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Abstract
In this article,we show the existence of closed embedded self-shrinkers inRn+1 that are
topologically of type S1 × M , where M ⊂ Sn is any isoparametric hypersurface in Sn

for which themultiplicities of the principle curvatures agree. This yields new examples
of closed self-shrinkers, for example self-shrinkers of topological type S1×Sk ×Sk ⊂
R2k+2 for any k. If the number of distinct principle curvatures ofM is one, the resulting
self-shrinker is topologically S1 × Sn−1 and the construction recovers Angenent’s
shrinking doughnut (Angenent in Shrinking doughnuts, Birkhäuser, Boston, pp 21–
38).

Keywords Mean curvature flow · Self-shrinker · Isoparametric foliations

1 Introduction

Consider a compact n-dimensional manifold � that is smoothly immersed in Rn+1

via a map F0 : � → Rn+1. A mean curvature flow of F0(�) is a family of smooth
immersions Ft : � → Rn+1 where t ∈ R varies over some interval and for which

∂t Ft (x) = H t (x)

holds for all t . Here H t (x) is the mean curvature of Ft (�) at Ft (x). In other words,
Ft (�) flows along its mean curvature vector inRn+1. Due to compactness of �, such
a flow necessarily becomes singular in finite time, see, e.g. [13].

By the work of Huisken [13], Ilmanen [14] and White [21], rescaling Ft (M) near
the singular time in an appropriate way leads to weak limits that are so-called self-
shrinkers, that is immersedmanifolds whosemean curvature flow is given by dilations.
These self-shrinkers then take a special role in the singularity theory of the mean
curvature flow.

B Oskar Riedler
oskar.riedler@uni-muenster.de

1 Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Mÿnster, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-023-01217-w&domain=pdf
http://orcid.org/0000-0003-3965-8785


172 Page 2 of 27 O. Riedler

In this paper, we use the theory of isoparametric foliations of the sphere Sn to
construct new examples of closed embedded self-shrinkers. Concretely we show:

Theorem A For any isoparametric hypersurface M in Sn, n ≥ 2, for which the mul-
tiplicities m1 and m2 of the principal curvatures agree, there is a closed embedded
self-shrinker of topological type S1 × M in Rn+1. This hypersurface is a union of
homothetic copies of the leaves of the isoparametric foliation of Sn associated to M.

The theory of isoparametric hypersurfaces of the sphere Sn is very rich, so the above
theorem can be used to produce self-shrinkers of novel topology (for example S1 ×
Sk × Sk ⊂ R2k+2 for k ∈ N or S1 × SO(3)/(Z2 ×Z2) ⊂ R5). These hypersurfaces
have previously been applied to the problemofmean curvature self-shrinkers byChang
and Spruck [6], who constructed for any isoparametric hypersurface M of the sphere
Sn a self-shrinking end that is asymptotic to the cone C(M).

The terminology of isoparametric hypersurfaces will be recalled in Sect. 2.1. The
proof of Theorem A works via a reduction of the shrinker condition to a geodesic
equation in a two-dimensional manifold. Simple periodic solutions of this ordinary
differential equation are then established by shooting methods very similar to [2],
although the equation itself is quite different.

Denoting with g the number of principal curvatures of a regular leaf of the isopara-
metric foliation, one has in the case g = 1 that the leaves become the latitudes of a
sphere. The hypersurfaces found by Theorem A are then rotationally invariant under
the O(n) action on Rn+1 and topologically of type S1 × Sn−1, the same topological
type as the “shrinking donut” found by Angenent [2]. It is currently an open question
whether there exist embedded rotationally invariant self-shrinkers of type S1 × Sn−1

in Rn+1 other than Angenent’s example, so we also remark:

Proposition B In the case g = 1, the construction of Theorem A gives Angenent’s
shrinking doughnut [2].

The structure of this article is as follows: In Sect. 2, we recall the necessary facts
about isoparametric foliations, explain the reduction of the self-shrinker problem to
an ordinary differential equation, and remark on some elementary properties of the
resulting equation. In Sect. 3, the shooting argument is presented and Theorem A is
shown with the exception of a technical proposition. Proposition 1 is also proved in
Sect. 3. The aforementioned technical proposition is shown in Sect. 4.

The author would like to thank Peter McGrath for interesting and helpful discus-
sions. The author gratefully acknowledges the support of Germany’s Excellence Strat-
egy EXC 2044 390685587, Mathematics Münster: Dynamics-Geometry-Structure.

2 Reduction and Geodesic Equation

In SubSect. 2.1, we recall some basic definitions and facts about isoparametric folia-
tions. Subsection 2.2 explains the reduction procedure: a result due to Angenent [2]
gives that a hypersurface is a self-shrinker if and only if it is minimal in some metric
gAng. The reduction theorem of Palais and Terng [17] is then applied in order to reduce
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the shrinker property to a geodesic equation on an open subset of R2 equipped with
a special metric. In SubSect. 2.3, we present this geodesic equation and simplify its
form.

2.1 Isoparametric Foliations on Spheres

Definition 2.1 LetM be a smooth Riemannianmanifold. A smooth function f : M →
R is called isoparametric if there are smooth functions a, b : f (M) → R so that

‖∇ f ‖2 = a ◦ f , (1)

� f = b ◦ f . (2)

The geometric meaning of condition (1) is that the fibres of f form a (singular)
transnormal system,1 in particular they are all equidistant to each other. Condition (2)
implies that the regular fibres of the foliation are of constant mean curvature in M
(cf. [7]). If M is a space-form, one even has that the individual principal curvatures
of such a fibre are constant along the fibre. Foliations that arise from the fibres of an
isoparametric function are called isoparametric foliations. A hypersurface is called an
isoparametric hypersurface if it is a regular leaf of an isoparametric foliation.

The classification of isoparametric foliations in spheres was initiated by Cartan in
[3–5]. This has proven to be a difficult problem and, despite a long and active history
of research, it is in part still open. A significant part of the structure theory of these
foliations was developed by Münzner in two seminal papers [15, 16].

We review now some structural facts of isoparametric foliations of Sn , cf. [7, 11,
15, 16, 20] for proofs and further information:

(i) The principal curvatures of any regular fibre are constant along the fibre.
(ii) The number of distinct principal curvatures of a regular fibre is the same for any

two regular fibres. Denoting this number by g, one has that g ∈ {1, 2, 3, 4, 6}.
(iii) There are precisely two singular fibres V1 and V2. One has dist(V1, V2) = π

g .
These singular fibres are closed and minimal submanifolds of Sn .

(iv) Any regular fibre is of the form Mϕ :={x ∈ Sn | dist(x, V1) = ϕ}, where ϕ ∈
(0, π

g ). These fibres are all diffeomorphic to one another.
(v) The principal curvatures of a regular fibre Mϕ are of the form cot(ϕ), cot(ϕ +

π
g ), . . . , cot(ϕ+ (g−1)π

g ). Denotingwithm1:=codim(V1)−1,m2:=codim(V2)−1
the multiplicities of these principle curvatures are m1,m2,m1, . . .. In particular
n − 1 = g

2 (m1 + m2) and m1 = m2 if g is odd.
(vi) For ϕ∗ = 2

g arctan(
√
m1/m2) the hypersurface Mϕ∗ is minimal in Sn .

(vii) The volume of a regular fibre is given by

Vol(Mϕ) = c sin(
g

2
ϕ)m1 cos(

g

2
ϕ)m2 (3)

1 Meaning if a geodesic is perpendicular to a leaf at any time that the geodesic then remains perpendicular
to all leaves it intersects, cf. [19] for more details.
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where c a positive constant that does not vary inϕ (but will be different for different
foliations).

(viii) There is a homogenous polynomial F : Rn+1 → R (called the Cartan-Münzner
polynomial) of degree g so that F |Sn= cos(gϕ) and for which one has:

‖∇F(x)‖2 = g2‖x‖2g−2, �F(x) = g2

2
(m1 − m2)‖x‖g−2.

Example The cases g ∈ {1, 2, 3} were first classified by Cartan. The list of homoge-
nous examples was completed by Takagi and Takahashi [18] based on previous work
by Hsiang and Lawson [12], here an example is called homogenous if the fibres of the
foliation arise as the orbits of an isometric action on Sn . The homogenous cases always
arise as the principal orbit of the isotropy representation of a Riemannian symmetric
space of rank 2, see [7] for more detailed remarks and references also for the other
cases.

