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Abstract

We consider multicomponent local Poisson structures of the form P3 + Py, under the
assumption that the third-order term 3 is Darboux—Poisson and nondegenerate, and
study the Poisson compatibility of two such structures. We give an algebraic interpre-
tation of this problem in terms of Frobenius algebras and reduce it to classification
of Frobenius pencils, i.e. linear families of Frobenius algebras. Then, we completely
describe and classify Frobenius pencils under minor genericity conditions. In particu-
lar,we show that each Frobenuis pencil is a subpencil of a certain maximal pencil. These
maximal pencils are uniquely determined by some combinatorial object, a directed
rooted in-forest with edges and vertices labelled by numerical marks. They are also
naturally related to certain pencils of Nijenhuis operators. We show that common
Frobenius coordinate systems admit an elegant invariant description in terms of the
corresponding Nijenhuis pencils.
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1 Introduction
1.1 Foreword

Nijenhuis operator is a (1,1)-tensor field L = Li. on an n-dimensional manifold
M such that its Nijenhuis torsion vanishes. Nijenhuis geometry, as initiated in [6]
(where all necessary definitions can also be found) and further developed in [7,
8, 28], studies Nijenhuis operators and their applications. There are many topics in
mathematics and mathematical physics in which Nijenhuis operators appear naturally;
this paper is devoted to the study of co-dimensional compatible Poisson brackets
of type P3 + P1, where the lower index i indicates the order of the homogeneous
bracket P; (the necessary definitions will be given in Sect. 1.2). Nijenhuis geometry
allows us to reformulate the initial problem, originated from mathematical physics,
first into the language of algebra and then into the language of differential geometry
and finally solve it using the machinery of differential geometry in combination with
that of algebra. Translating back the results gives a full description of (nondegenerate)
compatible Poisson brackets of type P3 4+ Py such that P3 is Darboux—Poisson.

1.2 Mathematical Setup

The construction below is a special case of the general approach suggested in [25].
For n = 1, the construction can be found in [24], see also [12, 35, 42].

We workinanopendisc U C R” with coordinates ul, ..., u". Ourconstructions are
invariant with respect to coordinate changes so one may equally think of (u!, ..., u")
as a coordinate chart on a smooth manifold M.

Consider the jet bundles (of curves) over U. Recall that for a point p € U, the k'
jet space JXU at this point is an equivalence class of smooth curves ¢ : (—¢, &) — U
such that ¢(0) = p. The parameter of the curves ¢ will always be denoted by x. The
equivalence relation is as follows: two curves are equivalent if they coincide at c¢(0)
up to terms of order k + 1.

For example, for k = 0, the space Jg U contains only one element and the definition
of JF} U coincides with one of the standard definitions of the tangent space TpU.

It is known that Jé‘ U is naturally equipped with the structure of a vector space of
dimension n x k with coordinates denoted by

1 n 1 n 1 n
(uy, ..,ux,uxz,...,uxz,...,uxk,...,uxk). (1)
Namely, a curve ¢(x) = (u'(x), ..., u"(x)) with ¢(0) = p viewed as an element
of JFI,‘ U has coordinates

1 n 1 n 1 n
<ux,...,ux,ux2 ..... uxz,...z,uxk,...,uxk ) ) 2

_(d /1 d ny d° 1 d . n da* 1 d* ~n

= (D e, S S, A )>\x:o'
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We denote by JXU the union Upeu ]gU . It has a natural structure of a k x n-

dimensional vector bundle over U. The coordinates (u', ..., ") on U and (1) on
JgU generate a coordinate system

1 1 1 1
(u ,...,u”,ux,...,ug,uxz,...,uzz,...,uxk,...,u’;k)
on JkU adapted to the bundle structure. Any C* curve ¢ : [a,b] — U, x —
Wl ), ..., u"(x)) naturally lifts to a curve ¢ on Jku by

—~. k 1 nod 1 d .on dk o dk n)
¢ la, b] — JFU xor—><u ..... g, @)

dxk
(3)

Next, for every p € U denote by H[J",‘ U1 the algebra of polynomials in variables (1)
on JF’,‘U . It has a natural structure of an infinite-dimensional vector bundle over U.
Let 20 denote the algebra of C°°-smooth sections of the bundle H[Jg U]. Notice that

we have natural inclusion 2(; C ;41 and set 2 = U/?io Ar. In simple terms, the
elements of 2 are finite sums of finite products of coordinates

1 1 1
(ux,...,uﬁ,uxz,...,uzz,...,uxk,...,uzk,...) 4)

with coefficients being C*°-functions on U. The summands in this sum, i.e. terms of
the form a/!*/" (u)(u! N ML (7L )’" with a/!/ (u) # 0 will be called differential

monomzalsl . Tlhe dlﬁ‘erennal degree of such ;1] dllfferentlal monomial is the number
i1j1 +i2jo+ -+ iy jn. For example, f(u)u)lc2 (u)%)2 has differential degree 1 x 2 +
2 x 1 = 4. Differential degree of an element of 2{ is the maximum of the differential
degrees of its differential monomials, and it is a nonnegative integer number. Elements
of 2 will be called differential polynomials.

Generators of this algebra are coordinates u; ; and functions on U. Every element
of 2 can be obtained from finitely many generators using finitely many summation
and multiplication operations.

The following two linear mappings will be important for us. The first one, called
the fotal x-derivative and denoted by D (another standard notation used in literature
is %), is defined as follows. One requires that D satisfies the Leibnitz rule and then
defines it on the generators of 2, i.e. on functions f (1) and coordinates (4), by setting

D(f) = Z gf Wy, D) = ul.
i=1
Clearly, the operation D increases the differential degree by one at most.

Next, denote by A the quotientalgebra®(/ D (2(). The tautological projection 2 — 2A
is traditionally denoted by H + [ Hdx € 2L In simple terms, it means that we think
that two differential polynomials H, H are equal, if their difference is a total derivative
of a differential polynomial.
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Note that by construction, the operation D has the following remarkable property,
which explains its name and also the notation % used for D sometimes in literature.
For any curve ¢ : [a, b] — U whose lift (3) will be denoted by ¢ and for any element

H € 2 we have:

& (H@) = (DH) ©. (5)

The second mapping is the mapping from 2 to an n-tuple of elements of . The
mapping will be denoted by § and will be called the variational derivative. Its i
component will be denoted by % and for an element H € A it is given by the

Euler-Lagrange formula:
(0.¢]
oH
k pk
=y ()

k=0 uk

(only finitely many elements in the sum are different from zero so the result is again a
differential polynomial). It is known, see, e.g. [24], that for an element H € 2 we have
8’H = 0 if and only if H is a total x-derivative. Then, we again see that the variational
derivative does not depend on the choice of differential polynomial in the equivalence
class H C 2. Then, the mapping 8 induces a well-defined mapping on 21, which will
be denoted by the same letter §. One can think of 8 as a covector with entries from
2, because the transformation rule of its entries under the change of u-coordinates is
a natural generalisation of the transformation rule for (0,1)-tensors.

Following [16, 17], let us define a (homogeneous, nondegenerate) Poisson bracket
of order 1. We choose a contravariant flat metric g = g/ of any signature whose
Levi-Civita connection will be denoted by V = (F’; )- Next, consider the following

operation A, : 2 x 2 — 2A: for two elements H,H e ‘51, we set

Ag(H,H):/aua ( “ﬁD(au/s) raf 2t )dx (6)

In the formula above and later in the text, we sum over repeating indices and assume
F;'.S =TI jgpi . The components I':* will be called contravariant Christoffel symbols,
when we speak about different metrics we always raise the index by the own metric. A
common way to write the operation A, which we also will use in our paper assumes

applying it to and multiplication W1th (and of course summation and projection
to Ql).

Ay =" D — TP} @)

It is known, see,e.g. [16-18], that the operation A, given by (6) defines a Poisson
bracket on 2, that is, it is skew-symmetric and satisfies the Jacobi identity. Moreover,
one can show that the operation constructed by g and I" via (6) defines a Poisson

bracket if and only if g is flat, that is, its curvature is zero, and '’ ik is the Levi-Civita
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connection of g. It is also known that the construction (6) does not depend on the
coordinate system on U.

Next, let us define a (nondegenerate, homogeneous) Darboux—Poisson structure of
order 3. We choose a nondegenerate contravariant flat metric 4 = h'/ of arbitrary
signature and define the operation By, : AxA— A by the formula:

By = 4 (35 D = Thut?) (8,0 = Ttk ) (5.0 = Tfyu)
= h*fp3 — 3978 45 D?

qs™x

o P B aFf;s o
+3( 10 (T, — 2 Y, = h*IT s ) D

®)

B 2B
al’ ar'y 0Ty

aq a ar qs ﬁ _ra b B qs s r. P
<h (2FqY S0P + our r; FqYFarF —Buraul’)uxuxux

+h(2rerf 4rerk — 2ar"ﬁ’ — T, — pvarh
qs= ar qr- as BMS aur ux x qSux
In the formula, we have used the same conventions as above, i.e. assume sum_mation
over repeating indices. Moreover, similar to formula (7), we did not write H, H in the
formula They are assumed there as follows: the differential operator (8) is applied to

5 a, the result is multiplied by SuF> and then we perform summation with respect to
the repeating indices «, S.

As in the case of order 1, the operation 3, given by (8) defines a Poisson bracket on
21. The construction of this Poisson bracket is independent on the choice of coordinate
system on U. However, in contrast to the case of order 1, the form (8) is not the most
general form for a local Poisson bracket on 2A of order 3. In fact, the word Darboux
indicates that in a certain coordinate system (flat coordinate system for % in our case),
the coefficients of the Poisson structure are constants.! In this Darboux coordinate
system, the Christoffel symbols I" ; « are all zero and formula (8) reduces to?

By(H. H) = pof p (8) , )

with the components #*# of the metric / being constants.

Poisson structures P; of order 1 are always Darboux—Poisson, but there are
examples, see,e.g. [21, 22, 37], of Poisson structures P3 of order 3 which are not
Darboux—Poisson.

Similar to the finite-dimensional case, a Poisson structure P and choice of a ‘Hamil-
tonian’ H € 2 allow one to define the Hamiltonian flow, which in our setup is a system
of n PDEs on n functions u! (t, x) of two variables, f and x. It is given by:

3u/3 — pob (w)‘ (10)

' The terminology ‘Darboux—Poisson’ is motivated by [14].

2 In fact, (8) is just the formula (9) rewritten in an arbitrary (not necessarily ‘flat”) coordinate system.
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For example, in the case of the Poisson structure (6) for a Hamiltonian of degree 0
(i.e. for a function H on U), the Hamiltonian flow is given by

Wl gho OH ) phadt ) — 0 gby, g, (11)
Such systems of PDEs are called Hamiltonian systems of hydrodynamic type.

In our paper, we study compatibility of non-homogeneous Poisson structures of
type Pz + P1 such that the part of order 3 is Darboux—Poisson. That is, we have 4
nondegenerate Poisson structures: A, and .4; constructed by flat metrics g and g by
(6), and By, and B}, constructed by flat metrics /2 and & by (8). We assume that A, + By,
and A; + B; are (non-homogeneous) Poisson structures and ask the question when
these structures are compatible in the sense that any of their linear combinations is a
Poisson structure [32]. Since it is automatically skew-symmetric, the compatibility is
equivalent to the Jacobi identity for each linear combination of Ag + B), and A3 + Bj,.

The meaning of the word ‘nondegenerate’ relative to the Poisson structures under
discussion is as follows: the metrics g, g, h, h which we used to construct them are
nondegenerate, i.e. they are given by matrices with nonzero determinant. Additional
nondegeneracy condition, natural from the viewpoint of mathematical physics, is as
follows: the operators R, = hh~'and R e =g g~ ! have n different eigenvalues. Under
these conditions, we solve the problem completely: we find explicitly all pairs of such
Poisson structures.

Let us comment on the assumption that P3 is Darboux—Poisson. The compatibility
of two geometric Poisson brackets Pz +7P; and P3+P; amounts to a highly overdeter-
mined PDE system which is expected to imply additional conditions on the third-order
parts, from which Darboux—Poisson is a natural candidate. Indeed, in the literature,
we have not found any example of compatible Poisson brackets P3 + P and P3 + P,
such that 73 and 3 are not Darboux—Poisson and nonproportional. Even in the case
when P; = 0, only few examples are known, namely the compatible brackets for
WDVYV system from [23] (this example is three-dimensional and moreover, P; = 0)
and a family of compatible brackets P3 4+ P; and P, constructed in [31] in dimensions
1 and 2.

Our main motivation came from the theory of integrable systems, in which many
famous integrable systems have been constructed and analysed using compatible Pois-
son brackets. Those of the form Pz 4Py, described and classified in the present paper,
generalise compatible Poisson brackets related to KdV, Harry Dym, Camassa-Holm
and Dullin-Gottwald-Holm equations. The applications of such new brackets will be
developed in a series of separate papers, of which the first one has already appeared,
[10]. In this paper, we have generalised the above equations for an arbitrary number
of components and have constructed new integrable PDE systems that have no low-
component analogues. Note that in [10], we used the simplest pencil of compatible
Poisson structures of type P3 + P; (so-called AFF-pencil from Sect. 2.3); more com-
plicated pencils will lead to more new families of integrable multicomponent PDE:s.

Let us also comment on a more physics-oriented approach to the construction
above, see, e.g. [14]. Physicists often view x as a space coordinate, and (u], o u'h)
as field coordinates. In the simplest situation, the values ul, . u"atx may describe
some physical values (e.g. pressure, temperature, charge, density, momenta). The total
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energy of the system is the integral over the x variable of some differential polynomial
inu', ..., u", and the Hamiltonian functions H € A have then the physical meaning of
the density of the energy, i.e. of the integrand in the formula Energy(c) = f H(@©)dx.
Further, itis assumed that the physical system is either periodic in x, or one is interested
in fast decaying solutions as x — =oo. The integration by parts implies then that the
differential polynomial is defined up to an addition of the total derivative in x which
allows one to pass to A = 20/ D). The natural analogue of the differential of a
function in this setup is the variational derivative 8%&, and actually, the equation (10)
is the natural analogue of the finite-dimensional equation &t = Xy (where Xy is the
Hamiltonian vector field of a function H; it is given by X 1],1 = Pl a—ff where P (u)"/
is the matrix of the Poisson structure; please note similarity with (10)). Generally,
it is useful to keep in mind the physical interpretation and analogy with the finite-
dimensional case.

1.3 Brief Description of Main Results, Structure of the Paper and Conventions
In this paper, we address the following problems:

(A) Description of compatible pairs, B, + A, and Bj + Az, of non-homogeneous
Poisson brackets in arbitrary dimension n. In Theorems 1 and 2,we give an
algebraic interpretation of this problem in terms of Frobenius algebras and reduce
it to classification of Frobenius pencils, i.e. linear families of Frobenius algebras.
We do it under the following nondegeneracy assumption: the (1,1)-tensor R;, =
hh~' (connecting h and k) has n different eigenvalues.

