|K (x, y)| � C
1

ω(B(x, d(x, y)))

( d(x, y)

‖x − y‖
)δ

for all x �= y; (1.2)

|K (x, y) − K (x, y′)| � C
(‖y − y′‖

‖x − y‖
)δ 1

ω(B(x, d(x, y)))

for ‖y − y′‖ � d(x, y)/2; (1.3)

|K (x ′, y) − K (x, y)| � C
(‖x − x ′‖

‖x − y‖
)δ 1

ω(B(x, d(x, y)))

for ‖x − x ′‖ � d(x, y)/2. (1.4)

Moreover, 〈T ( f ), g〉 = ∫
RN

∫
RN K (x, y) f (x)g(y)dω(x)dω(y) for supp f ∩

supp g = ∅. T is said to be a Dunkl–Calderón–Zygmund operator if T is bounded on
L2(RN , dω). Here Ċη

0 (RN ) is the classical Hölder space (see Definition 1.1).

We point out that in [15] it was proved that this new class Dunkl–Calderón–Zygmund
singular integral operator covers the well-known Dunkl–Riesz transforms and gener-
alizes the classical Calderón–Zygmund singular integrals on spaces of homogeneous
type in the sense of Coifman and Weiss.
Thus, it is natural to ask the following:

Question Does the Dunkl–Calderón–Zygmund operator T f exist pointwise for f ∈
L2(RN , dω) and for almost every x ∈ R

N ?

The purpose of this paper is to give a positive answer. Let us first recall the pointwise
convergence for the classical Calderón–Zygmund operator, that is, if K (x, y) is the
kernel of T , whether the following

T ( f )(x) = lim
ε→0+

∫

{y:‖x−y‖>ε}
K (x, y) f (y)dy (1.5)
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holds for f ∈ L2(RN , dω) (or more generally, f ∈ L p(RN , dω), 1 � p < ∞) and
for almost every x ∈ R

N .

It is well known that in the classical case, (1.5) is proved via the remarkable Cotlar’s
inequality. See [4] for the classical singular integral convolution operators and [12]
for the generalized singular integral operators. See also [13] for more general theory
for maximal operators.

We now return to our question in theDunkl setting. Suppose that, as in theDefinition
1.2, T is a Dunkl–Calderón–Zygmund operator with the kernel K (x, y) involving the
different metrics, the Euclidean metric ‖x − y‖ and the Dunkl metric d(x, y). As in
the classical case, the truncated kernels can be defined for each ε > 0,

Kε(x, y) =
{
K (x, y), when ‖x − y‖ > ε,

0, otherwise.
(1.6)

The truncated operators Tε are defined by

Tε f (x) =
∫

RN
Kε(x, y) f (y)dω(y) (1.7)

and the maximal operators are defined by

T∗ f (x) = sup
ε>0

|Tε( f )(x)|. (1.8)

However, Cotlar’s inequality for T∗ f (x) does not follow from the classical method
since the kernel of T involves the Dunkl metric d(x, y), which causes a difficulty for
estimating T∗ f (x).

To overcome this problem, we introduce the truncated kernels

K̃ε(x, y) =
{
K (x, y), when d(x, y) > ε,

0, otherwise.
(1.9)

and the truncated operators T̃ε are defined by

T̃ε f (x) =
∫

RN
K̃ε(x, y) f (y)dω(y)

for x ∈ R
N . The corresponding maximal operators are defined by

T̃∗ f (x) = sup
ε>0

|T̃ε( f )(x)|.

The relationship between T∗ f (x) and T̃∗ f (x) gives Cotlar’s inequalities for both
T∗ f (x) and T̃∗ f (x), which are given by the following:
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Theorem 1.3 Suppose that T is aDunkl–Calderón–Zygmund operator as inDefinition
1.2. Then for any r > 0,

T∗ f (x), T̃∗( f )(x) � Cr
{
M

(|T ( f )|r )(x)1/r + M̃ f (x)
}
,

where Cr is a constant depending on r but not on x, M f (x) is the Hardy–Littlewood
maximal function, i.e. M f (x) = sup

t>0

1
ω(B(x,t))

∫
B(x,t) | f (y)|dω(y), and M̃ f (x) =

∑
σ∈G

M f (σ (x)).