(i) When g = 1, the isoparametric foliation is congruent (that is equal up to an isomet-
ric transformation) to the latitudes of the sphere Sn . One has V1 = {(1, 0, . . . , 0)},
V2 = {(−1, 0, . . . , 0)} and Mϕ = {cos(ϕ)} × sin(ϕ)Sn−1 for ϕ ∈ (0, π). These
examples are homogenous and m1 = m2 = n − 1.

(ii) When g = 2, the isoparametric foliation is congruent to the foliation by Clifford
tori Sm1 × Sm2 . One has V1 = {(0, . . . , 0)} × Sm2 , V2 = Sm1 × (0, . . . , 0) and
Mϕ = sin(ϕ)Sm1 × cos(ϕ)Sm2 for ϕ ∈ (0, π

2 ). The integers m1,m2 are arbitrary
so long as m1 +m2 = n − 1, in particular m1 �= m2 is possible. The fibres are the
orbits of an isometric O(m1 + 1) × O(m2 + 1) action on Sn .

(iii) When g = 3, one has m1 = m2 ∈ {1, 2, 4, 8}. The fibres of the foliation arise
as the distance tubes of certain embeddings of the projective planes FP2 (= V1)
in S3m1+1 where F ∈ {R,C,H,O} is one of the real division algebras or the
octonions. These examples are homogenous and the fibres are diffeomorphic to
SO(3)/(Z2 × Z2), SU (2)/T2, Sp(3)/Sp(1)3, F4/Spin(8), respectively.

(iv) For g = 4, there is an infinite family, introduced by Ferus, Karcher, and Münzner
in [11], which contains both homogenous as well as inhomogenous examples. Two
additional homogenous cases beyond this family exist, else all examples belong
to this family. Here m1 �= m2 is possible.

(v) For g = 6, one has m1 = m2 ∈ {1, 2}, as was shown by Abresch [1]. For both
cases, there exist homogenous examples. If m1 = m2 = 1, it was shown by
Dorfmeister and Neher [8] that the homogenous example is the only one.

2.2 Reduction for Self-shrinkers

Definition 2.2 Let F be the Cartan-Münzner polynomial of an isoparametric foliation
of Sn . Define:

f : Rn+1 − R≥0 · (V1 ∪ V2) → (0,∞) × (0,
π

g
), x �→

(
‖x‖, arccos(F(x/‖x‖))

g

)
.
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A set X ⊂ Rn+1 is called f-invariant if there is a set N ⊂ (0,∞) × (0, π
g ) so that

X = f−1(N ). Compare with the notion of F-invariant in [20].

Note that the f-invariant sets are precisely those sets that are unions of homothetic
copies of the regular fibres of the isoparametric foliation - that is unions of sets of
the form r · Mϕ for (r , ϕ) ∈ (0,∞) × (0, π

g ). (Recall that for ‖x‖ = 1, one has

F(x) = cos(gϕ), where ϕ is the distance to the singular fibre V1. So f−1(r , ϕ) = {x ∈
Rn+1 | ‖x‖ = r , x

‖x‖ ∈ Mϕ}.)
Recall (cf. [2, 9]) that a closed submanifold X ⊂ Rn+1 is a self-shrinker under

mean curvature flow (short: self-shrinker) if and only if there is an τ > 0 such that X
is a minimal hypersurface inRn+1 equipped with the metric (which we refer to as the
shrinker metric):

gsh = e− τ‖x‖2
n

n∑
i=1

dx2i = e− τ‖x‖2
n gEuc.

The parameter τ is related to the extinction time of X . By rescaling X if necessary we
take τ = 1 in what follows.

Proposition 2.3 EquippingRn+1−R≥0 ·(V+ ∪V−)with the shrinker metric gsh (with

τ = 1) and (0,∞) × (0, π
g ) with the metric gSubm:=e− r2

n (dr2 + r2dϕ2), one has:

(i) f is a surjective and proper Riemannian submersion.
(ii) The mean curvature vector of a fibre f−1(r , ϕ) is given by

e
r2
2n

(
(
1

r
− r

n
)νr + H(ϕ)

r
νϕ

)
,

where H(ϕ) is the mean curvature of Mϕ ⊂ Sn, νϕ is the unit normal of rMϕ in
r Sn equipped with gsh, and νr is the unit normal of r Sn in Rn+1 equipped with
gsh.

The proof is a standard calculation and from (ii) one sees that the mean curvature of
the fibres of f form a basic field of the Riemannian submersion, meaning that it is the
horizontal lift of a vector field on the base manifold. Riemannian submersions with
this property are the key ingredient in the reduction theory developed by Palais and
Terng in [17], recall:

Theorem 2.4 (Palais-Terng, cf. Theorem 4 in [17]) Let π : (E, gE ) → (B, gB) be a
Riemannian submersion for which the mean curvatures of the fibres form a basic field,
then for a k-dimensional submanifold X ⊂ B, one has that π−1(X) is minimal in E
if and only if X is minimal in (B, V 2/kgB). Here V 2/kgB is the metric given by

(V 2/kgB) (b) = VolgE (π−1(b))2/k gB(b).
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Using (3) one gets (up to a constant factor):

Volgsh(f
−1(r , ϕ))2 = e− r2(n−1)

n VolgEuc(r · Mϕ)2 = r2(n−1)e−r2(1−1/n) VolSn (Mϕ)2

= r2(n−1)e−r2(1−1/n) sin2m1(
g

2
ϕ) cos2m2(

g

2
ϕ).

The problem of finding f-invariant hypersurfaces that are minimal with respect to
gsh is then reduced to finding geodesic segments in (0,∞) × (0, π

g ) equipped with
the metric

r2n−2e−r2 sin(
g

2
ϕ)2m1 cos(

g

2
ϕ)2m2(dr2 + r2dϕ2). (4)

We conclude:

Proposition 2.5 A f-invariant hypersurface X ⊂ Rn+1 is a closed self-shrinker in
Rn+1 if and only if N :=f(X) is a closed geodesic in (0,∞) × (0, π

g ) with respect to
the metric (4).

2.3 Geodesic Equation

For the metric (4) one gets the following geodesic equation, where α denotes the angle
between dr

dt and
dϕ
dt :

dr

dt
= cosα G(r , ϕ),

dϕ

dt
= sin α

G(r , ϕ)

r
,

dα

dt
= sin α r ∂r

G(r , ϕ)

r
− cosα

1

r
∂ϕG(r , ϕ).

Here

G(r , ϕ) = r−n+1er
2/2 sin(

g

2
ϕ)−m1 cos(

g

2
ϕ)−m2 .

Since we are not directly interested in the parametrisation of the geodesic but rather
in its orbit we perform a substitution dtnew

dtold
= 1

r G(r , ϕ) to simplify the equation:

dr

dt
= r cosα,

dϕ

dt
= sin α,

dα

dt
= sin α (r2 − n) + g

2
cosα (m1 cot(

g

2
ϕ) − m2 tan(

g

2
ϕ)).
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We simplify once more by letting θ(t):= g
2ϕ(t), substituting dtnew

dtold
= g

2
1

sin(2θ)
, letting

ξ(t):= g
2 ln(

√
2
g r(t)) and m:= 2

g n = m1 + m2 + 2
g to get:

dξ

dt
= cosα sin(2θ),

dθ

dt
= sin α sin(2θ), ∗

dα

dt
= sin α sin(2θ)(e

4
g ξ − m) + 2 cosα l(θ).

Here l(θ) = m1 cos2(θ) − m2 sin2(θ).
If θ ′(t) �= 0 then ξ may be (locally) given the form of a graph over θ . This graph

obeys the following ODE:

d2ξ

dθ2
(θ) = ξ ′′(t)

θ ′(t)2
− ξ ′(t)

θ ′(t)
θ ′′(t)
θ ′(t)2

= −
(
1 + (

dξ

dθ
)2

) (
e

4
g ξ − m + 2H(θ)

dξ

dθ

)
. ∗∗

Here

H(θ) = l(θ)

sin(2θ)
= m1

2
cot(θ) − m2

2
tan(θ).