(B) Description and classification of Frobenius pencils. We reduce this purely alge-
braic problem to a differential geometric one (explicitly formulated in Sect. 6.1)
and completely solve it using geometric methods. The nondegeneracy assump-
tion is that the (1,1)-tensor R, = gg~ ! (connecting g and ) has n different
eigenvalues. Namely, we show that each Frobenuis pencil in question is a sub-
pencil of a certain maximal pencil. We explicitly describe all maximal pencils,
see Theorems 3, 4 and 5.

(B1) A generic in a certain sense maximal pencil corresponds to the well-known
multi-Poisson structure discovered by M. Antonowitz and A. Fordy in [1] and
studied by E. Ferapontov and M. Pavlov [20], see also [2, 3, 9]. We refer to
it as to Antonowitz-Fordy-Frobenius pencil, AFF-pencil. In Theorem 3, we
show that, under an additional genericity assumption, every two-dimensional
Frobenius pencil is contained in the AFF-pencil .

(B2) Our main result, Theorems 4 and 5 , gives a complete description in the most
general case. Theorem 4 constructs all maximal Frobenius pencils using
AFF-pencils as building blocks. Theorem 5 states that each Frobenuis pencil
is a subpencil of a certain maximal pencil from Theorem 4. These maximal
pencils are uniquely determined by some combinatorial data, directed rooted
in-forest F with edges labelled by numbers 1, ’s and vertices labelled by
natural numbers whose sum is the dimension of the manifold. The AFF-
pencil corresponds to the simplest case, when F consists of a single vertex. To
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the best of our knowledge, the other Frobenius pencils and the corresponding
bi-Poisson structures are new.

In addition, we show that common Frobenius coordinate systems admit an ele-
gant invariant description in terms of the Nijenhuis pencil £, see Theorem 4.
(C) Dispersive perturbations of compatible Poisson brackets of hydrodynamic type.
The general question is as follows: given two compatible Poisson structures A,
and Ag of the first order, can one find flat metrics & and & such that By + Ag and
Bj, + Az are compatible Poisson structures? This passage from a Poisson bracket
of hydrodynamic type to a non-homogeneous Poisson bracket of higher order
is called dispersive perturbation in literature. We study dispersive perturbations
of bi-Hamiltonian structures assuming that the third-order terms B, and B;, are
Darboux—Poisson.
We describe all such perturbations under the assumption that both R, = hh~!
and R, = g g~ ! have n different eigenvalues, and in particular, answer a question
from [20] on dispersive perturbations of the AFF-pencil (Remark 3.2).

The results of this paper also have the following unexpected application. It turns out
that the diagonal coordinates for the operator R, = gg~ ! are orthogonal separating
coordinates for the metrics g. In [11], we show that every orthogonal separating coor-
dinates for a flat metric g of arbitrary signature can be constructed in this way. Namely,
we reduce PDEs that define orthogonal separating coordinates to those studied in the
present paper. This leads us to an explicit description of all orthogonal separating coor-
dinates for metrics of constant curvature and thus solves a long-standing and actively
studied problem in mathematical physics, see [11] for details.

The structure of the paper is as follows. In Sect. 2, we start with basic facts and
constructions related to compatibility of homogeneous Poisson structures of order 1
and 3, then give description of compatible non-homogeneous structures B, + .A; and
Bj, + Ag in terms of Frobenius algebras (Theorems 1 and 2 ), leading us to the classi-
fication problem for the so-called Frobenius pencils. We conclude this section with an
example of AFF-pencil. The AFF-pencil plays later a role of a building block in our
general construction. Moreover, it provides an answer under a minor nondegeneracy
assumption, see Theorem 3 in Sect. 3, where we also discuss a question of Ferapontov
and Pavlov. Theorem 3 will be proved in Sect. 6.

In Sect. 4, we formulate the answer to the classification problem in its full generality.
Theorem 5 (proved in Sect. 7) gives a description of Frobenius pencils in the ‘diagonal’
coordinates for g, g, and Theorem 4 (proved in Sect. 8) describes the corresponding
Frobenius coordinates. In Sect. 4.2, we discuss the case of two blocks and give explicit
formulas, see Theorem 6.

All objects in our paper are assumed to be of class C°°; actually,our results show
that most of them are necessarily real analytic.

Throughout the paper, we use A, and B, to denote the Poisson structures of order
1 and 3 given by (7) and (8), respectively. Unless otherwise stated, the metrics we deal
with (such as g, A, g, h, ... ) are contravariant.
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2 Non-homogeneous Compatible Brackets and Frobenius Algebras
2.1 Basic Facts and Preliminary Discussion

Recall that we study the compatibility of two Poisson structures B, +.A, and B; + Az,
constructed by flat metrics 4, h, g, g; our goal is to construct all of them. Recall that by
definition,it means that for any constants A, X, the linear combination ABy + Ag) +
A(Bj + Aj) is a Poisson structure. Using that B and A that have different orders, one
obtains (see, e.g. [14])

Fact1 Let h, h, g and g be flat metrics. If By, + Ag and Bj + Az are compatible
Poisson structures, then the following holds:

(i) Ag and Az are compatible,
(ii) Bp, and Bj, are compatible,
(iii) Aq and By, are compatible (as well as Az and B;).

This Fact naturally leads us to considering pencils (=linear combinations of met-
rics) Ah + Ah and Lg + Ag. We need the following definition:

Definition 1 (Dubrovin, [18, Definition 0.5]) Two contravariant flat metrics g and
g are said to be Poisson compatible, if for each (nondegenerate) linear combination
2=2g+Xg, A, A € R, the following two conditions hold:

1. gis flat;

2. the contravariant Christoffel symbols for g, g and g are related as

T = \ref £ AT%, (12)

In this case, the family of metrics {Ag + 1} 5 jcr 18 said to be a flat pencil of metrics.

The next fact explains the relationship between Poisson compatibility of flat metrics
and compatibility of the corresponding Poisson structures.

Fact2 Let h, h, g and g be flat metrics. Then, the following statements are true:

(i) Ag and Ag are compatible if and only if g and g are Poisson compatible.
(ii) If By, and Bj, are compatible, then h and h are Poisson compatible.
(iii) If By, and Aq are compatible, then h and g are Poisson compatible.

The (i)-part of Fact 2 is in [16], see also [19, 33, 34]. In view of formula (7), the
two conditions from Definition 1 are nothing else but a geometric reformulation of the
compatibility condition for Poisson structures of order one, which explains the name
Poisson compatible. The (ii)-part is an easy corollary of [14, Theorem 3.2], see also
proof of Theorem 3 below. The (iii)-part follows from [29, Theorem 2.2].

Notice that unlike the case of Poisson structures of order 1, not every pair of Poisson-
compatible metrics / and / (resp. i and g) leads to compatible Poisson structures of
higher order B, and B;, as in (ii) (resp. By, and A, as in (iii)). Some extra conditions
are required. These conditions will be explained below in Fact 4 (for 4 and g leading
to compatible Bj, and A, ) and Theorem 3 (for & and h leading to compatible 3;, and
Bj).

Let us also recall the relation of compatible metrics to Nijenhuis geometry:
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Fact3 (see [19, 33, 34]) If g and g are Poisson compatible, then the (1,1)-tensor
R = gg~' is a Nijenhuis operator. Moreover, if g is flat, R is a nondegenerate
Nijenhuis operator with n different eigenvalues, and g := Rg is flat, then g is Poisson
compatible with g.

As already explained, the condition that 3, + A, is a Poisson structure is a nontrivial
geometric condition on the flat metrics /& and g, stronger than Poisson compatibility
in the sense of Definition 1. This condition was studied in literature (see, e.g. [4])
and it was observed that the compatibility of homogeneous Poisson structures of
order 3 and 1 is sometimes related to certain algebraic structure. In our case, under
the assumption that Bj, is Darboux—Poisson, the algebraic structure which pops up
naturally is Frobenius algebra.

Definition 2 Let (a, x) be an n-dimensional commutative associative algebra over R
endowed with a nondegenerate symmetric bilinear form b(, ). The pair ((a, *), b) is
called a Frobenius algebra, if

b(&xn, &) =b(E, nx¢), foralls,n, ¢ €a. 13)

The form b is then called a Frobenius form.

Notice that we do not assume that a is unital which makes our version slightly more
general than the one used in the theory of Frobenius manifolds (see,e.g. [18]), or in
certain branches of Algebra. The bilinear form » may have any signature.

Condition (13) is linear in b, so all Frobenius forms (if we allow some of them to
be degenerate) on a given commutative associative algebra form a vector space.

Fix abasis e!, ..., ¢" in a. Below we will interpret a as the dual (R")* and for this
reason, we interchange lower and upper indices. Consider the structure constants a,l(/
defined by e'xe/ = a/ ek and coefficients b'/ := b(e, e/) of the Frobenius form b.
The algebra a is Frobenius if and only if a;” and b/ satisfy the following conditions:

a;i = aj (commutativity),
aay” = a;®a)"  (associativity), (14)

b* al] = b'“al” (Frobenius condition).

The dual a* has a natural structure of an affine space R” with u’ ~ ¢! being coordinates
on a* >~ R”. Thus, on a*, we can introduce the contravariant metric g“ﬁ (u) = b*P +
a?‘ﬂ u® which is known to be flat (e.g. [29, Lemma 4.1]; the result also follows from [4]).
What is special here is not the metric g itself, but the coordinate system ul, ... ,u”
which establishes a relationship between g and the Frobenius algebra a. This leads us

to

Definition 3 Let g be a flat metric. We say that u!, ..., u" is a Frobenuis coordinate
system for g if

P ) = b +aPu, (15)
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where a?’s are structure constants of a certain Frobenius algebra a and b = (b*F) is a
(perhaps degenerate) Frobenius form for a .

Frobenius coordinates possess the following important property that can be easily
checked.

Fact4 (see[4]and [29]) Let g be a contravariant metric and u L .., u" acoordinate
system. The following two conditions are equivalent:

1. In coordinates u', ..., u", the contravariant Christoffel symbols r;’ﬁ of g are

constant and symmetric in upper indices.

2. u', ..., u" are Frobenius coordinates, i.e. g is given by (15).
af
If either of these conditions holds, then g is flat and 1";”3 = —% a‘gs .

The relation of Frobenius coordinate systems to our problem is established by the
following remarkable and fundamental statement:

Fact5 [29, Theorem 2.2] Let g and h be two flat metrics. Then Bj, + Ay is Poisson if
and only if there exists a coordinate system u', . .., u" such that the following holds:

1. g‘)‘/3 (u) = b*P +agﬁu5, where agﬁ are structure constants of a certain Frobenius
algebra a, and b is a Frobenius form for a;

2. the entries h*P of h in this coordinate system are constant;

3. h= (h“ﬁ) is a Frobenius form for a, that is, h“qagy = hyqaga.

This fact was independently obtained by P. Lorenzoni and R. Vitolo in their unpub-
lished paper. The ‘if’ part of the statement follows from [41] by I.Strachan and
B. Szablikowski, see also [15, Theorem 5.12].

The coordinates (ul, ..., u™) from Fact 5 will be called Frobenius coordinates for
the non-homogeneous Poisson structure B, +.A, . Of course, Frobenius coordinates are
notunique; indeed, they remain to be Frobenius after any affine coordinate change. This
is the only freedom since the components of /. are constant in Frobenius coordinates.

2.2 Reduction of our Problem to an Algebraic One and Frobenius Pencils

Definition 4 Let (a, *) and (a, x) be Frobenius algebras defined on the same vector
space V and h, h : V x V — R the corresponding Frobenius forms. We will say that
(a, h) and (a, h) are compatible if the operation

En>Exn+éxn,  EnelV, (16)

defines the structure of a Frobenius algebra with the Frobenuis form & + h.

Similarly, if a and a are Frobenius algebras each of which is endowed with two
Frobenius forms b, i and b, h, respectively, then we say that the triples (a, b, h) and
(@, b, h) are compatible if (16) defines a Frobenius algebra for which b+ b and h +
are both Frobenuis forms.

Formally, the definition requires that » + b and h + h are nondegenerate. It is
not essential. Indeed, if the operations x and x are associative, and also the operation
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% := % + % given by (16) is associative, then any linear combination Ax + Ax is
associative. Moreover, if b := b + b, possibly degenerate, satisfies the condition (13)
for, then the linear combination Ab + Ab also satisfies the condition (13) w1th respect
to Ax + Ax. Thus, passing to a suitable linear combination, we can make b and also i1
nondegenerate.

In view of Facts 4 and 5, compatible Frobenius triples (a, b, h) and (a, b, l_z)
naturally define compatible Poisson structures B, 4-.A;, and Bz +.A;;. The next theorem
shows that the converse is also true under the assumption that R, = hh~! has n
different eigenvalues.

Theorem 1 Consider two non-homogeneous Poisson structures By + Ag and Bj, + A;
and suppose that R, = hh™" has n different eigenvalues.

Then, they are compatible if and only if (g, h) and (g, h) admit a common Frobenius
coordinate system ul, ..., u" in which

1. h*® and h*P are constant

2. g% () =b*P + a Pus and 2P w)=b"f +a _aﬁ u’,

3. (a,b, h) and (a, b, h) are compatible Frobenms trlples (here a and a denote the
algebras with structure constants agﬂ and Zz?ﬂ , respectively).

Corollary 2.1 In more explicit terms, compatibility of By + Ag and Bj, + Ag such that
Ry = hh™" has n different eigenvalues, is equivalent to reducibility of these opera-

tors, in an appropriate coordinate system u', ..., u", to the following simultaneous

canonical form
By 4+ Ag = D3 + b D + a“ﬁu‘vD + 3 1 a""3 :,
B + Az = h** D> + 6*’ D + a®Pu’ D + L a® us,
where h®P | h*F  b*P bP  aff ’3 are constants symmetric in upper indices and sat-

isfying the conditions:

«, o —-ap - - -qo =0, op - o o
aqﬂasqy =a§;ﬁa§1 ’ aqﬂagy zagﬁag ) aqﬂagy+aqﬁagy yﬂ al _,_a;/ﬂ g%,

holal?” = hraaf®, pe1al” = praaf®. hesal” = iraabe, b“qa,fy =praal”,
RYal? 4+ h9GlY = hvaal®  nv9al®, 59al” 4 b*9al” = braabe 4 praake.
a7

Notice that the coordinates u!, ..., u" from Theorem 1 are just flat coordinates for
h (or equivalently, for / as these metrics have common flat coordinates by Theorem 1).