Theorem 1.4 Suppose that T is a Dunkl–Calderón–Zygmund operator with the kernel
K (x, y) as in Definition 1.2. Then lim

ε→0+[Tε( f )(x) − T̃ε( f )(x)] = 0, for all f ∈
L p(RN , dω), 1 � p < ∞ and almost all x ∈ R

N .

Furthermore, under an additional condition
∫
{y: ε<d(x,y)<M} K (x, y)dω(y) = 0

for all 0 < ε < M < ∞, we have

T ( f )(x) = lim
ε→0+

∫

{y: ‖x−y‖>ε}
K (x, y) f (y)dω(y)

= lim
ε→0+

∫

{y: d(x,y)>ε}
K (x, y) f (y)dω(y)

for f ∈ L p(RN , dω), 1 � p < ∞ and almost all x ∈ R
N .

The paper is organized as follows. In the next section, we recall the preliminaries for
the Dunkl–Calderón–Zygmund singular integral operators. Cotlar’s inequality and the
pointwise convergence will be given in Sects. 3 and 4, respectively.

2 Preliminaries: Dunkl–Calderón–Zygmund Operators

We first remark that the size and regularity conditions of the Dunkl–Calderón–
Zygmund singular integral operator as in Definition 1.2 are much weaker than the
classical Calderón–Zygmund singular integral operators given in space of homoge-
neous type in the sense of Coifman and Weiss. Let recall these conditions by the
following: for some 0 < δ � 1,

(i) |K (x, y)| � C
ω(B(x, ‖x − y‖)) for x �= y;

(ii) |K (x, y) − K (x, y′)| �
(‖y − y′‖

‖x − y‖
)δ C

ω(B(x, ‖x − y‖)) for ‖y − y′‖ �
1
2‖x − y‖;

(iii) |K (x, y) − K (x ′, y)| �
(‖x − x ′‖

‖x − y‖
)δ C

ω(B(x, ‖x − y‖)) for ‖x − x ′‖ �
1
2‖x − y‖.
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By the reverse doubling condition in (1.1) on the measure dω,

ω(B(x, ‖x − y‖)) = ω

(
B

(
x,

‖x − y‖
d(x, y)

· d(x, y)
))

� C
(‖x − y‖
d(x, y)

)N
ω(B(x, d(x, y))).

Thus,

1

ω(B(x, ‖x − y‖)) � C
( d(x, y)

‖x − y‖
)N 1

ω(B(x, d(x, y)))

� C
( d(x, y)

‖x − y‖
)δ 1

ω(B(x, d(x, y)))

and note that d(x, y) � ‖x − y‖, thus, ω(B(x, ‖x − y‖)) � ω(B(x, d(x, y))). If
‖x − x ′‖ � 1

2d(x, y) � 1
2‖x − y‖, then,

(‖x − x ′‖
‖x − y‖

)ε 1

ω(B(x, ‖x − y‖) � C
(‖x − x ′‖

‖x − y‖
)ε 1

ω(B(x, d(x, y)))
.

Further, K (x, y) is locally integrable for x �= y. Indeed, for any fixed x ∈ R
N and

0 < ε < R < ∞, by the doubling properties in (1.1) of the measure dω,

∫

ε<‖x−y‖<R
|K (x, y)|dω(y) � C

1

εδ

∫

d(x,y)<R

d(x, y)δ

ω(B(x, d(x, y)))
dω(y)

� C

(
R

ε

)δ

< ∞.