The ODE (∗) can be formulated for all initial conditions (ξ, θ, α) ∈ R3. But in
coordinates (ξ, θ), the domain (0,∞) × (0, π

g ) has been transformed to R × (0, π
2 );

so we are only interested in solutions where the ξ and θ components remain in that
domain. We set D:=R × (0, π

2 ) × R.
The ODE (∗) admits two trivial families of solutions in D, namely for any k ∈ Z:

(ξ, θ, α) (t) = (ξ(0) + 2(−1)k
√
m1m2

m1 + m2
t, arctan

(√
m1

m2

)
, πk),

(ξ, θ, α) (t) = (
g

4
lnm, arccot

(
e(−1)k2t cot(θ(0))

)
,
π

2
+ πk).

The first of these solutions lifts to the cone R>0 · Mϕ∗ over the minimal hypersurface
of the isoparametric foliation, which is a minimal submanifold of Rn+1. The second
lifts to the round sphere, albeit with the singular fibres V1, V2 removed.

2.4 Elementary Properties of (∗) and Symmetry

We briefly note some elementary properties of solutions of (∗), proofs are standard
and are thus omitted.

Proposition 2.6 (i) For any (ξ0, θ0, α0) ∈ R3,there is a unique solution γ of (∗) with
initial condition γ (0) = (ξ0, θ0, α0). This solution is smooth and has domain of
definition all of R, i.e. solutions exist for all times.
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(ii) Suppose (ξs, θs, αs) converges in R3 to a point (ξ∞, θ∞, α∞). Denote by γs the
solution of (∗) with initial condition (ξs, θs, αs) and γ∞ the solution of (∗) with
initial condition (ξ∞, θ∞, α∞). Then γs converges uniformly on compacta to γ∞.

(iii) Solutions of (∗) with initial condition in D remain in D for all times.

For our investigation, we are interested in periodic solutions of (∗). These will be
found with the help of a discrete symmetry of the ODE (∗).

Definition 2.7 Define θ∗:= arctan(
√
m1/m2) and let

S : R3 → R3, (ξ, θ, α) �→ (ξ, 2θ∗ − θ, π − α).

Remark 2.8 Note that θ∗ is the solution in (0, π
2 ) of l(θ) = 0. Additionally themap S is

an involution that reflects θ at θ∗ while sending cosα → − cosα and sin α → sin α.
In the event that m1 = m2, one has θ∗ = π

4 and l(2θ∗ − θ) = −l(θ) as well as
sin(2(2θ∗ − θ)) = sin(2θ). For m1 = m2, one has S(D) = D.

Proposition 2.9 If m1 = m2 then for any x ∈ D, one has S(γ1(−t)) = γ2(t) for
all t ∈ R, where γ1, γ2 are the solutions to (∗) with initial conditions x and S(x),
respectively.

If x = S(x) then γ1 = γ2 in the above proposition and one gets S(γ1(t)) = γ1(−t).
Noting that (∗) is further invariant under transformations of the form α �→ α + 2πk
for k ∈ Z then immediately gives a criterium for finding periodic solutions:

Corollary 2.10 Let m1 = m2 and x ∈ D with S(x) = x, let γ be solution of (∗) with
initial condition x. If there are T �= 0 and k ∈ Z so that

S(γ (T )) = γ (T ) +
⎛
⎝ 0

0
2πk

⎞
⎠

then the ξ and θ components of γ are periodic and 2T is a period.

Note that one has S(ξ, θ, α) = (ξ, θ, α + 2πk) for some k ∈ Z if and only if θ = θ∗
and α = π

2 + π j for some j ∈ Z.

3 Existence of Periodic Curves

In light of Corollary 2.10 we wish to find geodesic segments that begin and end on the
line θ = θ∗, with both intersections being orthogonal. We begin with the following
definition:

Definition 3.1 For ξ0 ∈ R let (θξ0(t), ξξ0(t), αξ0(t)) denote the solution of (∗) with
initial condition ξ(0) = ξ0, θ(0) = θ∗ and α(0) = π

2 . Then:

(i) ξ0 is said to be of type 1 if there is a T > 0 so that θξ0(T ) = θ∗ and ξ ′
ξ0

(t) �= 0 for
all t ∈ (0, T ).
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Fig. 1 Examples of curves of
different type. The blue curve is
type 1 but not type 2, the green
curve is both type 1 and type 2,
the orange curve is type 2 but not
type 1, the red curve is type 3

θ

ξ

(ii) ξ0 is said to be of type 2 if there is a T > 0 so that ξ ′
ξ0

(T ) = 0 and θξ0(t) �= θ∗ for
all t ∈ (0, T ).

(iii) ξ0 is said to be of type 3 if ξ ′
ξ0

(t) �= 0 and θξ0(t) �= θ∗ for all t > 0.

Note that type 1 and type 2 are not exclusive, whereas a point is type 3 precisely if
it is not type 1 or type 2. In fact, a point that is both of type 1 and type 2 corresponds
to a curve segment that orthogonally meets the θ = θ∗ line at its start and its end.
If m1 = m2, this leads to a solution for which the ξ and θ components are periodic,
which corresponds to a closed embedded self-shrinker in Rn+1 of topological type
S1 × M , here M is diffeomorphic to the leaves of the isoparametric foliation. The
following argument then finds a value ξ∗

0 that is both type 1 and type 2.

Remark 3.2 For m1 = m2, one can see that ξ0 = g
4 lnm is the only type 3 point, as in

this case, type 3 points correspond to embedded mean curvature convex self-shrinkers
that are topologically a sphere. By [13], the only closed embedded mean curvature
convex self-shrinkers are round spheres, which in this setting are given by the line
ξ = g

4 lnm.

Define:

ξ∗
0 = inf{r ∈ R | ξ0 is type 1 for all ξ0 > r}.

Proposition 3.3 We have:

(i) ξ∗
0 < ∞.

(ii) ξ∗
0 >

g
4 lnm.

(iii) ξ∗
0 is not type 3.

This proposition will be proven in Sect. 4. For now, we make use of the following
elementary lemma:

Lemma 3.4 For (ξ, θ) (t) ∈ D, one has the following characterisation of extrema:

(i) If ξ ′(t) = 0, then sign(ξ ′′(t)) = sign( g4 lnm − ξ(t)).
(ii) If θ ′(t) = 0, then sign(θ ′′(t)) = sign(θ∗ − θ).
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Proof ξ ′(t) = 0 if and only if cos(α(t)) = 0, so

ξ ′′(t) = − sin α sin(2θ)α′(t) = − sin2 α sin2(2θ)(e
4
g ξ − m).

In the same way θ ′(t) = 0 if and only if sin(α(t)) = 0, so

θ ′′(t) = cosα sin(2θ)α′(t) = 2 cos2 α sin(2θ)l(θ).

Now l(θ) > 0 for θ < θ∗ and l(θ) > 0 for θ > θ∗. ��
This now gives:

Proposition 3.5 ξ∗
0 is type 1 and type 2.

Proof Since ξ∗
0 is not type 3 by Proposition 3.3 (iii), it must be at least one of type 1

or type 2. We first assume that ξ∗
0 is type 1 but not type 2, then we have a T > 0 so

that for all ε > 0 small enough, one gets:

cos(αξ∗
0
(t)) �= 0 ∀t ∈ [ε, T + ε], θξ∗

0
(T + ε) < θ∗.

Since solutions of the ODE (∗) vary continuously in the initial conditions (with
respect to the topology of uniform convergence on compacta), one finds a neighbour-
hood U (ε) of ξ∗

0 so that for all ξ0 ∈ U (ε), one has

cos(αξ0(t)) �= 0 ∀t ∈ [ε, T + ε], θξ0(T + ε) < θ∗.

Additionally, one has | ddt ξξ0(t)| ≤ 1, whence if one chooses ε small enough, there is
a neighbourhood V of ξ∗

0 >
g
4 lnm with ξξ0(t) >

g
4 lnm for all t ∈ [0, ε] and ξ0 ∈ V .

By Lemma 3.4, ξ(t) can only have maxima when ξ(t) >
g
4 lnm, which implies that

cos(αξ0(t)) �= 0 for all t ∈ (0, ε] and ξ0 ∈ V .
The above shows that for ξ0 ∈ V ∩ U (ε), one has that ξ0 is type 1, contradicting

the definition of ξ∗
0 .