We see that Theorem 1 reduces the problem of description and classification of
pairs of compatible Poisson structures B, + A, and Bj, + Ag such that Ry = hii~!
has n different eigenvalues to a purely algebraic problem. As we announced above,
we will reformulate it in differential geometric terms in Sect. 6.1, and solve it under
the assumption that R, = gg~ ! has n different eigenvalues.

We have not succeeded in solving the problem by purely algebraic means. Like many
other problems in Algebra, it reduces to a system of quadratic and linear equations (see
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relations (17)). For example, classification of Frobenius algebras is a problem of the
same type. This problem is solved under the additional assumption that the Frobenius
form is positive definite in [5] and, in our opinion, is out of reach otherwise. Of course,
for a fixed dimension, one can find complete or partial answers. In particular, in [36],
it is shown that up to dimension 6, there is a finite number of isomorphism classes of
commutative associative algebras and for n > 6,the number of classes is infinite. In
[27],the classification of nilpotent commutative associative algebras up to dimension
6 is given. See also [31, 41].

In the situation discussed in Theorem 1, consider the pencil of first-order Poisson
structures A ¢4z, Which is sometimes referred to as quasiclassical limit [20] of the
non-homogeneous pencil B, | uh T Ajg+uz- We can ask the inverse question: Given
a flat pencil {Ag 4+ ug}, does the corresponding Poisson pencil {Ayg,z} admit a
perturbation with nondegenerate Darboux—Poisson structures of order three of general
position?

Theorem 1 basically shows that the main condition for the related quadruple of
metrics (A, h, g, £) is the existence of a common Frobenius coordinate system for g
and g. Indeed, if this condition holds true and this Frobenuis coordinate system is
given, then the other two metrics 4 and & can be ‘reconstructed’ by solving a system
of linear equations. More precisely, we have the following

Theorem 2 Let g and g be Poisson compatible flat metrics that admit a common
Frobenius coordinate system ul, ..., u" thatis

%P (u) = b*P + af"gu‘v and %P () = b*f + szﬂus,

where (a, b) and (@, b) are Frobenius pairs (here a and @ denote the algebras with
of —af .
structure constants a;” and ag', respectively). Then

(i) the corresponding Frobenius algebras are compatible,
(ii) there exist nondegenerate metrics h and h (with h*? and h®® being constant in

coordinatesu®, . .., u"), such that By, +Ag and B + Az are compatible Poisson
structures,
(iii) in Frobenius coordinates u', ..., u", the (constant) metrics h and h can always

be chosen in the form
W =m0 pP + agﬁms and h*P(u) = m® p*f + égﬁms,
m',...,m") eR", m° eR. (18)

2.3 AFF-Pencil

Consider a real affine space V =~ R" with coordinates u', ..., u" and define the
(Nijenhuis) operator L and contravariant metric go on it by:
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u' 10...0 0 0 0 :
2.01...0 00 b
u 00 ... 1 —u —u?
u"100...1 0 1 ... —u4_yn=3_yn2
' 00...0 1 —u' . —u"3 =2 !
Next, introduce n + 1 contravariant metrics gi = Li gfori =0, ..., n. Inmatrix form,
we have
an—i 0
gi=<rblb.), 20)
1

where a,_jisa (n — i) x (n — i) matrix

0... 0 0 1

0 0 1 —u!
an_i=10... 1 —u! —u?

1... _un—i—3 _un—i—2 _un—z—l

and bj is i x i matrix of the form

Mn7i+1 un7i+2 L I/tn71 u
un—i+2 un—i+3 w0

b =
u~! u”" 0 O
u" 0 0 O

In particular, go = an and g, = by,.

The metrics go, g1, - - - , gn are flat and pairwise compatible, so that they generate
an n 4 1-dimensional flat pencil with remarkable properties, see,e.g. [9, 20]. We can
write this pencil as

{P(L)go}, whereP(-)is an arbitrary polynomial of degree < n 21

and L and g¢ are given by (19). We will refer to it as an AFF-pencil. This pencil was
discovered, in the form (19) and (20), by M. Antonowicz and A. Fordy [1]. As we
see, the components of each metric g; are affine functions, moreover, the coordinates
(u!, ..., u") are common Frobenius coordinates for all of them.

The corresponding Frobenius algebras are easy to describe. Consider two well-
known examples:

e the algebra a,, of dimension n with basis eq, ez, ..., e, and relations

eitj, ifi +j <n,

ejxej = .
0 otherwise.
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Notice that a,, can be modelled as the matrix algebra Span(J, J 2 ] ), where
J is the nilpotent Jordan block of size (n+1) x (n+1). It contains no multiplicative
unity element.

e the algebra b, of dimension n with basis e1, ea, ..., e, and relations

eivj—1, ifi+j—1=<n,
ejxe;j = .
0 otherwise.
This algebra can be understood as the unital matrix algebra Span(Id, J, J2, ...,
J"~1) where J is the nilpotent Jordan block of size n x n. The difference from the
previous example is that b,, by definition, contains the identity matrix. Equiv-
alently, we can define b, as the algebra of truncated polynomials R[x]/(x")
(similarly @, ~ (x)/(x"*1)).

Itis straightforward to see that the metric g, = by, is related to the Frobenius algebra
b,. Similarly go = a, is related to the Frobenius algebra a,, (this becomes obvious
if we reverse the order of basis vectors and multiply each of them by —1). Hence,
formula (20) shows that the Frobenius algebra associated with g; is isomorphic to the
direct sum a,_; @ b;.

Itisinteresting that a generic metric g = P(L)go from the AFF-pencil (21),1i.e. such
that P (L) has n distinct roots, corresponds to the direct sum R - - -@RBChH- - - b C,
where each copy of R relates to a real root and each copy of C relates to a pair of
complex conjugate roots of P(-).

It is a remarkable fact that for each gj,we can find a partner 4; such that Bj,; + Ay,
is a Poisson structure and all these structures are pairwise compatible. The (constant)
metrics h; take the form

hi = (gm0, m=(m',....m") eR" m’eR, (22)

where (gi),; 0 is obtained from the matrix gj(u) by replacing u* with m* and all 1’s
with m°. In this way, we obtain an (n + 1)-dimensional pencil of non-homogeneous
Poisson structures generated by By, 4+ A,;:

n
{ Z ¢i(Bn + Ag) } (23)
i=0 c;ieR

Alternatively, the pencil (23) can be described as follows. Fix m = (mh,...,m") €
R, m® € R and let L(/i) denote the operator with constant entries obtained from
L = L(u) by replacing u’ with constants m’ € R. Similarly, go(/77) denotes the metric
with constant coefficients obtained from go by replacing u’ with the same constants
m' e R.

Then for g = P(L)go, we can define its partner 4 (metric with constant entries) as

= (1) )
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It can be easily checked that the correspondence (mo, mb, ..., m™) +— h defined by
this formula is linear so that it makes sense for my = 0 (the denominators cancel out).
Then the pencil (23) can be, equivalently, defined as

{BmOP(L(m‘O rh))go(% n_1> +AP(L)g0} . (24)

deg P(-)<n

Notice that such a pencil is not unique, as the above construction depends on
n + 1 arbitrary parameters m®, m!, ..., m". In other words, in (24), the polynomial
P(-) serves as a parameter of the bracket within the AFF-pencil, whereas (mg, m)

parametrise dispersive perturbations of this pencil.

Remark 2.1 For our purposes below,it will be convenient to rewrite this pencil in
another coordinate system by taking the eigenvalues of L as local coordinates
x!, ..., x". In these coordinates, go and L from (19) take the following diagonal

form (see, e.g. [20, p. 214] or [6, §6.2])°:

-1
n

gLc = Z H(xi —x%) ($>2 L =diag(x',...,x"), (25)
i=1 \s#i

so that the AFF-pencil (21) becomes diagonal too:
{P(L)gLc}, where P(-)is a polynomial of degree < n. (26)

We also notice that the transition from the diagonal coordinates x to Frobenius coor-
dinates u is quite natural: the coordinates u’ are the coefficients o; of the characteristic
polynomial x7 (t) = det(t - 1Id—L) = t" — o1t" 1 — op" 2 — ... — 5, so that, up
to sign, u; are elementary symmetric polynomials in x!, ..., x™.

The AFF-pencil provides a lot of examples of compatible flat metrics g and g that
admit a common Frobenius coordinate system: one can take any two metrics from the
pencil (21) or, equivalently, (26).

3 Compatible Flat Metrics with a Common Frobenius Coordinate
System: Generic Case

Theorems 1 and 2 reduce the compatibility problem for two Poisson structures of
the form B, + Ay to a classification of all pairs of metrics ¢ and g admitting a
common Frobenius coordinate system. The next theorem solves this problem under
the standard assumption that R, = g g~ ! has n different eigenvalues and one minor
additional condition.

3 The letters LC in gLc refer to Levi-Civita. The metric g ¢ played the key role in his classification of
geodesically equivalent metrics [30]. See also [9] for discussion on the relationship between geodesically
equivalent and Poisson-compatible metrics.
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Theorem 3 Let g and g be compatible flat metrics that admit a common Frobenius
coordinate system. Assume that the eigenvalues of the operator Ry = gg " are all
different and in the diagonal coordinates (such that R, is diagonal), every diagonal
component of g depends on all variables. Then the flat pencil Lg + g is contained
in the AFF-pencil, in other words, there exists a coordinate system (xl, ..., x™) such
that

g=P(L)gc and g= Q(L)gLc.

for some polynomials P(-) and Q(-) of degree < n and g.c and L defined by (25).

Moreover, if n > 2 and P(-) and Q(-) are not proportional, then the common
Frobenius coordinate system for g = P(L)gc and g = Q(L)gLc is unique up to an
affine coordinate change.

Theorem 3 will be proved in Sect. 6. The uniqueness part will be explained in
Sect. 7.3, see Remark 7.1.

Remark 3.1 In Theorem 3, we allow some of the eigenvalues R, to be complex. In this

case, we think that a part of the diagonal coordinates (x!, ..., x™) is also complex-

valued. For example, the coordinates x1, ..., xk may be real-valued, and the remaining
n—k n—k

coordinates xkKt1 = 71 xkt2 =zl xn=1 — 72 x" =72 , where ‘~’ means

complex conjugation, are complex-valued. In this case,(26) gives us a well-defined
(real) metric g.c and a (real) Nijenhuis operator L.

The genericity condition in Theorem 3 is that every diagonal component of g
depends on all variables. In Theorems 4, 5 below, we will solve the problem in full
generality, without assuming this or any other genericity condition.

Remark 3.2 1In [20, §5] E. Ferapontov and M. Pavlov asked whether dispersive pertur-
bations of the pencil (21) with gg and L given by (25) other than those described in Sect.
2.3 are possible. Theorem 3 leads to a negative answer under the additional assump-
tion that the dispersive perturbation is in the class of nondegenerate Darboux—Poisson
structures of order 3. Indeed, according to Theorem 1, every dispersive perturbation
LB, + Ag) + (B + Ajp) of the pencil LA + Az can be reduced to a simple
normal form in a common Frobenius coordinate system for g and g (assuming that
R, = hh~1 has different eigenvalues). Moreover, in this coordinate system, & and
h are constant and represent Frobenius forms for the corresponding Frobenius alge-
bras a and a. Since by Theorem 3, such a coordinate system is unique, it remains to
solve a Linear Algebra problem of choosing suitable forms 4 and f, satisfying three
conditions (cf. (17)):

h(E*n,0) =hE, nxL),
h(E*n,0) =hE n*0), 27)
h(E*n, &) +h(E*xn,0) =hE n*l) +h(E n*0),

It is straightforward to show for a generic pair g, g of metrics from the AFF-pencil,
the forms /4 and / are defined by n + 1 parameters m® m!, ..., m"asin (24). No other
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solutions exist. In particular, formula (24) describes all possible dispersive perturba-
tions of the AFF-pencil by means of nondegenerate Darboux—Poisson structures of
order 3. Moreover, this conclusion holds for any generic two-dimensional subpencil.

4 Compatible Flat Metrics with a Common Frobenius Coordinate
System: General Case

4.1 General Multi-block Frobenius Pencils

Let us now discuss the general case without assuming that in diagonal coordinates,
every diagonal component of g depends on all variables.

Similar to Theorem 3, the metrics g and g will belong to a large Frobenius pencil
built up from several blocks each of which has a structure of an (extended) AFF pencil.
We start with constructing a series of such pencils.

We first divide our diagonal coordinates into B blocks of positive dimensions
niy,...,ngwithny+---+ng =n:

1 n 1 n
(T P I SN SO (28)

X1 X

Next, we consider a collection of ny-dimensional Levi-Civita metrics g(';c and ny-
dimensional operators L, (as in Theorem 3 but now for each block separately):

—1

Ny . 2
sf =2 (Tl —xd| (7)) - La=diagt,...at9. 9
s=1 \j#s

Then we introduce a new block-diagonal metric g

1

Csa

LC
S . (0
det(ksa-ld—LS)> 8a 30)

g =diag(3y,...,88) withgy = H(

s<o

where ¢y, = 0 or 1. The values of the discrete parameters ¢y, and numbers Ay, are
determined by some combinatorial data as explained below.
Finally, we consider the pencil of (contravariant) metrics of the form

{LZILeL) 31)
where L is a family (pencil) of block-diagonal operators of the form
L= diag(Pi(L1), P2(L2), ..., Pg(Lp)).

where P,(-) are polynomials with deg P, < ny + 1 treated as parameters of this
family. The coefficients of the polynomials P, are not arbitrary but satisfy a collection
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Fig.1 A 6 x 6 matrix cg and 3

the corresponding in-forest. The 011100

upper tree corresponds to the

upperleft 4 x 4-block, the lower ! 2 \ 001100

tree corresponds to the 4 000000
0 (

downright 2 x 2-block 0000
000001
) 0000

of linear relations involving coefficients from different polynomials so that this pencil,
in general, is not a direct sum of blocks (although, direct sum is a particular example).
Notice that £ is a Nijenhuis pencil whose algebraic structure is quite different from
that of the pencil { P(L)} from Theorem 3.

The numbers cyq, A5y and relations on the coefficients of P, ’s are determined by a
combinatorial object, an oriented graph F with special properties, namely, a directed
rooted in-forest (see [26] for a definition) whose edges are labelled by numerical
marks A,. This graph may consists of several connected components, each of which
is a rooted tree whose edges are oriented from its leaves to the root. An example is
shown in Fig. 1.

Each vertex of F is associated with a certain block of the above decomposition (28)
and labelled by an integer number « € {1, ..., B}. The structure of a directed graph
defines a natural strict partial order (denoted by <) on the set {1, ..., B}: for two
numbers o # B € {1, ..., B}, weseta < B, if there exists an oriented way from 8 to
«. For instance, for the graph shown on Fig. 1, we have 1 < 3,2 < 4,5 < 6. Without
loss of generality, we can and will always assume that the vertices of F are labelled in
such a way that o < 8 implies ¢ < S.