To recall results in [15], we need to extend the definition of the Dunkl–Calderón–
Zygmund operators to functions in Ċη

b (RN ), the bounded Hölder functions. The idea
for doing this is to define T ( f ) for f ∈ Ċη

b (RN ) as a distribution on Ċη
0,0(R

N ) =
{g ∈ Ċη

0 : ∫
RN g(x)dω(x) = 0}. To this end, given g ∈ Ċη

0,0(R
N ) with the support

contained in the ball B(x0, R) for some x0 ∈ R
N and R > 0. Let ξ(x) = 1 for

x ∈ Bd(x0, 2R) and ξ(x) = 0 for x ∈ (
Bd(x0, 4R)

)c
. Write f (x) = ξ(x) f (x) +

(1 − ξ(x)) f (x) and formally, 〈T f , g〉 = 〈T ( f ξ), g〉 + 〈T [(1 − ξ) f ], g〉. The first
term 〈T ( f ξ), g〉 is well defined. By the cancellation condition of g, we can write

〈T [(1 − ξ) f ], g〉 =
∫

RN

∫

RN
[K (x, y) − K (x0, y)](1 − ξ(y)) f (y)g(x)dω(y)dω(x).

Observe that if x ∈ B(x0, R) and y /∈ Bd(x0, 2R),then ‖x − x0‖ � R � 1
2d(x0, y).

Thus,

∫

RN

∫

{y:d(x0,y)�2R}
|K (x, y) − K (x0, y)||g(x)|dω(y)dω(x) � C‖g‖1
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and hence, 〈T f , g〉 is well defined. Therefore, T ( f ) is a distribution on
(
Ċη
0,0(R

N )
)′

.

The weak boundedness property (WBP) in the Dunkl setting is defined by the
following:

Definition 2.1 The Dunkl–Calderón–Zygmund singular integral operator T with the
distribution kernel K (x, y) is said to have the weak boundedness property (WBP) if
there exist η > 0 and C < ∞ such that

|〈K , f 〉| � C max{ω(B(x0, r)), ω(B(y0, r))}

for all f ∈ Ċη
0 (RN × R

N ) with supp( f ) ⊆ B(x0, r) × B(y0, r), x0, y0 ∈
R

N , ‖ f ‖L∞(RN ) � 1, ‖ f (·, y)‖Ċη(RN ) � r−η for all y ∈ R
N and ‖ f (x, ·)‖Ċη(RN ) �

r−η for all x ∈ R
N .

The following T (1) theorem for the Dunkl–Calderón–Zygmund singular integral
operators was provided in [15].

Theorem 2.2 Suppose that T is a Dunkl–Calderón–Zygmund singular integral oper-
ator. Then T extends to a bounded operator on L2(RN , dω) if and only if (a)
T (1) ∈ BMO(RN , dω); (b) T ∗(1) ∈ BMO(RN , dω); (c) T has WBP.

In [15], they also show the following:

Theorem 2.3 Suppose T is a Dunkl–Calderón–Zygmund operator. Then T extends to
a bounded operator from L p(RN , dω), 1 < p < ∞, to itself. Moreover, there exists
a constant C such that

‖T f ‖L p(RN ,dω) � C‖ f ‖L p(RN ,dω).

We remark that applying the L2-boundeness of T and the Calderón–Zygmund
decomposition on space of homogeneous type (RN , ‖x − y‖, dω) as in [9, 10], the
weak type (1,1) estimate of Theorem 2.3 also holds. See [9, 10] for details.

3 Proof of Cotlar’s Inequality

Proof We need to show that if f ∈ L2(RN , dω) and for any fixed ε > 0, then∫
{y:‖x−y‖�ε} K (x, y) f (y)dω(y) converges absolutely for almost all x ∈ R

N , where
K (x, y) is the kernel of the Dunkl–Calderón–Zygmund operator T . Instead of show-
ing this, we would like to first prove that

∫
{y:d(x,y)�ε} K (x, y) f (y)dω(y) converges

absolutely for almost all x ∈ R
N and for any fixed ε. Indeed, for almost all x ∈ R

N

and any fixed ε > 0,

∫

{y:d(x,y)�ε}
|K (x, y)|2dω(y) �

∞∑

j=0

∫

{y:2 j ε�d(x,y)�2 j+1ε}
1

ω(B(x, d(x, y)))2
dω(y)