The assumption that ξ∗
0 is type 2 but not type 1 leads to a contradiction via similar

argument, we carry this out:
Note first that ξ ′′

ξ∗
0
(0) < 0, so the next extremum must be a minimum (Lemma 3.4

implies that whenever ξ ′(t) = 0, one has either a maximum, a minimum, or ξ is the
trivial solution ξ = g

4m). This gives a T > 0 such that for all ε > 0 small enough:

θξ∗
0
(t) �= θ∗ ∀t ∈ [ε, T + ε], cos(αξ∗

0
(T + ε)) > 0

As before one gets a neighbourhood U (ε) of ξ∗
0 so that this extends to all initial

conditions ξ0 ∈ U (ε), i.e. for all ξ0 ∈ U (ε):

θξ0(t) �= θ∗ ∀t ∈ [ε, T + ε], cos(αξ0(T + ε)) > 0

Since θ ′
ξ0

(t) = 1 one again gets for ε small enough a neighbourhood V of ξ∗
0 with

θξ0(t) �= θ∗ for all t ∈ (0, ε] and ξ0 ∈ V . This shows that all points ξ0 ∈ V ∩ U (ε)

are of type 2 but not type 1, again contradicting the definition of ξ∗
0 . ��
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Asdiscussed, this yields a periodic geodesic viaCorollary 2.10 in the casem1 = m2.

Lemma 3.6 When m1 = m2, one has that the periodic geodesic t �→ (ξξ∗
0
, θξ∗

0
) (t) is

simple.

Proof Let 2T > 0 denote the period of the geodesic, then θ(0) = θ(T ) = θ∗. For
t ∈ (0, T ) this gives ξ ′

ξ∗
0
(t) < 0 and θξ∗

0
(t) > θ∗, similarly if t ∈ (T , 2T ) then

ξ ′
ξ∗
0
(t) > 0 and θξ∗

0
(t) < θ∗. This immediately implies that the geodesic is simple. ��

Together with Proposition 2.5, this proves the main theorem of the paper:

Theorem A For any isoparametric hypersurface M in Sn, n ≥ 2, for which the mul-
tiplicities m1 and m2 of the principal curvatures agree, there is a closed embedded
self-shrinker of topological type S1 × M in Rn+1. This hypersurface is a union of
homothetic copies of the leaves of the isoparametric foliation of Sn associated to M.

In the case m1 �= m2, Proposition 3.5 remains true and yields a simple geodesic
segment that starts and ends on the θ = θ∗, meeting this line orthogonally in both
places. In between the two ends, one has θ > θ∗ and the same arguments give another
geodesic arc with the same properties, except now θ < θ∗.

It may be useful to connect the end-points of these two arcs by line segments θ = θ∗
(which are geodesics). Doing so gives a simple closed curve consisting piecewise
geodesic segments and having external angle sum equal to 0. By the Theorem of
Gauß-Bonnet, this curve then encloses a total Gauß curvature of 2π . Such a curve
is an essential ingredient in [10], where an adapted curve shortening flow is used to
generate closed geodesics.

3.1 The Case Studied by Angenent

The case g = 1 yields an embedded self-shrinker in Rn+1 of topological type S1 ×
Sn−1, which is invariant under an isometric O(n) action on Rn+1. This is the case
investigated by Angenent in [2]. In this subsection, we relate Angenent’s construction
to ours and show that they give the same self-shrinker.

Let ω:={(x0, . . . , xn) ∈ Rn+1 | ∑n
i=0 x

2
i = 1, x0 = 0}, e0:=(1, 0, . . . , 0) ∈

Rn+1. Then the construction of [2] yields a self-shrinker of the form

{x(t) e0 + r̃(t) ω | t ∈ (a, b)}, (5)

where x : (a, b) → R, r̃ : (a, b) → R>0 are smooth functions and a, b ∈ R. Note
that sets the form (5) are precisely the f-invariant sets from Definition 2.2, where f
arises from the isoparametric foliation of Sn with V1 = e0. To be more precise, if
r : (a, b) → R>0, ϕ : (a, b) → (0, π), one has:

f−1({(r(t), ϕ(t)) | t ∈ (a, b)}) = {r(t) cos(ϕ(t)) e0 + r(t) sin(ϕ(t)) ω | t ∈ (a, b)}.
(6)
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In [2], the variational condition that a set of the form (5) is a self-shrinker is reduced
to {(x(t), r(t)) | t ∈ (a, b)} being a geodesic segment in

(R × R>0, r̃
2n−2e−τ(x2+r̃2)(dx2 + dr̃2)). (7)

Here τ > 0 is related to the extinction time and in [2], one has τ = 1
4 . For ease of com-

parison, we take τ = 1 and then up to a constant conformal factor, the transformation
implicit in (6) gives an isometry to the metric (4) on R>0 × (0, π), as is easy to see
(recall g = 1). It follows that any geodesic of (7) is a reparametrisation of a geodesic
in (4). Carrying out the additional coordinate changes of SubSect. 2.3, one sees that
the following map sends the orbits of solutions of (∗) to the orbits of geodesics of (7):

� : R × (0,
π

2
) → R × R>0, (ξ, θ) �→ (e

2
g ξ cos(2θ), e

2
g ξ sin(2θ)).

In particular, x(t) = 0 if and only if θ = π
4 = θ∗.

Denote with (r̃R, xR) (t) the evolution of a geodesic in (7) with initial conditions
(r̃(0), x(0)) = (R, 0) and (r̃ ′(0), x ′(0)) = (0, 1). Define:

R∗:= inf{R̃ > 0 | ∀R > R̃ : ∃t1 > 0 so that xR(t1) = 0 and r̃ ′
R(t) < 0 ∀t ∈ (0, t1)}.

Angenent then shows that the geodesic (r̃R∗ , xR∗) meets the line x = 0 orthogonally
after a finite time. A symmetry argument as in Corollary 2.10 then shows that this
yields a simple periodic geodesic.

In order to show Proposition 1, we start with the following lemma. It follows from
elementary arguments using continuity of solutions of the relevant ODEs in initial
conditions, similar to Proposition 3.5.

Lemma 3.7 For any neighbourhood U of R∗, there are R ∈ U and t1(R) > 0 so that

xR(t1(R)) = 0, r̃ ′
R(t1(R)) > 0, and x(t) > 0 for all t ∈ (0, t1(R)).

Similarly for any neighbourhood V of ξ∗
0 , there are ξ0 ∈ V and T (ξ0) > 0 so that

θξ0(T (ξ0)) = θ∗, ξ ′
ξ0

(T (ξ0)) > 0, and θξ0(t) > θ∗ for all t ∈ (0, T (ξ0)).

Proposition B In the case g = 1, the construction of Theorem A gives Angenent’s
shrinking doughnut [2].

Proof Let L : R → Rbe the reparametrisationof a geodesic so that�((ξ, θ) (L(t))) =
(x, r̃) (t). We take L ′(t) > 0 for all t . Then if x(t) = 0, one has by an elementary
calculation:

sign(ξ ′(L(t))) = sign(r̃ ′(t)) (8)
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Assume first R∗ > e
2
g ξ∗

0 . Then apply the first part of Lemma 3.7 to R∗ to get initial
conditions R arbitrarily close to R∗ and times t1(R) for which

xR(t1(R)) = 0, r̃ ′
R(t1) > 0, and xR(t) > 0 for all t ∈ (0, t1(R)).

This then transforms under �−1 to values ξ0 close to
g
2 ln(R∗) (which is larger than

ξ∗
0 ), by (8) one then gets ξ ′

ξ0
(L(t1)) > 0, while θξ0(L(t)) > θ∗ for all t ∈ (0, t1).

These points are not type 1, contradicting the definition of ξ∗
0 . The contradiction

for R∗ < e
2
g ξ∗

0 is similar. ��

4 Proof of Proposition 3.3

For the proof of Proposition 3.3, each of the points (i), (ii), and (iii) is considered
separately in Subsects. 4.2, 4.3, and 4.4, respectively. For the proof of these statements,
we also use two lemmas about the general dynamics of (∗), which are proven in
Subsect. 4.1.

For a rough overview of the proof of points (i) and (ii), which are the more technical
parts, see the beginnings of Subsects. 4.2 and 4.3 as well as Figs. 2 and 3.

4.1 Crossings in Finite Time

In this subsection, we prove two useful lemmas that expand on the analysis of extrema
in Lemma 3.4. The lemmas state that if ξ ′(t) points towards the g

4 lnm line, then we
reach this line in finite time, the same holding true for θ if θ ′(t) points towards θ∗.
The proof of Proposition 3.3 (i) uses Lemma 4.2 below, and Proposition 3.3 (iii) and
Lemma 4.2 use Lemma 4.1.