Notice that the vertices of degree one are of two types, roots and leaves: « is a
root if there is no B such that 8 < o and, conversely, S is a leaf if there is no 8 such
that @ < B. Notice that roots of degree > 2 are also allowed, whereas all leaves have
degree 1. We say o = next(f), if « < B and there isno y witha < y < . In the
upper tree of Fig. 1,the root is 1, the leaves are 3 and 4 and we have: 1 = next(2) and
2 = next(3), 2 = next(4).

The numbers ¢y in (30) are now defined from F as follows:

1, ifs <«
Coq = 1 ’ 32
S 0, otherwise. (32)

Recall that in our assumptions, s < « implies s < « so that the B x B-matrix cgy 18
upper triangular with zeros on the diagonal, see Fig. 1.

The parameters Ay, are defined as follows. For each vertex « that is not a root,
there is exactly one out-going edge which we will denote by e,. Notice that the
correspondence o > ¢, is a bijection between the set of edges of F and the (sub)set
of vertices which are not roots. To each edge e,,we now assign a number X, (these
numbers will serve as parameters of our construction) and set

Asqe = Ag, wheres < B < a and s = next(f) (or 8 = «, if s = next(x)). (33)
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Such g exists and is unique, if s < «, i.e. ¢5o = 1. Otherwise, c;q = 0 and the value
of Asq plays no role in (30).

Remark 4.1 The above definitions of parameters ¢y, and Ay, are convenient to make
our formulas shorter, but do not quite clarify the meaning of (30) in terms of the graph
F. Equivalently, formula (30) can be rewritten as follows:

g =diag@1,...,8p) withg, = fu - g,

where the function f, is defined by the oriented path from the vertex « to a certain
root B:

)Lal )\ocz Aak*l )Lak
B=opg «— o] <— ... <— Q| < Q =0,

each edge of which is endowed with a number A, i =1, ..., k. Namely, we set

k
1
fa = E det(hy; - 1d —L

9
Ol[_l)

which coincides with the factor in front of g('f in formula (30) written in terms of ¢y
and Agq.

Finally, for a vertex «,we denote the coefficients of the corresponding polynomial

P, by Py(t) = calo + ?lll‘ +---+ (cxlna+ 1" 1 Then the conditions on the coefficients
P, (1) are

(i) If « is a root, then gnwl =0, ie.deg Py < ng.

(ii) If o« = next(fB), then Ag is a root of P, and gnﬁ+1 = P’(Ag), where P’(1)
denotes the derivative of P (¢).
(iii) If o = next(B) and @ = next(y) with Ag = A, = A, B # v, then A is a double

root of Py (in view of (ii) this automatically implies gnﬁl = Zlny+1 =0).

Remark 4.2 Each of the above conditions is linear in the coefficients of P,’s. However,
(1)—(ii1) may imply that P, = O for some «. This happens, for instance, if the vertex o
has too many neighbours y; such that o« = next(y;),i = 1,..., k. Then all A,, must
be roots of P, due to (ii). However, in view of (i), deg Py < ng + 1. If ny, +1 < k
and A, are all different, then P, cannot have k different roots unless P, = 0. Strictly
speaking, such a situation should be excluded as the corresponding metrics turn out to
be degenerate at every point. However, from the algebraic point of view,we still obtain
an example of a good Frobenius pencil.

We also notice that the shift L, — L, + ¢4 Id in any individual block leads to an
isomorphic pencil. In particular, if at a certain vertex « of F we add the same number
¢q simultaneously to all numerical parameters Ag on the incoming edges, we get an
isomorphic pencil.
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This completes the description of the pencil (31) of (contravariant) metrics and we
can state our next result.

Theorem 4 The pencil (31) (with cgy defined by (32), Ly defined by (33) and coeffi-
cients of Py satisfying (1)—(iii)) is Frobenius. In other words, all the metrics

T - . _ 1 G|
= L g = diag(P(L ,..., Pp(L with = _— R
g=L3g g(Pi(L1E1 B(LB)gB) with 2y SQ (det@m .Id—Ls)> S
(34)
are flat, Poisson compatible and admit a common Frobenius coordinate system
1 ny __ 1 ny 1 ng
@ ,...,u")=(uy,...,u; ,...,ug,...,.up 35)
Ui Us
which is defined as follows. Let cro} . ..., 04" denote the coefficients of the characteristic
polynomial of Ly
XL, (1) := det (t Id,,,, xn,, —La) =t — 0’;["“71 — Uo%t"'rz ——oye, a=1,...,B.
Then
ull‘zaf, k=1,...,ny,
ub = (det(A121d —L1))™” of, k=1,...,no,
k
3

uf = (det(ri31d —L1)) ™" (det(rozld L)) ok, k= 1,...,n3,  (36)
why = [T, (detGsp1d —Ly))*" of, k=1,... np.

Theorem 4 will be proved in Sect. 8.

The advantage of the formulas for Frobenius coordinates in Theorem 4 is that they
are invariant in the sense they do not depend on the choice of coordinates in blocks,
but use coefficients of the characteristic polynomials of blocks L;.

Let us explain how one can use this property to check algorithmically (say, using
computer algebra software) that the coordinates in Theorem 4 are indeed Frobenius
for the metric g.

In each block (with number «), we change from diagonal coordinates X, =
(x), ..., x4%) to the coordinates ¥, = (¥}, ..., ya*) given as follows:

1 -2

XL, (1) = 1" =yt —yi e -yl (37)
Note that in the coordinates Y,, the metric gbc and the operator L, have the form
(19) with u', ..., u" replaced by y(}[, ..., ya¥. The iterated warped product metric

g = (g") is given by the following easy algebraic formula
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1 c12 1 13 1 €23
8=g1+(—) gz-l—(—) (—) &g+,
XL, (A12) XL, (A13) XL, (A23)

with gy = Py(Ly) g(';lc and g'o;c and L, explicitly given by (19).
In order to check whether the coordinates u given by (36) are Frobenius, one needs
to perform the multiplication

JgJ T,
where J = (%) is the Jacobi matrix of the coordinate transformation® (yl, oYM
— (u', ..., u") and check whether the entries of the resulting matrix JgJ | are affine

functions in ' and conditions (17) are fulfilled. All these operations can be realised
by standard computer algebra packages.

The next result gives a description of two-dimensional Frobenius pencils in the
general case.

Theorem 5 Let g and g be compatible flat metrics that admit a common Frobenius
coordinate system. If the eigenvalues of the operator R, = g g~ ! are all different at a
point p, then in a neighbourhood of this point, the pencil Ag + g is isomorphic to a
two-dimensional subpencil of the Frobenius pencil (31) with suitable parameters, i.e.
in a certain coordinate system these metrics take the form

g=diag (P1(L1)31, ..., Pp(Lp)gp) and §=diag(Q1(L1)g1..... Q(LB)ER)
(38)

(with parameters cqp defined by (32), Asq defined by (33) and coefficients of Py and
Qy satisfying (1)—(ii)).
Theorem 5 will be proved in Sect. 7.

Remark 4.3 In Theorem 5,we allow complex eigenvalues of R,. The corresponding
part of diagonal coordinates is then complex. Moreover, the polynomials P, and Q,
may have complex coefficients, and also the numbers A, may be complex. The only
condition is that the metrics given by (30) should be well-defined real metrics. It is easy
to see that this condition implies in particular that every block (&L}C, L) is either real
or pure complex (= all coordinates are complex; the coefficients of the polynomials
P, and Q, may be complex as well), and that a pure complex block comes together
with a complex conjugate one. See also [6, §3] for discussion on Nijenhuis operators
some of whose eigenvalues are complex.

In certain special cases, a common Frobenius coordinate system for g and g is not
unique (up to affine transformations). This is the case when ny = 1, cop = 0 for all
B (i.e. this block represents a leaf of the corresponding in-forest) and the diagonal
component of R, = g g~ ! corresponding to this block is constant; in other words, the

4 This transformation is given by (36) as yé = U‘i and det(Agp Id —Lo) = x1, (Aap)-
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(quadratic) polynomials P, and Q, are proportional. The restrictions g, and g, onto
these blocks are then as follows

8 = f- (az(x"‘)2 +ax® + ao) (%)2

@ and gy = ¢ gq
2 3 \2
=cf- (az(xa) +apx® +ao) (axla) ,
where f is some function of the remaining coordinates, ¢ € R and L, = (x%)
(diagonal 1 x 1 matrix). However, we can do coordinate transformation x* +— x% =
X% (x) that changes the coefficients a; and ag (the highest coefficient a; is fixed by
condition (ii)).

~ ~ ~ ~ 2 -
8a = f-(az(x“)2+a1x“ +a0> (agﬂ) and gy

~ -~ ~ 9 \2
=cgy=cf- (az(x”‘)2 +a X%+ ao) (%) ,

Hence, with a new operator L)®" = (¥%) and new polynomials PV (1) = at* +
ait + ap, Qg () = c(axt® + at + dg), we still remain in the framework of our
construction and (38) still holds. This transformation will lead to another Frobenius
coordinate system. In Sect. 7.3, we explain that only this situation allows ambiguity
in the choice of Frobenius coordinates up to affine transformations.

Remark 4.4 In [20, Theorem 2], it was claimed that under some general assumptions
for n > 2, there is only one equivalence class of (n + 1)-Hamiltonian hydrodynamic
systems (in the sense of [20]) and n + 1 is the best possible. The corresponding multi-
Hamiltonian structure comes from the (n 4 1)-dimensional AFF-pencil. In this view,
it is interesting to notice that multi-block pencils from Theorem 5 also provide such a
structure, which may have even higher dimension.

4.2 Case of Two Blocks

In the case of two blocks, i.e. B = 2, the construction explained in the previous section
gives a natural and rather simple answer. We have two cases: cjo = Oand cj» = 1. The
first case is trivial being a direct product of two blocks (possibly complex conjugate)
each of which is as in Theorem 3; in (34) we set g; = gl.LC and take P; to be arbitrary
polynomials of degrees < n; (i =1, 2).

Theorem below is a special case of Theorem 4 in the nontrivial case c12 = 1.

Theorem 6 Suppose B = 2, c12 = 1 and consider the metric g given by the construc-
tion from Sect. 4.1:

g=g1+ , with g; = Pi(L;)g+ . (39)

det(—L) &?

Following this construction, assume that the polynomials Py and P> have degrees no

greater than ny and ny + 1, respectively: P| = 2?1:0 agt® and P, = 2?2:-51 bgt®.
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Then the coordinates from Theorem 4 are Frobenius for g if and only if ag = 0 and
ay = bn2+l~

Example 4.1 In Th¢orem 6, take n1 = np = 2. In diagonal coordinates xb x2, %3, x4,
the metric g = (g") is as follows:

— X

diae (21D PG Py(x?) Py(x*)
= (14, ) ) ’
8 R s A R Y200 — ) X2t — 1)

where P| (1) = a1t +at? and Pz(t) = bo+bit+byt +b3t3 with b3 = a;. Recall that
L=L&®L,withL| = d1ag(x x?), Ly = diag(x3, x*), and the relation between
the diagonal coordinates x* and the Frobenius coordinates u' given by Theorem 4 are
as follows:

=trl =x! +X2,

2 - —detL = —xlxz,
3=detL; trL, = x'x*(x3 —I—x4)
4= —detLy-detL, = —x1x2x3x* = —det L.

In these Frobenius coordinates, the metric g = (g%/) has the following form:

azul + ai a2u2 a2u3 a2u4
_ au?®  aju?® aju’ aju®
§= au®  aud —au® = bu? — bou® —bou?* — bou®
wut  aut —bou2 — bou? b0u3 — bu*

This formula defines a 5-dimensional pencils of metrics (with parameters ay, az, by,
b1, by). For any choice of the parameters such that g is nondegenerate, the coordinates
u' are Frobenius for it in the sense of Definition 3.

From the algebraic viewpoint, we may equivalently think of this formula as 5-
parametric family (pencil) of Frobenius algebras (a, b). The entries of g define the
structure constants of a. For instance, g11 = aou! + a; and g34 = —bou2 — bou?
imply

e'xe? = aze and exe* boe b2e4

for a basis e!, €2, el , e* of a. The matrix (bi-/ ) of the corresponding Frobenius form b

is obtained from that of g by assigning to u’ any constant values u' = m' € R (such
that b is nondegenerate for generic choice of ay, az, by, b1, ba). To get a Frobenius
pencil, the constants m' should be the same for all parameters ay, az, bo, b1, ba.

In the coordinates (ul, R u4) the operators L and L, are given by the matrices
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2 0 0 00
L, = w 000 L, = —utu2—w?? 3
w000 |’ 00— 21
000 W ot
u 0 (u2)2 u? 0
The matrices of g'l‘C and g'z‘C are
u ut
R S 00 0 0
uu u-u
L I —u T LC 00 0 0
81 = u’ wiu! (u?)2u! wlutu? » 82 = 00 0 _u2
w2 Tz (u2)2 - $u2)2 2 3
ut ulu? wlutud u (u4)2 00 —u” u
w2 ur (u?)? - (u?)?

5 Proof of Theorems 1 and 2

Proof of Theorem 1 We assume that B), + A, and Bj, + Ag are compatible with the
additional condition that the eigenvalues of R, = hh~! are pairwise different. We
also assume that 4 + A is nondegenerate.

Recall that Theorem 7.1 from [14] implies that B;, and Bj; are compatible Poisson
structures (item (i) in Fact 1). Let I'*? and T®? denote the contravariant Levi-Civita
connections of & and /. From Theorem 3.2 in [14] applied to B, + Bj, it follows that

the connection Fg s defined from
ref + 1% = (h + h)*1Th,
is symmetric and flat. B o
By direct computation V(h + h) = Vh + Vh = 0, so that I" is the Levi-Civita
connection for 4 + h and moreover, & + h is flat. According to Theorem 6.2 in [14],

this implies that Bj, 4+ Bj, is Darboux—Poisson (i.e. is given by (8)). Hence, in our
notations, we obtain the formula

Bn + Bﬁ = Bh+ﬁ' (40)

Setting T‘\f‘ﬁ = (h + h)™ ’F\f s to be the contravariant Levi-Civita connection of
h + h, we get

rof 4 fob = fob, (41)

and conclude that # and /2 are Poisson compatible in the sense of Definition 1 (in
particular, this proves the (ii)-part of Fact 2). Hence, R, = hh~! is a Nijenhuis
operator (Fact 3).
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For a pair of flat metrics 4 and h, introduce the so-called obstruction tensor
Sh, =T —TF.
It vanishes if and only if /2, & can be brought to constant form simultaneously (thus,

the name). It is obviously symmetric in lower indices. Condition (41) can be written in
equivalent form ( [33], Lemma 3.1 and Theorem 3.2) in terms of only Ffﬂ , f‘fﬂ Jh,h

P ~vB i vBj
TePpey — T7P 9% + TP 17 — TP h4® = 0. (42)
After lowering both indices with 4 and rearranging the terms, we get
sh.RI —RYSE =o0. (43)

For a given metric 4 and its Levi-Civita connection, define

arh
c%azlﬂq<rgjﬁy— an).
The 7, 2% for h and h + i are defined in a similar way. This formula is one ‘half’
of the formula for Riemann curvature tensor and the flatness of the metrics implies
that cflf = cf}g (and similarly for metrics &, h + h). Using this symmetry in lower
indices, we apply the general formula (8) to the Poisson structures in (40) and collect
coefficients in front of D? to get

af ros af s ~af r s _apaf,s _ anef r s apaepf s
3epfuw oy, — 300w, + 3¢ u, — 30w, =3¢ u u, — 30 u, .