�
∞∑

j=0

∫

{y:2 j ε�d(x,y)�2 j+1ε}
1

ω(B(x, 2 jε))2
dω(y)

123
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�
∞∑

j=0

ω(B(x, 2 j+1ε)

ω(B(x, 2 jε))2
dω(y)

�
∞∑

j=0

2− j N 1

ω(B(x, ε))
< ∞,

where the last two inequalities follow from the doubling property in (1.1) and fact
that inf

x∈RN
ω(B(x, ε)) > 0, respectively. The notation a � b means that there exists a

constant C such that a � Cb.
Observe that the above estimate does not work for

∫
{y:‖x−y‖�ε} |K (x, y)|2dω(y).

We now show the following relationship between truncated operators Tε( f )(x) and
T̃ε( f )(x), which is one of the main reasons why we introduce the truncated operator
T̃ε( f )(x).

Lemma 3.1 Suppose that the kernel K (x, y) satisfies the following size condition

|K (x, y)| � C
1

ω(B(x, d(x, y)))

( d(x, y)

‖x − y‖
)δ

, 0 < δ � 1.

Then

|Tε( f )(x) − T̃ε( f )(x)| � CM̃( f )(x).

Indeed, {y : ‖x − y‖ > ε} = {y : d(x, y) > ε}∪{y : ‖x − y‖ > ε � d(x, y)} and
hence,

∫

{y: ‖x−y‖>ε}
K (x, y) f (y)dω(y)

=
∫

{y: d(x,y)>ε}
K (x, y) f (y)dω(y) +

∫

{y: ‖x−y‖>ε�d(x,y)}
K (x, y) f (y)dω(y).

We estimate
∫
{y: ‖x−y‖>ε�d(x,y)} K (x, y) f (y)dω(y) as follows:

∣∣∣
∫

{y: ‖x−y‖>ε�d(x,y)}
K (x, y) f (y)dω(y)

∣∣∣

� 1

εδ

∫

{y: ε�d(x,y)}
d(x, y)δ

ω(B(x, d(x, y)))
| f (y)|dω(y)

= 1

εδ

∞∑

k=1

∫

{y: 2−kε�d(x,y)<2−k+1ε}
d(x, y)δ

ω(B(x, d(x, y)))
| f (y)|dω(y)

� 1

εδ

∞∑

k=1

∫

{y:d(x,y)<2−k+1ε}
(2−kε)δ

ω(B(x, 2−kε))
| f (y)|dω(y)

� M̃ f (x),
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where the last inequality follows from the doubling condition in (1.1) and the fact that
for any t > 0,

1

ω(B(x, t))

∫

{y:d(x,y)�t}
| f (y)|dω(y)

�
∑

σ∈G

1

ω(B(σ (x), t))

∫

{y:‖σ(x)−y‖�t}
| f (y)|dω(y)

�
∑

σ∈G
M f (σ (x))

= M̃ f (x).

As a direct consequence of the above estimate, we obtain that

T∗( f )(x) � T̃∗( f )(x) + CM̃ f (x)

and

T̃∗( f )(x) � T∗( f )(x) + CM̃ f (x),

where C is a constant. Therefore, we just need to show Cotlar’s inequalities for T̃∗ f
only.

Let us fix an x̄ ∈ R
N and ε > 0 and write f (x) = f1(x) + f2(x), where f1(x) =

f (x) for d(x, x̄) � ε and f2(x) = f (x) when d(x, x̄) > ε.

Firstwe show that |T f2(x)−T f2(x̄)| � CM̃ f (x̄),whenever ‖x−x̄‖ < ε
2 .Observe

that if ‖x− x̄‖ < ε
2 then the smoothness condition (1.4) in Definition 1.2 on the kernel

K (x, y) yields

|T f2(x) − T f2(x̄)| �
∫

{y:d(x̄,y)>ε}
|K (x, y) − K (x̄, y)|| f (y)|dω(y)

�
∫

{y:d(x̄,y)>ε}

(‖x − x̄‖
‖x̄ − y‖

)δ 1

ω(B(x̄, d(x̄, y)))
· | f (y)|dω(y).

