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Abstract
We consider multicomponent local Poisson structures of the form P3 +P1, under the
assumption that the third-order term P3 is Darboux–Poisson and nondegenerate, and
study the Poisson compatibility of two such structures. We give an algebraic interpre-
tation of this problem in terms of Frobenius algebras and reduce it to classification
of Frobenius pencils, i.e. linear families of Frobenius algebras. Then, we completely
describe and classify Frobenius pencils under minor genericity conditions. In particu-
lar,we show that eachFrobenuis pencil is a subpencil of a certainmaximalpencil. These
maximal pencils are uniquely determined by some combinatorial object, a directed
rooted in-forest with edges and vertices labelled by numerical marks. They are also
naturally related to certain pencils of Nijenhuis operators. We show that common
Frobenius coordinate systems admit an elegant invariant description in terms of the
corresponding Nijenhuis pencils.
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1 Introduction

1.1 Foreword

Nijenhuis operator is a (1,1)-tensor field L = Li
j on an n-dimensional manifold

M such that its Nijenhuis torsion vanishes. Nijenhuis geometry, as initiated in [6]
(where all necessary definitions can also be found) and further developed in [7,
8, 28], studies Nijenhuis operators and their applications. There are many topics in
mathematics andmathematical physics in which Nijenhuis operators appear naturally;
this paper is devoted to the study of ∞-dimensional compatible Poisson brackets
of type P3 + P1, where the lower index i indicates the order of the homogeneous
bracket Pi (the necessary definitions will be given in Sect. 1.2). Nijenhuis geometry
allows us to reformulate the initial problem, originated from mathematical physics,
first into the language of algebra and then into the language of differential geometry
and finally solve it using the machinery of differential geometry in combination with
that of algebra. Translating back the results gives a full description of (nondegenerate)
compatible Poisson brackets of type P3 + P1 such that P3 is Darboux–Poisson.

1.2 Mathematical Setup

The construction below is a special case of the general approach suggested in [25].
For n = 1, the construction can be found in [24], see also [12, 35, 42].

Wework in anopendiscU ⊂ R
n with coordinatesu1, . . . , un .Our constructions are

invariant with respect to coordinate changes so one may equally think of (u1, . . . , un)

as a coordinate chart on a smooth manifold M .
Consider the jet bundles (of curves) over U . Recall that for a point p ∈ U , the kth

jet space J k
pU at this point is an equivalence class of smooth curves c : (−ε, ε) → U

such that c(0) = p. The parameter of the curves c will always be denoted by x . The
equivalence relation is as follows: two curves are equivalent if they coincide at c(0)
up to terms of order k + 1.

For example, for k = 0, the space J 0
pU contains only one element and the definition

of J 1
pU coincides with one of the standard definitions of the tangent space TpU .
It is known that J k

pU is naturally equipped with the structure of a vector space of
dimension n × k with coordinates denoted by

(u1
x , . . . , un

x , u1
x2 , . . . , un

x2 , . . . , u1
xk , . . . , un

xk ). (1)

Namely, a curve c(x) = (u1(x), . . . , un(x)) with c(0) = p viewed as an element
of J k

pU has coordinates

(
u1x , . . . , un

x , u1
x2

, . . . , un
x2

, . . . , u1
xk , . . . , un

xk

)

=
(

d
d x (u1), . . . , d

d x (un), d 2

d x2
(u1), . . . , d 2

d x2
(un), . . . , d k

d xk (u1), . . . , d k

d xk (un)
)
|x=0

.
(2)
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We denote by J kU the union
⋃

p∈U J k
pU . It has a natural structure of a k × n-

dimensional vector bundle over U . The coordinates (u1, . . . , un) on U and (1) on
J k
pU generate a coordinate system

(u1, . . . , un, u1
x , . . . , un

x , u1
x2 , . . . , un

x2 , . . . , u1
xk , . . . , un

xk )

on J kU adapted to the bundle structure. Any C∞ curve c : [a, b] → U , x �→
(u1(x), . . . , un(x)) naturally lifts to a curve ĉ on J kU by

ĉ : [a, b] → J kU , x0 �→
(

u1, . . . , un , d
d x (u1), . . . , d

d x (un), . . . , d k

d xk (u1), . . . , d k

d xk (un)
)
|x=x0

.

(3)

Next, for every p ∈ U denote by �[J k
pU ] the algebra of polynomials in variables (1)

on J k
pU . It has a natural structure of an infinite-dimensional vector bundle over U .

Let Ak denote the algebra of C∞-smooth sections of the bundle �[J k
pU ]. Notice that

we have natural inclusion Ak ⊂ Ak+1 and set A = ⋃∞
k=0 Ak . In simple terms, the

elements of A are finite sums of finite products of coordinates

(u1
x , . . . , un

x , u1
x2 , . . . , un

x2 , . . . , u1
xk , . . . , un

xk , . . .) (4)

with coefficients being C∞-functions on U . The summands in this sum, i.e. terms of
the form a j1... jn

i1...in
(u)(u1

xi1
) j1 . . . (un

xin ) jn with a j1... jn
i1...in

(u) �≡ 0 will be called differential
monomials. The differential degree of such a differential monomial is the number
i1 j1 + i2 j2 + · · · + in jn . For example, f (u)u1

x2
(u2

x )
2 has differential degree 1 × 2 +

2 × 1 = 4. Differential degree of an element of A is the maximum of the differential
degrees of its differential monomials, and it is a nonnegative integer number. Elements
of A will be called differential polynomials.

Generators of this algebra are coordinates ui
x j and functions on U . Every element

of A can be obtained from finitely many generators using finitely many summation
and multiplication operations.

The following two linear mappings will be important for us. The first one, called
the total x-derivative and denoted by D (another standard notation used in literature
is d

dx ), is defined as follows. One requires that D satisfies the Leibnitz rule and then
defines it on the generators ofA, i.e. on functions f (u) and coordinates (4), by setting

D( f ) =
n∑

i=1

∂ f

∂ui
ui

x , D(ui
x j ) = ui

x j+1 .

Clearly, the operation D increases the differential degree by one at most.
Next, denote by Ã the quotient algebraA/D(A). The tautological projectionA → Ã

is traditionally denoted byH �→ ∫ Hdx ∈ Ã. In simple terms, it means that we think
that two differential polynomialsH, H̄ are equal, if their difference is a total derivative
of a differential polynomial.
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Note that by construction, the operation D has the following remarkable property,
which explains its name and also the notation d

dx used for D sometimes in literature.
For any curve c : [a, b] → U whose lift (3) will be denoted by ĉ and for any element
H ∈ A we have:

d
d x (H(̂c)) = (DH) (̂c). (5)

The second mapping is the mapping from A to an n-tuple of elements of A. The
mapping will be denoted by δ and will be called the variational derivative. Its i th

component will be denoted by δ
δui and for an element H ∈ A it is given by the

Euler–Lagrange formula:

δH
δui

=
∞∑

k=0

(−1)k Dk

(
∂H
∂ui

xk

)

(only finitely many elements in the sum are different from zero so the result is again a
differential polynomial). It is known, see, e.g. [24], that for an elementH ∈ Awe have
δH = 0 if and only ifH is a total x-derivative. Then, we again see that the variational
derivative does not depend on the choice of differential polynomial in the equivalence
classH ⊂ A. Then, the mapping δ induces a well-defined mapping on Ã, which will
be denoted by the same letter δ. One can think of δH as a covector with entries from
Ã, because the transformation rule of its entries under the change of u-coordinates is
a natural generalisation of the transformation rule for (0,1)-tensors.

Following [16, 17], let us define a (homogeneous, nondegenerate) Poisson bracket
of order 1. We choose a contravariant flat metric g = gi j of any signature whose
Levi-Civita connection will be denoted by ∇ = (�i

jk). Next, consider the following

operation Ag : Ã × Ã → Ã: for two elements H, H̄ ∈ Ã, we set

Ag(H, H̄) =
∫

δH̄
δuα

(
gαβ D

(
δH
δuβ

)
− �αβ

γ
δH
δuβ uγ

x

)
d x . (6)

In the formula above and later in the text, we sum over repeating indices and assume
�is

j = �s
pj g

pi . The components �is
j will be called contravariant Christoffel symbols,

when we speak about different metrics we always raise the index by the own metric. A
common way to write the operation Ag which we also will use in our paper assumes

applying it to δH
δuβ andmultiplicationwith δH̄

δuα (and of course summation and projection

to Ã):

Ag = gαβ D − �αβ
γ uγ

x . (7)

It is known, see,e.g. [16–18], that the operation Ag given by (6) defines a Poisson
bracket on Ã, that is, it is skew-symmetric and satisfies the Jacobi identity. Moreover,
one can show that the operation constructed by g and � via (6) defines a Poisson
bracket if and only if g is flat, that is, its curvature is zero, and �i

jk is the Levi-Civita
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connection of g. It is also known that the construction (6) does not depend on the
coordinate system on U .

Next, let us define a (nondegenerate, homogeneous) Darboux–Poisson structure of
order 3. We choose a nondegenerate contravariant flat metric h = hi j of arbitrary
signature and define the operation Bh : Ã × Ã → Ã by the formula:

Bh = hαq (
δ

p
q D − �

p
qmum

x

) (
δr

p D − �r
pkuk

x

) (
δβ

r D − �β
rsus

x

)

= hαβ D3 − 3hαq�β
qsus

x D2

+ 3

(
hαq

(
�

p
qs�

β
pr − ∂�

β
qs

∂ur

)
us

x ur
x − hαq�β

qsus
x2

)
D

+
(

hαq
(
2�a

qs
∂�

β
ar

∂u p
+ ∂�a

qs

∂ur
�β

ap − �a
qs�

b
ar�

β
bp − ∂2�

β
qs

∂ur∂u p

)
us

x ur
x u p

x

+ hαq
(
2�a

qs�
β
ar + �a

qr�
β
as − 2

∂�
β
qr

∂us
− ∂�

β
qs

∂ur

)
us

x ur
x2 − hαq�β

qsus
x3

)

(8)

In the formula, we have used the same conventions as above, i.e. assume summation
over repeating indices. Moreover, similar to formula (7), we did not writeH, H̄ in the
formula. They are assumed there as follows: the differential operator (8) is applied to
δH
δuα , the result is multiplied by δH̄

δuβ , and then we perform summation with respect to
the repeating indices α, β.

As in the case of order 1, the operation Bh given by (8) defines a Poisson bracket on
Ã. The construction of this Poisson bracket is independent on the choice of coordinate
system on U . However, in contrast to the case of order 1, the form (8) is not the most
general form for a local Poisson bracket on Ã of order 3. In fact, the word Darboux
indicates that in a certain coordinate system (flat coordinate system for h in our case),
the coefficients of the Poisson structure are constants.1 In this Darboux coordinate
system, the Christoffel symbols �i

jk are all zero and formula (8) reduces to2

Bh(H, H̄) = δH̄
δuβ hαβ D3

(
δH
δuα

)
, (9)

with the components hαβ of the metric h being constants.
Poisson structures P1 of order 1 are always Darboux–Poisson, but there are

examples, see,e.g. [21, 22, 37], of Poisson structures P3 of order 3 which are not
Darboux–Poisson.

Similar to the finite-dimensional case, a Poisson structureP and choice of a ‘Hamil-
tonian’H ∈ Ã allow one to define the Hamiltonian flow, which in our setup is a system
of n PDEs on n functions ui (t, x) of two variables, t and x . It is given by:

∂uβ

∂t = Pαβ
(

δH
δuα

)
. (10)

1 The terminology ‘Darboux–Poisson’ is motivated by [14].
2 In fact, (8) is just the formula (9) rewritten in an arbitrary (not necessarily ‘flat’) coordinate system.
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For example, in the case of the Poisson structure (6) for a Hamiltonian of degree 0
(i.e. for a function H on U ), the Hamiltonian flow is given by

∂uβ

∂t = gβα ∂2H
∂uα∂uγ uγ

x − �βα
γ

∂ H
∂uα uγ

x = ∂uγ

∂x ∇β∇γ H . (11)

Such systems of PDEs are called Hamiltonian systems of hydrodynamic type.
In our paper, we study compatibility of non-homogeneous Poisson structures of

type P3 + P1 such that the part of order 3 is Darboux–Poisson. That is, we have 4
nondegenerate Poisson structures: Ag and Aḡ constructed by flat metrics g and ḡ by
(6), andBh andBh̄ constructed by flat metrics h and h̄ by (8). We assume thatAg +Bh

and Aḡ + Bh̄ are (non-homogeneous) Poisson structures and ask the question when
these structures are compatible in the sense that any of their linear combinations is a
Poisson structure [32]. Since it is automatically skew-symmetric, the compatibility is
equivalent to the Jacobi identity for each linear combination ofAg +Bh andAḡ +Bh̄ .

The meaning of the word ‘nondegenerate’ relative to the Poisson structures under
discussion is as follows: the metrics g, ḡ, h, h̄ which we used to construct them are
nondegenerate, i.e. they are given by matrices with nonzero determinant. Additional
nondegeneracy condition, natural from the viewpoint of mathematical physics, is as
follows: the operators Rh = h̄h−1 and Rg = ḡg−1 have n different eigenvalues. Under
these conditions, we solve the problem completely: we find explicitly all pairs of such
Poisson structures.

Let us comment on the assumption that P3 is Darboux–Poisson. The compatibility
of two geometric Poisson bracketsP3+P1 and P̄3+P̄1 amounts to a highly overdeter-
mined PDE systemwhich is expected to imply additional conditions on the third-order
parts, from which Darboux–Poisson is a natural candidate. Indeed, in the literature,
we have not found any example of compatible Poisson brackets P3 +P1 and P̄3 + P̄1
such that P3 and P̄3 are not Darboux–Poisson and nonproportional. Even in the case
when P̄3 = 0, only few examples are known, namely the compatible brackets for
WDVV system from [23] (this example is three-dimensional and moreover, P1 = 0)
and a family of compatible bracketsP3+P1 and P̄1 constructed in [31] in dimensions
1 and 2.

Our main motivation came from the theory of integrable systems, in which many
famous integrable systems have been constructed and analysed using compatible Pois-
son brackets. Those of the formP3+P1, described and classified in the present paper,
generalise compatible Poisson brackets related to KdV, Harry Dym, Camassa-Holm
and Dullin-Gottwald-Holm equations. The applications of such new brackets will be
developed in a series of separate papers, of which the first one has already appeared,
[10]. In this paper, we have generalised the above equations for an arbitrary number
of components and have constructed new integrable PDE systems that have no low-
component analogues. Note that in [10], we used the simplest pencil of compatible
Poisson structures of type P3 +P1 (so-called AFF-pencil from Sect. 2.3); more com-
plicated pencils will lead to more new families of integrable multicomponent PDEs.

Let us also comment on a more physics-oriented approach to the construction
above, see, e.g. [14]. Physicists often view x as a space coordinate, and (u1, . . . , un)

as field coordinates. In the simplest situation, the values u1, . . . , un at x may describe
some physical values (e.g. pressure, temperature, charge, density, momenta). The total
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energy of the system is the integral over the x variable of some differential polynomial
in u1, . . . , un , and theHamiltonian functionsH ∈ A have then the physicalmeaning of
the density of the energy, i.e. of the integrand in the formula Energy(c) = ∫ H(̂c)dx .
Further, it is assumed that the physical system is either periodic in x , or one is interested
in fast decaying solutions as x → ±∞. The integration by parts implies then that the
differential polynomial is defined up to an addition of the total derivative in x which
allows one to pass to Ã = A/D(A). The natural analogue of the differential of a
function in this setup is the variational derivative δ

δuα , and actually, the equation (10)
is the natural analogue of the finite-dimensional equation u̇ = X H (where X H is the
Hamiltonian vector field of a function H ; it is given by X j

H = Pi j ∂ H
∂ui where P(u)i j

is the matrix of the Poisson structure; please note similarity with (10)). Generally,
it is useful to keep in mind the physical interpretation and analogy with the finite-
dimensional case.

1.3 Brief Description of Main Results, Structure of the Paper and Conventions

In this paper, we address the following problems:

(A) Description of compatible pairs, Bh + Ag and Bh̄ + Aḡ , of non-homogeneous
Poisson brackets in arbitrary dimension n. In Theorems 1 and 2,we give an
algebraic interpretation of this problem in terms of Frobenius algebras and reduce
it to classification of Frobenius pencils, i.e. linear families of Frobenius algebras.
We do it under the following nondegeneracy assumption: the (1,1)-tensor Rh =
h̄h−1 (connecting h and h̄) has n different eigenvalues.

(B) Description and classification of Frobenius pencils. We reduce this purely alge-
braic problem to a differential geometric one (explicitly formulated in Sect. 6.1)
and completely solve it using geometric methods. The nondegeneracy assump-
tion is that the (1,1)-tensor Rg = ḡg−1 (connecting g and ḡ) has n different
eigenvalues. Namely, we show that each Frobenuis pencil in question is a sub-
pencil of a certain maximal pencil. We explicitly describe all maximal pencils,
see Theorems 3, 4 and 5.