Collecting all the terms with u’.u5. in this differential polynomial, in turn, implies

B _ B paB
Crs —Cs — Gy =0.

Using the characteristic property of the Levi-Civita connection

oheb
B B _
1T+ T =0
. aﬁ
W€ rewrite ¢, as
7¢] aq [ ra 1B 81"59 9 agB rgro B
el =g, rf - S ::—5;{h Fw]—h re b, (44)
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Applying (41), (42) and (44) yields

0= (@ = — &) + By
=Qﬂﬂgri+ﬁwf;ﬁ;—m+%Wﬁﬁfgﬁh+mW

= hPITS,THRY + hPITS,TH Y + hPITS TH BV + hPITS TH 1Y

— (RPITS, + P78 ) (Ch Y 4+ Th 1Y)

= T8 (hP1TE Y — hPITE V) — T2 (RPTH RV — hPITH hY)

= (8% + T8 (hP1TE p* — hPITE V) — T2 (RPITH RS — hPITh h7)
= S8 PSP Y 4+ T2 (RPITE RSV — hPATD 1 — hPITh o7 4 hPITE 1Y)
= S hP4SE Y.

Now consider the coordinate system in which the Nijenhuis operator R, is diagonal.
As Ry, by definition is self-adjoint with respect to both 4 and £, we get that both /2 and
h are also diagonal. Condition (43) implies that for given § the only nonzero elements

of qu are the ones that stand on the diagonal. The previous calculation yields
SehPUSE Y =0

which, for fixed « and B, is just the product of four diagonal matrices, two of which
are nondegenerate. Taking « = B, we see that the matrix S(‘]", must be zero. As o
is arbitrary, this implies that the obstruction tensor vanishes and %, i have common
Darboux coordinates.

Fix the coordinates in which both / and / are flat. Applying Fact 5, we see that
these coordinates are Frobenius for both g and g. Using (40) and applying Fact 5 to the
sum of our Poisson structures, we get that agﬁ + Ezgﬁ define a commutative associative
algebra, while bfﬂ + E?ﬁ and h?ﬂ + ﬁ?ﬂ are Frobenius forms for this algebra, as
required.

The inverse statement immediately follows from Facts 4 and 5 . O

Proof of Theorem 2 Consider a pair of compatible flat metrics g, g in common Frobe-
nius coordinates u!, ..., u"

gPw) = b +a%u* and %) = b*F +a%Pu’,

Fact 4 implies that —%a?‘ﬁ and —%a;’“‘ are the contravariant Christoffel symbols
for g and g, respectively. Compatibility of g and g means that the contravariant Levi-
Civita symbols for the flat metric g 4- g are the sum of the corresponding symbols for
g and g, that is, —%a}xﬁ — %é?ﬁ . At the same time, these symbols are constant and

symmetric in upper indices. Hence the coordinates !, . .., u" are Frobenius for g 4 g
(Fact 4).
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This, in turn, implies that a®” + @ are the structure constants of a commutative
associative algebra and bgﬁ +E‘5ﬁ is one of its Frobenius form. Thus, the corresponding
Frobenius algebras are compatible.

As g and g are both nondegenerate metrics, this implies that for a generic collection

of constants m°, m!, m", the bilinear forms

h = m°bf + a®fm® and h*? = m°b*f + a®m*

are both nondegenerate too. At the same time, each of them is the sum of a Frobenius
form (m°b*f and resp. m°b*F) and trivial form (afﬂ m?® and resp. &fﬁ m*), which
corresponds to m € a* with coordinates m!, ..., m" and, thus, is also Frobenius.> As
aresult, 4 and & lead us to Frobenius triples (4, b, a) and (i_z, b, a.).

By construction, & + & defines (if nondegenerate) a Frobenius form for the ‘sum’
of the algebras. Thus, we get compatible Frobenius triples, which yield compatible

non-homogeneous Poisson structures 5, + A, and Bj; + A;. ]

6 Proof of Theorem 3

6.1 Rewriting the Existence of Frobenius Coordinates in a Differential Geometric
Form

We start with the following observation related to Frobenius coordinate systems
(Fact 4): (u!, ..., u") is a Frobenius coordinate system for a metric g if and only
if the contravariant Christoffel symbols F,’(] = g ng in this coordinate system
are constant and symmetric in upper indices.

We denote by T', T the Levi-Civita connections of g and g. Assuming that a common
Frobenius coordinate system ul, , u" exists, we let T be the flat connection whose

Christoffel symbols identically vanish in this coordinate system. Let R’ ke R ke and

R ke denote the corresponding curvature tensors. We assume n > 2, the case n = 1
is trivial.
Consider the tensors

ij ._ i () _ T
S = ngl (Fsk - Fsk)
Jo_fi
k = Zg (ka ka) .

In terms of these tensors, the necessary and sufficient conditions that the connection
I' determines Frobenius coordinates are:

0= ]kl - R jkt — R (45)

5 Here we use a well-known fact for any m € a*, the form &, n +> (Exn, m) is Frobenius, perhaps
degenerate. If a has a unity element, then every Frobenius form is of this kind. Otherwise, there might exist
other (nontrivial) Frobenius forms.
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s =" (46)

% =5 (47)

0= VS’ =VuS. (48)

Indeed, if (u', u'") is a common Frobenius coordinate system for g and g, then

in these coordlnates F]k =0, and I'y - g”l"] and F i — g”l"] are both constant
and symmetric in upper indices by Fact 4. Hence, (45)— (48) 0bv10usly follow.
Conversely, if (45)—(48) hold, then in the flat coordinates for F « we see that I'y ij

§" and T}/ = §"_are both symmetric in upper indices due to (46) and (47) and are
also constant due to (48). Therefore, by Fact4, (u 1o, u'") are Frobenius coordinates
for both g and g.

6.2 General Form of the Metric in Diagonal Coordinates

We work in the coordinates (xl, ..., x"") such that
Ry = gg ! =diag(ty(x1), ..., L,(x™), gij = diag(e1e®', ..., e,e5), (49)

where g; are local functions on our manifold and ¢; € {—1, 1}. Local existence of such
coordinates follows from Facts 2 and 3 which imply that R, is a Nijenhuis operator
and therefore, according to Haantjes theorem, is diagonalisable and ¢; depends on x'
only (see also various versions of diagonalisability theorems in [6] which, in particular,
allows us to include the case of complex eigenvalues too). We assume that all ¢; (x%)
are different and never vanish.

Remark 6.1 We allow some of the diagonal variables x' to be complex. Note that
if a variable x’ is complex then by [6, §3], we may assume that the corresponding
eigenvalue ¢; is a holomorphic function of x’. In the first read, we recommend to think
of all the eigenvalues as real and then to carefully check that our proofs are based on
algebraic manipulations and differentiations, which are perfectly defined over complex
coordinates, so that generalisation of the proofs to complex eigenvalues requires no
change in formulas. See also a discussion at the end of [9, §7].

Note that the results we use (e.g. [38, 40]) are also based on algebraic manipu-
lations (essentially, on a careful calculation of the curvature tensor and connection
coefficients) and are applicable if a part of eigenvalues is complex.

Note also that when we work over complex numbers, we may think that the numbers
g; are all equal to 1. If all the eigenvalues of R, are real, objects we will introduce in
the proof will automatically be real as well.

Let us first consider the conditions (46, 47). We view them as linear (algebraic)
system of equations with unknown f‘\; & S (satisfying also F; 0= FI’C j) whose coefficient
matrix is constructed from the entries of g and L and the free terms are constructed
from g, g, T, I". Being rewritten in such a way that unknowns are on the left-hand side
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and free terms are on the right-hand side, it has the following form:

- iAj — —&iTi 8i —
ge 8 Fk gje 8T ik = gie sz gje g/l"/k, (50)
ligje™ gF —Ljeje g!ij—Zsle gF —Ljgje g/F}k
We see that for fixed i = j = k, the system bears no information. For fixed
gie 8 —Sje_gj

i # j, the coefficient matrix of the linear system (50) is

ligje 8 —Ljg e 8
nondegenerate, since the eigenvalues ¢; are allj d]ifferent, and therefore the system has
a unique solution.

The entries of the connections I' and I of the diagonal metrics g; jand g;j 1= gL™!
were calculated many times in the literature, see, e.g.[9, Lemma 7.1], and are given
by the following formulas:

. Ff. = f‘k = 0 for pairwise different i, j and k,

° Fk = 18””‘ for arbitrary k, j,

2 ox/
° Fk = 2 egjz & dﬁ for arbitrary k # j,
° Fk = Fk] for arbltraryk #= 7,
° F’ = F’ ;é

° Fk e’( l"k for arbitrary k # j.
By dlrect calculat10ns using these formulas, we obtain that the solution of the system
(50) is as follows:
(A) f‘,’.‘i = u; for all i, where u;’s are (yet unknown) functions on the manifold.
(B) F;Ij = Fi = 98 forj £ j

dx/

© F;k = 0 for alli # j and k # i (we allow the case k = j).

Combining these with the formulas for S i ,we obtain:

. S = gemw (ui _ %g%) for all i,

. Siij _ %e—&'aﬁ foralli # j,

o Siji — Sfi_ - 82/ e~8i 35” foralli # j,
. Sijkzoforalli 7éj #k#L

By direct calculations we see that forany i # j # k # i wehave /V\kSij = 82’ af = S’;
implying
3%gi
0= AxJoxk’ S

Next, consider the terms of the form V b Siil. and V; § f with i # j. They are given
by

o~ s —8i do: 09; 32 .
VjS”i=€ie_ ﬁﬁ_ki s
2 dxJ 0x! oxiox/
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S il e 8 (0gidg; P Ou;
V‘S”-Z—S'— — - - —2— .
T 2 <8x1 ox! + dxidxi dx/

Since V fi s il. =V, s ;= 0, the formulas above imply

aui

57 =0 (52)

so each u; is a function of x’ only.

Next, we prove the following Lemma. Denote by U; = U;(x') and U; = U (x/)
the primitive functions for e and €7, where i i and i ; are primitive functions for u;
and u ;. By their definition, U/ # 0 and U]/. #0.

Lemma 6.1 There exist constants C;j and E;;j = Ej; such that for the constants
a;j € {0, 1} given by the formula

dij = %ji = { 1 otherwise

and for any i # j, the function
gi—In (|CijUi +CjiUj + El‘j|a"j)

does not depend on x7 (we use the convention that 0° = 1).

Proof We consider the curvature tensor R’ ke of the connection T. To compute it,

we need to substitute T’ given by (A,B,C) above into the standard formula for the
curvature

Y 9 T3¢ 3 ¢ LTS T T
Rijk = 5 ik — g Lij + Z (Fjs ik~ F’“F;j) ’ (53)
N

We obtain for i # j:

0= Ry =250, + <§%>2 + gifz (55)
. . . 2,.
0:§jjji=%%+% (56)
2
0:1?@;—(%) —i—ui% —%. (57)

We view 4 equations above a system of PDEs on the unknown functions

dg; dg;
a=28 andp =81 (58)
dx/ dxt
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The condition (52) implies that the coefficients of the system depend on x’ and x/ and
we may temporarily ‘forget’ all other variables. The system then has the following
form:

ab

da 5 ob 5
=—ab,ﬁ=—a +auj,ﬁ=—b +bui,m=—ab. (59)

da
dx!

This system is of Cauchy-Frobenius type (in the sense that all first derivatives of
unknown functions are explicit expressions of the unknown functions and variables).
By direct computation, we check that its integrability conditions hold identically. Then,
its solution depends on an arbitrary choice of the values of @ and b at one arbitrarily
chosen point pg. Note that if a(pg) = 0 then a is identically 0, the same is true for b.

By direct substitution we see that for any constants C;, C;, E, the pair of functions

CjUJ/- C,'Ul-/

a= , b= (60)
CiU,'—i-Cin—i-E CiUi—i-CjUj—i-E

satisfies the equation. In the case C; = C; = 0, we think that a and b given by (60)
vanish identically. The functions U; = U;(x') and U; = U;(x’) used in (60) are
as defined before Lemma 6.1. By varying the constants C;, C;, E, one can get any
nonzero initial values a(pg), b(po) so this is indeed a general solution.

In the case C; # 0 or C; # 0, using (58), we obtain

g =In(|C;U; +C;U; + E)) + D; and g; =In(|C;U; + C;U; + E|) + D;
(61)

with D; independent of x/ and D ; independent of x'. Inthe case C; = 0 = C j we
obtain that g; is independent of x/ and g; is independent of x' automatically.

Note that if we ‘remember’ all the coordinates, then C;, D;, E may also depend on
all other variables x*, k ¢ {i, j}.

Let us study the dependence of C;, C; and E on the variable xK with k ¢ {i, j}.
We first consider the case when C' # 0 and C’/ # 0. We observe that by (51), for

i #j #k #1i, we have

! 9 G 4 0 E
_ 9%gi (58,60 O C,U; . U; (U, R C; Tk c,-)
dxJaxk axk CiUi+CjU; + E (g_;Ui +U;+ C£j)2

implying that the ratios C; /C; and E/C; are constant. Note that Uj. # O since itis a
primitive function for a nonvanishing function. Then, we may assume that C;, C; and
E are constants, since in the formula (61) their dependence on other variables can be
hidden in D; and D;.