We split the range of integration into the dyadic shells
{
y : 2k+1ε � d(x̄, y) >

2kε
}
, k ∈ N. It carries out the estimate of the last term about by the following:

|T f2(x) − T f2(x̄)| �
∞∑

k=0

∫

{y:2k+1ε�d(x̄,y)>2kε}

(‖x − x̄‖
‖x̄ − y‖

)δ 1

ω(B(x̄, d(x̄, y)))
| f (y)|dω(y)

�
∞∑

k=0

∫

{y:d(x̄,y)�2k+1ε}

( 1

2k+1

)δ 1

ω(B(x̄, 2kε))
| f (y)|dω(y)

�
∑

σ∈G

∞∑

k=0

( 1

2k+1

)δ 1

ω(B(σ (x̄), 2k+1ε))

∫

{y:‖σ(x̄)−y‖�2k+1ε}
| f (y)|dω(y)

�
∑

σ∈G
M f (σ (x̄))
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= M̃ f (x̄).

Therefore

|T̃ε f (x̄)| = |T f2(x̄)| � |T f2(x)| + C · M̃ f (x̄) � |T f (x)| + |T f1(x)|
+C · M̃ f (x̄), (3.1)

whenever ‖x − x̄‖ < ε
2 .

Now for any α > 0 and r > 0, we have

ω
({
x ∈ B(x̄,

ε

2
) : |T f (x)| > α

})
� α−r

∫

B(x̄, ε
2 )

|T f (x)|r dω(x)

� α−rω(B(x̄,
ε

2
)) · M(|T f |r )(x̄).

And by the week type (1,1) estimate of T we have

ω
({
x ∈ B(x̄,

ε

2
) : |T f1(x)| > α

})
� α−1

∫

RN
| f1(x)|dω(x)

= α−1
∫

{x : d(x̄,x)�ε}
| f (x)|dω(x)

� α−1ω(B(x̄,
ε

2
)) · M̃ f (x̄).

Let α = C0
{
M

(|T f |r )(x̄)1/r + M̃ f (x̄)
}
, where C0 is a large constant such that

ω
({
x ∈ B(x̄, ε

2 ) : |T f (x)| > α
})

� 1
4ω(B(x̄, ε

2 )) and ω
({
x ∈ B(x̄, ε

2 ) : |T f1(x)| >

α
})

� 1
4ω(B(x̄, ε

2 )).

As a consequence there exists an x ∈ B
(
x̄,

ε

2

)
so that |T f (x)| � α and |T f1(x)| �

α. Hence by (3.1), we have

|T̃ε f (x̄)| � 2α + C · M̃ f (x̄) � (2C0 + C) · {M(|T f |r )(x̄)1/r + M̃ f (x̄)
}
.

The proof of the Theorem 1.3 is complete. ��
As a direct consequence of Theorem 1.3 and Theorem 2.3, we obtain the following:

Corollary 3.2 Suppose that T is a Dunkl–Calderón–Zygmund operator. Then the max-
imal operator T∗ ( and T̃∗) is bounded on L p(RN , dω) and is of the weak type (1, 1).
Moreover, there exists a constant C such that

‖T∗ f ‖L p(RN ,dω) � C‖ f ‖L p(RN ,dω)

for 1 < p < ∞ and

ω
{
x ∈ R

N : |T∗ f (x)| > α
}

� α−1
∫

RN
| f (x)|dω(x)

for all α > 0.
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4 Pointwise Convergence of Truncated Operators

We first show the following boundedness of the truncated operator without using the
smoothness conditions on the kernel. See a similar result in [14].

Theorem 4.1 Suppose that the operator T with the kernel K (x, y) is bounded on
L p(RN , dω) for some 1 < p < ∞, i.e. ‖T ( f )‖L p(RN ,dω) � C‖ f ‖L p(RN ,dω).