Lemma 4.1 If for some t0 ∈ R one has ξ(t0) >
g
4 lnm (ξ(t0) <

g
4 lnm) and ξ ′(t0) < 0

(ξ ′(t0) > 0), then there exists a time T ∈ (0,∞) so that ξ(t0 + T ) = g
4 lnm.

Proof If this were not true then ξ(t) >
g
4 lnm for all t > t0. By Lemma 3.4, we would

then have that any extremum of ξ is a maximum when t > t0. Since ξ ′(t0) < 0 it
follows that ξ has no extrema for times> t0 and then ξ(t) is monotonically decreasing
in t and bounded below by g

4 lnm by assumption, hence it must converge.
Since ξ(t) is bounded we find that α′(t) is bounded, whence ξ ′(t) = cosα sin(2θ)

must converge to0 (since θ ′(t) is also automatically bounded). So either limt→∞ α(t) ∈
π
2 +πZ or limt→∞ θ(t) ∈ {0, π

2 }. We briefly show that the first condition implies the
second and then continue working only with the second.

The condition α(t) → π
2 + kπ for some k ∈ Z gives sin α → (−1)k . For large

times, the dynamics of θ(t) are then given by

θ ′(t) = (−1)k sin(2θ) + O(cosα).

This gives that θ(t) converges to either 0 or π
2 as t → ∞, depending on whether k is

even or odd.
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Assuming now θ(t) → 0 as t → ∞ one gets from Lemma 3.4 that θ(t) admits
no extrema for t large enough, so sin α < 0 for t large enough. This gives α(t) ∈
2πZ + (π, 3π

2 ) for t large enough. However, for such t

α′(t) = sin α sin(2θ)(e
4
g ξ − m) + 2 cosα l(θ)

is a sum of two strictly negative terms. α then decreases for large times, so there is
an ε > 0 with | cosα| > ε for large enough t . In particular α′(t) < −2εl(θ) for
large t , where l(θ) converges to m1. This means that in finite time, α exits the interval
2πk + (π, 3π

2 ) from the bottom, contradicting that sin α < 0 for all t large enough.
The case θ(t) → π

2 can be treated in the same way. This contradiction then implies
the statement for ξ(t0) >

g
4 lnm and ξ ′(t0) < 0. The case ξ(t0) <

g
4 lnm and ξ ′(t0) >

0 is also completely analogous. ��
Lemma 4.2 If for some t0 one has θ(t0) < θ∗ (θ(t0) > θ∗) and θ ′(t0) > 0 (θ ′(t0) < 0)
then there exists a time T ∈ (0,∞) so that θ(t0 + T ) = θ∗.

Proof As before assuming that θ(t) < θ∗ for all t > t0 and θ ′(t0) > 0 implies that
θ(t) has only minima as extrema, hence θ ′(t) > 0 for all t and θ(t) converges (being
bounded from above by θ∗).

We first assume that e
4
g ξ(t) remains bounded as t → ∞, this implies that α′(t)

remains bounded and then from convergence of θ one gets that θ ′(t) = sin α sin(2θ)

converges to 0. Since sin(2θ) remains bounded away from 0 one gets that α con-
verges to some element of πZ. Since ξ(t) is not allowed to go to +∞, one gets that
limt→∞ α(t) ∈ π + 2πZ.

Performing a coordinate transform R = ln ξ , the system of ODEs (∗) becomes:

θ ′(t) = sin α sin(2θ),

R′(t) = cosα sin(2θ)R,

α′(t) = sin α sin(2θ)(R
4
g − m) + 2 cosα l(θ).

From α(t) → π + 2πk for some k ∈ Z, one gets R(t) → 0 and θ(t) → θ∗. Note,
however, that the fixpoint (θ, R, α) = (θ∗, 0, π + 2πk) is hyperbolic and at this point
the above ODE has as linearisation:

d

dt

⎛
⎝θ

R
α

⎞
⎠ ≈

⎛
⎝ 0 0 − sin(2θ∗)

0 − sin(2θ∗) 0
−2l ′(θ∗) 0 sin(2θ∗)m

⎞
⎠

⎛
⎝ θ − θ∗

R
α − (π + 2πk)

⎞
⎠ .

The system then has a one-dimensional stable manifold - this is the line

(θ(t), R(t), α(t)) = (θ∗, R(0) exp(− sin(2θ∗)t), π + 2πk).

Since we are assuming θ(t) < θ∗ for all t > t0 the solution cannot lie on the stable
manifold, yielding a contradiction.
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To complete the proof of the lemma, wemust show that e
4
g ξ(t) cannot be unbounded

under the hypothesis θ(t) < θ∗ for all t > t0 and θ ′(t0) > 0. First recall the graph
form (∗∗):

d2ξ

dθ2
(θ) = −

(
1 + (

dξ

dθ
)2

)(
e

4
g ξ − m + 2H(θ)

dξ

dθ

)
.

Whence if θ < θ∗, ξ >
g
4 lnm and dξ

dθ
> 0, one has d2ξ

dθ2
< 0, even becoming

arbitrarily negative if ξ becomes arbitrarily large. So if ξ(t) is unbounded from above,
it cannot eventually be monotonic in θ (and hence in t by θ ′(t) > 0) and must admit
maxima, in fact infinitely many such maxima. Between two maxima, there must be a
minimum, which can only happen for values of ξ(t) less than g

4 lnm.
However, at each minimum, one has θ ′(t) = sin(2θ), which may be bounded from

below since θ stays away from {0, π
2 }. Since the system (∗) admits a Lipschitz constant

on {(θ, ξ, α) | ξ <
g
4 ln(m) + 1}, one finds that at each minimum of ξ , the parameter

θ increases by some positive number admitting a bound from below. This contradicts
the assumption that θ(t) < θ∗ for all t > t0.

The case θ(t0) > θ∗, θ ′(t0) < 0 can be treated analogously. ��

4.2 Proof of Proposition 3.3 (i)

The proof of Proposition 3.3 (i) is divided into two parts. First we show that for ξ0 large
enough, there is a T2 > 0 so that the solution to (∗) with initial value (ξ, θ, α) (t =
0) = (ξ0, θ

∗, π
2 ) has the property:

θ ′(T2) = 0, 0 < θ(T2) − θ∗ <
1

ξ0
, ξ0 − ξ(T2) <

1

ξ0
, while ξ ′(t) < 0 for all t ∈ (0, T2).

So θ has an extremum at T2, which by Lemma 3.4 is a maximum and θ ′(T2+ε) < 0
for small ε > 0. Then by Lemma 4.2, one has that θ reaches θ∗ in finite time and so
ξ0 cannot be of type 3. The proof then continues by contradiction, assuming that ξ0 is
not of type 1 means it must be of type 2. Being of type 2 means that ξ must travel all
the way to some value <

g
4 ln(m) where we have an extremum of ξ - all the while θ

is not allowed to cross the line θ∗.
The proof by contradiction is carried out in Lemma 4.6, here one assumes that

conditions of this scenario have been set: there is some time T3 at which ξ(T3) =
4
g ln(m) all the while θ(t) > θ∗ and ξ ′(t) < 0 for t ∈ (0, T3]. Using bounds for the
value of θ(T3) one is, however, able to show that even in this worst-case-scenario θ

crosses the value θ∗ before any extremumof ξ is possible, contradicting the assumption
that ξ0 is type 2. Hence, since it cannot be type 3, it must have been type 1.

In what follows ξ, θ and α will denote the components of the solution of (∗)

with initial condition (ξ, θ, α) (0) = (ξ0, θ
∗, π

2 ). The proof begins by establishing an

auxilliary time T1, at which
ξ ′(T1)
θ ′(T1) = −1.

123



172 Page 16 of 27 O. Riedler

Fig. 2 A sketch of the argument
for Proposition 3.3(i). The black
curve gives the evolution of
(ξ, θ) up until the extremum of
θ . The dashed blue line
describes the worst-case
scenario for the evolution of
(ξ, θ) (t) after this extremum.
The red line, which crosses the
line θ = θ∗ without any extrema
of ξ , is an estimate of actual
evolution starting on a certain
point of the worst-case scenario

θ = θ∗

ξ = 4
g
lnm

ξ

θ

(ξ, θ) (T4)

(ξ, θ) (T2)

Lemma 4.3 If ξ0 is large enough then there is a time T1 > 0 so that ξ ′(T1)
θ ′(T1) = −1 while

θ ′(t) > 0, ξ ′(t) < 0 for all t ∈ (0, T1].