(B1) A generic in a certain sense maximal pencil corresponds to the well-known
multi-Poisson structure discovered byM.Antonowitz andA. Fordy in [1] and
studied by E. Ferapontov and M. Pavlov [20], see also [2, 3, 9]. We refer to
it as to Antonowitz-Fordy-Frobenius pencil, AFF-pencil. In Theorem 3, we
show that, under an additional genericity assumption, every two-dimensional
Frobenius pencil is contained in the AFF-pencil .

(B2) Our main result, Theorems 4 and 5 , gives a complete description in the most
general case. Theorem 4 constructs all maximal Frobenius pencils using
AFF-pencils as building blocks. Theorem 5 states that each Frobenuis pencil
is a subpencil of a certain maximal pencil from Theorem 4. These maximal
pencils are uniquely determined by some combinatorial data, directed rooted
in-forest F with edges labelled by numbers λα’s and vertices labelled by
natural numbers whose sum is the dimension of the manifold. The AFF-
pencil corresponds to the simplest case, when F consists of a single vertex. To
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the best of our knowledge, the other Frobenius pencils and the corresponding
bi-Poisson structures are new.

In addition, we show that common Frobenius coordinate systems admit an ele-
gant invariant description in terms of the Nijenhuis pencil L, see Theorem 4.

(C) Dispersive perturbations of compatible Poisson brackets of hydrodynamic type.
The general question is as follows: given two compatible Poisson structuresAg

andAḡ of the first order, can one find flat metrics h and h̄ such that Bh +Ag and
Bh̄ +Aḡ are compatible Poisson structures? This passage from a Poisson bracket
of hydrodynamic type to a non-homogeneous Poisson bracket of higher order
is called dispersive perturbation in literature. We study dispersive perturbations
of bi-Hamiltonian structures assuming that the third-order terms Bh and Bh̄ are
Darboux–Poisson.
We describe all such perturbations under the assumption that both Rh = h̄h−1

and Rg = ḡg−1 have n different eigenvalues, and in particular, answer a question
from [20] on dispersive perturbations of the AFF-pencil (Remark 3.2).

The results of this paper also have the following unexpected application. It turns out
that the diagonal coordinates for the operator Rg = ḡg−1 are orthogonal separating
coordinates for the metrics g. In [11], we show that every orthogonal separating coor-
dinates for a flat metric g of arbitrary signature can be constructed in this way. Namely,
we reduce PDEs that define orthogonal separating coordinates to those studied in the
present paper. This leads us to an explicit description of all orthogonal separating coor-
dinates for metrics of constant curvature and thus solves a long-standing and actively
studied problem in mathematical physics, see [11] for details.

The structure of the paper is as follows. In Sect. 2, we start with basic facts and
constructions related to compatibility of homogeneous Poisson structures of order 1
and 3, then give description of compatible non-homogeneous structures Bg +Ah and
Bh̄ +Aḡ in terms of Frobenius algebras (Theorems 1 and 2 ), leading us to the classi-
fication problem for the so-called Frobenius pencils. We conclude this section with an
example of AFF-pencil. The AFF-pencil plays later a role of a building block in our
general construction. Moreover, it provides an answer under a minor nondegeneracy
assumption, see Theorem 3 in Sect. 3, where we also discuss a question of Ferapontov
and Pavlov. Theorem 3 will be proved in Sect. 6.

In Sect. 4, we formulate the answer to the classification problem in its full generality.
Theorem 5 (proved in Sect. 7) gives a description of Frobenius pencils in the ‘diagonal’
coordinates for g, ḡ, and Theorem 4 (proved in Sect. 8) describes the corresponding
Frobenius coordinates. In Sect. 4.2, we discuss the case of two blocks and give explicit
formulas, see Theorem 6.

All objects in our paper are assumed to be of class C∞; actually,our results show
that most of them are necessarily real analytic.

Throughout the paper, we use Ag and Bh to denote the Poisson structures of order
1 and 3 given by (7) and (8), respectively. Unless otherwise stated, the metrics we deal
with (such as g, h, ḡ, h̄, . . . ) are contravariant.
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2 Non-homogeneous Compatible Brackets and Frobenius Algebras

2.1 Basic Facts and Preliminary Discussion

Recall that we study the compatibility of two Poisson structuresBh +Ag andBh̄ +Aḡ ,
constructed by flat metrics h, h̄, g, ḡ; our goal is to construct all of them. Recall that by
definition,it means that for any constants λ, λ̄, the linear combination λ(Bh + Ag) +
λ̄(Bh̄ +Aḡ) is a Poisson structure. Using that B andA that have different orders, one
obtains (see, e.g. [14])

Fact 1 Let h, h̄, g and ḡ be flat metrics. If Bh + Ag and Bh̄ + Aḡ are compatible
Poisson structures, then the following holds:

(i) Ag and Aḡ are compatible,
(ii) Bh and Bh̄ are compatible,

(iii) Ag and Bh are compatible (as well as Aḡ and Bh̄ ).

This Fact naturally leads us to considering pencils (= linear combinations of met-
rics) λh + λ̄h̄ and λg + λ̄ḡ. We need the following definition:

Definition 1 (Dubrovin, [18, Definition 0.5]) Two contravariant flat metrics g and
ḡ are said to be Poisson compatible, if for each (nondegenerate) linear combination
ĝ = λg + λ̄ḡ, λ, λ̄ ∈ R, the following two conditions hold:

1. ĝ is flat;
2. the contravariant Christoffel symbols for g, ḡ and ĝ are related as

�̂αβ
s = λ�αβ

s + λ̄�̄αβ
s . (12)

In this case, the family of metrics {λg + λ̄ḡ}λ,λ̄∈R is said to be a flat pencil of metrics.

The next fact explains the relationship between Poisson compatibility of flatmetrics
and compatibility of the corresponding Poisson structures.

Fact 2 Let h, h̄, g and ḡ be flat metrics. Then, the following statements are true:

(i) Ag and Aḡ are compatible if and only if g and ḡ are Poisson compatible.
(ii) If Bh and Bh̄ are compatible, then h and h̄ are Poisson compatible.

(iii) If Bh and Ag are compatible, then h and g are Poisson compatible.

The (i)-part of Fact 2 is in [16], see also [19, 33, 34]. In view of formula (7), the
two conditions from Definition 1 are nothing else but a geometric reformulation of the
compatibility condition for Poisson structures of order one, which explains the name
Poisson compatible. The (ii)-part is an easy corollary of [14, Theorem 3.2], see also
proof of Theorem 3 below. The (iii)-part follows from [29, Theorem 2.2].

Notice that unlike the case of Poisson structures of order 1, not every pair of Poisson-
compatible metrics h and h̄ (resp. h and g) leads to compatible Poisson structures of
higher order Bh and Bh̄ as in (ii) (resp. Bh and Ag as in (iii)). Some extra conditions
are required. These conditions will be explained below in Fact 4 (for h and g leading
to compatible Bh and Ag) and Theorem 3 (for h and h̄ leading to compatible Bh and
Bh̄).

Let us also recall the relation of compatible metrics to Nijenhuis geometry:
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Fact 3 (see [19, 33, 34]) If g and ḡ are Poisson compatible, then the (1,1)-tensor
R = ḡg−1 is a Nijenhuis operator. Moreover, if g is flat, R is a nondegenerate
Nijenhuis operator with n different eigenvalues, and ḡ := Rg is flat, then ḡ is Poisson
compatible with g.

As already explained, the condition thatBh +Ag is a Poisson structure is a nontrivial
geometric condition on the flat metrics h and g, stronger than Poisson compatibility
in the sense of Definition 1. This condition was studied in literature (see, e.g. [4])
and it was observed that the compatibility of homogeneous Poisson structures of
order 3 and 1 is sometimes related to certain algebraic structure. In our case, under
the assumption that Bh is Darboux–Poisson, the algebraic structure which pops up
naturally is Frobenius algebra.

Definition 2 Let (a, �) be an n-dimensional commutative associative algebra over R

endowed with a nondegenerate symmetric bilinear form b( , ). The pair
(
(a, �), b

)
is

called a Frobenius algebra, if

b(ξ�η, ζ ) = b(ξ, η�ζ ), for all ξ, η, ζ ∈ a. (13)

The form b is then called a Frobenius form.

Notice that we do not assume that a is unital which makes our version slightly more
general than the one used in the theory of Frobenius manifolds (see,e.g. [18]), or in
certain branches of Algebra. The bilinear form b may have any signature.

Condition (13) is linear in b, so all Frobenius forms (if we allow some of them to
be degenerate) on a given commutative associative algebra form a vector space.

Fix a basis e1, . . . , en in a. Below we will interpret a as the dual (Rn)∗ and for this
reason, we interchange lower and upper indices. Consider the structure constants ai j

k

defined by ei�e j = ai j
k ek and coefficients bi j := b(ei , e j ) of the Frobenius form b.

The algebra a is Frobenius if and only if ai j
k and bi j satisfy the following conditions:

ai j
k = a ji

k (commutativity),

ai j
α aαr

k = aiα
k a jr

α (associativity),

bαr ai j
α = biαa jr

α (Frobenius condition).

(14)

The dual a∗ has a natural structure of an affine spaceR
n with ui � ei being coordinates

on a∗ � R
n . Thus, on a∗, we can introduce the contravariant metric gαβ(u) = bαβ +

aαβ
s us which is known to be flat (e.g. [29, Lemma 4.1]; the result also follows from [4]).
What is special here is not the metric g itself, but the coordinate system u1, . . . , un

which establishes a relationship between g and the Frobenius algebra a. This leads us
to

Definition 3 Let g be a flat metric. We say that u1, . . . , un is a Frobenuis coordinate
system for g if

gαβ(u) = bαβ + aαβ
s us, (15)
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where aαβ
s are structure constants of a certain Frobenius algebra a and b = (bαβ) is a

(perhaps degenerate) Frobenius form for a .

Frobenius coordinates possess the following important property that can be easily
checked.

Fact 4 (see [4] and [29]) Let g be a contravariant metric and u1, . . . , un a coordinate
system. The following two conditions are equivalent:

1. In coordinates u1, . . . , un, the contravariant Christoffel symbols �
αβ
s of g are

constant and symmetric in upper indices.
2. u1, . . . , un are Frobenius coordinates, i.e. g is given by (15).

If either of these conditions holds, then g is flat and �
αβ
s = − 1

2
∂gαβ

∂s .

The relation of Frobenius coordinate systems to our problem is established by the
following remarkable and fundamental statement:

Fact 5 [29, Theorem 2.2] Let g and h be two flat metrics. Then Bh +Ag is Poisson if
and only if there exists a coordinate system u1, . . . , un such that the following holds:

1. gαβ(u) = bαβ +aαβ
s us, where aαβ

s are structure constants of a certain Frobenius
algebra a, and b is a Frobenius form for a;

2. the entries hαβ of h in this coordinate system are constant;
3. h = (

hαβ
)

is a Frobenius form for a, that is, hαqaβγ
q = hγ qaβα

q .

This fact was independently obtained by P.Lorenzoni and R.Vitolo in their unpub-
lished paper. The ‘if’ part of the statement follows from [41] by I.Strachan and
B.Szablikowski, see also [15, Theorem 5.12].

The coordinates (u1, . . . , un) from Fact 5 will be called Frobenius coordinates for
the non-homogeneous Poisson structureBh+Ag . Of course, Frobenius coordinates are
not unique; indeed, they remain to beFrobenius after any affine coordinate change.This
is the only freedom since the components of h are constant in Frobenius coordinates.

2.2 Reduction of our Problem to an Algebraic One and Frobenius Pencils

Definition 4 Let (a, �) and (ā, �̄) be Frobenius algebras defined on the same vector
space V and h, h̄ : V × V → R the corresponding Frobenius forms. We will say that
(a, h) and (ā, h̄) are compatible if the operation

ξ, η �→ ξ�η + ξ �̄ η, ξ, η ∈ V , (16)

defines the structure of a Frobenius algebra with the Frobenuis form h + h̄.
Similarly, if a and ā are Frobenius algebras each of which is endowed with two

Frobenius forms b, h and b̄, h̄, respectively, then we say that the triples (a, b, h) and
(ā, b̄, h̄) are compatible if (16) defines a Frobenius algebra for which b + b̄ and h + h̄
are both Frobenuis forms.

Formally, the definition requires that b + b̄ and h + h̄ are nondegenerate. It is
not essential. Indeed, if the operations � and �̄ are associative, and also the operation
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�̂ := � + �̄ given by (16) is associative, then any linear combination λ� + λ̄�̄ is
associative. Moreover, if b̂ := b + b̄, possibly degenerate, satisfies the condition (13)
for �̂, then the linear combination λb+ λ̄b̄ also satisfies the condition (13) with respect
to λ� + λ̄�̄. Thus, passing to a suitable linear combination, we can make b̂ and also ĥ
nondegenerate.

In view of Facts 4 and 5, compatible Frobenius triples (a, b, h) and (ā, b̄, h̄)

naturally define compatible Poisson structuresBg +Ah andBḡ+Ah̄ . The next theorem
shows that the converse is also true under the assumption that Rh = h̄h−1 has n
different eigenvalues.

Theorem 1 Consider two non-homogeneous Poisson structures Bh +Ag and Bh̄ +Aḡ

and suppose that Rh = h̄h−1 has n different eigenvalues.
Then, they are compatible if and only if (g, h) and (ḡ, h̄) admit a common Frobenius

coordinate system u1, . . . , un in which

1. hαβ and h̄αβ are constant,
2. gαβ(u) = bαβ + aαβ

s us and ḡαβ(u) = b̄αβ + āαβ
s us ,

3. (a, b, h) and (ā, b̄, h̄) are compatible Frobenius triples (here a and ā denote the
algebras with structure constants aαβ

s and āαβ
s , respectively).

Corollary 2.1 In more explicit terms, compatibility of Bh +Ag and Bh̄ +Aḡ such that
Rh = h̄h−1 has n different eigenvalues, is equivalent to reducibility of these opera-
tors, in an appropriate coordinate system u1, . . . , un, to the following simultaneous
canonical form

Bh + Ag = hαβ D3 + bαβ D + aαβ
s us D + 1

2 aαβ
s us

x ,

Bh̄ + Aḡ = h̄αβ D3 + b̄αβ D + āαβ
s us D + 1

2 āαβ
s us

x ,

where hαβ, h̄αβ, bαβ, b̄αβ, aαβ
s , āαβ

s are constants symmetric in upper indices and sat-
isfying the conditions:

aαβ
q aqγ

s = aγβ
q aqα

s , āαβ
q āqγ

s = āγβ
q āqα

s , āαβ
q aqγ

s + aαβ
q āqγ

s = āγβ
q aqα

s + aγβ
q āqα

s ,

hαq aβγ
q = hγ q aβα

q , bαq aβγ
q = bγ qaβα

q , h̄αq āβγ
q = h̄γ q āβα

q , b̄αq āβγ
q = b̄γ q āβα

q ,

h̄αq aβγ
q + hαq āβγ

q = h̄γ qaβα
q + hγ q āβα

q , b̄αq aβγ
q + bαq āβγ

q = b̄γ q aβα
q + bγ q āβα

q .

(17)

Notice that the coordinates u1, . . . , un from Theorem 1 are just flat coordinates for
h (or equivalently, for h̄ as these metrics have common flat coordinates by Theorem 1).

We see that Theorem 1 reduces the problem of description and classification of
pairs of compatible Poisson structures Bh + Ag and Bh̄ + Aḡ such that Rg = h̄h−1

has n different eigenvalues to a purely algebraic problem. As we announced above,
we will reformulate it in differential geometric terms in Sect. 6.1, and solve it under
the assumption that Rg = ḡg−1 has n different eigenvalues.

Wehavenot succeeded in solving the problembypurely algebraicmeans.Likemany
other problems in Algebra, it reduces to a system of quadratic and linear equations (see
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relations (17)). For example, classification of Frobenius algebras is a problem of the
same type. This problem is solved under the additional assumption that the Frobenius
form is positive definite in [5] and, in our opinion, is out of reach otherwise. Of course,
for a fixed dimension, one can find complete or partial answers. In particular, in [36],
it is shown that up to dimension 6, there is a finite number of isomorphism classes of
commutative associative algebras and for n > 6,the number of classes is infinite. In
[27],the classification of nilpotent commutative associative algebras up to dimension
6 is given. See also [31, 41].

In the situation discussed in Theorem 1, consider the pencil of first-order Poisson
structures Aλg+μḡ , which is sometimes referred to as quasiclassical limit [20] of the
non-homogeneous pencil Bλh+μh̄ +Aλg+μḡ . We can ask the inverse question: Given
a flat pencil {λg + μḡ}, does the corresponding Poisson pencil {Aλg+μḡ} admit a
perturbation with nondegenerate Darboux–Poisson structures of order three of general
position?