Moreover, K (x, y) satisfies the following size condition only:

|K (x, y)| � C
1

ω(B(x, d(x, y)))

( d(x, y)

‖x − y‖
)δ

for all x �= y, and some 0 < δ � 1,

and

T f (x) =
∫

RN
K (x, y) f (y)dω(y),

for a.e. x outside the support of f .
Then there exists a constant C ′ such that

‖Tε( f )‖L p(RN ,dω) � C ′‖ f ‖L p(RN ,dω)

and

‖T̃ε( f )‖L p(RN ,dω) � C ′‖ f ‖L p(RN ,dω),

where C ′ is independent of ε.

Proof According to the proof of Theorem 1.3, |Tε( f )(x)− T̃ε( f )(x)| � CM̃ f (x),we
just need to show ‖T̃ε( f )‖L p(RN ,dω) � C ′‖ f ‖L p(RN ,dω) only. Let the collections of

the balls {B(x̄k,
1
4ε)} satisfy

∞⋃
k=1

B(x̄k,
1
4ε) = R

N , and {B(x̄k, 2ε)} have the bounded
overlapping property: There exists an integer M, such that no point in R

N belongs to
more than M of B(x̄k, 2ε). Let χk,δ be the characteristic function of Bd(x̄k, δ). It is

easy to see that
∞∑
k=1

χk,2ε(x) � |G| · M, for all x ∈ R
N . By writing ˜̃T ε = T − T̃ε, we

just need to show that ‖˜̃T ε( f )‖L p(RN ,dω) � C ′‖ f ‖L p(RN ,dω). Observe that

‖˜̃T ε( f )‖p
L p(RN ,dω)

�
∞∑

k=1

∫

Bd (x̄k ,
1
4 ε)

|˜̃T ε( f )(x)|pdω(x)

=
∞∑

k=1

∫

RN
|χk, 14 ε(x) · ˜̃T ε( f )(x)|pdω(x).

Andχk, 14 ε(x)·˜̃T ε( f )(x) = χk, 14 ε(x)·˜̃T ε(χk,2ε · f )(x), since ˜̃T ε[(1−χk,2ε) f ](x) = 0,

for all x ∈ Bd(x̄k,
1
4ε).
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Now we write

χk, 14 ε(x) · ˜̃T ε(χk,2ε · f )(x) = χk, 14 ε(x) · ˜̃T ε(χk, 12 ε · f )(x)

+χk, 14 ε(x) · ˜̃T ε[(χk,2ε − χk, 12 ε) · f ](x).

Note that χk, 14 ε(x) · ˜̃T ε(χk, 12 ε · f )(x) = χk, 14 ε(x) · T (χk, 12 ε · f )(x), since T̃ε(χk, 12 ε ·
f )(x) = 0 for all x ∈ Bd(x̄k,

1
4ε). Hence

∫

RN
|χk, 14 ε(x) · ˜̃T ε(χk, 12 ε · f )(x)|pdω(x) =

∫

RN
|χk, 14 ε(x) · T (χk, 12 ε · f )(x)|pdω(x)

� C‖χk, 12 ε · f ‖p
L p(RN ,dω)

� C‖χk,2ε · f ‖p
L p(RN ,dω)

.

And

∫

RN
|χk, 14 ε(x) · ˜̃T ε[(χk,2ε − χk, 12 ε) · f ](x)|pdω(x)

=
∫

Bd (x̄k ,
1
4 ε)

∣∣∣
∫

{y: 1
4 ε�d(x,y)<ε}

K (x, y)(χk,2ε(y) − χk, 12 ε(y)) · f (y)dω(y)
∣∣∣
p
dω(x)

�
∫

Bd (x̄k ,
1
4 ε)

∣∣∣
∫

RN

1

ω(B(x, 1
4ε))

χk,2ε(y) · | f (y)|dω(y)
∣∣∣
p
dω(x)

�
∫

Bd (x̄k ,
1
4 ε)

∣∣∣
∫

RN

1

ω(B(x̄k,
1
4ε))

χk,2ε(y) · | f (y)|dω(y)
∣∣∣
p
dω(x)

= ω(Bd(x̄k ,
1
4ε))

ω(B(x̄k,
1
4ε))p

‖χk,2ε · f ‖p
L1(RN ,dω)

� 1

ω(B(x̄k,
1
4ε))p−1

‖χk,2ε · f ‖p
L p(RN ,dω)

· ‖χk,2ε‖p
Lq (RN ,dω)

(
here

1

p
+ 1

q
= 1

)

� ‖χk,2ε · f ‖p
L p(RN ,dω)

.