In the cases C; =0 or C; = 0 (but not C; = 0 = C; both), the dependence of C;,
C; and E on other variables can similarly be hidden in D; and D;. In the remaining
case, when C; = 0 = C;, we already know that g; is independent of x/ and g jis
independent of x'.
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Thus, in all cases, g; — In(|C;U; + C;U; + E|%J) does not depend on x/ and
gi—In(|C;U;+C;U;+ E|*/) does not depend on x'. Since constants C;, Cjand E are
constructed for fixed i and j, in what follows we denote them C;;, Cj; and E;; = Ej;,
respectively. In this notation, the function g; — In(|C;;U; + C;; U + E;;|%/) does not
depend on x/, as stated. O

Consequently applying the Lemma, we see that

g — Y _In(IC;jU; + CisUs + Eij|*)
SF#EL

depends on x' only.
Therefore, the ith diagonal component g;; of the metric g is as follows:

. . Qs
gir = eie® = hi(x) | [T(CisUix) + Clly(6) + Ei ) (62)
SFEI

for some functions /; of one variable.

6.3 Last Step of the Proof of Theorem 3: Making All Cj; Equal £1

In the previous section,we have proved that the metric g is given by (62). Observe that
by the assumptions of Theorem 3, the diagonal coordinates depend on all variables,
soall @;; = 1 and all C;; # O fori # j. First note that in the case when all C;; =1
fori < j,Cijj = —1fori > jand E;; = 0fori # j, the diagonal metric g is in the
so-called Levi-Civita form:

gi = | [JWix") = Ujxh)) | hixh). (63)
J#

In this section, we show that one can bring the metric to the form (63) by certain
‘admissible’ operations which include only coordinate transformations and renaming
of functions. Combining this with a result of A. Solodovnikov (Fact 6) will prove
Theorem 3. -

We will use the condition V; S”k = 0. Assuming i # j # k # i, this condition
reads

€j g (08 9gi  9gi dgj 08 gk
2 ¢ <8x/ oxk  9x/ oxk  9xk ax/ ©4)
Substituting (62) in it, we see that the following relation holds:
0 C,'j Cik
0=CiCj;iCyj — CijCjCyj =det | =Cj;; 0 Cjr|. (65)
—Cri —=Crj O
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Let us now use the relation (65) and ‘make’ C;; = 1fori < j and C;; = —1 for
i > j. We will use the following operations for it:

(a) We can multiply the factor (C;;U; + C;;U; + E;;) in the ith and jth diagonal
components of g (given by (62)) by a nonzero constant and correspondingly
change h; and h; by dividing them by the same constant.

(b) For every fixed pair i # j if C;; # 0 we can rename C;;U; by U; (which we
willdo ifi < j)orby —U; (ifi > j).

By applying the operation (a), we make Cy; = 1 for all i # 1. By applying the
operation (b), we make and C;; = —1 foralli # 1. In addition, by applying operation
(a) we make Cp; = 1 with i > 2. Then, the first two rows and the first column of
the matrix C;; are as we want. Then, the condition (65) with i = 1, j = 2 arbitrary
k > 2 reads Cyp = —1 so the second column is automatically as we want. Then,
applying operation (a), we make all C3; with k > 3 equal to 1. The condition (65)
withi = 1, j = 3 arbitrary k > 3 reads Cy3 = —1 and implies that the third column
is as we want. Repeating the procedure, we bring the metrics in the Levi-Civita form
(63).

Let us now take U; (x') as a local coordinate system: xﬁ"ew =U; ()cé,I q)- We can do
it because the derivative of U; is not zero. In the new coordinates, Ry is still diagonal
and the i™ diagonal component depends on the variable i only. In these coordinates,
the metric (63) is diagonal with

n

. ) 1

l
gi = ([16' =+ E) | 7

J#

where E;; is now a skew-symmetric constant matrix. In these coordinates the condition
(64)isequivalentto E j; + Ey; + E;; = 0. Aneasy exercise in Linear Algebra shows the
existence of constants E, ..., E, such that E;; = E; — E;. Moreover, the constants
E; are uniquely defined up to adding a common constant E to all of them. Hence,
after the coordinate change x},, = x! , + E;, the metric is diagonal with

n
gii = 1__[_<xl' —x/) 72 (lxl-)- (66)
J#i
Therefore, the metric g = Lg is also diagonal with
oo ) 1
gi=|[]e"—x) o (67)

J#i

Fact6 The diagonal metric of form (66) (resp. (67)) in dimension at least two has
constant curvature if and only if there exists a polynomial P (resp. Q) of degree
< n+ 1 such that H; (x) = P(x") (resp. H;(x)) = Q(x")). Moreover, the curvature
of the metric vanishes if and only if the polynomial P (resp. Q) has degree < n.

@ Springer



Applications of Nijenhuis Geometry Il Page350f52 193

Fact 6 was proved in [40, §5] and easily follows from calculations in [9, §7].
Taking L = diag(xl, ..., x") and the (contravariant) Levi-Civita metric

-1

gc=y. ]l[(xi ) (%)2 (68)

i J#I

we see that g = P(L)gLc and g¢ = Q(L)gLc, which completes the proof of Theorem
3. (The ‘uniqueness’ part of Theorem 3 will be explained in Remark 7.1).

7 Proof of Theorem 5
7.1 Upperblockdiagonal Structure of the Matrix Cj;

We assume that the metric g is diagonal and its diagonal elements have the form
i i s Gis
gir = hiGH [T (Cisd’ + Coix” + Eis) (69)
SH£Q

which is the form (62) in the ‘new’ coordinate system xnew =U; (xéI 4)- We view Cj;
as entries of an n x n-matrix and E;; as entries of an n x n symmetric matrix. Since
the diagonal elements C;;, E;; do not come into the formula for g, we assume they
are zero.

We will first re-arrange the coordinates x', ..., x" and make the matrix C
upperblockdiagonal such that in every diagonal block, all nondiagonal entries are
different from zero. We will need the following Lemma:

Lemma7.1 If C;; = O for certain different i, j € {1,...,n}, then for any k €
{1,...,n} we have C;;Cy; = 0. Moreover, if in addition C;j = 0, then for any
kefl,...,n},wehave Ci;Cjx = 0.

Proof For k =i or k = j,the statement follows from our convention C;; = C;; =0,
further we assume i # k # j(# i).

We consider the equation (64): under the assumption C;; = 0 the terms gg,/ gf;(
dg;
and gg,, 5.+ vanish. Then, the equation reads (‘;g; jg’; = 0 and implies that - 0g’ =0

(which in turn implies C; = 0) or gf‘- = 0 (which in turn implies Cj; = O) This
proves the first statement of the lemma. Next, observe that under the assumption
Cjr = Ci; = O,the equation (64) reads 22 28 — 0 implying Cy;C; = 0. Renaming

ax/ dxk
i <> k finishes the proof. O
Next, consider i € {1, ..., n} such that the i th column of the matrix C; j contains
the maximal number of zero entries. We assume without loss of generality thati = 1,
that the elements Cyq, ..., C41 are not zero and the other elements of the first column

are zero. Applying Lemma 7.1 to the element Cyq with d’ > d, we obtain that
Ca1Cr1 = 0. Since C1 # 0 for k < d, we obtain Cy; = 0 for such k.
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Thus, all elements of the matrix C;; staying under the upper left d x d block are zero.
If C;j =0withi # j € {1,...,d}, we obtain a contradiction with the assumption
that the i™ column of the matrix C; j contains the maximal number of zeros. Thus, all
Cijwithi # j € {1, ..., d} are not zero. Thus, the first d columns of C;; are as in the
upperblockdiagonal matrix with the first block of dimension d x d. We further have
that all nondiagonal components of the first block are different from zero.

Next, consider the index i € {d + 1, ..., n} such that the number of zero entries in
the columns of lower right (n —d) x (n —d) block is maximal. We may assume without
loss of generality that i = d + 1, that the components Cy41 g+2, ..., Cay1 g+a’ are
not zero and the components Cjy1 g44'+1, - - - » Ca+1 n are zero. Arguing as above,
using Lemma 7.1, we obtain that for any k € {d + 1, ...,d + d'},the components
Ci+k d+d'+1----» Caqk n are zero. Thus, the first d 4+ d’ columns of C;; are as in
the upperblockdiagonal matrix with the first block of dimension d x d and the second
block of dimension d’ x d’. Moreover, by the ‘maximality’ condition in our choice of
the first column of the second block, all nondiagonal elements of the second block are
nonzero.

We can repeat the procedure further and further and obtain that the matrix C;; is as
we claimed: it is upperblockdiagonal and in every block, all nondiagonal entries are
different from zero. Let us explain now that by the operations (a,b) from Sect. 6.3, we
can make C;; in every block equal 1 fori < j and —1 for j > i. Indeed, by applying
the operations (a) and (b),we can make the first two rows and the first column of every
block to be as we claimed. The condition (65) automatically implies that the second
column of the block is as we want. Next, applying operation (a),we make the third row
as we want. Then, (65) implies that the third column is as we want and so on. Note
that these operations with one block do not affect other blocks.

Next, let us construct a B x B matrix (cqg). We will denote by B,g the blocks of
the matrix C (corresponding to the decomposition n = ny + - - - +np), the block Byg
has dimension ny X ng. Above we achieved that if o # B, then either all entries of
By are zero or are equal to 1. In the first case,we put ¢, = 0, in the second case
coqp = 1. If a > B then all entries of the block Byg are zero, so such ceg = 0. We put
Caa = 0.

Next we show that if such a block Byg with o < B is zero and the block By is
not, then all the blocks B,g with o' # B are also zero. In order to do it, we take
an element C;; of this block. By Lemma 7.1, if ¢qg = 0 with o # B, then for any
s ¢ {a, B},we have cy5¢;p = 0 implying the claim. Analogously,one shows, using the
second statement of Lemma 7.1, that ¢, = 0 with @ < 8 implies cy5cgs = 0.

Let us summarise the properties of the B x B matrix (cqg):

(a) cqp = Ofora > B,1.e. the matrix is upper triangular with zeros on the diagonal.
(b) If cqp = 0, then for every s € {1, ..., B} we have cygcqs = 0.
(¢c) Ifcyp = Oforcertaina < B, thenforeverys € {1, ..., B} we have cgscqs = 0.

Let us show that any such matrix can be constructed from a directed rooted in-forest
by a procedure described in Sect. 4.1. To see this, we introduce the relation < on the
set {1, ..., B}: we define o < B if and only if ¢4 = 1. Clearly, @ < 8 implies that
the number « is smaller than the number 8. The relation < is a strict partial order.
Indeed, o 4 o because of (a), so the relation is irreflexive. If « < 8, then @ < 8 by
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(a) implying B8 4 «, so the relation is asymmetric. If « < 8 and § < y then by (b),
we have a < y, so the relation is transitive.

Moreover, for every s € {1,..., B}, the set S5y := {o | @ < s} is a chain, i.e. is
totally ordered. Indeed, for o < B € S,, we have cos = cgs = 1 implying cog = 1 in
view of (c).

Next, it is easy to see that every strict partially ordered finite set such that every S
is a chain can be described by a directed rooted in-forest. The vertices of the forest
are the numbers 1, ..., B, and two vertices «, y are connected by the oriented edge
if o < y and if there is no B such that « < < y, each connected component of this
oriented graph is a directed rooted in-tree. The forest clearly reconstructs the order
‘<’ and therefore the matrix (cqg): for two numbers o # 8 € {1, ..., B}, we have
a < B if there exists an oriented way from B to «, see example on Fig. 1.

The converse is also true: every directed in-forest F (with appropriately labelled
vertices) defines a matrix cyp with properties (a), (b) and (c) by (32).

Let us now deal with E;;. Consider @ # B € 1, ..., B. We say that the index j
belongs to the «-block (of coordinates), if ny + -+ +ng—1 < j < ny+--- + ngy.
Consider a pair (j, i) such that j belongs to the a-block and i to the B-block. If
cqp = 0, then the component Ej; is irrelevant for our formulas since when we build
g by (69) the corresponding term (le-xj + Cijxi + Ej;) equals (C,-jxi + Ej;) and
can be hidden in the factor /; of g;;. Assume now cyg = 1 and let us show that then
the corresponding numbers E j; do not depend on j from a-block and i from S-block,
i.e. all entries of the whole (a, B)-block of the matrix (E;;) are equal to each other.

We will use formula (64). If the B-block has more than one entry, take k # i from
the B-block. Then, (64)

1 1 1

(I + Eji)(F + Egi)  (x + Eji)(xd — xk) T T Bl

implying E j; = Ey;. Thus, elements of every column of the («, 8) block of the matrix
E;; are equal to each other.

Similarly, by taking k # j from the «-block, one proves that the elements of every
raw of the («, B) block of the matrix E;; are equal to each other. Thus, provided
cqp = 1, all elements of the (a, B) block of E;; are equal to each other, we call them
—eqp. The matrix e = (eqg) is a B X B constant matrix; its element e, is relevant for
us (in the sense that it is included in the formulas for the metrics) if the corresponding
cop = 1.

Finally, let us show that eqg = €4, provided cog = coy = cpy = 1. We again use
(64) assuming that j relates to the «-block, k to the B-block and i to the y-block, to
get

1 1

(T — ek —eg)) (K —ep )T —eap)

implying ey, = egy .
The matrices cqg and eyg clearly determine the components of the matrices C;; and
components of the matrix E;; which are relevant for (69). Plugging these C;; and E;;
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into (69) and taking in account that ]_[:Li 1 (eqp — x3) = det(eqp Id,, —Ly), we obtain
the form similar to that in Theorem 5. The difference is as follows: we did not prove
yet that the diagonal factors H;(x/) := m are polynomials P, (x/) of degrees
J
< ny + 1 and we did not obtained the additional conditions on these polynomials
Let us do these: first we notice that the metric g has the iterated warped product

structure:

g=g +to1(X1g +0oa (X1, X2)g3+---+og_1(X1,..., Xp-1)gB,

where the metric g, is as follows: take the metric gbc given by (29) and multiply its
Jjth diagonal element by 4 ;(x/) for every j related to the a-block. The functions og
are as follows:

—1

og = 1_[ det (ea/g Id,,ﬁ —Lﬂ)caﬁ

a<f

Since g is flat, g; must be flat and g», ..., gp of constant curvature. Applying the
result of [40, §5] (see Fact 6 above) shows that blocks g, of dimension greater than
one are given by P, (La)gbc, where Py is a polynomial of degree < ny 4+ 1 (in Sect. 7.2
we will show that coefficients of these polynomials satisfy the conditions (i—iii) from
Sect. 4.1 and also consider 1-dimensional blocks).

7.2 Conditions on the Coefficients of P,

To complete the proof of Theorem 5, it remains to explain that in the case of one-
dimensional blocks, the corresponding function H; = 1/h; is a polynomial of degree
at most 2 and that conditions (i)—(iii) on the coefficients of P, stated before Theorem 4
are fulfilled. We will need some facts and preliminary work.