Theorem 1 basically shows that the main condition for the related quadruple of
metrics (h, h̄, g, ḡ) is the existence of a common Frobenius coordinate system for g
and ḡ. Indeed, if this condition holds true and this Frobenuis coordinate system is
given, then the other two metrics h and h̄ can be ‘reconstructed’ by solving a system
of linear equations. More precisely, we have the following

Theorem 2 Let g and ḡ be Poisson compatible flat metrics that admit a common
Frobenius coordinate system u1, . . . , un, that is

gαβ(u) = bαβ + aαβ
s us and ḡαβ(u) = b̄αβ + āαβ

s us,

where (a, b) and (ā, b̄) are Frobenius pairs (here a and ā denote the algebras with
structure constants aαβ

s and āαβ
s , respectively). Then

(i) the corresponding Frobenius algebras are compatible,
(ii) there exist nondegenerate metrics h and h̄ (with hαβ and h̄αβ being constant in

coordinates u1, . . . , un), such thatBh +Ag andBh̄ +Aḡ are compatible Poisson
structures,

(iii) in Frobenius coordinates u1, . . . , un, the (constant) metrics h and h̄ can always
be chosen in the form

hαβ = m0 bαβ + aαβ
s ms and h̄αβ(u) = m0 b̄αβ + āαβ

s ms,

(m1, . . . , mn) ∈ R
n, m0 ∈ R. (18)

2.3 AFF-Pencil

Consider a real affine space V � R
n with coordinates u1, . . . , un and define the

(Nijenhuis) operator L and contravariant metric g0 on it by:

123



193 Page 14 of 52 A. V. Bolsinov et al.

L =

⎛
⎜⎜⎜⎜⎝

u1 1 0 . . . 0
u2 0 1 . . . 0

. . .

un−1 0 0 . . . 1
un 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠

, g0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 1
0 0 . . . 0 1 −u1

0 0 . . . 1 −u1 −u2

. .
.

0 1 . . . −un−4 −un−3 −un−2

1 −u1 . . . −un−3 −un−2 −un−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (19)

Next, introduce n+1 contravariant metrics gi = Li g for i = 0, . . . , n. In matrix form,
we have

gi =
(

an−i 0
0 bi

)
, (20)

where an−i is a (n − i) × (n − i) matrix

an−i =

⎛
⎜⎜⎜⎜⎝

0 . . . 0 0 1
0 . . . 0 1 −u1

0 . . . 1 −u1 −u2

. . .

1 . . . −un−i−3 −un−i−2 −un−i−1

⎞
⎟⎟⎟⎟⎠

and bi is i × i matrix of the form

bi =

⎛
⎜⎜⎜⎜⎝

un−i+1 un−i+2 . . . un−1 un

un−i+2 un−i+3 . . . un 0
. . .

un−1 un . . . 0 0
un 0 . . . 0 0

⎞
⎟⎟⎟⎟⎠

.

In particular, g0 = an and gn = bn.
The metrics g0, g1, . . . , gn are flat and pairwise compatible, so that they generate

an n + 1-dimensional flat pencil with remarkable properties, see,e.g. [9, 20]. We can
write this pencil as

{P(L)g0}, whereP(·)is an arbitrary polynomial of degree ≤ n (21)

and L and g0 are given by (19). We will refer to it as an AFF-pencil. This pencil was
discovered, in the form (19) and (20), by M. Antonowicz and A. Fordy [1]. As we
see, the components of each metric gi are affine functions, moreover, the coordinates
(u1, . . . , un) are common Frobenius coordinates for all of them.

The corresponding Frobenius algebras are easy to describe. Consider two well-
known examples:

• the algebra an of dimension n with basis e1, e2, . . . , en and relations

ei�e j =
{

ei+ j , if i + j ≤ n,

0 otherwise.
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Notice that an can be modelled as the matrix algebra Span(J , J 2, . . . , J n), where
J is the nilpotent Jordan block of size (n+1)×(n+1). It contains no multiplicative
unity element.

• the algebra bn of dimension n with basis e1, e2, . . . , en and relations

ei�e j =
{

ei+ j−1, if i + j − 1 ≤ n,

0 otherwise.

This algebra can be understood as the unital matrix algebra Span(Id, J , J 2, . . . ,

J n−1) where J is the nilpotent Jordan block of size n ×n. The difference from the
previous example is that bn , by definition, contains the identity matrix. Equiv-
alently, we can define bn as the algebra of truncated polynomials R[x]/〈xn〉
(similarly an � 〈x〉/〈xn+1〉).
It is straightforward to see that themetric gn = bn is related to the Frobenius algebra

bn . Similarly g0 = an is related to the Frobenius algebra an (this becomes obvious
if we reverse the order of basis vectors and multiply each of them by −1). Hence,
formula (20) shows that the Frobenius algebra associated with gi is isomorphic to the
direct sum an−i ⊕ bi .

It is interesting that a genericmetric g = P(L)g0 from theAFF-pencil (21), i.e. such
that P(L) has n distinct roots, corresponds to the direct sumR⊕· · ·⊕R⊕C⊕· · ·⊕C,
where each copy of R relates to a real root and each copy of C relates to a pair of
complex conjugate roots of P(·).

It is a remarkable fact that for each gi,we can find a partner hi such that Bhi + Agi
is a Poisson structure and all these structures are pairwise compatible. The (constant)
metrics hi take the form

hi = (gi)m̄,m0 , m̄ = (m1, . . . , mn) ∈ R
n, m0 ∈ R, (22)

where (gi)m̄,m0 is obtained from the matrix gi(u) by replacing us with ms and all 1’s
with m0. In this way, we obtain an (n + 1)-dimensional pencil of non-homogeneous
Poisson structures generated by Bhi + Agi :

{
n∑

i=0

ci
(Bhi + Agi

)}

ci ∈R
(23)

Alternatively, the pencil (23) can be described as follows. Fix m̄ = (m1, . . . , mn) ∈
R

n , m0 ∈ R and let L(m̄) denote the operator with constant entries obtained from
L = L(u) by replacing ui with constants mi ∈ R. Similarly, g0(m̄) denotes the metric
with constant coefficients obtained from g0 by replacing ui with the same constants
mi ∈ R.

Then for g = P(L)g0, we can define its partner h (metric with constant entries) as

h = m0P
(

L
(

1
m0 m̄

))
g0

(
1

m0 m̄
)
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It can be easily checked that the correspondence (m0, m1, . . . , mn) �→ h defined by
this formula is linear so that it makes sense for m0 = 0 (the denominators cancel out).
Then the pencil (23) can be, equivalently, defined as

{
B

m0P
(

L
(

1
m0 m̄

))
g0

(
1

m0 m̄
) + AP(L)g0

}

deg P(·)≤n
. (24)

Notice that such a pencil is not unique, as the above construction depends on
n + 1 arbitrary parameters m0, m1, . . . , mn . In other words, in (24), the polynomial
P(·) serves as a parameter of the bracket within the AFF-pencil, whereas (m0, m̄)

parametrise dispersive perturbations of this pencil.

Remark 2.1 For our purposes below,it will be convenient to rewrite this pencil in
another coordinate system by taking the eigenvalues of L as local coordinates
x1, . . . , xn . In these coordinates, g0 and L from (19) take the following diagonal
form (see, e.g. [20, p. 214] or [6, §6.2])3:

gLC =
n∑

i=1

⎛
⎝∏

s �=i

(xi − xs)

⎞
⎠

−1 (
∂

∂xi

)2
, L = diag(x1, . . . , xn), (25)

so that the AFF-pencil (21) becomes diagonal too:

{P(L)gLC}, where P(·) is a polynomial of degree ≤ n. (26)

We also notice that the transition from the diagonal coordinates x to Frobenius coor-
dinates u is quite natural: the coordinates ui are the coefficients σi of the characteristic
polynomial χL(t) = det(t · Id−L) = tn − σ1tn−1 − σ2tn−2 − · · · − σn , so that, up
to sign, ui are elementary symmetric polynomials in x1, . . . , xn .

The AFF-pencil provides a lot of examples of compatible flat metrics g and ḡ that
admit a common Frobenius coordinate system: one can take any two metrics from the
pencil (21) or, equivalently, (26).

3 Compatible Flat Metrics with a Common Frobenius Coordinate
System: Generic Case

Theorems 1 and 2 reduce the compatibility problem for two Poisson structures of
the form Bh + Ag to a classification of all pairs of metrics g and ḡ admitting a
common Frobenius coordinate system. The next theorem solves this problem under
the standard assumption that Rg = ḡg−1 has n different eigenvalues and one minor
additional condition.

3 The letters LC in gLC refer to Levi-Civita. The metric gLC played the key role in his classification of
geodesically equivalent metrics [30]. See also [9] for discussion on the relationship between geodesically
equivalent and Poisson-compatible metrics.
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Theorem 3 Let g and ḡ be compatible flat metrics that admit a common Frobenius
coordinate system. Assume that the eigenvalues of the operator Rg = ḡg−1 are all
different and in the diagonal coordinates (such that Rg is diagonal), every diagonal
component of g depends on all variables. Then the flat pencil λg + μḡ is contained
in the AFF-pencil, in other words, there exists a coordinate system (x1, . . . , xn) such
that

g = P(L)gLC and ḡ = Q(L)gLC.

for some polynomials P(·) and Q(·) of degree ≤ n and gLC and L defined by (25).
Moreover, if n ≥ 2 and P(·) and Q(·) are not proportional, then the common

Frobenius coordinate system for g = P(L)gLC and ḡ = Q(L)gLC is unique up to an
affine coordinate change.

Theorem 3 will be proved in Sect. 6. The uniqueness part will be explained in
Sect. 7.3, see Remark 7.1.

Remark 3.1 In Theorem 3, we allow some of the eigenvalues Rg to be complex. In this
case, we think that a part of the diagonal coordinates (x1, . . . , xn) is also complex-
valued. For example, the coordinates x1, . . . , xk maybe real-valued, and the remaining

coordinates xk+1 = z1, xk+2 = z̄1,…, xn−1 = z
n−k
2 , xn = z̄

n−k
2 , where ‘ ¯ ’ means

complex conjugation, are complex-valued. In this case,(26) gives us a well-defined
(real) metric gLC and a (real) Nijenhuis operator L .

The genericity condition in Theorem 3 is that every diagonal component of g
depends on all variables. In Theorems 4, 5 below, we will solve the problem in full
generality, without assuming this or any other genericity condition.

Remark 3.2 In [20, §5] E. Ferapontov and M. Pavlov asked whether dispersive pertur-
bations of the pencil (21)with g0 and L given by (25) other than those described in Sect.
2.3 are possible. Theorem 3 leads to a negative answer under the additional assump-
tion that the dispersive perturbation is in the class of nondegenerate Darboux–Poisson
structures of order 3. Indeed, according to Theorem 1, every dispersive perturbation
λ(Bh + Ag) + μ(Bh̄ + Aḡ) of the pencil λAg + μAḡ can be reduced to a simple
normal form in a common Frobenius coordinate system for g and ḡ (assuming that
Rh = h̄h−1 has different eigenvalues). Moreover, in this coordinate system, h and
h̄ are constant and represent Frobenius forms for the corresponding Frobenius alge-
bras a and ā. Since by Theorem 3, such a coordinate system is unique, it remains to
solve a Linear Algebra problem of choosing suitable forms h and h̄, satisfying three
conditions (cf. (17)):

h(ξ � η, ζ ) = h(ξ, η � ζ ),

h̄(ξ �̄ η, ζ ) = h̄(ξ, η �̄ ζ ),

h̄(ξ � η, ζ ) + h(ξ �̄ η, ζ ) = h̄(ξ, η � ζ ) + h(ξ, η �̄ ζ ),

(27)

It is straightforward to show for a generic pair g, ḡ of metrics from the AFF-pencil,
the forms h and h̄ are defined by n +1 parameters m0, m1, . . . , mn as in (24). No other
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solutions exist. In particular, formula (24) describes all possible dispersive perturba-
tions of the AFF-pencil by means of nondegenerate Darboux–Poisson structures of
order 3. Moreover, this conclusion holds for any generic two-dimensional subpencil.

4 Compatible Flat Metrics with a Common Frobenius Coordinate
System: General Case

4.1 General Multi-block Frobenius Pencils

Let us now discuss the general case without assuming that in diagonal coordinates,
every diagonal component of g depends on all variables.

Similar to Theorem 3, the metrics g and ḡ will belong to a large Frobenius pencil
built up from several blocks each of which has a structure of an (extended) AFF pencil.
We start with constructing a series of such pencils.

We first divide our diagonal coordinates into B blocks of positive dimensions
n1, . . . , nB with n1 + · · · + nB = n:

(x11 , . . . , xn1
1︸ ︷︷ ︸

X1

, . . . , x1B , . . . , xnB
B︸ ︷︷ ︸

X B

). (28)

Next, we consider a collection of nα-dimensional Levi-Civita metrics gLC
α and nα-

dimensional operators Lα (as in Theorem 3 but now for each block separately):

gLC
α =

nα∑
s=1

⎛
⎝∏

j �=s

(xs
α − x j

α)

⎞
⎠

−1 (
∂

∂xs
α

)2
, Lα = diag(x1α, . . . , xnα

α ). (29)

Then we introduce a new block-diagonal metric ĝ

ĝ = diag(ĝ1, . . . , ĝB) with ĝα =
∏
s<α

(
1

det(λsα · Id−Ls)

)csα

gLC
α , (30)

where csα = 0 or 1. The values of the discrete parameters csα and numbers λsα are
determined by some combinatorial data as explained below.

Finally, we consider the pencil of (contravariant) metrics of the form

{L̂ ĝ | L̂ ∈ L} (31)

where L is a family (pencil) of block-diagonal operators of the form

L̂ = diag
(
P1(L1), P2(L2), . . . , PB(L B)

)
.

where Pα(·) are polynomials with deg Pα ≤ nα + 1 treated as parameters of this
family. The coefficients of the polynomials Pα are not arbitrary but satisfy a collection
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Fig. 1 A 6 × 6 matrix cαβ and
the corresponding in-forest. The
upper tree corresponds to the
upperleft 4 × 4-block, the lower
tree corresponds to the
downright 2 × 2-block

1 2

3

4

5 6

of linear relations involving coefficients from different polynomials so that this pencil,
in general, is not a direct sum of blocks (although, direct sum is a particular example).
Notice that L is a Nijenhuis pencil whose algebraic structure is quite different from
that of the pencil {P(L)} from Theorem 3.

The numbers csα , λsα and relations on the coefficients of Pα’s are determined by a
combinatorial object, an oriented graph F with special properties, namely, a directed
rooted in-forest (see [26] for a definition) whose edges are labelled by numerical
marks λα . This graph may consists of several connected components, each of which
is a rooted tree whose edges are oriented from its leaves to the root. An example is
shown in Fig. 1.

Each vertex of F is associated with a certain block of the above decomposition (28)
and labelled by an integer number α ∈ {1, . . . , B}. The structure of a directed graph
defines a natural strict partial order (denoted by ≺) on the set {1, . . . , B}: for two
numbers α �= β ∈ {1, . . . , B}, we set α ≺ β, if there exists an oriented way from β to
α. For instance, for the graph shown on Fig. 1, we have 1 ≺ 3, 2 ≺ 4, 5 ≺ 6. Without
loss of generality, we can and will always assume that the vertices of F are labelled in
such a way that α ≺ β implies α < β.

Notice that the vertices of degree one are of two types, roots and leaves: α is a
root if there is no β such that β ≺ α and, conversely, β is a leaf if there is no β such
that α ≺ β. Notice that roots of degree ≥ 2 are also allowed, whereas all leaves have
degree 1. We say α = next(β), if α ≺ β and there is no γ with α ≺ γ ≺ β. In the
upper tree of Fig. 1,the root is 1, the leaves are 3 and 4 and we have: 1 = next(2) and
2 = next(3), 2 = next(4).

The numbers csα in (30) are now defined from F as follows:

csα =
{
1, if s ≺ α,

0, otherwise.
(32)

Recall that in our assumptions, s ≺ α implies s < α so that the B×B-matrix csα is
upper triangular with zeros on the diagonal, see Fig. 1.

The parameters λsα are defined as follows. For each vertex α that is not a root,
there is exactly one out-going edge which we will denote by eα . Notice that the
correspondence α �→ eα is a bijection between the set of edges of F and the (sub)set
of vertices which are not roots. To each edge eα ,we now assign a number λα (these
numbers will serve as parameters of our construction) and set

λsα = λβ, where s ≺ β ≺ α and s = next(β) (or β = α, if s = next(α)). (33)
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Such β exists and is unique, if s ≺ α, i.e. csα = 1. Otherwise, csα = 0 and the value
of λsα plays no role in (30).