Based on the above results, we have

‖˜̃T ε( f )‖p
L p(RN ,dω)

�
∞∑

k=1

‖χk,2ε · f ‖p
L p(RN ,dω)

=
∞∑

k=1

∫

RN
χk,2ε(x)| f (x)|pdω(x)

�
∫

RN
| f (x)|pdω(x).

The proof of Theorem 4.1 is complete. ��

123



Maximal Operator, Cotlar’s Inequality and Pointwise Convergence Page 15 of 18 164

Now we show the Theorem 1.4.

Proof of Theorem 1.4 We first show that

Tε f (x) − T̃ε f (x) =
∫

{y: ‖x−y‖>ε�d(x,y)}
K (x, y) f (y)dω(y) → 0,

as ε → 0+, for f ∈ L p(RN , dω), 1 � p < ∞, and almost every x ∈ R
N .

Indeed, if we let the set E = {x |〈x, α〉 = 0, for some α ∈ R}, then it is easy to see
that ω(E) = 0. Now for any x ∈ R

N\E, we let

dx = inf
σ∈G
σ �=id

‖x − σ(x)‖,

then dx > 0.Note that if ε < dx/2 and ‖x − y‖ > ε > d(x, y), then ‖x − y‖ � dx/2.
Applying the size condition of K (x, y) implies that

∫

{y: ‖x−y‖>ε�d(x,y)}
|K (x, y) f (y)|dω(y)

�
∫

{y: ε�d(x,y)}

(d(x, y)

dx

)δ 1

ω(B(x, d(x, y)))
| f (y)|dω(y)

=
∞∑

k=1

∫

{y: 2−kε<d(x,y)�2−k+1ε}

(d(x, y)

dx

)δ 1

ω(B(x, d(x, y)))
| f (y)|dω(y)

�
∞∑

k=1

∫

{y: d(x,y)�2−k+1ε}

(2−kε

dx

)δ 1

ω(B(x, 2−kε))
| f (y)|dω(y)

�
∞∑

k=1

(2−kε

dx

)δ

M̃ f (x)

�
( ε

dx

)δ

M̃ f (x) → 0, as ε → 0+, for almost every x ∈ R
N .

Therefore lim
ε→0+

∫
{y: ‖x−y‖>ε�d(x,y)} K (x, y) f (y)dω(y) = 0, for almost every x ∈

R
N .

Now under the additional assumption
∫
{y: ε<d(x,y)<M} K (x, y)dω(y) = 0, for all

0 < ε < M and x ∈ R
N , we will show that lim

ε→0+
∫
{y:d(x,y)>ε} K (x, y) f (y)dω(y)

exists for f ∈ L p(RN , dω), 1 � p < ∞ and almost all x ∈ R
N .

First we claim that for each C1
0(R

N ) function f with compact support,

lim
ε→0+

∫

{y:d(x,y)>ε}
K (x, y) f (y)dω(y)

exists for all x ∈ R
N . Indeed, the integral

∫
{y: d(x,y)>ε} K (x, y) f (y)dω(y)

can be written as the sum of
∫
{y: ε<d(x,y)<M} K (x, y)[ f (y) − f (x)]dω(y) and

123



164 Page 16 of 18 C. Tan et al.

∫
{y: d(x,y)�M} K (x, y) f (y)dω(y). Obviously, the second integral converges abso-
lutely for any fixed M > ε. By the size condition (1.2) in Definition 1.2 on the
kernel K (x, y) and the smoothness condition on the function f , the first integral is
also converges absolutely. This is because

∫

{y: ε<d(x,y)<M}
|K (x, y)[ f (y) − f (x)]|dω(y)

�
∫

ε<d(x,y)<M
‖x−y‖�1

1

ω(B(x, d(x, y)))

( d(x, y)

‖x − y‖
)δ

dω(y)

+
∫

ε<d(x,y)<M
‖x−y‖<1

1

ω(B(x, d(x, y)))

( d(x, y)

‖x − y‖
)δ‖x − y‖dω(y)

�
∫

d(x,y)<M

d(x, y)δ

ω(B(x, d(x, y)))
dω(y) < ∞.