Recall that a Casimir of a Poisson structure is defined by the property that Pois-
son structure applied to it gives zero. For a Poisson structure A, given by (7) and
corresponding to a (flat) metric g of dimension > 2, a Casimir (of the lowest order)
can be understood as a function f satisfying V;V; f = 0. Of course, any constant is
a Casimir and n functionally independent Casimirs give us flat coordinates for g in
which the components g/ are all constants. For a metric g of constant curvature K,
we define Casimir as a function fsatisfying the equation® V; V I f—l— K fgi 7 =0.The
space of Casimirs of a constant curvature metric (on a simply connected manifold of
dimension > 2) is a vector space of dimension n + 1.

Dimension 1 is special. In this case, we will define a Casimir as a function satisfying
ViV jf—i- K fgi ; = 0 for some constant K, so that for each K, the Casimirs form a
two-dimensional space.

Fact7 Consider the n > 2-dimensional metric g = P(L)gLc, where L and g c are
asin (29), and P is a polynomial P(t) = ap+ayt +- - - +an+1t”+1. Then, the metric

6 The functions satisfying this equation are indeed Casimirs of the (nonlocal) Poisson structure correspond-
ing to the constant curvature metric g, see e.g. [9, §2] and references therein.
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has constant curvature —zlla,H_l. Moreover, in any dimension n > 1, the function
Jdet(A1d —L) is a Casimir of g if and only if P(L) = 0 and in this case we have:

d P(1)
dt jr=x

4g (d V(A Id—L),d/det(r1d —L)) =— + ayy 1 det(A1d —L). (70)

Proof The metric g c and operator L are explicitly given (and w.l.0.g. one may assume
A = 0) so the proof is an exercise in the Vandermonde identities and is left to the reader.
O

Below, we work with warped product metrics for which the ‘covariant language’
is more convenient. For this reason, starting from Fact 8 and till the end of the current
Sect. 7.2, g and g; will denote covariant metrics. For the corresponding contravariant
metrics, we use g* and g7.

Fact8 Suppose a warped product metric g = g1+ f(X1)?g2 has constant curvature.
Then g1 and go have constant curvatures. Moreover, the following statements hold:

1. If g is flat, then g is flat.

2. If g is flat and g3 is ny > 2-dimensional, then K> = gi(d f,d f), where K is
the curvature of gs.

3. f(X1) is g1-Casimir.

Proof The first statement is well known and immediately follows from geometric
arguments. The second statement follows from the second formula in the first line
of [38, (4.2)]. The third statement follows, under the additional assumption that the
curvature is zero, from the second line of [38, (4.2)]. If the curvature is not zero, we may
assume that itis equal to 1. Then, we employ the conification construction: we consider
the (n + 1)-dimensional metric g = (dx%)? + (xo)z(gl + f(Xl)zgz). The metric g
is flat and can be viewed as a warped product metric with base (dx9? + (x9)2 g1 and
warping function f2 = (xof(Xl))z. Then, the function f:: x f(X1) is a Casimir
of g1 := (dx%)? + (x0)%gy implying that f(X) is a Casimir of gj. m]

Next, we need the following technical lemma:

Lemma 7.2 Suppose the warped product metric g1 + f(X1)%g2 is flat and f(X1) is
g1-Casimir. Then, the following holds:

1. Every g\-Casimir F(X1) such that g{(d f,d F) = 0 is a Casimir of g.

2. If gy has constant nonzero curvature Ko or is one-dimensional, then for any
function ¢ (X7) satisfying V82V 82¢+ Krpgr = 0the function f ¢ is a g-Casimir.

3. If g2 is flat, then for any function ¢ (X2) satisfying V82V82¢ (X2) = const g and
for any g1-Casimir f such that g¥(d f,d ) = 1 we have that f¢ — constf is
a g-Casimir.

Notice that the g-Casimirs described in Lemma 7.2 span a n + 1-dimensional vector
space and, therefore, form a basis of the space of g-Casimirs.
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Proof By direct calculations (done many times in the literature, see e.g. [38, (4.1)]),
one sees that the Christoffel symbols of the warped product metric g are given by the
following formulas:

Fbc_rbc’rﬂy_rﬁy’ foYg gﬂyv ff@a,
Fap = Tho = Tap = 0.

1 2 1 2
Here I', " relate to the Christoffel symbols of the metrics g = g and g» = g,

respectively; a, b, ¢, s run from 1 to n; and «, B, y from nj 4 1 to n. The notation f
means .
Therefore, for any function F'(X1), we have:

2
VaVpF =V3'VPF | VoVoF =0, VoVgF = fg{(dF.df)g.5. (71

2
In particular, if F is a gl—.Casir.nir, then V5! Vfl F = fgf(d.F, df)g; V&./hiCh implies
the first statement. Also, if g> is flat, then grad, f is light-like (Fact 8, item 2), so f
is a g-Casimir.
Next, for any function ¢ (X»>), we have

1
VaVpd =0, VaVpd=——fabp. VaVpt= VEVEe.

2
In particular, if ¢ satisfies V5> V§2¢ = const g, and g is flat, then

VaVs @) =0, VaVp(@f) =0, VaVa(@f) = const gus /-

Combining this with (71), we see that ¢ f — const f is a Casimir. If ¢ satisfies

VRV G+ Ky g = 0, then Vo Vi f) = —Ka§ as [ — & [ g1 £, f) 85 =
0. 0O

Now, we are able to describe conditions on the polynomials P, that are necessary
for the flatness of the metric g from Theorem 5 given by (38), and also to finish the case
of one-dimensional blocks: We need to show that if an «-block is one-dimensional,
then the corresponding function H; (x/) = from (66) is a polynomial of degree
<2. "

First we consider the most important case, when ¢, = 1 forall 1 <a < 8 < B.
The corresponding graph in this case is just a ‘path’ 1 «— 2 <—-.. «<— B from leaf
B to root 1, so that in view of (69) the metric g;; is given by the warped product of
the form

B—1
g=g1+ XD+ X))’ LX) g+ + (H fs<xs)2) gs  (72)
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with fy,(Xg)? = det(hg Id,, —Lg) for Ay = €y g1 = €aat2 = -+ = eq 5. The
metrics g, are ny-dimensional metrics of the form (66).

Suppose that a g,-component is one-dimensional and denote the corresponding
coordinate by x/. By direct calculations, using the formulas for S,'{] and f;k from

Sect. 6.2 and assuming u; = 0, we see that the condition v i Sjj = 0 becomes

32]’1' j a—1 a—1
TR 4 g (d [TrAx0.d]] f;(xo) =0. (73)

dx/ s=1 s=1

Note that the function ]_[?;11 fs(X;) is a Casimir of the metric g1 + f1 (X )2 o+ -+

(]_[‘;:_11 fs (XS)Z) g« by Fact 8 so g* (d ]_[‘;:_11 fi(Xy),d 1—[?:—11 fs (Xs)> is a constant
and A is a polynomial of degree < 2 whose leading coefficient is this constant with
a minus sign. Note that the case « = 1 is also covered by the argumentation above by
assuming that this constant is zero; in this case, & is a linear polynomial.

Thus, our metric g is given by (72) with each g, = g(';C(Pa (LO{))_1 and f,f =
det(Ay 1d,, —Ly), where Py has degree at most ny, 4 1. We denote the coefficients of
the polynomials by

o o o
Py(t) =ag +ait 4 -+ ap, 11"
Lemma 7.3 In the above notation, we have the following relations:

1

an41 =10

Py(Ay) =0 fora=1,...,B—1. (74)
+1

%itan:)\a :aa nepi+1 Jora=1,..., B —1

Note that in view of Theorem 4, conditions (74) are sufficient for the flatness of g
and existence of Frobenius coordinates.

Proof We view g as a warped product metric over the n; 4+ ny dimensional base
equipped with the metric g1 + fi (X1)2g2. Then, the metric g1 + fi (X1)2g2 is flat.
If n1 > 1 (the case n1 = | was already discussed above), combining Facts 7 and 8
we obtain a,,+1 = 0 implying the first line of (74). Next, from Fact 8 we know that
f1(X1) is a g1-Casimir implying Py(11) = 0 in view of Fact 7.

Let us now show that

an —2 (75)
dt j=x mtl

Since g1 + f1(X1 )2g2 is flat, by Fact 8 we have (we denote by K> the curvature of g
and assume ny > 1)

1g*(d fi,d f1) = Ko. (76)
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Combining (76) with Fact 7, we obtain (75). In the case ny = 1, (75) follows from
(73) and Fact 7.

Next, we view g as a warped product metric over the n1 + ny + n3 dimensional
base equipped with the metric g1 + f1(X1)%g2 + f1(X1)? f2(X2)?g3. Then, the metric
g1+ N (X1)2g2 + fl(X1)2f2(X2)2g3 is flat. But it is itself a warped product metric
over the n| + ny dimensional base with the metric g + f1(X 1)2g2. By Fact 8, this
implies that f] f> is a Casimir of this metric. By Lemma 7.2, f> is a Casimir of g so
P>(2) = 0. Moreover, by Fact 8 and using g*(d fi,d f») = 0, we have

18 (d (A d(fif) =Ks (= _}12113-5—1)- 77
On the other hand

g(d(fif). d(fif) = Lgid fi,d f) + &5l fo.d fr)

(T0) 1 ,2dP 1dP, 2 2
P2 G i, T A dr e, T A1 2T (78)

= 71z

@ _1dp,

= TEAL jt=hc
Combining this with (77), we obtain a,,4+1 = dd—fl 1=iy» 38 claimed. Iterating this
procedure we obtain (74). m]

Lemma 7.3 completes the proof of Theorem 5 under the additional assumption that
for every a < B, we have ¢, = 1. We now reduce the general case to this situation.

We assume without loss of generality that the combinatorial data are given by a
directed rooted in-tree with B vertices, i.e. the graph F is connected. Otherwise, we
have the direct product situation, i.e. the metric and all other relevant objects are direct
products of lower-dimensional metrics and relevant lower dimensional objects.

We denote by 1,2, ..., B the vertices of the in-tree F in such a way that @ <
implies ¢ < B; of course, the vertex 1 is then the root. Other vertices of degree one are
called leaves. Recall that « = next(B), if « < B and there isno y witha < y < B.

For every leaf B,we define the chain Sg (oriented path to the root) as the sub-tree
with vertices 8, next(f), next (next(B)),...,1. For example, the upper tree of Fig. 1
has two chains, one with vertices 3, 2, 1 and another with vertices 4, 2, 1.

Next, for the chain Sg and for any fixed point p, we consider the following sub-
manifold Mg passing through p: in the coordinates (X1, ..., Xp) = (xl, Lo xh), it
is defined by the system of equations

Xy = Xo(p) forevery o ¢ Sg.

This is a totally geodesic submanifold with respect to the connections I', I" and T'. For
f‘\, this follows from formulas (A,B,C) of Sect. 6.2. For I" and [,it follows from (62).

Therefore, the restriction of g and g onto Mg satisfies the assumptions of Theorem 5.
Moreover, the components c¢qg corresponding to this restriction are equal to 1 for
o< f.
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For example, for B = 3, the metric g corresponding to the upper tree of Fig. 1 is
given by

g = g1 +det(einIdy, —Ly) - g2 + det(eiz Id,, —L1) - ((e23 Idn; —det Lo)
-g3 +det(exq Id,, —L2) - g4)

and the restriction of the metric g onto M3 is
g1 +det(e121d,; —L1) - g2 +det(ejn1d,, —L1)(e31d,, —det L) - g3.

The case when ¢, = 1 for all @ < B is described in Lemma 7.3 and it has been
proved that the metric is as in Theorem 5. This implies that the metrics g and g are
constructed as in Sect. 4.1 and the coefficients of P, and Q, satisfy the conditions
(1, i) from Sect. 4.1. It remains to show that they also satisfy condition (iii). In
order to do this, suppose that « = next(f) = next(y) with 8 # y. We consider the
sub-tree with vertices «, 8, y := next(e) = next(8) and the corresponding warped
product metric with the base metric g, and fibre metric gg + g, . For example, for
a = 2 in the case of the upper tree of Fig. 1, we consider the warped product metric
g2 +det(Aq Idy, —L2) - (g3 + g4).

We know that it must be of constant curvature which implies that the direct product
metric gg + g, must be of constant curvature which in turn implies that it is flat. Then,

by Fact 7, the coefficients Cﬁln,5+1 and anyH vanish 1mply1ng dt =y = = 0. Theorem
5 is proved.

7.3 On the Uniqueness of Frobenius Coordinates for a Pair of Metrics

We consider two flat metrics g, g possessing a common Frobenius coordinate system
and discuss the uniqueness of this coordinate system. As before, we assume that R, =
gg~ ! has n different eigenvalues. We know that g, g are as described in Theorem 5. In
particular, in the corresponding coordinates, the connection T defining the Frobenius
coordinate system (i.e. the flat connection that vanishes in Frobenius coordinates) is
given by the formulas from Sect. 6.2. That is,

e Foreveryi # jand k # i, Fik =0.

e For the indices i # j from one block, F’ i = J+

e For the index i from the block number « and j from the block number B # o, we

Cq,
have F;i = Fl./j = x—f. N ‘

e For every i, the component I'}; := u; depends on x* only.

However, in view of (58) and (59), the function u; is also uniquely defined in terms
of the metric g (in fact, #; = 0 in the diagonal coordinates from Theorem 5) unless
the only component of ¢ which can depend on x' is the component g;;. Such an
exceptional situation is possible if and only if g;; represents a one-dimensional block
which is a leaf in terms of the in-forest F.

Clearly, the Frobenius coordinate system is determined up to affine change of
coordinates by the flat connection T'. Therefore, non-uniqueness of this coordinate

@ Springer



193 Page 44 of 52 A.V.Bolsinov et al.

system only appears in the above exceptional situation. It is easy to see that in this
case the freedom in choosing it is the same as discussed in Sect. 4.1 after Theorem 5.

Remark 7.1 Coming back to Theorem 3 (uniqueness part), we notice that for the met-
rics g = P(L)gc and g = Q(L)g.c, every diagonal component g;; depends on
all variables x', ..., x". Then, the connection T is unique implying that Frobenius
coordinates are unique up to an affine coordinate change, as required.