Remark 4.1 The above definitions of parameters csα and λsα are convenient to make
our formulas shorter, but do not quite clarify the meaning of (30) in terms of the graph
F. Equivalently, formula (30) can be rewritten as follows:

ĝ = diag(ĝ1, . . . , ĝB) with ĝα = fα · gLC
α ,

where the function fα is defined by the oriented path from the vertex α to a certain
root β:

β = α0
λα1←− α1

λα2←− . . .
λαk−1←− αk−1

λαk←− αk = α,

each edge of which is endowed with a number λαi , i = 1, . . . , k. Namely, we set

fα =
k∏

i=1

1

det(λαi · Id−Lαi−1)
,

which coincides with the factor in front of gLC
α in formula (30) written in terms of csα

and λsα .

Finally, for a vertex α,we denote the coefficients of the corresponding polynomial

Pα by Pα(t) = α
a0 + α

a1t + · · · + α
anα+1tnα+1. Then the conditions on the coefficients

Pα(t) are

(i) If α is a root, then
α
anα+1 = 0, i.e. deg Pα ≤ nα .

(ii) If α = next(β), then λβ is a root of Pα and
β
anβ+1 = P ′(λβ), where P ′(t)

denotes the derivative of P(t).
(iii) If α = next(β) and α = next(γ ) with λβ = λγ = λ, β �= γ , then λ is a double

root of Pα (in view of (ii) this automatically implies
β
anα+1 = γ

anγ +1 = 0).

Remark 4.2 Each of the above conditions is linear in the coefficients of Pα’s. However,
(i)–(iii) may imply that Pα = 0 for some α. This happens, for instance, if the vertex α

has too many neighbours γi such that α = next(γi ), i = 1, . . . , k. Then all λγi must
be roots of Pα due to (ii). However, in view of (i), deg Pα ≤ nα + 1. If nα + 1 < k
and λγi are all different, then Pα cannot have k different roots unless Pα = 0. Strictly
speaking, such a situation should be excluded as the corresponding metrics turn out to
be degenerate at every point. However, from the algebraic point of view,we still obtain
an example of a good Frobenius pencil.

We also notice that the shift Lα �→ Lα + cα Id in any individual block leads to an
isomorphic pencil. In particular, if at a certain vertex α of F we add the same number
cα simultaneously to all numerical parameters λβ on the incoming edges, we get an
isomorphic pencil.
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This completes the description of the pencil (31) of (contravariant) metrics and we
can state our next result.

Theorem 4 The pencil (31) (with csα defined by (32), λsα defined by (33) and coeffi-
cients of Pα satisfying (i)–(iii)) is Frobenius. In other words, all the metrics

g = L̂ ĝ = diag
(
P1(L1)ĝ1, . . . , PB(L B)ĝB

)
with ĝα =

∏
s<α

(
1

det(λsα · Id−Ls)

)csα

gLCα ,

(34)

are flat, Poisson compatible and admit a common Frobenius coordinate system

(u1, . . . , un) = (u1
1, . . . , un1

1︸ ︷︷ ︸
U1

, . . . , u1
B , . . . , unB

B︸ ︷︷ ︸
UB

) (35)

which is defined as follows. Let σ 1
α , . . . , σ

ni
α denote the coefficients of the characteristic

polynomial of Lα

χLα (t) := det
(
t Idnα×nα −Lα

) = tnα − σ 1
α tnα−1 − σ 2

α tnα−2 − · · · − σ nα
α , α = 1, . . . , B.

Then

uk
1 = σ k

1 , k = 1, . . . , n1,

uk
2 = (

det(λ12 Id−L1)
)c12 σ k

2 , k = 1, . . . , n2,

uk
3 = (

det(λ13 Id−L1)
)c13(det(λ23 Id−L2)

)c23 σ k
3 , k = 1, . . . , n3,

. . .

uk
B = ∏

s<B

(
det(λs B Id−Ls)

)cs B σ k
B, k = 1, . . . , nB .

(36)

Theorem 4 will be proved in Sect. 8.
The advantage of the formulas for Frobenius coordinates in Theorem 4 is that they

are invariant in the sense they do not depend on the choice of coordinates in blocks,
but use coefficients of the characteristic polynomials of blocks Li .

Let us explain how one can use this property to check algorithmically (say, using
computer algebra software) that the coordinates in Theorem 4 are indeed Frobenius
for the metric g.

In each block (with number α), we change from diagonal coordinates Xα =
(x1α, . . . , xnα

α ) to the coordinates Yα = (y1α, . . . , ynα
α ) given as follows:

χLα (t) = tnα − y1α tnα−1 − y2α tnα−2 − · · · − ynα
α . (37)

Note that in the coordinates Yα , the metric gLC
α and the operator Lα have the form

(19) with u1, . . . , un replaced by y1α, . . . , ynα
α . The iterated warped product metric

g = (gi j ) is given by the following easy algebraic formula
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g = g1 +
(

1

χL1(λ12)

)c12
g2 +

(
1

χL1(λ13)

)c13 ( 1

χL1(λ23)

)c23
g3 + · · · ,

with gα = Pα(Lα)gLC
α and gLC

α and Lα explicitly given by (19).
In order to check whether the coordinates u given by (36) are Frobenius, one needs

to perform the multiplication

Jg J�,

where J =
(

∂ui

∂ y j

)
is the Jacobi matrix of the coordinate transformation4 (y1, . . . , yn)

→ (u1, . . . , un) and check whether the entries of the resulting matrix Jg J� are affine
functions in ui and conditions (17) are fulfilled. All these operations can be realised
by standard computer algebra packages.

The next result gives a description of two-dimensional Frobenius pencils in the
general case.

Theorem 5 Let g and ḡ be compatible flat metrics that admit a common Frobenius
coordinate system. If the eigenvalues of the operator Rg = ḡg−1 are all different at a
point p, then in a neighbourhood of this point, the pencil λg + μḡ is isomorphic to a
two-dimensional subpencil of the Frobenius pencil (31) with suitable parameters, i.e.
in a certain coordinate system these metrics take the form

g= diag (P1(L1)ĝ1, . . . , PB(L B)ĝB) and ḡ = diag (Q1(L1)ĝ1, . . . , Q B(L B)ĝB)

(38)

(with parameters cαβ defined by (32), λsα defined by (33) and coefficients of Pα and
Qα satisfying (i)–(iii)).

Theorem 5 will be proved in Sect. 7.

Remark 4.3 In Theorem 5,we allow complex eigenvalues of Rg . The corresponding
part of diagonal coordinates is then complex. Moreover, the polynomials Pα and Qα

may have complex coefficients, and also the numbers λsα may be complex. The only
condition is that themetrics given by (30) should bewell-defined realmetrics. It is easy
to see that this condition implies in particular that every block (gLC

α , Lα) is either real
or pure complex (= all coordinates are complex; the coefficients of the polynomials
Pα and Qα may be complex as well), and that a pure complex block comes together
with a complex conjugate one. See also [6, §3] for discussion on Nijenhuis operators
some of whose eigenvalues are complex.

In certain special cases, a common Frobenius coordinate system for g and ḡ is not
unique (up to affine transformations). This is the case when nα = 1, cαβ = 0 for all
β (i.e. this block represents a leaf of the corresponding in-forest) and the diagonal
component of Rg = ḡg−1 corresponding to this block is constant; in other words, the

4 This transformation is given by (36) as yi
α = σ i

α and det(λαβ Id−Lα) = χLα (λαβ).
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(quadratic) polynomials Pα and Qα are proportional. The restrictions gα and ḡα onto
these blocks are then as follows

gα = f ·
(

a2(xα)2 + a1xα + a0
) (

∂
∂xα

)2
and ḡα = c gα

= c f ·
(

a2(xα)2 + a1xα + a0
) (

∂
∂xα

)2
,

where f is some function of the remaining coordinates, c ∈ R and Lα = (xα)

(diagonal 1 × 1 matrix). However, we can do coordinate transformation xα �→ x̃α =
x̃α(xα) that changes the coefficients a1 and a0 (the highest coefficient a2 is fixed by
condition (ii)).

gα = f ·
(

a2(x̃α)2 + ã1 x̃α + ã0
) (

∂
∂ x̃α

)2
and ḡα

= c gα = c f ·
(

a2(x̃α)2 + ã1 x̃α + ã0
) (

∂
∂ x̃α

)2
,

Hence, with a new operator Lnew
α = (x̃α) and new polynomials Pnew

α (t) = a2t2 +
ã1t + ã0, Qnew

α (t) = c(a2t2 + ã1t + ã0), we still remain in the framework of our
construction and (38) still holds. This transformation will lead to another Frobenius
coordinate system. In Sect. 7.3, we explain that only this situation allows ambiguity
in the choice of Frobenius coordinates up to affine transformations.

Remark 4.4 In [20, Theorem 2], it was claimed that under some general assumptions
for n > 2, there is only one equivalence class of (n + 1)-Hamiltonian hydrodynamic
systems (in the sense of [20]) and n + 1 is the best possible. The corresponding multi-
Hamiltonian structure comes from the (n + 1)-dimensional AFF-pencil. In this view,
it is interesting to notice that multi-block pencils from Theorem 5 also provide such a
structure, which may have even higher dimension.

4.2 Case of Two Blocks

In the case of two blocks, i.e. B = 2, the construction explained in the previous section
gives a natural and rather simple answer.We have two cases: c12 = 0 and c12 = 1. The
first case is trivial being a direct product of two blocks (possibly complex conjugate)
each of which is as in Theorem 3; in (34) we set ĝi = gLC

i and take Pi to be arbitrary
polynomials of degrees ≤ ni (i = 1, 2).

Theorem below is a special case of Theorem 4 in the nontrivial case c12 = 1.

Theorem 6 Suppose B = 2, c12 = 1 and consider the metric g given by the construc-
tion from Sect. 4.1:

g = g1 + 1

det(−L1)
g2, with gi = Pi (Li )g

LC
i . (39)

Following this construction, assume that the polynomials P1 and P2 have degrees no
greater than n1 and n2 + 1, respectively: P1 = ∑n1

s=0 asts and P2 = ∑n2+1
s=0 bsts .
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Then the coordinates from Theorem 4 are Frobenius for g if and only if a0 = 0 and
a1 = bn2+1.

Example 4.1 In Theorem 6, take n1 = n2 = 2. In diagonal coordinates x1, x2, x3, x4,
the metric g = (gi j ) is as follows:

g = diag

(
P1(x1)

x1 − x2
,

P1(x2)

x2 − x1
,

P2(x3)

x1x2(x3 − x4)
,

P2(x4)

x1x2(x4 − x3)

)
,

where P1(t) = a1t +a2t2 and P2(t) = b0+b1t +b2t2+b3t3 with b3 = a1. Recall that
L = L1 ⊕ L2 with L1 = diag(x1, x2), L2 = diag(x3, x4), and the relation between
the diagonal coordinates xi and the Frobenius coordinates ui given by Theorem 4 are
as follows:

u1 = tr L1 = x1 + x2,

u2 = − det L1 = −x1x2,

u3 = det L1 · tr L2 = x1x2(x3 + x4),

u4 = − det L1 · det L2 = −x1x2x3x4 = − det L.

In these Frobenius coordinates, the metric g = (gi j ) has the following form:

g =

⎛
⎜⎜⎝

a2u1 + a1 a2u2 a2u3 a2u4

a2u2 a1u2 a1u3 a1u4

a2u3 a1u3 −a1u4 − b1u2 − b2u3 −b0u2 − b2u4

a2u4 a1u4 −b0u2 − b2u4 b0u3 − b1u4

⎞
⎟⎟⎠ .

This formula defines a 5-dimensional pencils of metrics (with parameters a1, a2, b0,
b1, b2). For any choice of the parameters such that g is nondegenerate, the coordinates
ui are Frobenius for it in the sense of Definition 3.

From the algebraic viewpoint, we may equivalently think of this formula as 5-
parametric family (pencil) of Frobenius algebras (a, b). The entries of g define the
structure constants of a. For instance, g11 = a2u1 + a1 and g34 = −b0u2 − b2u4

imply

e1�e2 = a2e1 and e3�e4 = −b0e2 − b2e4

for a basis e1, e2, e3, e4 of a. The matrix (bi j ) of the corresponding Frobenius form b
is obtained from that of g by assigning to ui any constant values ui = mi ∈ R (such
that b is nondegenerate for generic choice of a1, a2, b0, b1, b2). To get a Frobenius
pencil, the constants mi should be the same for all parameters a1, a2, b0, b1, b2.

In the coordinates (u1, . . . , u4) the operators L1 and L2 are given by the matrices
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L1 =

⎛
⎜⎜⎝

u1 1 0 0
u2 0 0 0
u3 0 0 0
u4 0 0 0

⎞
⎟⎟⎠ , L2 =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 −u4u2−(u3)2

(u2)2
u3

u2
1

0 − u4u3

(u2)2
u4

u2
0

⎞
⎟⎟⎟⎠ .

The matrices of gLC
1 and gLC

2 are

gLC
1 =

⎛
⎜⎜⎜⎜⎝

0 1 u3

u2
u4

u2

1 −u1 − u3u1

u2
− u1u4

u2
u3

u2
− u3u1

u2
− (u3)2u1

(u2)2
− u1u4u3

(u2)2

u4

u2
− u1u4

u2
− u1u4u3

(u2)2
− u1(u4)2

(u2)2

⎞
⎟⎟⎟⎟⎠

, gLC
2 =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −u2

0 0 −u2 u3

⎞
⎟⎟⎠ .

5 Proof of Theorems 1 and 2

Proof of Theorem 1 We assume that Bh + Ag and Bh̄ + Aḡ are compatible with the
additional condition that the eigenvalues of Rh = h̄h−1 are pairwise different. We
also assume that h + h̄ is nondegenerate.

Recall that Theorem 7.1 from [14] implies that Bh and Bh̄ are compatible Poisson

structures (item (i) in Fact 1). Let �
αβ
s and �̄

αβ
s denote the contravariant Levi-Civita

connections of h and h̄. From Theorem 3.2 in [14] applied to Bh +Bh̄ , it follows that

the connection �̂
β
qs defined from

�αβ
s + �̄αβ

s = (h + h̄)αq �̂β
qs

is symmetric and flat.
By direct computation ∇̂(h + h̄) = ∇h + ∇̄ h̄ = 0, so that �̂ is the Levi-Civita

connection for h + h̄ and moreover, h + h̄ is flat. According to Theorem 6.2 in [14],
this implies that Bh + Bh̄ is Darboux–Poisson (i.e. is given by (8)). Hence, in our
notations, we obtain the formula

Bh + Bh̄ = Bh+h̄ . (40)

Setting �̂
αβ
s = (h + h̄)αq �̂

β
qs to be the contravariant Levi-Civita connection of

h + h̄, we get

�αβ
s + �̄αβ

s = �̂αβ
s , (41)

and conclude that h and h̄ are Poisson compatible in the sense of Definition 1 (in
particular, this proves the (ii)-part of Fact 2). Hence, Rh = h̄h−1 is a Nijenhuis
operator (Fact 3).
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For a pair of flat metrics h and h̄, introduce the so-called obstruction tensor

Sβ
rq = �β

rq − �̄β
rq .

It vanishes if and only if h, h̄ can be brought to constant form simultaneously (thus,
the name). It is obviously symmetric in lower indices. Condition (41) can be written in
equivalent form ( [33], Lemma 3.1 and Theorem 3.2) in terms of only �

αβ
s , �̄

αβ
s , h, h̄

�̄αβ
q hqγ − �̄

γβ
q hqα + �αβ

q h̄qγ − �
γβ
q h̄qα = 0. (42)

After lowering both indices with h and rearranging the terms, we get

Sβ
pq Rq

s − Rq
p Sβ

qs = 0. (43)

For a given metric h and its Levi-Civita connection, define

cαβ
rs = hαq

(
�a

qr�
β
as − ∂�

β
qs

∂ur

)
.

The c̄αβ
rs , ĉαβ

rs for h̄ and h + h̄ are defined in a similar way. This formula is one ‘half’
of the formula for Riemann curvature tensor and the flatness of the metrics implies
that cαβ

rs = cαβ
sr (and similarly for metrics h̄, h + h̄). Using this symmetry in lower

indices, we apply the general formula (8) to the Poisson structures in (40) and collect
coefficients in front of D2 to get

3cαβ
rs ur

x us
x − 3�αβ

s us
xx + 3c̄αβ

rs ur
x us

x − 3�̄αβ
s us

xx = 3̂cαβ
rs ur

x us
x − 3�̂αβ

s us
xx .

Collecting all the terms with ur
x us

x in this differential polynomial, in turn, implies

ĉαβ
rs − cαβ

rs − c̄αβ
rs = 0.