Now we show lim
ε→0+

∫
{y: d(x,y)>ε} K (x, y) f (y)dω(y) exists for f ∈

L p(RN , dω), 1 � p < ∞ and almost all x ∈ R
N . To this end, recall

T̃ε( f )(x) = ∫
{y: d(x,y)>ε} K (x, y) f (y)dω(y) and

�( f ; x) = lim
ε→0+

(
sup

0<t<s<ε

|T̃t ( f )(x) − T̃s( f )(x)|
)
,

for any f ∈ L p(RN , dω), 1 � p < ∞.

Observe that �( f ; x) satisfies the following obvious properties:

�( f1 + f2; x) � �( f1; x) + �( f2; x);
�( f ; x) � 2T̃∗ f (x);

and

�( f ; x) = 0 (4.1)

for all x ∈ R
N and f ∈ C1

0(R
N ). Indeed, if f ∈ C1

0(R
N ) and 0 < t < s < ε < 1,

then

|T̃t ( f )(x) − T̃s( f )(x)| =
∣∣∣
∫

t<d(x,y)�s
K (x, y)[ f (y) − f (x)]dω(y)

∣∣∣

�
∫

d(x,y)<ε

d(x, y)δ

ω(B(x, d(x, y)))
dω(y)

�
∞∑

k=1

∫

2−kε�d(x,y)<2−k+1ε

d(x, y)δ

ω(B(x, d(x, y)))
dω(y)
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�
∞∑

k=1

∑

σ∈G

∫

2−kε�‖σ(x)−y‖<2−k+1ε

2−kδεδ

ω(B(x, 2−kε))
dω(y)

�
∞∑

k=1

∑

σ∈G
2−kδεδ ω(B(σ (x), 2−k+1ε)

ω(B(x, 2−kε))

�
∞∑

k=1

#G · 2−kδεδ

� εδ,

which implies (4.1) holds.
Let us suppose that f ∈ L p(RN , dω), 1 � p < ∞. We fix α > 0 and verify

that ω({x ∈ RN : �( f ; x) > α}) = 0. Indeed, let β > 0 be a real number and let
g ∈ C1

0(R
N ) be a function such that ‖ f − g‖L p(RN ,dω) � β. Then

�( f ; x) � �( f − g; x) + �(g; x) = �( f − g; x)

for all x ∈ R
N and hence, by the Corollary 3.2 we get

ω({x ∈ RN : �( f ; x) > α}) � ω({x ∈ R
N : 2T̃∗( f − g)(x) > α})

� Cpα
−p‖ f − g‖p

L p(RN ,dω)

� C pα−pβ p.

Letting β tends 0 yields ω{x ∈ R
N : �( f ; x) > α} = 0, and hence

lim
ε→0+

∫

{y:d(x,y)>ε}
K (x, y) f (y)dω(y)

exists for f ∈ L p(RN , dω), 1 � p < ∞ and almost all x ∈ R
N . By Lemma 3.1, we

also have

lim
ε→0+

∫

{y:‖x−y‖>ε}
K (x, y) f (y)dω(y)

exists for f ∈ L p(RN , dω), 1 � p < ∞ and almost all x ∈ R
N .

The proof of the Theorem 1.4 is complete. ��
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3. Anker, J.-Ph., Dziubański, J., Hejna, A.: Harmonic functions, conjugate harmonic functions and the

Hardy H1 in rational Dunkl setting. J. Fourier Anal. Appl. 25(5), 2356–2418 (2019)
4. Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139

(1952)
5. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-commutative sur Certains Espaces Homogènes.
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