Proof Note that one initially has d
dt cosα|t=0< 0 whence one gets ξ ′(t) < 0 for small

t . By Lemma 4.1 ξ(t) then descends to g
4 lnm and does not have any extrema until

after this value is reached, meaning cosα(t) < 0 for all t ∈ (0, tm] and some tm ∈ R

at which ξ(tm) = g
4 lnm. For ξ0 large enough there will then be some intermediate

time T1 < tm for which d
dθ

ξ(θ) = ξ ′(t)
θ ′(t) = −1 holds, since either θ ′(t) = 0 for some

t ∈ [0, tm] or the graph ξ(θ) must descend from ξ0 at θ∗ to g
4 lnm at some value

θ < π
2 . In the second case, the mean value theorem implies that the graph achieves

slope −1 at some point. ��

Lemma 4.4 There are constants c1, c2, c3 ∈ R>0 so that if ξ0 is large enough, one
has

c1e
− 4

g ξ0 ≤ θ(T1) − θ∗ ≤ c2e
− 4

g ξ0 , ξ(T1) ≥ ξ0 + c3e
− 4

g ξ0

Proof Before beginning with the proper analysis, one notes that by well definedness,
one has θ(T1) ≤ π

2 , whence by the mean value theorem ξ0 − ξ(T1) ≤ π
2 − θ∗, some

finite value bounded from above.
For the proof of this lemma, it is more convenient to workwith the following system

of ODEs:

ξ ′(t) = cosα,

θ ′(t) = sin α,

α′(t) = sin α (e
4
g ξ − m) + 2 cosα H(θ).
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which one can get from (∗) by rescaling time by the law
dtnew
dtold

= sin(2θ). To keep the

number of superfluous parameters at a minimum, we still use T1 to denote the time at
which ξ ′(T1)

θ ′(T1) = −1 in this new ODE. One then gets for all t ∈ [0, T1]:

cosα(t) ∈ [− 1√
2
, 0], sin α(t) ∈ [ 1√

2
, 1].

Which implies:

ξ0 − ξ(T1) ∈ [0, 1√
2
T1], θ(T1) − θ∗ ∈ [ 1√

2
T1, T1].

We then proceed by bounding T1 from above and below. Noting that for t ∈ [0, T1]:
1√
2
(e

4
g ξ(T1) − m) ≤ α′(t) ≤ e

4
g ξ0 − √

2H(θ(T1)).

Integrating the left inequality from 0 to T1 yields:

T1√
2
(e

4
g ξ(T1) − m) ≤ α(T1) − α(0) = π

4
.

Recalling that ξ0−ξ(T1) ≤ π
2 −θ∗, one gets T1 ≤ d1e

− 4
g ξ0 for an appropriate constant

d1. This implies θ(T1) − θ∗ ≤ c2e
− 4

g ξ0 and ξ0 − ξ(T1) ≤ c3e
− 4

g ξ0 for appropriate
c2, c3.

Combining θ(T1) − θ∗ ≤ c2e
− 4

g ξ0 with H(θ∗) = 0 gives for ξ0 large enough that

−√
2 H(θ(T1)) ≤ d2e

− 4
g ξ0 for some other constant d2. Integrating the other inequality

for α′(t) from 0 to T1 then gives:

π

4
≤ T1(e

4
g ξ0 + d2e

− 4
g ξ0) �⇒ T1 ≥ d3e

− 4
g ξ0

for another constant d3, provided ξ0 is large enough. This yields the final bound of the

lemma, namely: c1e
− 4

g ξ0 ≤ θ(T1) − θ∗. ��
Lemma 4.5 For ξ0 large enough, there is a time T2 > T1 so that θ ′(T2) = 0, ξ(T2) >

ξ0 − 1
ξ0

while θ(t) ∈ θ∗ + (0, 1
ξ0

) and ξ ′(t) < 0 for all t ∈ (0, T2].

Proof For all t ∈ (0, 1
ξ0

), one has from |ξ ′(t)| ≤ 1 that ξ(t) > ξ0 − 1
ξ0
, so for ξ0 large

enough ξ ′(t) < 0 for such t . Further as long as θ > θ∗ and α ∈ [ 3π4 , π), one has for
such t that

α′(t) = sin α sin(2θ)(e
4
g ξ − m) + 2 cosα l(θ)
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is a sum of two positive terms and so α is increasing. Recalling that by definition
α(T1) = 3π

4 and assuming that α(t) < π (i.e. θ ′(t) > 0) for all t ∈ (T1,
1
ξ0

) yields:

α′(t) > Ae
4
g (ξ0− 1

ξ0
)
(π − α).

Here A > 0 is some constant. For this estimate, we used that θ(t) is bounded away
from {0, π

2 } for t ∈ (0, 1
ξ0

), which follows from |θ ′(t)| ≤ 1. From the intermediate

value theorem, one then gets a t̃ ∈ (T1,
1
2ξ0

) so that

α(̃t) = π − A exp

(
−e

4
g (ξ0− 1

ξ0
) 1

2ξ0

)
.

For ξ0 large enough, one then finds α(̃t) > π − e−ξ20 . Now θ(T1) > θ∗ + c1e
− 4

g ξ0

from Lemma 4.4, so l(θ(T1)) ≤ c1l ′(θ∗)e− 4
g ξ0 for ξ0 large enough. By assumption

θ (̃t) > θ(T1), so another estimate yields for t ∈ (̃t, 1
ξ0

):

α′(t) > B e− 4
g ξ0

where B > 0 is some constant incorporating the 2 cos(α) term (which is close to −2)
and c1l ′(θ∗) (which is bounded away from 0). This then yields

α(̃t + 1

2ξ0
) > π − e−ξ20 + B

e− 4
g ξ0

2ξ0

which is larger than π , contradicting our assumption that α(t) < π for all t ∈ (T1,
1
ξ0

).
The lemma then follows. ��

We will now prove that ξ0 is of type 1 by contradiction.

Lemma 4.6 If ξ0 is large enough, then it is of type 1.

Proof If ξ0 is large enough by Lemma 4.5, there is a T2 > 0 for which θ ′(T2) = 0,
which corresponds to a local maximum of θ . This means θ reaches θ∗ in finite time
by Lemma 4.2 and so ξ0 is not type 3. We now assume it is not type 1, so it must be
type 2.

Hence ξ(t) has an extremum before θ(t) reaches θ∗. We let T3 > T2 denote the
time of this extremum and note first that θ(t) ∈ (θ∗, θ∗ + 1

ξ0
) for all t ∈ [T2, T3) (since

θ(T2) ≤ θ∗ + 1
ξ0

is a maximum and any further extremum of θ must take place behind
the line θ = θ∗).

Next one sees that ξ(T3) <
g
4 lnm, since the extremum must be a minimum. With

ξ(T2) ≥ ξ0 + 1
ξ0

and |ξ ′(t)| ≤ 1, one gets that T3 − T2 will become arbitrarily large as

ξ0 grows. And so, for ξ0 large enough, one sees that ξ(t) ≤ g
4 lnm+1, |θ(t)−θ∗| ≤ 1

for all t ∈ [T3 − 1, T3]. Note that α′(t) admits a bound if ξ, θ are in this region.
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Fig. 3 The figure sketches the
argument for Proposition 3.3(ii).
The dashed blue line denotes the
form that (ξ, θ) (t) must be if the
initial condition were type 1. The
red line, which has an extremum
of ξ , is an estimate of the actual
evolution starting at (ξ2, θ2)

ε

ξ

ξ = g
4 lnm

θ = θ∗

θ

(ξ2, θ2)

Now ξ ′(T3) = 0 implies cosα(T3) = 0 and so sin α(T3) = −1, which in turn
gives θ ′(T3) = − sin(2θ) ≤ −1 + O( 1

ξ20
). From (∗), one sees directly that |θ ′′(t)| ≤

|α′(t)| + 1, and so the bound on α′(t) give a finite b > 0 (independent of ξ0) so that
θ ′(t) < − 1

2 for all t ∈ [T3 − b, T3].
But if ξ0 is large enough, one notes that θ(t) ∈ [θ∗, θ∗ + 1

ξ0
) and θ ′(t) ≤ − 1

2 cannot
both simultaneously hold for all t ∈ [T3 − b, T3]. This contradiction shows that ξ0
cannot be type 2, hence (since it is also not type 3) it is type 2. ��

4.3 Proof of Proposition 3.3 (ii)

We consider the solution curve with initial condition ξ0 = g
4 lnm + ε and show that

this is not of type 1 for ε sufficiently small. To do this, we assume that it is of type
1 - only to later arrive at a contradiction. If it were of type 1, then there is a T > 0
with θ(T ) = θ∗ and ξ ′(t) < 0 for all t ∈ (0, T ). Since θ can only have maxima when
θ > θ∗, we find that the trajectory {(θ, ξ) (t) | t ∈ [0, T ]} must be the union of two
graphs of ξ over θ . The maximum of θ occurs at the point denoted by (ξ2, θ2) in Fig. 3.