Using the characteristic property of the Levi-Civita connection

∂hαβ

∂us
+ hαq�β

qs + �α
qshqβ = 0

we rewrite cαβ
rs as

cαβ
rs = hαq

(
�a

qr�
β
as − ∂�

β
qs

∂ur

)
= − ∂

∂ur

[
hαq�β

qs

]
− h pq�α

qr�
β
ps (44)
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Applying (41), (42) and (44) yields

0 = (̂
cαβ

rs − cαβ
rs − c̄αβ

rs

)
(h + h̄)sγ

=
(

h pq�α
qr�

β
ps + h̄ pq �̄α

qr �̄
β
ps − (h + h̄)pq �̂α

qr �̂
β
ps

)
(h + h̄)sγ

= h pq�α
qr�

β
pshsγ + h pq�α

qr�
β
ps h̄sγ + h̄ pq �̄α

qr �̄
β
pshsγ + h̄ pq �̄α

qr �̄
β
ps h̄sγ

− (
h pq�α

qr + h̄ pq �̄α
qr

)(
�β

pshsγ + �̄β
ps h̄sγ )

= �α
qr

(
h pq�β

ps h̄sγ − h pq �̄β
ps h̄sγ ) − �̄α

qr

(
h̄ pq�β

pshsγ − h̄ pq �̄β
pshsγ )

= (
Sα

qr + �̄α
qr

)(
h pq�β

ps h̄sγ − h pq �̄β
ps h̄sγ ) − �̄α

qr

(
h̄ pq�β

pshsγ − h̄ pq �̄β
pshsγ )

= Sα
qr h pq Sβ

ps h̄sγ + �̄α
qr

(
h pq�β

ps h̄sγ − h pq �̄β
ps h̄sγ − h̄ pq�β

ps gsγ + h̄ pq �̄β
pshsγ )

= Sα
qr h pq Sβ

ps h̄sγ .

Now consider the coordinate system in which the Nijenhuis operator Rh is diagonal.
As Rh by definition is self-adjoint with respect to both h and h̄, we get that both h and
h̄ are also diagonal. Condition (43) implies that for given β the only nonzero elements
of Sβ

pq are the ones that stand on the diagonal. The previous calculation yields

Sα
qr h pq Sβ

ps h̄sγ = 0

which, for fixed α and β, is just the product of four diagonal matrices, two of which
are nondegenerate. Taking α = β, we see that the matrix Sα

qr must be zero. As α

is arbitrary, this implies that the obstruction tensor vanishes and h, h̄ have common
Darboux coordinates.

Fix the coordinates in which both h and h̄ are flat. Applying Fact 5, we see that
these coordinates are Frobenius for both g and ḡ. Using (40) and applying Fact 5 to the
sum of our Poisson structures, we get that aαβ

s + āαβ
s define a commutative associative

algebra, while bαβ
s + b̄αβ

s and hαβ
s + h̄αβ

s are Frobenius forms for this algebra, as
required.

The inverse statement immediately follows from Facts 4 and 5 . ��

Proof of Theorem 2 Consider a pair of compatible flat metrics g, ḡ in common Frobe-
nius coordinates u1, . . . , un

gαβ(u) = bαβ + aαβ
s us and ḡαβ(u) = b̄αβ + āαβ

s us,

Fact 4 implies that − 1
2aαβ

s and − 1
2 āαβ

s are the contravariant Christoffel symbols
for g and ḡ, respectively. Compatibility of g and ḡ means that the contravariant Levi-
Civita symbols for the flat metric g + ḡ are the sum of the corresponding symbols for
g and ḡ, that is, − 1

2aαβ
s − 1

2 āαβ
s . At the same time, these symbols are constant and

symmetric in upper indices. Hence the coordinates u1, . . . , un are Frobenius for g + ḡ
(Fact 4).
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This, in turn, implies that aαβ
s + āαβ

s are the structure constants of a commutative
associative algebra and bαβ

s +b̄αβ
s is one of its Frobenius form. Thus, the corresponding

Frobenius algebras are compatible.
As g and ḡ are both nondegenerate metrics, this implies that for a generic collection

of constants m0, m1, . . . , mn , the bilinear forms

hαβ = m0bαβ + aαβ
s ms and h̄αβ = m0b̄αβ + āαβ

s ms

are both nondegenerate too. At the same time, each of them is the sum of a Frobenius
form (m0bαβ and resp. m0b̄αβ ) and trivial form (aαβ

s ms and resp. āαβ
s ms), which

corresponds to m ∈ a∗ with coordinates m1, . . . , mn and, thus, is also Frobenius.5 As
a result, h and h̄ lead us to Frobenius triples (h, b, a) and (h̄, b̄, ā.).

By construction, h + h̄ defines (if nondegenerate) a Frobenius form for the ‘sum’
of the algebras. Thus, we get compatible Frobenius triples, which yield compatible
non-homogeneous Poisson structures Bh + Ag and Bh̄ + Aḡ . ��

6 Proof of Theorem 3

6.1 Rewriting the Existence of Frobenius Coordinates in a Differential Geometric
Form

We start with the following observation related to Frobenius coordinate systems
(Fact 4): (u1, . . . , un) is a Frobenius coordinate system for a metric g if and only
if the contravariant Christoffel symbols �

i j
k = ∑

s gsi�
j
sk in this coordinate system

are constant and symmetric in upper indices.
We denote by�, �̄ the Levi-Civita connections of g and ḡ. Assuming that a common

Frobenius coordinate system u1, . . . , un exists, we let �̂ be the flat connection whose
Christoffel symbols identically vanish in this coordinate system. Let Ri

jk�, R̄i
jk�, and

R̂i
jk� denote the corresponding curvature tensors. We assume n ≥ 2, the case n = 1

is trivial.
Consider the tensors

Si j
k :=

∑
s

gsi
(
�

j
sk − �̂

j
sk

)

S̄i j
k :=

∑
s

ḡsi
(
�̄

j
sk − �̂

j
sk

)
.

In terms of these tensors, the necessary and sufficient conditions that the connection
�̂ determines Frobenius coordinates are:

0 = R̂i
jk� = Ri

jk� = R̄i
jk� (45)

5 Here we use a well-known fact for any m ∈ a∗, the form ξ, η �→ 〈ξ�η, m〉 is Frobenius, perhaps
degenerate. If a has a unity element, then every Frobenius form is of this kind. Otherwise, there might exist
other (nontrivial) Frobenius forms.
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Si j
k = S ji

k (46)

S̄i j
k = S̄ j i

k (47)

0 = ∇̂m Si j
k = ∇̂m S̄i j

k . (48)

Indeed, if (u1, . . . , un) is a common Frobenius coordinate system for g and ḡ, then
in these coordinates �̂

j
sk = 0, and �

i j
k = gis�

j
sk and �̄

i j
k = ḡis�̄

j
sk are both constant

and symmetric in upper indices by Fact 4. Hence, (45)–(48) obviously follow.
Conversely, if (45)–(48) hold, then in the flat coordinates for �̂

j
sk we see that �

i j
k =

Si j
k and �̄

i j
k = S̄i j

k are both symmetric in upper indices due to (46) and (47) and are
also constant due to (48). Therefore, by Fact 4, (u1, . . . , un) are Frobenius coordinates
for both g and ḡ.

6.2 General Form of theMetric in Diagonal Coordinates

We work in the coordinates (x1, . . . , xn) such that

Rg = ḡg−1 = diag(�1(x1), . . . , �n(xn)) , gi j = diag(ε1eg1 , . . . , εnegn ), (49)

where gi are local functions on our manifold and εi ∈ {−1, 1}. Local existence of such
coordinates follows from Facts 2 and 3 which imply that Rg is a Nijenhuis operator
and therefore, according to Haantjes theorem, is diagonalisable and �i depends on xi

only (see also various versions of diagonalisability theorems in [6] which, in particular,
allows us to include the case of complex eigenvalues too). We assume that all �i (xi )

are different and never vanish.

Remark 6.1 We allow some of the diagonal variables xi to be complex. Note that
if a variable xi is complex then by [6, §3], we may assume that the corresponding
eigenvalue �i is a holomorphic function of xi . In the first read, we recommend to think
of all the eigenvalues as real and then to carefully check that our proofs are based on
algebraicmanipulations and differentiations,which are perfectly defined over complex
coordinates, so that generalisation of the proofs to complex eigenvalues requires no
change in formulas. See also a discussion at the end of [9, §7].

Note that the results we use (e.g. [38, 40]) are also based on algebraic manipu-
lations (essentially, on a careful calculation of the curvature tensor and connection
coefficients) and are applicable if a part of eigenvalues is complex.

Note also that whenwework over complex numbers, wemay think that the numbers
εi are all equal to 1. If all the eigenvalues of Rg are real, objects we will introduce in
the proof will automatically be real as well.

Let us first consider the conditions (46, 47). We view them as linear (algebraic)
system of equationswith unknown �̂i

jk’s (satisfying also �̂i
jk = �̂i

k j ) whose coefficient
matrix is constructed from the entries of g and L and the free terms are constructed
from g, ḡ, �, �̄. Being rewritten in such a way that unknowns are on the left-hand side
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and free terms are on the right-hand side, it has the following form:

εi e−gi �̂
j
ik − ε j e−g j �̂i

jk = εi e−gi �
j
ik − ε j e−g j �i

jk ,

�iεi e−gi �̂
j
ik − � jε j e−g j �̂i

jk = �iεi e−gi �̄
j
ik − � jε j e−g j �̄i

jk .
(50)

We see that for fixed i = j = k, the system bears no information. For fixed

i �= j , the coefficient matrix

(
εi e−gi −ε j e−g j

�iεi e−gi −� jε j e−g j

)
of the linear system (50) is

nondegenerate, since the eigenvalues �i are all different, and therefore the system has
a unique solution.

The entries of the connections � and �̄ of the diagonal metrics gi j and ḡi j := gL−1

were calculated many times in the literature, see, e.g.[9, Lemma 7.1], and are given
by the following formulas:

• �k
i j = �̄k

i j = 0 for pairwise different i, j and k,

• �k
k j = 1

2
∂gk
∂x j for arbitrary k, j ,

• �k
j j = − ε j

εi

eg j −gk

2
∂g j

∂xk for arbitrary k �= j ,

• �̄k
k j = �k

k j for arbitrary k �= j ,

• �̄i
i i = �i

i i − �′
i

2�i

• �̄k
j j = �k

� j
�k

j j for arbitrary k �= j .

By direct calculations using these formulas,we obtain that the solution of the system
(50) is as follows:

(A) �̂i
i i = ui for all i , where ui ’s are (yet unknown) functions on the manifold.

(B) �̂i
i j = �̂i

j i = ∂gi
∂x j for i �= j

(C) �̂i
jk = 0 for all i �= j and k �= i (we allow the case k = j).

Combining these with the formulas for Si j
k ,we obtain:

• Sii
i = εi e−gi

(
ui − 1

2
∂gi
∂xi

)
for all i ,

• Sii
j = εi

2 e−gi ∂gi
∂x j , for all i �= j ,

• Si j
i = S ji

i = ε j
2 e−g j ∂gi

∂x j for all i �= j ,

• Si j
k = 0 for all i �= j �= k �= i .

Bydirect calculationswe see that for any i �= j �= k �= i wehave ∇̂k Si j
j = εi

2
∂2gi

∂x j ∂xk

implying

0 = ∂2gi

∂x j∂xk
. (51)

Next, consider the terms of the form ∇̂ j Sii
i and ∇̂i Sii

j with i �= j . They are given
by

∇̂ j Sii
i = εi

e−gi

2

(
∂gi

∂x j

∂g j

∂xi
+ ∂2gi

∂xi∂x j

)
,
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∇̂i Sii
j = −εi

e−gi

2

(
∂gi

∂x j

∂g j

∂xi
+ ∂2gi

∂xi∂x j
− 2

∂ui

∂x j

)
.

Since ∇̂ j Sii
i = ∇̂i Sii

j = 0, the formulas above imply

∂ui

∂x j
= 0 (52)

so each ui is a function of xi only.
Next, we prove the following Lemma. Denote by Ui = Ui (xi ) and U j = U j (x j )

the primitive functions for eũi and eũ j , where ũi and ũ j are primitive functions for ui

and u j . By their definition, U ′
i �= 0 and U ′

j �= 0.

Lemma 6.1 There exist constants Ci j and Ei j = E ji such that for the constants
αi j ∈ {0, 1} given by the formula

αi j = α j i =
{
0 if Ci j = C ji = 0
1 otherwise

and for any i �= j , the function

gi − ln
(|Ci jUi + C jiU j + Ei j |αi j

)

does not depend on x j (we use the convention that 00 = 1).

Proof We consider the curvature tensor R̂i
jk� of the connection �̂. To compute it,

we need to substitute �̂ given by (A,B,C) above into the standard formula for the
curvature

R̂�
i jk = ∂

∂x j �̂
�
ik − ∂

∂xk �̂�
i j +

∑
s

(
�̂�

js�̂
s
ik − �̂�

ks�̂
s
i j

)
. (53)

We obtain for i �= j :

0 = R̂i
i j i = − ∂gi

∂x j

∂g j

∂xi
− ∂2gi

∂x j∂xi
(54)

0 = R̂i
j j i = − ∂gi

∂x j
u j +

(
∂gi

∂x j

)2

+ ∂2gi

∂x j 2
(55)

0 = R̂ j
j j i = ∂gi

∂x j

∂g j

∂xi
+ ∂2g j

∂xi∂x j
(56)

0 = R̂ j
i j i = −

(
∂g j

∂xi

)2

+ ui
∂g j

∂xi
− ∂2g j

∂xi 2
. (57)

We view 4 equations above a system of PDEs on the unknown functions

a = ∂gi

∂x j
and b = ∂g j

∂xi
. (58)
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The condition (52) implies that the coefficients of the system depend on xi and x j and
we may temporarily ‘forget’ all other variables. The system then has the following
form:

∂a

∂xi
= −ab ,

∂a

∂x j
= −a2 + au j ,

∂b

∂xi
= −b2 + bui ,

∂b

∂x j
= −ab. (59)

This system is of Cauchy-Frobenius type (in the sense that all first derivatives of
unknown functions are explicit expressions of the unknown functions and variables).
By direct computation,we check that its integrability conditions hold identically. Then,
its solution depends on an arbitrary choice of the values of a and b at one arbitrarily
chosen point p0. Note that if a(p0) = 0 then a is identically 0, the same is true for b.

By direct substitution we see that for any constants Ci , C j , E , the pair of functions

a = C jU ′
j

CiUi + CiU j + E
, b = CiU ′

i

CiUi + C jU j + E
(60)

satisfies the equation. In the case Ci = C j = 0, we think that a and b given by (60)
vanish identically. The functions Ui = Ui (xi ) and U j = U j (x j ) used in (60) are
as defined before Lemma 6.1. By varying the constants Ci , C j , E , one can get any
nonzero initial values a(p0), b(p0) so this is indeed a general solution.

In the case Ci �= 0 or C j �= 0, using (58), we obtain

gi = ln(|CiUi + C jU j + E |) + Di and g j = ln(|CiUi + C jU j + E |) + D j

(61)

with Di independent of x j and D j independent of xi . In the case Ci = 0 = C j we
obtain that gi is independent of x j and g j is independent of xi automatically.

Note that if we ‘remember’ all the coordinates, then Ci , Di , E may also depend on
all other variables xk, k /∈ {i, j}.

Let us study the dependence of Ci , C j and E on the variable xk with k /∈ {i, j}.
We first consider the case when Ci �= 0 and C j �= 0. We observe that by (51), for
i �= j �= k �= i , we have

0 = ∂2gi

∂x j∂xk
(58, 60)= ∂

∂xk

C jU ′
j

CiUi + C jU j + E
= −

U ′
j

(
Ui

∂
∂xk

Ci
C j

+ ∂
∂xk

E
C j

)

(
Ci
C j

Ui + U j + E
C j

)2

implying that the ratios Ci/C j and E/C j are constant. Note that U ′
j �= 0 since it is a

primitive function for a nonvanishing function. Then, we may assume that Ci , C j and
E are constants, since in the formula (61) their dependence on other variables can be
hidden in Di and D j .

In the cases Ci = 0 or C j = 0 (but not Ci = 0 = C j both), the dependence of Ci ,
C j and E on other variables can similarly be hidden in Di and D j . In the remaining
case, when Ci = 0 = C j , we already know that gi is independent of x j and g j is
independent of xi .
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Thus, in all cases, gi − ln(|CiUi + C jU j + E |αi j ) does not depend on x j and
g j −ln(|CiUi +C jU j +E |αi j ) does not depend on xi . Since constantsCi ,C j and E are
constructed for fixed i and j , in what follows we denote them Ci j , C ji and Ei j = E ji ,
respectively. In this notation, the function gi − ln(|Ci jUi + C jiU j + Ei j |αi j ) does not
depend on x j , as stated. ��

Consequently applying the Lemma, we see that

gi −
∑
s �=i

ln
(|Ci jUi + CisUs + Ei j |αis

)

depends on xi only.
Therefore, the i th diagonal component gii of the metric g is as follows:

gii = εi e
gi = hi (xi )

⎛
⎝∏

s �=i

(
CisUi (xi ) + CsiUs(xs) + Eis

)αis

⎞
⎠ (62)

for some functions hi of one variable.