8 Pro-Frobenius Coordinates and Multi-block Frobenius Pencils.
Proof of Theorem 4

8.1 Extended AFF-Pencils and Pro-Frobenius Coordinates

As seen from Sect. 4.1, the main ingredients in multi-block Frobenius pencils (Theo-
rem 5) are metrics of the form

P(L)gic, where P(-) is a polynomial of degree n + 1. (79)

If deg P < n, then such metrics are flat and form the AFF-pencil (26). However, if
degP =n+1,ie. P(t) = a,,Jrlt'”“l +...,then g = P(L)g.c has constant curvature
K = _%an-l-l (see Fact 8). All together, the metrics (79) form a pencil of compatible
constant curvature metrics, which can be thought of as one-dimensional extension of
the AFF-pencil (26), see details in [9, 20]. In Frobenuis coordinates ul, ..., u" from
Sect. 2.3, the coefficients g*# of the metric g = P(L)gLc with deg P = n + 1 are not
affine functions anymore. In particular, in the notation from Sect. 2.3, for P(¢) = i
we get:

w? ud o u" 0 wu wu® o outet
W u" 00 wru wi® outut
g1 =L" Moo= ¢ [+t W
u" 0 ...00 : : :
O O 0 0 u"ul unuz unun
All the other metrics from the extended AFF-pencil (79), in coordinates u', ..., u",
take the form
g = b + a?"gux — 4K uu”, (80)

which looks as a quadratic perturbation of (15). These metrics (more precisely, the
corresponding coordinates u', . .., u”) still possess remarkable properties, similar to
those from Fact 4. We use one of them to introduce the following

Definition 5 We say thatu!, ..., u” is a pro-Frobenius coordinate system for a metric
g given by (80), if the contravariant Christoffel symbols r?‘ﬂ of g are symmetric in
upper indices.
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The Frobenuis coordinates u?, . .., u" for the metrics from the AFF-pencil are pro-
Frobenius for all the metrics (79) from the extended AFF-pencil (recall that these
coordinates are the coefficients of the characteristic polynomial of the Nijenhuis oper-
ator L).

Notice that the symmetry of F?ﬁ in upper indices is a strong geometric condition
that naturally appears in many problems and admits several equivalent interpretations.
The following statement summarises some of them (the proof is straightforward and
is left to the reader).

Lemma 8.1 Let g;; be a metric written in a certain coordinate system ul, ..., u". The
following conditions are equivalent

e The contravariant Christoffel symbols F;{J = gi'T jk are symmetric in upper
indices, -
Fij __1 agY

k — uk
o The Christoffel symbols (of the first kind) T';j; = ngFisj are totally symmetric in
lower indices,
o 19s8ij
o Tijk = 2 uk?
3’F
du' du’

7

e g;j is a Hessian metric, i.e. g;j = for a certain function F(u', ..., u").

This lemma immediately implies the following explicit formula for the contravariant
Christoffel symbols of g in pro-Frobenius coordinates:

10g%f 1
ref = S = —Ea?‘ﬂ +2Ku®8? +2K8%u”. (81)

Remark 8.1 Notice that for K = 0, a pro-Frobenius coordinate system is Frobenius
(see Fact 4). Also it can be checked that a pro-Frobenius metric (80) has constant
curvature K. For this reason, pro-Frobenius metrics can naturally be understood as
generalisation of Frobenius metrics (15) to the case of constant curvature metrics.

8.2 Warp Product of Pro-Frobenius Metrics

The proof of Theorem 4 is based on the following key statement.

Proposition 8.1 Let g and g be two constant curvature metrics written in pro-
Frobenius coordinates u = (u!,...,u™) and v = (v!,..., "), respectively. Let
f(u) be a non-homogeneous linear function satisfying the following relations

(bl) grad f(u) = f(u)(e¢—4Ku), wherea =y _ ol 387 is a constant vector field and
u=>y ui%, R R

b2) ﬁg(d f,d f)=4K — 4K f(u), where K and K are the curvatures of g and
g, respectively.

7 Following [39], we will refer to this function F' as the potential.
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Then the warp product metric® g, = g + %fg\ has constant curvature and the

1

coordinate system u', ..., u", y' = fvl, ... y"2 = fv™ is pro-Frobenius for gu.

Proof The matrix of gy in coordinates u, y takes the form

( 1d o0 g 0\ lddfM o
Sw=\v-darr1a)\o4g)\o f-1a
. g grad f -v '
" \ve(grad )T g@d fod Hru-v +f2
Hence the off-diagonal block has the following form
grad f v = fQu)(a@ —4Ku)-v' = (a —4Ku)-y'.
The lower diagonal block is
gdf,dfyv-v +fg=@Kf—4KfH v+ [T

Recall that g consists of three parts, constant, linear and quadratic

g= b+a(w) —4Kv-v' or, in more detail, g = bl —|—'a\§jvs —4Kvi/.
Substitution gives:
@Kf—4Kfv v + fe=@Kf—4KfHv-v' + fb+aw) —4Kv-v')
= fb+a(y) —4Ky-y"

Summarising (and denoting g = b 4+ a(u) —4Ku -u"), we get

(b OA a(u) -y R u T T
= (o f(O)b) " (y ol ay) + m(u)b) K <y) (7).

where m(u) = f(u) — f(0) is the (homogeneous) linear part of the function f. This
shows that gy takes form (80) in coordinates (u, y).

To complete the proof,we only need to show that the (covariant) metric (gw);; is
Hessian (see Lemma 8.1). This fact follows from

2 . . .. .
Lemma 8.2 Suppose g;j(u) = % is a Hessian metric in coordinates u", . .., u"
—~ 2F . . .. . .
and gy (v) = 31?0‘ ;;ﬂ is a Hessian metric in coordinates v', . .., v"2. Then the (covari-
ant) warp product metric
(gwij = gijdu'du’ + f (W) gap(v)dv*d v’ (82)

8 This metric was also discussed in Sect. 7, see Fact 8 et seq. Note the difference in notation and settings
used. Unlike Fact 8, now we are working with contravariant metrics, and our new function f was previously
denoted by fz.
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where f(u) is an arbitrary linear function in u, is Hessian in coordinates

ul, oo u™ oyl v, where yi = f(u)vi. The corresponding potential is F,, =
o~ 12
F—{—f.F:F(ul’_ nl)‘*'f(”)F(f(u)""’%)'

Proof Let us rewrite the warp product metric (82) in coordinates u, y:

| i —~ . . R ya yﬁ
gijdu'dul + f 2 dv¥d o = gijdu'dul + f Zop d (7>d (f) B

d aq dyP Bq
gijdu' dul + f 8ap ( ; - yfzf) (JyC— yf2f> =

1 0 1
<gl] v p_L f f) uldu’ —278&/3)’

O 4 vBdu + Lo dvrd P
f3ga/3 Y 5 oud S -dy’du +?ga,sdy dy”.

Jul
(83)

Then we compute the second derivatives of the function F + f - F (here we use

a_ _ AF 0 _ F y*of y.
v O] du/_za oY gus ZO‘ 3U°‘f20u1)'

92 92F 9 [of 7 oF
— (F+f F)= — + — : —
ou' du/ (F+7 A) du' du’ + ou’ (614-7 - du])

62F+a(aff 1 af(,af>

a
= (we use —f = const as f is linear)
dul

T wloul | oul \ dul a ? FICREETY:

3°F af AF y* af 1 af 5 "
auiau.erau.f(_;anZem/ F2 oul Zava _72814’ (aw)

3°F af 1 92F W oo Y ﬂdf af
_auiauf_emff;avﬁava( f2) ErRdEiiat U Zg"‘ oul dul
Next,
32 ~ 3 [af ~ 1 aF _of
— (F+f F)=— L . F-=-Y —y—L
ayPou’ ( foF) ayP ( u’ fXa:E)v"‘y u/
af 9

dul  ayP
Af (9F 1 _10F 1 PF 1 af 1
= ol (W? 7 ovP ?Xa: PRCEN R ?) = w2 Zg""f’y

And finally,

||
‘m
S
hi'1)
\I~
)QM
cQ|*:>
’\<Q
~—

32F 2F 1 1

32
dy*dyh - fauaavﬁ 12 - f

dy*dyh

s

8

(F+f-F)=7f
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Comparing = ,(,W (F+f 1)5) Ty aau] (F+f F) and 5 aa /3 (F+f : f) with
(83) shows that g, is Hessian in coordlnates (u, y), as stated. ]

This completes the proof of Proposition 8.1. O

Our goal is to show that every metric from Theorem 4 is Frobenius in the corre-
sponding coordinate system. It is seen from the construction of such a metric that it
can be obtained step-by-step by iterating the warp product construction (following the
rules prescribed by the graph F). At each step,we have two constant curvature metrics
g and g written in pro-Frobenius coordinate systems and then we ‘glue’ them by using
a certain linear function f as described in Proposition 8.1. This function must satisfy
the property (bl). (The second property (b2) should be understood as a condition on
the curvature K of the metric 2.) In order to iterate the warp product procedure, we
need to describe those linear functions f (¢, y) which satisfy (bl) for the metric gy.
The next statement provides such a description.

Proposition 8.2 In the notation of Proposition 8.1, consider the warp product metric
gw=g+ 78
1. Let h(u) be another function (independent on f) satisfying condition (bl) for g,

that is grad, h = h(B — 4Ku) for some constant vector B. Then h(u) satisfies
(bl) for gw, namely

rr=a((§)-2 ()

2. The function f (u) itself satisfies (b1) for g,, under the additional condition that
(a,d f) +4Kf(0) =0, namely

1))

3. Let il\(,l\)) be_a function satisfying conditions (bl) for the metric g, that is,
gradgh = h(B — 4Kv). Then f(u)h(v) = f(u)h(%) satisfies (bl) for g,

namely

(Notlce that f(u)h(v) is linear in coordinates (u v). Indeed, if f(u) = mo +
> mu' and h(v) = g + Zm]v/ then f(u)h(v) f(u)(mg + Zm]vf) =
mo f (u) + ijyl )

Proof 1. We first notice that g(d f,dh) = (d h, grad f)=(dh, f(a —4Ku)) and,

on the other hand, g(d f,dh) = (d f, grad, h) df h(B —4Ku)). Since f and
h are linear (perhaps non-homogeneous), we have (dh,u) = h — ho and similarly

(d f,u) = f — fo. Hence,

g f,dh)=(df, h(f —4Ku)) =h{d f, ) —4Kh(f — fo)
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=h({d f, B) + 4K fy) —4Khf,
and, similarly,
gd f,dh)= f((dh,a)+4Kho) —4Khf.

It follows from this that 2({d f, 8) + 4K fo) = f((d h, o) + 4K hg). Notice that the
expressions in brackets are some constants. Since & and f are not proportional, we
conclude that these expressions are identically zero implying g(d f,dh) = —4K fh
and (dh, o) +4Kho = 0.

We now compute grad, /:

_ g (a—4Kuw)-y"\ (dn\ _( h(B—4Ku)

where

y-(@—4Ku)'dh =y (@dh+4Kh(0)) —y - 4K (h(0) + (ud h))
=y-0—y-4Kh=—-y-4Kh,

which gives grad, h =h (/(3)) —4K <Z> , as required.

2. The proof is just the same, but we need to use o d f + 4Kf(0) = 0 as an
additional condition. R R
3. We now compute the gradient of f(u)h(v) = f(u)h(%) = f(u)(my +

vy = o fu) + Yy =h(0) f @) + h(y) — h(0).

~ ~ _ grad, f-v h(O)Ef
gradgw@(o)f(””h(”_h‘o))‘(v (rad, )T g f.d fro-vT +fg> i)

(iz\(O) + UTdi’l\) grad, f
“Ne@drdp (E(O) + deE) v+ f gradg h(v)

B ( h(v) f (u)(« —4Ku)A R )

g f.d Hh@wv + fh@)(B —4Kv)

. h(v)f(u)(a —4Ku) 4K u
= ((41?f — 4K fHh()v + fh)(B - 41?u)> =h@)f @) (,3 4Ky>

as required. O

Propositions 8.1 and 8.2 allow us to construct pro-Frobenius metrics using metrics
from extended AFF-pencils as building blocks. We only need to describe appropriate
function f satisfying properties (bl) and (b2) from Proposition 8.1 for these metrics.

Proposition 8.3 Consider metrics g = P(L)gic and § = P(L)3ic from two dif-
ferent extended AFF-pencils (79) with pro-Frobenius coordinates u', ..., u" and

vl ..., "2, respectively. Let A be a root of P(-), then
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1. f = det(A1d —L) satisfies condition (bl) , namely grad f = f(e — 4Ku),
where K = %bnl, a = (bp,—1,...,b1,bo) and b;’s are defined from P(t) =
(t =2 (bo + bit + - -+ + by, ™).

2. If P(t) = Quy1t™ ! + G, t"™ + ..., then condition (b2) for f takes the form
a\nz-ﬁ-l = P/()‘)-

3. Moreover; if A is a double root of P(-), then (o, d f) + 4K f(0) = 0 (cf. item 2
of Proposition 8.2).

Proof The first part of this statement can be verified by a straightforward computation.
We also notice that f(u) is linear in variables ul, o umtL
The second statement easily follows from Fact 7. Indeed, from (70), we get

1
?g(df,df)=—P’(A)—4Kf. (84)
Therefore,(b2) can be written as 4K = —P’()). In view of Fact 7, K = —J—ﬁnﬁl.

Hence, (b2) amounts to a,,+1 = P’()), as stated.
Finally, grad f = f (e — 4Ku) implies

1 1
7g(df7df)=?(gradf,df) = (o, d f) —4K(u.d f)

=(a,d f) —4K(f — f(0)) = (a,d f) +4Kf(0) —4Kf.

Comparing this relation with (84), we see that (o, d f) +4K f(0) = —P’(1). Hence,
the 1.h.s. of this relation vanishes if and only if A is a double root of P (¢). m|

We now ‘return’ to the notation from Sect. 4.1. It follows from Propositions 8.1 and
8.3 that the metric P, (Ly) g(bc + WT_L) Pg(Lg) g/'éc is pro-Frobenius in coordinates

o), ... on¢, detId —L) - o}, ...,det(AId —L) - o’ if Ag is a root of Py (f) and

o

gnﬂ+1 = (=" P, (Ap). These two conditions exactly coincide with condition (ii)
used in the construction of multi-block pencils from Theorem 4 (cf. Sect. 4.2 where
we discuss the two-block case in slightly different notation). We can next repeat this
construction by ‘adding’ one more similar block P, (L, ) g]';C to Py(Ly) g(';[c:

Po(Lq) 85" + SPy(Ly) giC.
o

—  puL e, -
det(ip1d —Lg) p(Lp) 85 T et WL

Of course, two conditions should be fulfilled, namely P,(%,) = 0 and Zlny+1 =
(—1)" P/, (%, ). Moreover, in view of Proposition 8.2 (item 2) and Proposition 8.2
(item 3),if Ag = A,,, we need to require that Ag is a double root of P, (which is exactly
condition (iii) used in the construction of multi-block pencils from Theorem 4).

To complete the proof of Theorem 4, we should now iterate the above procedure
step-by-step following the combinatorial data provided by the graph F (starting from
leaves and moving towards the root). At each step of this construction, we obtain a
pencil of pro-Frobenius metrics, leading finally to a Frobenius pencil (the condition
(i) will guarantee the flatness of the final metric).
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