In the upper graph, one has that the slope dξ
dθ

starts at 0 and must go to −∞ (which
occurs when θ ′(t) = 0). Along the way ξ ′ has been negative and one verifies that ξ2
has decreased to a value far enough below g

4 lnm (c.f. Lemma 4.10). When we then

switch to the lower graph the e
4
g ξ −m term in the ODE for d2ξ

dθ2
(θ)will be large enough

to push dξ
dθ

over the value 0 before θ reaches θ∗, contradicting the assumption that ξ0
was type 1.

Note that this does not prove that g
4 lnm + ε is of type 2, because the proof by

contradiction assumes that θ(t) has a maximum.
In what follows ξ, θ and α will denote the components of the solution of (∗) with

initial condition (ξ, θ, α) (0) = ( 4g lnm+ε, θ∗, π
2 ). The proof begins by investigating

an auxilliary value θ1, which is defined to be the least (and for small ε only) value of
θ for which one has dξ

dθ
(θ1) = −1 in the upper graph.

Lemma 4.7 If ξ0 = g
4 lnm + ε is type 1, then there are T2(ε) > T1(ε) > 0 so that

θ ′(T2) = 0 and ξ ′(T1)
θ ′(T1) = −1, while ξ ′(t) < 0 and θ ′(t) > 0 for all t ∈ (0, T2).

Proof Assuming that ξ0 is of type 1 means that there is a time T > 0 for which
θ(T ) = θ∗ and ξ ′(t) �= 0, θ(t) �= θ∗ for all t ∈ (0, T ). Since θ ′(0) = sin(2θ∗) > 0,
one finds that θ ′(t) > 0 for small t , whence θ(t) must go through an extremum before
it can go back to θ∗ and there is a T2 < T so that θ ′(T2) = 0. On the other hand,
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one has ξ ′′(0) = − sin(2θ∗)m(e
4
g ε − 1) < 0, whence ξ ′(t) < 0 for all t ∈ (0, T ], in

particular for all t ∈ (0, T2).
This means that ξ ′(t)

θ ′(t) is 0 at t = 0 and diverges to −∞ at t = T2. There must then

be a T1 so that
ξ ′(T1)
θ ′(T1) = −1. ��

Lemma 4.8 For ε small enough, there is only one pair (T1, T2) satisfying the conditions
of Lemma 4.7 and θ(T1) → π

2 as ε → 0.

Proof The time T2 is obviously unique.
On the other hand, the initial condition ε = 0 has as solution the line (θ, ξ, α) =

(arctan(tan(θ∗)e2t ), g
4 lnm, π

2 ). So one finds that as ε → 0 the solution and its deriva-
tives converge uniformly on compacta to the above curve, in particular for on any finite
interval [0, T ], one canmake ξ ′(t)

θ ′(t) arbitrarily small for all t ∈ [0, T ] (by taking ε small),
while θ(T ) is arbitrarily close to π

2 (by taking T large and then ε small). This means
that as ε → 0 onemust have π

2 −θ(T1(ε)) → 0, where T1 is any of the times satisfying
Lemma 4.7.

Looking, however, at the graph ODE (∗∗)

d2ξ

dθ2
= −(1 + (

dξ

dθ
)2)(e

4
g ξ − m + 2H(θ)

dξ

dθ
)

it follows if dξ
dθ

≤ −1 and θ is close enough to π
2 while ξ is not too large that then

d2ξ
dθ2

< 0, since H(θ) → −∞ as θ → π
2 . For ε small enough one gets that for any

pair (T1, T2) satisfying Lemma 4.7, there is no pair (T ′
1, T2) satisfying the lemma with

T ′
1 > T1. ��

This allows us to introduce the following notation:

θ1:=θ(T1), θ2:=θ(T2), ξ2:=ξ(T2).

Lemma 4.9 For ε small enough, one has that ξ(T1) ≤ g
4 lnm.

Proof We assume that ξ(T1) >
g
4 lnm and get a contradiction. The first step is to

show that this assumption leads to constants c1, c2 > 0 (independent of ε) so that for
ε small enough one has:

c1ε < (
π

2
− θ1)

m2 < c2ε. (9)

Since ξ ′(t) ≤ 0 for all t ∈ (0, T2) we may assume ξ(t) >
g
4 lnm for such t . Then

from the graph ODE

d2ξ

dθ2
= −(1 + (

dξ

dθ
)2)(e

4
g ξ − m + 2H(θ)

dξ

dθ
)
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one gets that d2ξ
dθ2

< 0 for all θ ∈ (θ∗, θ1) (recall that H(θ) < 0 for θ > θ∗) and then
dξ
dθ

is strictly decreasing in this interval. Monotonicity of dξ
dθ

and mean value theorem
then imply

dξ

dθ

(
θ1 − θ∗

2

)
> −ε

θ1 − θ∗

2
, ξ

(
θ1 − θ∗

2

)
>

g

4
lnm + ε

2
. (10)

Combining the second inequality with the graph ODE yields (recall that H(θ) < 0

if θ > θ∗) additionally the bound dξ
dθ

(
θ1−θ∗

2

)
< −mε

g (θ1 − θ∗) + O(ε2). Using that

θ1 → π
2 as ε → 0 then gives constants c̃1, c̃2 so that

c̃1ε <

∣∣∣∣dξ

dθ

(
θ1 − θ∗

2

)∣∣∣∣ < c̃2ε. (11)

Rewriting the graph ODE as

d2ξ
dθ2

dξ
dθ

(1 + (
dξ
dθ

)2)
= −e

4
g ξ − m
dξ
dθ

− 2H(θ), (12)

one notes that the first term on the right-hand side is O(1) in the interval ( θ1−θ∗
2 , θ1)

by (11) and monotonicity of dξ
dθ
, and further that the left-hand side has− ln(

| dξ
dθ

|√
1+(

dξ
dθ

)2
)

as an anti-derivative. Integrating (12) over ( θ1−θ∗
2 , θ1) then gives

ln(

∣∣∣∣dξ

dθ

(
θ1 − θ∗

2

)∣∣∣∣) + O(1) = m2 ln(cos(θ1)) + O(1).

(For the left-hand side: From −ε θ1−θ∗
2 <

dξ
dθ

≤ −1 for θ ∈ ( θ1−θ∗
2 , θ1) the 1 + (

dξ
dθ

)2

term in the anti-derivative is absorbed into the O(1), similarly from dξ
dθ

(θ1) = −1 only
the lower boundary of the integral has a contribution.)

The approximation cos(θ) = π
2 − θ + O((π

2 − θ)3) then gives the bounds (9) from
(11).

For the next step, note that H(θ) − (
dξ
dθ

(θ))−1 becomes +∞ as θ → θ∗ and
H(θ1) + 1 as θ → θ1, which for ε small enough will be negative. Hence for small
enough ε, there is a θ0 ∈ (θ∗, θ1) so that H(θ0) = (

dξ
dθ

(θ0))
−1. In the same way as

Lemma 4.8 one shows that θ0 → π
2 as ε → 0.

We let

q:=π/2 − θ0

π/2 − θ1

and show next that there is a constant c3 so that qm2 ≥ c3
π/2−θ0

, and hence that q grows
unboundedly as ε → 0.
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To show this we again integrate (12), this time from θ0 to θ ≤ θ1. The result is:

ln(|dξ

dθ
(θ0) |) − ln(|dξ

dθ
(θ)|) + O(1) = m2 ln

(
cos(θ)

cos(θ0)

)
+ O(1).

(As before the 1 + (
dξ
dθ

)2 term on the left-hand side is absorbed into the O(1), while

the e
4
g ξ −m
dξ
dθ

term on the right is also O(1) by (11) and monotonicity of dξ
dθ
.)