6.3 Last Step of the Proof of Theorem 3: Making All Cij Equal±1

In the previous section,we have proved that the metric g is given by (62). Observe that
by the assumptions of Theorem 3, the diagonal coordinates depend on all variables,
so all αi j = 1 and all Ci j �= 0 for i �= j . First note that in the case when all Ci j = 1
for i < j , Ci j = −1 for i > j and Ei j = 0 for i �= j , the diagonal metric g is in the
so-called Levi-Civita form:

gii =
⎛
⎝∏

j �=i

(Ui (xi ) − U j (x j ))

⎞
⎠ hi (xi ). (63)

In this section, we show that one can bring the metric to the form (63) by certain
‘admissible’ operations which include only coordinate transformations and renaming
of functions. Combining this with a result of A. Solodovnikov (Fact 6) will prove
Theorem 3.

We will use the condition ∇̂i Si j
k = 0. Assuming i �= j �= k �= i , this condition

reads

− ε j

2
e−g j

(
∂gi

∂x j

∂gi

∂xk
− ∂gi

∂x j

∂g j

∂xk
− ∂gi

∂xk

∂gk

∂x j

)
= 0. (64)

Substituting (62) in it, we see that the following relation holds:

0 = CikC ji Ck j − Ci j C jkCki = det

⎛
⎝

0 Ci j Cik

−C ji 0 C jk

−Cki −Ckj 0

⎞
⎠ . (65)
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Let us now use the relation (65) and ‘make’ Ci j = 1 for i < j and Ci j = −1 for
i > j . We will use the following operations for it:

(a) We can multiply the factor (Ci jUi + C jiU j + Ei j ) in the i th and j th diagonal
components of g (given by (62)) by a nonzero constant and correspondingly
change hi and h j by dividing them by the same constant.

(b) For every fixed pair i �= j if Ci j �= 0 we can rename Ci jUi by Ui (which we
will do if i < j) or by −Ui (if i > j).

By applying the operation (a), we make C1i = 1 for all i �= 1. By applying the
operation (b), we make and Ci1 = −1 for all i �= 1. In addition, by applying operation
(a) we make C2i = 1 with i > 2. Then, the first two rows and the first column of
the matrix Ci j are as we want. Then, the condition (65) with i = 1, j = 2 arbitrary
k > 2 reads Ck2 = −1 so the second column is automatically as we want. Then,
applying operation (a), we make all C3k with k > 3 equal to 1. The condition (65)
with i = 1, j = 3 arbitrary k > 3 reads Ck3 = −1 and implies that the third column
is as we want. Repeating the procedure, we bring the metrics in the Levi-Civita form
(63).

Let us now take Ui (xi ) as a local coordinate system: xi
new := Ui (xi

old). We can do
it because the derivative of Ui is not zero. In the new coordinates, Rg is still diagonal
and the i th diagonal component depends on the variable i only. In these coordinates,
the metric (63) is diagonal with

gii =
⎛
⎝

n∏
j �=i

(xi − x j + Ei j )

⎞
⎠ 1

Hi (xi )
,

where Ei j is now a skew-symmetric constantmatrix. In these coordinates the condition
(64) is equivalent to E jk +Eki +Ei j = 0.An easy exercise in LinearAlgebra shows the
existence of constants E1, . . . , En such that Ei j = Ei − E j . Moreover, the constants
Ei are uniquely defined up to adding a common constant E to all of them. Hence,
after the coordinate change xi

new = xi
old + Ei , the metric is diagonal with

gii =
⎛
⎝

n∏
j �=i

(xi − x j )

⎞
⎠ 1

Hi (xi )
. (66)

Therefore, the metric ḡ = Lḡ is also diagonal with

ḡi i =
⎛
⎝

n∏
j �=i

(xi − x j )

⎞
⎠ 1

H̄i (xi )
(67)

Fact 6 The diagonal metric of form (66) (resp. (67)) in dimension at least two has
constant curvature if and only if there exists a polynomial P (resp. Q) of degree
≤ n + 1 such that Hi (xi ) = P(xi ) (resp. H̄i (xi ) = Q(xi )). Moreover, the curvature
of the metric vanishes if and only if the polynomial P (resp. Q) has degree ≤ n.
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Fact 6 was proved in [40, §5] and easily follows from calculations in [9, §7].
Taking L = diag(x1, . . . , xn) and the (contravariant) Levi-Civita metric

gLC =
∑

i

⎛
⎝

n∏
j �=i

(xi − x j )

⎞
⎠

−1 (
∂

∂xi

)2
, (68)

we see that g = P(L)gLC and ḡ = Q(L)gLC, which completes the proof of Theorem
3. (The ‘uniqueness’ part of Theorem 3 will be explained in Remark 7.1).

7 Proof of Theorem 5

7.1 Upperblockdiagonal Structure of theMatrix Cij

We assume that the metric g is diagonal and its diagonal elements have the form

gii = hi (xi )
∏
s �=i

(
Cis xi + Csi xs + Eis

)αis
, (69)

which is the form (62) in the ‘new’ coordinate system xi
new := Ui (xi

old). We view Ci j

as entries of an n × n-matrix and Ei j as entries of an n × n symmetric matrix. Since
the diagonal elements Cii , Eii do not come into the formula for g, we assume they
are zero.

We will first re-arrange the coordinates x1, . . . , xn and make the matrix C
upperblockdiagonal such that in every diagonal block, all nondiagonal entries are
different from zero. We will need the following Lemma:

Lemma 7.1 If C ji = 0 for certain different i, j ∈ {1, . . . , n}, then for any k ∈
{1, . . . , n} we have C jkCki = 0. Moreover, if in addition Ci j = 0, then for any
k ∈ {1, . . . , n},we have CikC jk = 0.

Proof For k = i or k = j ,the statement follows from our convention Cii = C j j = 0,
further we assume i �= k �= j( �= i).

We consider the equation (64): under the assumption C ji = 0 the terms ∂gi
∂x j

∂gi
∂xk

and ∂gi
∂x j

∂g j

∂xk vanish. Then, the equation reads ∂gi
∂xk

∂gk
∂x j = 0 and implies that ∂gi

∂xk = 0

(which in turn implies Cki = 0) or ∂gk
∂x j = 0 (which in turn implies C jk = 0). This

proves the first statement of the lemma. Next, observe that under the assumption
C jk = Ckj = 0,the equation (64) reads ∂gi

∂x j
∂gi
∂xk = 0 implying Cki C ji = 0. Renaming

i ↔ k finishes the proof. ��
Next, consider i ∈ {1, . . . , n} such that the i th column of the matrix Ci j contains

the maximal number of zero entries. We assume without loss of generality that i = 1,
that the elements C21, . . . , Cd1 are not zero and the other elements of the first column
are zero. Applying Lemma 7.1 to the element Cd ′1 with d ′ > d, we obtain that
Cd ′kCk1 = 0. Since Ck1 �= 0 for k ≤ d, we obtain Cd ′k = 0 for such k.
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Thus, all elements of thematrixCi j staying under the upper left d×d block are zero.
If Ci j = 0 with i �= j ∈ {1, . . . , d}, we obtain a contradiction with the assumption
that the i th column of the matrix Ci j contains the maximal number of zeros. Thus, all
Ci j with i �= j ∈ {1, . . . , d} are not zero. Thus, the first d columns of Ci j are as in the
upperblockdiagonal matrix with the first block of dimension d × d. We further have
that all nondiagonal components of the first block are different from zero.

Next, consider the index i ∈ {d + 1, . . . , n} such that the number of zero entries in
the columns of lower right (n−d)×(n−d) block is maximal.Wemay assumewithout
loss of generality that i = d + 1, that the components Cd+1 d+2, . . . , Cd+1 d+d ′ are
not zero and the components Cd+1 d+d ′+1, . . . , Cd+1 n are zero. Arguing as above,
using Lemma 7.1, we obtain that for any k ∈ {d + 1, . . . , d + d ′},the components
Cd+k d+d ′+1, . . . , Cd+k n are zero. Thus, the first d + d ′ columns of Ci j are as in
the upperblockdiagonal matrix with the first block of dimension d × d and the second
block of dimension d ′ × d ′. Moreover, by the ‘maximality’ condition in our choice of
the first column of the second block, all nondiagonal elements of the second block are
nonzero.

We can repeat the procedure further and further and obtain that the matrix Ci j is as
we claimed: it is upperblockdiagonal and in every block, all nondiagonal entries are
different from zero. Let us explain now that by the operations (a,b) from Sect. 6.3, we
can make Ci j in every block equal 1 for i < j and −1 for j > i . Indeed, by applying
the operations (a) and (b),we can make the first two rows and the first column of every
block to be as we claimed. The condition (65) automatically implies that the second
column of the block is as we want. Next, applying operation (a),we make the third row
as we want. Then, (65) implies that the third column is as we want and so on. Note
that these operations with one block do not affect other blocks.

Next, let us construct a B × B matrix (cαβ). We will denote by Bαβ the blocks of
the matrix C (corresponding to the decomposition n = n1 + · · · + nB), the block Bαβ

has dimension nα × nβ . Above we achieved that if α �= β, then either all entries of
Bαβ are zero or are equal to 1. In the first case,we put cαβ = 0, in the second case
cαβ = 1. If α > β then all entries of the block Bαβ are zero, so such cαβ = 0. We put
cαα = 0.

Next we show that if such a block Bαβ with α < β is zero and the block Bαα′ is
not, then all the blocks Bα′β with α′ �= β are also zero. In order to do it, we take
an element Ci j of this block. By Lemma 7.1, if cαβ = 0 with α �= β, then for any
s /∈ {α, β},we have cαscsβ = 0 implying the claim. Analogously,one shows, using the
second statement of Lemma 7.1, that cαβ = 0 with α < β implies cαscβs = 0.

Let us summarise the properties of the B × B matrix (cαβ):

(a) cαβ = 0 for α ≥ β, i.e. the matrix is upper triangular with zeros on the diagonal.
(b) If cαβ = 0, then for every s ∈ {1, . . . , B} we have csβcαs = 0.
(c) If cαβ = 0 for certain α < β, then for every s ∈ {1, . . . , B}we have cβscαs = 0.

Let us show that any suchmatrix can be constructed from a directed rooted in-forest
by a procedure described in Sect. 4.1. To see this, we introduce the relation ≺ on the
set {1, . . . , B}: we define α ≺ β if and only if cαβ = 1. Clearly, α ≺ β implies that
the number α is smaller than the number β. The relation ≺ is a strict partial order.
Indeed, α ⊀ α because of (a), so the relation is irreflexive. If α ≺ β, then α < β by
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(a) implying β ⊀ α, so the relation is asymmetric. If α ≺ β and β ≺ γ then by (b),
we have α ≺ γ , so the relation is transitive.

Moreover, for every s ∈ {1, . . . , B}, the set Ss := {α | α ≺ s} is a chain, i.e. is
totally ordered. Indeed, for α < β ∈ Ss , we have cαs = cβs = 1 implying cαβ = 1 in
view of (c).

Next, it is easy to see that every strict partially ordered finite set such that every Ss

is a chain can be described by a directed rooted in-forest. The vertices of the forest
are the numbers 1, . . . , B, and two vertices α, γ are connected by the oriented edge
if α ≺ γ and if there is no β such that α ≺ β ≺ γ , each connected component of this
oriented graph is a directed rooted in-tree. The forest clearly reconstructs the order
‘≺’ and therefore the matrix (cαβ): for two numbers α �= β ∈ {1, . . . , B}, we have
α ≺ β if there exists an oriented way from β to α, see example on Fig. 1.

The converse is also true: every directed in-forest F (with appropriately labelled
vertices) defines a matrix cαβ with properties (a), (b) and (c) by (32).

Let us now deal with Ei j . Consider α �= β ∈ 1, . . . , B. We say that the index j
belongs to the α-block (of coordinates), if n1 + · · · + nα−1 < j ≤ n1 + · · · + nα.

Consider a pair ( j, i) such that j belongs to the α-block and i to the β-block. If
cαβ = 0, then the component E ji is irrelevant for our formulas since when we build
g by (69) the corresponding term (C ji x j + Ci j xi + E ji ) equals (Ci j xi + E ji ) and
can be hidden in the factor hi of gii . Assume now cαβ = 1 and let us show that then
the corresponding numbers E ji do not depend on j from α-block and i from β-block,
i.e. all entries of the whole (α, β)-block of the matrix (Ei j ) are equal to each other.

We will use formula (64). If the β-block has more than one entry, take k �= i from
the β-block. Then, (64)

1

(x j + E ji )(xk + Eki )
− 1

(x j + E ji )(x j − xk)
+ 1

(xk + Eki )(x j − xk)
= 0,

implying E ji = Eki . Thus, elements of every column of the (α, β) block of the matrix
Ei j are equal to each other.

Similarly, by taking k �= j from the α-block, one proves that the elements of every
raw of the (α, β) block of the matrix Ei j are equal to each other. Thus, provided
cαβ = 1, all elements of the (α, β) block of Ei j are equal to each other, we call them
−eαβ . The matrix e = (eαβ) is a B × B constant matrix; its element eαβ is relevant for
us (in the sense that it is included in the formulas for the metrics) if the corresponding
cαβ = 1.

Finally, let us show that eαβ = eαγ provided cαβ = cαγ = cβγ = 1. We again use
(64) assuming that j relates to the α-block, k to the β-block and i to the γ -block, to
get

1

(x j − eαγ )(xk − eβγ )
− 0 − 1

(xk − eβγ )(x j − eαβ)
= 0

implying eαγ = eβγ .
The matrices cαβ and eαβ clearly determine the components of the matrices Ci j and

components of the matrix Ei j which are relevant for (69). Plugging these Ci j and Ei j

123



193 Page 38 of 52 A. V. Bolsinov et al.

into (69) and taking in account that
∏nα

s=1(eαβ − xs
α) = det(eαβ Idnα −Lα), we obtain

the form similar to that in Theorem 5. The difference is as follows: we did not prove
yet that the diagonal factors Hj (x j ) := 1

h j (x j )
are polynomials Pα(x j ) of degrees

≤ nα + 1 and we did not obtained the additional conditions on these polynomials
Let us do these: first we notice that the metric g has the iterated warped product

structure:

g = g1 + σ1(X1)g2 + σ2(X1, X2)g3 + · · · + σB−1(X1, . . . , X B−1)gB,

where the metric gα is as follows: take the metric gLC
α given by (29) and multiply its

j th diagonal element by h j (x j ) for every j related to the α-block. The functions σβ

are as follows:

σβ =
⎛
⎝∏

α<β

det
(
eαβ Idnβ −Lβ

)cαβ

⎞
⎠

−1

.

Since g is flat, g1 must be flat and g2, . . . , gB of constant curvature. Applying the
result of [40, §5] (see Fact 6 above) shows that blocks gα of dimension greater than
one are given by Pα(Lα)gLC

α , where Pα is a polynomial of degree≤ nα +1 (in Sect. 7.2
we will show that coefficients of these polynomials satisfy the conditions (i–iii) from
Sect. 4.1 and also consider 1-dimensional blocks).

7.2 Conditions on the Coefficients of P˛

To complete the proof of Theorem 5, it remains to explain that in the case of one-
dimensional blocks, the corresponding function Hj = 1/h j is a polynomial of degree
at most 2 and that conditions (i)–(iii) on the coefficients of Pα stated before Theorem 4
are fulfilled. We will need some facts and preliminary work.

Recall that a Casimir of a Poisson structure is defined by the property that Pois-
son structure applied to it gives zero. For a Poisson structure Ag given by (7) and
corresponding to a (flat) metric g of dimension ≥ 2, a Casimir (of the lowest order)
can be understood as a function f satisfying ∇i∇ j f = 0. Of course, any constant is
a Casimir and n functionally independent Casimirs give us flat coordinates for g in
which the components gi j are all constants. For a metric g of constant curvature K ,
we define Casimir as a function f̂ satisfying the equation6 ∇i∇ j f̂ + K f̂ gi j = 0. The
space of Casimirs of a constant curvature metric (on a simply connected manifold of
dimension ≥ 2) is a vector space of dimension n + 1.

Dimension 1 is special. In this case, wewill define a Casimir as a function satisfying
∇i∇ j f̂ + K f̂ gi j = 0 for some constant K , so that for each K , the Casimirs form a
two-dimensional space.

Fact 7 Consider the n ≥ 2-dimensional metric g = P(L)gLC, where L and gLC are
as in (29), and P is a polynomial P(t) = a0 + a1t +· · ·+ an+1tn+1. Then, the metric

6 The functions satisfying this equation are indeed Casimirs of the (nonlocal) Poisson structure correspond-
ing to the constant curvature metric g, see e.g. [9, §2] and references therein.
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has constant curvature − 1
4an+1. Moreover, in any dimension n ≥ 1, the function√

det(λ Id−L) is a Casimir of g if and only if P(λ) = 0 and in this case we have:

4g
(
d
√

(λ Id−L), d
√
det(λ Id−L)

)
= −d P(t)

d t |t=λ
+ an+1 det(λ Id−L). (70)

Proof Themetric gLC and operator L are explicitly given (andw.l.o.g. onemay assume
λ = 0) so the proof is an exercise in theVandermonde identities and is left to the reader.

��

Below, we work with warped product metrics for which the ‘covariant language’
is more convenient. For this reason, starting from Fact 8 and till the end of the current
Sect. 7.2, g and gi will denote covariant metrics. For the corresponding contravariant
metrics, we use g∗ and g∗

i .

Fact 8 Suppose a warped product metric g = g1 + f (X1)
2g2 has constant curvature.

Then g1 and g2 have constant curvatures. Moreover, the following statements hold:

1. If g is flat, then g1 is flat.
2. If g is flat and g2 is n2 ≥ 2-dimensional, then K2 = g∗

1(d f , d f ), where K2 is
the curvature of g2.

3. f (X1) is g1-Casimir.

Proof The first statement is well known and immediately follows from geometric
arguments. The second statement follows from the second formula in the first line
of [38, (4.2)]. The third statement follows, under the additional assumption that the
curvature is zero, from the second line of [38, (4.2)]. If the curvature is not zero,wemay
assume that it is equal to 1. Then, we employ the conification construction: we consider
the (n + 1)-dimensional metric ĝ = (dx0)2 + (x0)2

(
g1 + f (X1)

2g2
)
. The metric ĝ

is flat and can be viewed as a warped product metric with base (dx0)2 + (x0)2g1 and
warping function f̂ 2 := (

x0 f (X1)
)2
. Then, the function f̂ := x0 f (X1) is a Casimir

of ĝ1 := (dx0)2 + (x0)2g1 implying that f (X1) is a Casimir of g1. ��

Next, we need the following technical lemma:

Lemma 7.2 Suppose the warped product metric g1 + f (X1)
2g2 is flat and f (X1) is

g1-Casimir. Then, the following holds:

1. Every g1-Casimir F(X1) such that g∗
1(d f , d F) = 0 is a Casimir of g.

2. If g2 has constant nonzero curvature K2 or is one-dimensional, then for any
function φ(X2) satisfying ∇g2∇g2φ+K2φg2 = 0 the function f φ is a g-Casimir.

3. If g2 is flat, then for any function φ(X2) satisfying ∇g2∇g2φ(X2) = const g2 and
for any g1-Casimir f̃ such that g∗

1(d f , d f̃ ) = 1 we have that f φ − const f̃ is
a g-Casimir.

Notice that the g-Casimirs described in Lemma 7.2 span a n+1-dimensional vector
space and, therefore, form a basis of the space of g-Casimirs.
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Proof By direct calculations (done many times in the literature, see e.g. [38, (4.1)]),
one sees that the Christoffel symbols of the warped product metric g are given by the
following formulas:

�a
bc = 1

�a
bc , �α

βγ = 2
�α

βγ , �a
βγ = − f

∑
s

f,s
1
gsa 2

gβγ , �α
aβ = 1

f
f,aδα

β ,

�a
αb = �a

bα = �α
ab = 0.

Here
1
�,

2
� relate to the Christoffel symbols of the metrics g1 = 1

g and g2 = 2
g,

respectively; a, b, c, s run from 1 to n1 and α, β, γ from n1 + 1 to n. The notation f,s
means ∂ f

∂xs .
Therefore, for any function F(X1), we have:

∇a∇b F = ∇g1
a ∇g2

b F , ∇α∇a F = 0 , ∇α∇β F = f g∗
1(d F, d f )

2
gαβ. (71)

In particular, if F is a g1-Casimir, then ∇g1
i ∇g1

j F = f g∗
1(d F, d f )

2
gi j which implies

the first statement. Also, if g2 is flat, then gradg1 f is light-like (Fact 8, item 2), so f
is a g-Casimir.

Next, for any function φ(X2), we have

∇a∇bφ = 0 , ∇a∇βφ = − 1

f
f,aφ,β , ∇α∇βφ = ∇g2

α ∇g2
β φ.

In particular, if φ satisfies ∇g2
α ∇g2

β φ = const
2
gαβ and g2 is flat, then

∇a∇b(φ f ) = 0 , ∇α∇b(φ f ) = 0, ∇α∇β(φ f ) = const
2
gαβ f .

Combining this with (71), we see that φ f − const f̃ is a Casimir. If φ satisfies

∇g2∇g2φ + K2 φ g2 = 0, then ∇α∇β(φ f ) = −K2 φ
2
gαβ f −φ f g∗

1(d f , d f )
2
gαβ =

0. ��
Now, we are able to describe conditions on the polynomials Pα that are necessary

for the flatness of themetric g fromTheorem 5 given by (38), and also to finish the case
of one-dimensional blocks: We need to show that if an α-block is one-dimensional,
then the corresponding function Hj (x j ) = 1

h j (x j )
from (66) is a polynomial of degree

≤ 2.
First we consider the most important case, when cαβ = 1 for all 1 ≤ α < β ≤ B.

The corresponding graph in this case is just a ‘path’ 1 ←− 2 ←−· · · ←− B from leaf
B to root 1, so that in view of (69) the metric gi j is given by the warped product of
the form

g = g1 + f1(X1)
2g2 + f1(X1)

2 f2(X2)
2g3 + · · · +

(
B−1∏
s=1

fs(Xs)
2

)
gB (72)
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with fα(Xα)2 = det(λα Idnα −Lα) for λα = eα α+1 = eα α+2 = · · · = eα B . The
metrics gα are nα-dimensional metrics of the form (66).

Suppose that a gα-component is one-dimensional and denote the corresponding
coordinate by x j . By direct calculations, using the formulas for Si j

k and �̂i
jk from

Sect. 6.2 and assuming u j = 0, we see that the condition ∇̂ j S j j
j = 0 becomes

∂2h j (x j )

∂x j 2
+ 8 g∗

(
d

α−1∏
s=1

fs(Xs), d
α−1∏
s=1

fs(Xs)

)
= 0. (73)

Note that the function
∏α−1

s=1 fs(Xs) is a Casimir of the metric g1+ f1(X1)
2g2+· · ·+(∏α−1

s=1 fs(Xs)
2
)

gα by Fact 8 so g∗
(
d
∏α−1

s=1 fs(Xs), d
∏α−1

s=1 fs(Xs)
)
is a constant

and h j is a polynomial of degree ≤ 2 whose leading coefficient is this constant with
a minus sign. Note that the case α = 1 is also covered by the argumentation above by
assuming that this constant is zero; in this case, h j is a linear polynomial.

Thus, our metric g is given by (72) with each gα = gLC
α

(
Pα(Lα)

)−1 and f 2α =
det(λα Idnα −Lα), where Pα has degree at most nα + 1. We denote the coefficients of
the polynomials by

Pα(t) = α
a0 + α

a1t + · · · + α
anα+1tn1+1.

Lemma 7.3 In the above notation, we have the following relations:

1
an1+1 = 0
Pα(λα) = 0 for α = 1, . . . , B − 1.
d Pα

d t |t=λα
= α+1

a nα+1+1 for α = 1, . . . , B − 1

(74)

Note that in view of Theorem 4, conditions (74) are sufficient for the flatness of g
and existence of Frobenius coordinates.

Proof We view g as a warped product metric over the n1 + n2 dimensional base
equipped with the metric g1 + f1(X1)

2g2. Then, the metric g1 + f1(X1)
2g2 is flat.

If n1 > 1 (the case n1 = 1 was already discussed above), combining Facts 7 and 8
we obtain an1+1 = 0 implying the first line of (74). Next, from Fact 8 we know that
f1(X1) is a g1-Casimir implying P1(λ1) = 0 in view of Fact 7.
Let us now show that

d P1

d t |t=λ1

= 2
an2+1. (75)

Since g1 + f1(X1)
2g2 is flat, by Fact 8 we have (we denote by K2 the curvature of g2

and assume n2 > 1)

1
4g∗(d f1, d f1

) = K2. (76)
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Combining (76) with Fact 7, we obtain (75). In the case n2 = 1, (75) follows from
(73) and Fact 7.

Next, we view g as a warped product metric over the n1 + n2 + n3 dimensional
base equipped with the metric g1+ f1(X1)

2g2+ f1(X1)
2 f2(X2)

2g3. Then, the metric
g1 + f1(X1)

2g2 + f1(X1)
2 f2(X2)

2g3 is flat. But it is itself a warped product metric
over the n1 + n2 dimensional base with the metric g1 + f1(X1)

2g2. By Fact 8, this
implies that f1 f2 is a Casimir of this metric. By Lemma 7.2, f2 is a Casimir of g2 so
P2(λ2) = 0. Moreover, by Fact 8 and using g∗(d f1, d f2

) = 0, we have

1
4g∗(d ( f1 f2), d ( f1 f2)

) = K3 (= − 1
4
3
an3+1). (77)

On the other hand

g∗(d ( f1 f2), d ( f1 f2)
) = f22g∗

1(d f1, d f1) + g∗
2(d f2, d f2)

(70)= − 1
4 f22

d P1
d t |t=λ1

− 1
4
d P2
d t |t=λ2

+ 2
an2+1 f22

(75)= − 1
4
d P2
d t |t=λ2

.

(78)

Combining this with (77), we obtain
3
an3+1 = d P2

d t |t=λ2
, as claimed. Iterating this

procedure we obtain (74). ��
Lemma 7.3 completes the proof of Theorem 5 under the additional assumption that

for every α < β, we have cαβ = 1. We now reduce the general case to this situation.
We assume without loss of generality that the combinatorial data are given by a

directed rooted in-tree with B vertices, i.e. the graph F is connected. Otherwise, we
have the direct product situation, i.e. the metric and all other relevant objects are direct
products of lower-dimensional metrics and relevant lower dimensional objects.

We denote by 1, 2, . . . , B the vertices of the in-tree F in such a way that α ≺ β

implies α < β; of course, the vertex 1 is then the root. Other vertices of degree one are
called leaves. Recall that α = next(β), if α ≺ β and there is no γ with α ≺ γ ≺ β.

For every leaf β,we define the chain Sβ (oriented path to the root) as the sub-tree
with vertices β, next(β), next (next(β)),…,1. For example, the upper tree of Fig. 1
has two chains, one with vertices 3, 2, 1 and another with vertices 4, 2, 1.

Next, for the chain Sβ and for any fixed point p, we consider the following sub-
manifold Mβ passing through p: in the coordinates (X1, . . . , X B) = (x1, . . . , xn), it
is defined by the system of equations

Xα = Xα(p) for every α /∈ Sβ.

This is a totally geodesic submanifold with respect to the connections �, �̄ and �̂. For
�̂, this follows from formulas (A,B,C) of Sect. 6.2. For � and �̄,it follows from (62).

Therefore, the restriction of g and ḡ onto Mβ satisfies the assumptions ofTheorem5.
Moreover, the components cαβ corresponding to this restriction are equal to 1 for
α < β.
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For example, for β = 3, the metric g corresponding to the upper tree of Fig. 1 is
given by

g = g1 + det(e12 Idn1 −L1) · g2 + det(e12 Idn2 −L1) · ((e23 Idn3 − det L2)

·g3 + det(e24 Idn4 −L2) · g4)

and the restriction of the metric g onto M3 is

g1 + det(e12 Idn1 −L1) · g2 + det(e12 Idn2 −L1)(e23 Idn3 − det L2) · g3.

The case when cαβ = 1 for all α < β is described in Lemma 7.3 and it has been
proved that the metric is as in Theorem 5. This implies that the metrics g and ḡ are
constructed as in Sect. 4.1 and the coefficients of Pα and Qα satisfy the conditions
(i, ii) from Sect. 4.1. It remains to show that they also satisfy condition (iii). In
order to do this, suppose that α = next(β) = next(γ ) with β �= γ . We consider the
sub-tree with vertices α, β, γ := next(α) = next(β) and the corresponding warped
product metric with the base metric gα and fibre metric gβ + gγ . For example, for
α = 2 in the case of the upper tree of Fig. 1, we consider the warped product metric
g2 + det(λα Idn2 −L2) · (g3 + g4).

We know that it must be of constant curvature which implies that the direct product
metric gβ +gγ must be of constant curvature which in turn implies that it is flat. Then,

by Fact 7, the coefficients
β
anβ+1 and

γ
anγ +1 vanish implying d Pα

d t |t=λα
= 0. Theorem

5 is proved.

7.3 On the Uniqueness of Frobenius Coordinates for a Pair of Metrics

We consider two flat metrics g, ḡ possessing a common Frobenius coordinate system
and discuss the uniqueness of this coordinate system. As before, we assume that Rg =
ḡg−1 has n different eigenvalues. We know that g, ḡ are as described in Theorem 5. In
particular, in the corresponding coordinates, the connection �̂ defining the Frobenius
coordinate system (i.e. the flat connection that vanishes in Frobenius coordinates) is
given by the formulas from Sect. 6.2. That is,

• For every i �= j and k �= i , �̂i
jk = 0.

• For the indices i �= j from one block, �̂i
i j = 1

x j −xi .
• For the index i from the block number α and j from the block number β �= α, we
have �̂

j
j i = �̂

j
i j = cαβ

xi .

• For every i , the component �̂i
i i := ui depends on xi only.

However, in view of (58) and (59), the function ui is also uniquely defined in terms
of the metric g (in fact, ui ≡ 0 in the diagonal coordinates from Theorem 5) unless
the only component of g which can depend on xi is the component gii . Such an
exceptional situation is possible if and only if gii represents a one-dimensional block
which is a leaf in terms of the in-forest F.

Clearly, the Frobenius coordinate system is determined up to affine change of
coordinates by the flat connection �̂. Therefore, non-uniqueness of this coordinate
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system only appears in the above exceptional situation. It is easy to see that in this
case the freedom in choosing it is the same as discussed in Sect. 4.1 after Theorem 5.

Remark 7.1 Coming back to Theorem 3 (uniqueness part), we notice that for the met-
rics g = P(L)gLC and ḡ = Q(L)gLC, every diagonal component gii depends on
all variables x1, . . . , xn . Then, the connection �̂ is unique implying that Frobenius
coordinates are unique up to an affine coordinate change, as required.

8 Pro-Frobenius Coordinates andMulti-block Frobenius Pencils.
Proof of Theorem 4

8.1 Extended AFF-Pencils and Pro-Frobenius Coordinates

As seen from Sect. 4.1, the main ingredients in multi-block Frobenius pencils (Theo-
rem 5) are metrics of the form

P(L)gLC, where P(·) is a polynomial of degree n + 1. (79)

If deg P ≤ n, then such metrics are flat and form the AFF-pencil (26). However, if
deg P = n +1, i.e. P(t) = an+1tn+1+ . . . , then g = P(L)gLC has constant curvature
K = − 1

4an+1 (see Fact 8). All together, the metrics (79) form a pencil of compatible
constant curvature metrics, which can be thought of as one-dimensional extension of
the AFF-pencil (26), see details in [9, 20]. In Frobenuis coordinates u1, . . . , un from
Sect. 2.3, the coefficients gαβ of the metric g = P(L)gLC with deg P = n + 1 are not
affine functions anymore. In particular, in the notation from Sect. 2.3, for P(t) = tn+1

we get:

gn+1 = Ln+1g0 =

⎛
⎜⎜⎜⎜⎝

u2 u3 . . . un 0
u3 . . . un 0 0
... . .

.
. .

. ...
...

un 0 . . . 0 0
0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

u1u1 u1u2 . . . u1un

u2u1 u2u2 . . . u2un

u3u1 u3u2 . . .
...

...
...

. . .
...

unu1 unu2 . . . unun

⎞
⎟⎟⎟⎟⎟⎠

.

All the other metrics from the extended AFF-pencil (79), in coordinates u1, . . . , un ,
take the form

gαβ = bαβ + aαβ
s us − 4K uαuβ, (80)

which looks as a quadratic perturbation of (15). These metrics (more precisely, the
corresponding coordinates u1, . . . , un) still possess remarkable properties, similar to
those from Fact 4. We use one of them to introduce the following

Definition 5 We say that u1, . . . , un is a pro-Frobenius coordinate system for a metric
g given by (80), if the contravariant Christoffel symbols �

αβ
s of g are symmetric in

upper indices.
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The Frobenuis coordinates u1, . . . , un for the metrics from the AFF-pencil are pro-
Frobenius for all the metrics (79) from the extended AFF-pencil (recall that these
coordinates are the coefficients of the characteristic polynomial of the Nijenhuis oper-
ator L).

Notice that the symmetry of �
αβ
s in upper indices is a strong geometric condition

that naturally appears in many problems and admits several equivalent interpretations.
The following statement summarises some of them (the proof is straightforward and
is left to the reader).

Lemma 8.1 Let gi j be a metric written in a certain coordinate system u1, . . . , un. The
following conditions are equivalent

• The contravariant Christoffel symbols �
i j
k = gis�

j
sk are symmetric in upper

indices,

• �
i j
k = − 1

2
∂gi j

∂uk ,
• The Christoffel symbols (of the first kind) �i jk = gks�

s
i j are totally symmetric in

lower indices,
• �i jk = 1

2
∂gi j

∂uk ,

• gi j is a Hessian metric, i.e. gi j = ∂2F
∂ui ∂u j for a certain function F(u1, . . . , un).7

This lemma immediately implies the following explicit formula for the contravariant
Christoffel symbols of g in pro-Frobenius coordinates:

�αβ
s = −1

2

∂gαβ

∂us
= −1

2
aαβ

s + 2K uαδβ
s + 2K δα

s uβ. (81)

Remark 8.1 Notice that for K = 0, a pro-Frobenius coordinate system is Frobenius
(see Fact 4). Also it can be checked that a pro-Frobenius metric (80) has constant
curvature K . For this reason, pro-Frobenius metrics can naturally be understood as
generalisation of Frobenius metrics (15) to the case of constant curvature metrics.

8.2 Warp Product of Pro-Frobenius Metrics

The proof of Theorem 4 is based on the following key statement.

Proposition 8.1 Let g and ĝ be two constant curvature metrics written in pro-
Frobenius coordinates u = (u1, . . . , un1) and v = (v1, . . . , vn2), respectively. Let
f (u) be a non-homogeneous linear function satisfying the following relations

(b1) grad f (u) = f (u)(α−4K u), where α = ∑
αi ∂

∂ui is a constant vector field and

u = ∑
ui ∂

∂ui ,

(b2) 1
f (u)

g(d f , d f ) = 4K̂ − 4K f (u), where K and K̂ are the curvatures of g and
ĝ, respectively.

7 Following [39], we will refer to this function F as the potential.
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Then the warp product metric8 gw = g + 1
f ĝ has constant curvature and the

coordinate system u1, . . . , un1 , y1 = f v1, . . . , yn2 = f vn2 is pro-Frobenius for gw.

Proof The matrix of gw in coordinates u, y takes the form

gw =
(

Id 0
v · d f f · Id

)(
g 0
0 1

f ĝ

)(
Id d f � · v�
0 f · Id

)

=
(

g grad f · v�
v · (grad f )� g(d f , d f )v · v�+ f ĝ

)

Hence the off-diagonal block has the following form

grad f · v� = f (u)(α − 4K u) · v� = (α − 4K u) · y�.

The lower diagonal block is

g(d f , d f )v · v� + f ĝ = (4K̂ f − 4K f 2)v · v� + f ĝ

Recall that ĝ consists of three parts, constant, linear and quadratic

ĝ = b̂ + â(v) − 4K̂v · v� or, in more detail, ĝi j = b̂i j + âi j
s vs − 4K̂viv j .

Substitution gives:

(4K̂ f − 4K f 2)v · v� + f ĝ = (4K̂ f − 4K f 2)v · v� + f (̂b + â(v) − 4K̂v · v�)

= f b̂ + â(y) − 4K y · y�

Summarising (and denoting g = b + a(u) − 4K u · u�), we get

gw =
(

b 0
0 f (0)̂b

)
+

(
a(u) α · y�

y · α� â(y) + m(u)̂b

)
− 4K

(
u
y

) (
u� y�) ,

where m(u) = f (u) − f (0) is the (homogeneous) linear part of the function f . This
shows that gw takes form (80) in coordinates (u, y).

To complete the proof,we only need to show that the (covariant) metric (gw)i j is
Hessian (see Lemma 8.1). This fact follows from

Lemma 8.2 Suppose gi j (u) = ∂2F
∂ui ∂u j is a Hessian metric in coordinates u1, . . . , un1

and ĝαβ(v) = ∂2 F̂
∂vα∂vβ is a Hessian metric in coordinates v1, . . . , vn2 . Then the (covari-

ant) warp product metric

(gw)i j = gi j (u)d uid u j + f (u)ĝαβ(v)d vαd vβ (82)

8 This metric was also discussed in Sect. 7, see Fact 8 et seq. Note the difference in notation and settings
used. Unlike Fact 8, nowwe are working with contravariant metrics, and our new function f was previously
denoted by f 2.
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where f (u) is an arbitrary linear function in u, is Hessian in coordinates
u1, . . . , un1 , y1, . . . , yn2 , where yi = f (u)vi . The corresponding potential is Fw =
F + f · F̂ = F(u1, . . . , un1) + f (u)F̂

(
y1

f (u)
, . . . ,

yn2

f (u)

)
.

Proof Let us rewrite the warp product metric (82) in coordinates u, y:

gi jd uid u j + f ĝαβ d vαd vβ = gi jd uid u j + f ĝαβ d

(
yα

f

)
d

(
yβ

f

)
=

gi jd uid u j + f ĝαβ

(
d yα

f
− yαd f

f 2

)(
d yβ

f
− yβd f

f 2

)
=

(
gi j + 1

f 3
ĝαβ yα yβ ∂ f

∂ui

∂ f

∂u j

)
d uid u j − 2

1

f 2
ĝαβ yα ∂ f

∂u j
d yβd u j + 1

f
ĝαβd yαd yβ .

(83)

Then we compute the second derivatives of the function F + f · F̂ (here we use
vα = yα

f (u)
and ∂ F̂

∂u j = ∑
α

∂ F̂
∂vα

∂vα

∂u j = −∑
α

∂ F̂
∂vα

yα

f 2
∂ f
∂u j ) :

∂2

∂ui ∂u j

(
F + f · F̂

) = ∂2F

∂ui ∂u j
+ ∂

∂ui

(
∂ f

∂u j
· F̂ + f · ∂ F̂

∂u j

)

= ∂2F

∂ui ∂u j
+ ∂

∂ui

(
∂ f

∂u j
· F̂ − 1

f

∑
α

∂ F̂

∂vα
yα ∂ f

∂u j

)
= (we use

∂ f

∂u j
= const as f is linear)

∂2F

∂ui ∂u j
+ ∂ f

∂u j

(
−

∑
α

∂ F̂

∂vα

yα

f 2
∂ f

∂u j
+ 1

f 2
∂ f

∂ui
·
∑
α

∂ F̂

∂vα
yα − 1

f

∑
α

∂

∂ui

(
∂ F̂

∂vα

)
yα

)

= ∂2F

∂ui ∂u j
− ∂ f

∂u j

1

f

∑
α,β

∂2 F̂

∂vβ∂vα

(
− 1

f 2

)
∂ f

∂ui
yα yβ = gi j + 1

f 3
∑
α,β

ĝαβ yα yβ ∂ f

∂ui

∂ f

∂u j
.

Next,

∂2

∂ yβ∂u j

(
F + f · F̂

) = ∂

∂ yβ

(
∂ f

∂u j
· F̂ − 1

f

∑
α

∂ F̂

∂vα
yα ∂ f

∂u j

)

= ∂ f

∂u j
· ∂

∂ yβ

(
F̂ − 1

f

∑
α

∂ F̂

∂vα
yα

)

= ∂ f

∂u j

(
∂ F̂

∂vβ

1

f
− 1

f

∂ F̂

∂vβ
− 1

f

∑
α

∂2 F̂

∂vα∂vβ
yα 1

f

)
= − ∂ f

∂u j

1

f 2
∑
α

ĝαβ yα.

And finally,

∂2

∂ yα∂ yβ

(
F + f · F̂

) = f
∂2 F̂

∂ yα∂ yβ
= f

∂2 F̂

∂vα∂vβ

1

f 2
= 1

f
ĝαβ.
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Comparing ∂2

∂ui ∂u j

(
F + f · F̂

)
, ∂2

∂ yα∂u j

(
F + f · F̂

)
and ∂2

∂ yα∂ yβ

(
F + f · F̂

)
with

(83) shows that gw is Hessian in coordinates (u, y), as stated. ��
This completes the proof of Proposition 8.1. ��
Our goal is to show that every metric from Theorem 4 is Frobenius in the corre-

sponding coordinate system. It is seen from the construction of such a metric that it
can be obtained step-by-step by iterating the warp product construction (following the
rules prescribed by the graph F). At each step,we have two constant curvature metrics
g and ĝ written in pro-Frobenius coordinate systems and then we ‘glue’ them by using
a certain linear function f as described in Proposition 8.1. This function must satisfy
the property (b1). (The second property (b2) should be understood as a condition on
the curvature K̂ of the metric ĝ.) In order to iterate the warp product procedure, we
need to describe those linear functions fw(u, y) which satisfy (b1) for the metric gw.
The next statement provides such a description.

Proposition 8.2 In the notation of Proposition 8.1, consider the warp product metric
gw = g + 1

f ĝ.

1. Let h(u) be another function (independent on f ) satisfying condition (b1) for g,
that is gradg h = h(β − 4K u) for some constant vector β. Then h(u) satisfies
(b1) for gw, namely

gradgw h = h

((
β

0

)
− 4K

(
u
y

))
.

2. The function f (u) itself satisfies (b1) for gw under the additional condition that
〈α, d f 〉 + 4K f (0) = 0, namely

gradgw f = f

((
α

0

)
− 4K

(
u
y

))
.

3. Let ĥ(v) be a function satisfying conditions (b1) for the metric ĝ, that is,
gradĝ ĥ = ĥ(β̂ − 4K̂v). Then f (u)̂h(v) = f (u)̂h

( y
f ) satisfies (b1) for gw,

namely

gradgw

(
f (u)̂h(v)

) = f (u)̂h(v)

((
α

β̂

)
− 4K

(
u
y

))
.

(Notice that f (u)̂h(v) is linear in coordinates (u, y). Indeed, if f (u) = m0 +∑
mi ui and ĥ(v) = m̂0 + ∑

m̂ jv
j , then f (u)̂h(v) = f (u)(m̂0 + ∑

m̂ jv
j ) =

m̂0 f (u) + ∑
m̂ j y j .)

Proof 1. We first notice that g(d f , d h) = 〈d h, gradg f 〉 = 〈d h, f (α − 4K u)〉 and,
on the other hand, g(d f , d h) = 〈d f , gradg h〉 = 〈d f , h(β − 4K u)〉. Since f and
h are linear (perhaps non-homogeneous), we have 〈d h, u〉 = h − h0 and similarly
〈d f , u〉 = f − f0. Hence,

g(d f , d h) = 〈d f , h(β − 4K u)〉 = h〈d f , β〉 − 4K h( f − f0)
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= h(〈d f , β〉 + 4K f0) − 4K h f ,

and, similarly,

g(d f , d h) = f (〈d h, α〉 + 4K h0) − 4K h f .

It follows from this that h(〈d f , β〉 + 4K f0) = f (〈d h, α〉 + 4K h0). Notice that the
expressions in brackets are some constants. Since h and f are not proportional, we
conclude that these expressions are identically zero implying g(d f , d h) = −4K f h
and 〈d h, α〉 + 4K h0 = 0.

We now compute gradgw h:

gradgw h =
(

g (α−4K u) · y�
y · (α−4K u)� ∗

)(
d h
0

)
=

(
h(β − 4K u)

y · (α − 4K u)�d h

)
,

where

y · (α − 4K u)�d h = y · (α d h + 4K h(0)) − y · 4K (h(0) + (
u�d h)

)

= y · 0 − y · 4K h = −y · 4K h,

which gives gradgw h = h

((
β

0

)
− 4K

(
u
y

))
, as required.

2. The proof is just the same, but we need to use α d f + 4K f (0) = 0 as an
additional condition.

3. We now compute the gradient of f (u)̂h(v) = f (u)̂h
( y

f ) = f (u)(m̂0 +∑
m̂ jv

j ) = m̂0 f (u) + ∑
m̂ j y j = ĥ(0) f (u) + ĥ(y) − ĥ(0).

gradgw

(̂
h(0) f (u) + ĥ(y) − ĥ(0)

) =
(

g gradg f · v�
v · (gradg f )� g(d f , d f )v · v� + f ĝ

)(
ĥ(0)d f
d ĥ

)

=
⎛
⎝

(
ĥ(0) + v�d ĥ

)
gradg f

g(d f , d f )
(

ĥ(0) + v�d ĥ
)

v + f gradĝ h(v)

⎞
⎠

=
(

h(v) f (u)
(
α − 4K u

)
g(d f , d f )h(v)v + f (u)h(v)

(
β̂ − 4K̂v

)
)

=
(

h(v) f (u)
(
α − 4K u

)
(4K̂ f − 4K f 2)h(v)v + f (u)h(v)

(
β̂ − 4K̂v

)
)

= h(v) f (u)

(
α − 4K u
β̂ − 4K y

)
,

as required. ��
Propositions 8.1 and 8.2 allow us to construct pro-Frobenius metrics using metrics

from extended AFF-pencils as building blocks. We only need to describe appropriate
function f satisfying properties (b1) and (b2) from Proposition 8.1 for these metrics.

Proposition 8.3 Consider metrics g = P(L)gLC and ĝ = P̂(L̂)ĝLC from two dif-
ferent extended AFF-pencils (79) with pro-Frobenius coordinates u1, . . . , un1 and
v1, . . . , vn2 , respectively. Let λ be a root of P(·), then
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1. f = det(λ Id−L) satisfies condition (b1) , namely grad f = f (α − 4K u),
where K = 1

4bn1 , α = (bn1−1, . . . , b1, b0) and bi ’s are defined from P(t) =
(t − λ)(b0 + b1t + · · · + bn1 tn1).

2. If P̂(t) = ân2+1tn2+1 + ân2 tn2 + . . . , then condition (b2) for f takes the form
ân2+1 = P ′(λ).

3. Moreover, if λ is a double root of P(·), then 〈α, d f 〉 + 4K f (0) = 0 (cf. item 2
of Proposition 8.2).

Proof The first part of this statement can be verified by a straightforward computation.
We also notice that f (u) is linear in variables u1, . . . , un1+1.

The second statement easily follows from Fact 7. Indeed, from (70), we get

1

f
g(d f , d f ) = −P ′(λ) − 4K f . (84)

Therefore,(b2) can be written as 4K̂ = −P ′(λ). In view of Fact 7, K̂ = − 1
4 ân2+1.

Hence, (b2) amounts to ân2+1 = P ′(λ), as stated.
Finally, grad f = f (α − 4K u) implies

1

f
g(d f , d f ) = 1

f
〈grad f , d f 〉 = 〈α, d f 〉 − 4K 〈u, d f 〉

= 〈α, d f 〉 − 4K ( f − f (0)) = 〈α, d f 〉 + 4K f (0) − 4K f .

Comparing this relation with (84), we see that 〈α, d f 〉 + 4K f (0) = −P ′(λ). Hence,
the l.h.s. of this relation vanishes if and only if λ is a double root of P(t). ��

We now ‘return’ to the notation from Sect. 4.1. It follows from Propositions 8.1 and
8.3 that themetric Pα(Lα)gLC

α + 1
det(λβ Id−L)

Pβ(Lβ)gLC
β is pro-Frobenius in coordinates

σ 1
α , . . . , σ

nα
α , det(λ Id−L) · σ 1

β , . . . , det(λ Id−L) · σ
nβ

β , if λβ is a root of Pα(t) and
β
anβ+1 = (−1)nα P ′

α(λβ). These two conditions exactly coincide with condition (ii)
used in the construction of multi-block pencils from Theorem 4 (cf. Sect. 4.2 where
we discuss the two-block case in slightly different notation). We can next repeat this
construction by ‘adding’ one more similar block Pγ (Lγ )gLC

γ to Pα(Lα) gLC
α :

Pα(Lα) gLC
α + 1

det(λβ Id−Lα)
Pβ(Lβ) gLC

β + 1

det(λγ Id−Lα)
Pγ (Lγ ) gLC

γ .

Of course, two conditions should be fulfilled, namely Pα(λγ ) = 0 and
γ
anγ +1 =

(−1)nα P ′
α(λγ ). Moreover, in view of Proposition 8.2 (item 2) and Proposition 8.2

(item 3), if λβ = λγ , we need to require that λβ is a double root of Pα (which is exactly
condition (iii) used in the construction of multi-block pencils from Theorem 4).

To complete the proof of Theorem 4, we should now iterate the above procedure
step-by-step following the combinatorial data provided by the graph F (starting from
leaves and moving towards the root). At each step of this construction, we obtain a
pencil of pro-Frobenius metrics, leading finally to a Frobenius pencil (the condition
(i) will guarantee the flatness of the final metric).
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