Noting that dξ
dθ

(θ0) = 1
H(θ0)

≈ −m2(
π
2 − θ0) + O((π

2 − θ0)
2) and again using the

expansion of cosine close to π
2 implies the existence of c3, c4 > 0 so that:

c4

∣∣∣∣dξ

dθ
(θ)

∣∣∣∣ ≥
(

π/2 − θ0

π/2 − θ

)m2

(
π

2
− θ0) ≥ c3

∣∣∣∣dξ

dθ
(θ)

∣∣∣∣ . (13)

Taking θ = θ1 shows qm2 ≥ c3
π/2−θ0

, in particular q → ∞ as ε → 0. On the other

hand, if one integrates dξ
dθ

(θ) over (θ0, θ1) one finds by (13) that

c4|ξ(θ1) − ξ(θ0)| ≥
{

(π
2 − θ0)

2 ln q m2 = 1
1

m2−1 (
π
2 − θ0)

2(qm2−1 − 1) m2 > 1
.

Noting that (π
2 − θ0)

2 = (π/2−θ1)
m2

(π/2−θ0)
m2 q

m2(π
2 − θ0)

2 ≥ ε c1c3(
π
2 − θ0)

1−m2 and using
unboundedness of q one sees that |ξ(θ1) − ξ(θ0)| will be larger than ε, contradicting
our assumption that ξ(θ1) ≥ g

4 ln(m). ��
Lemma 4.10 For θ1 sufficiently close to

π
2 , one has that

ξ(T2) ≤ g

4
ln(m) −

(
2

1
2m2 − 1

)
(
π

2
− θ2) + O((

π

2
− θ2)

2).

Proof By Lemma 4.9, one has that ξ(T1) ≤ g
4 ln(m). Additionally for ε small enough

d2ξ
dθ2

(θ) < 0 for all θ ∈ (θ1, θ2), whence ξ(T2) ≤ ξ(T1) − (θ2 − θ1) and the statement

reduces to checking θ2 − θ1 =
(
2

1
2m2 − 1

)
(π
2 − θ2) + O((π

2 − θ2)
2).

From the graph ODE (∗∗), one recovers:

d2ξ
dθ2

dξ
dθ

(1 + (
dξ
dθ

)2)
= −e

4
g ξ − m
dξ
dθ

− 2H(θ).

The absolute value of the first summand on the right-hand side is bounded by m over
the interval (θ1, θ2), so integrating the equation from θ1 to θ2 gives:

1

2
ln(2) = O(

π

2
− θ1) − m2 ln

(
cos(θ2)

cos(θ1)

)
− m1 ln

(
sin(θ2)

sin(θ1)

)
.
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As θ becomes arbitrarily close to π
2 , we use that cos(θ) = π

2 − θ + O((π
2 − θ)3),

sin(θ) = 1 + O((π
2 − θ)2) to get:

1

2
ln(2) = −m2 ln

( π
2 − θ2
π
2 − θ1

)
+ O(

π

2
− θ1).

Together with some arithmetic this implies the statement about θ2 − θ1. ��
Lemma 4.11 If ε is small enough then ξ0 = g

4 lnm + ε is not type 1.

Proof As noted before the assumption that ξ0 = g
4 ln(m) + ε is type 1 leads to (ξ, θ)

being the union of two graphs of ξ over θ . In the previous lemmas we investigated the
upper graph and found that it ends at the turning point (ξ2, θ2).

The lower graph is then determined by the graph ODE and the initial conditions
ξ(θ2) = ξ2, limθ→θ−

2

dξ
dθ

(θ) = +∞. The assumption that ξ0 is type 1 necessitates

that for all θ ∈ (θ∗, θ2), one has dξ
dθ

(θ) > 0 for the lower graph. In particular if we
integrate

d2ξ
dθ2

dξ
dθ

(1 + (
dξ
dθ

)2)
= −e

4
g ξ − m
dξ
dθ

− 2H(θ) (14)

from θ∗+θ2
2 to θ2 one gets

− ln

⎛
⎝ dξ

dθ
( θ∗+θ2

2 )√
1 + (

dξ
dθ

)2

⎞
⎠ ≥ −m2 ln(

π

2
− θ2) + O(1),

where we used e
4
g ξ(θ) − m ≤ e

4
g ξ2 − m ≤ 0. Inverting the above inequality gives the

existence of a c1 > 0 so that:

dξ

dθ

(
θ∗ + θ2

2

)
≤ c1(

π
2 − θ2)

m2√
1 − c21(

π
2 − θ2)2m2

≤ 2c1(
π

2
− θ2)

m2 . (15)

For m2 > 1 this implies the lemma, since for all θ ∈ (θ∗, θ2), one has

d2ξ

dθ2
(θ) > −(e

4
g ξ(θ) − m) ≥ c2(

π

2
− θ2)

with c2 > 0 some constant by Lemma 4.10, and then

dξ

dθ
(θ) ≤ 2c1(

π

2
− θ2)

m2 − c2(
π

2
− θ2) (

θ∗ + θ2

2
− θ)

for θ ∈ (θ∗, θ∗+θ2
2 ) and one gets dξ

dθ
(θ) = 0 for one such θ .
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For m2 = 1, one gets first from (15) that dξ
dθ

takes on all values in ( c12 (π
2 − θ2),∞)

as θ varies from θ∗+θ2
2 to θ2. In particular for θ2 close enough to π

2 there exists a

θ3 < θ2 so that
dξ
dθ

(θ3) = − 1
H(θ3)

.
By integrating (14), one shows that θ3 gets arbitrarily close to π

2 if π
2 − θ2 is small

enough. We carry this out explicitly:
Integrate (14) from θ3 to θ2, the left-hand side evaluates to −1

2 ln(1 + H(θ3)
2),

which is negative and remains bounded as θ2 → π
2 unless θ3 also gets close to π

2
(since otherwise H(θ3) is bounded). For the right-hand side, one first notes that the

integral over − e
4
g ξ −m
dξ
dθ

from θ3 to θ2 is positive. The other term on the right-hand side,

however, yields − ln(π/2−θ2
π/2−θ3

) + O(1) which is, crucially, negative and unbounded
unless θ3 → π

2 together with θ2. So a situation where θ2 → π
2 but θ3 �→ π

2 is
impossible.

In fact, this integral shows that if q:=π/2−θ3
π/2−θ2

that q grows unboundedly as θ2

approaches π
2 . Finally if we integrate (14) from θ ≥ θ3 to θ2 one gets:

− ln

⎛
⎝ dξ

dθ
(θ)√

1 + (
dξ
dθ

(θ))2

⎞
⎠ + O(1) = − ln(

π/2 − θ3

π/2 − θ
) + O(

π

2
− θ).

(Here the − e
4
g ξ −m
dξ
dθ

term is bounded by −H(θ3)m = m
π/2−θ3

+ O(1). Its contribution

to the integral then an O(1) term, since θ2−θ
π/2−θ3

≤ 1.)

Inverting this expression gives a constant c3 so that dξ
dθ

(θ) ≥ c3
π/2−θ2
π/2−θ

, and then
integrating this from θ3 to θ2 gives:

ξ(θ2) − ξ(θ3) ≥ c3(
π

2
− θ2) ln q

Plugging this into (∗∗) then implies for any θ ∈ (θ∗, θ∗+θ2
2 ) that:

d2ξ

dθ2
(θ) ≥ m − e

4
g ξ(θ3) ≥ m(1 − e− 4

g c3(
π
2 −θ2) ln q).

Together with (15), which states dξ
dθ

( θ∗+θ2
2 ) ≤ 2c1(π

2 − θ2), and unboundedness of q

as θ2 → π
2 , one recovers

dξ
dθ

(θ) = 0 for some θ ∈ (θ∗, θ∗+θ2
2 ), provided π

2 − θ2 is
small enough.

So also in the casem2 = 1, we get a contradiction to the assumption that g
4 lnm+ε

was type 1 for ε small enough. ��

4.4 Proof of Proposition 3.3 (iii)

Lemma 4.12 If ξ∗
0 is of type 3 then:
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(i) There is a δ > 0 and a T > 0 so that ξξ∗
0
(t) <

g
4 ln(m) − δ for all t > T .

(ii) θ ′
ξ∗
0
(t) > 0 for all t > 0.

(iii) limt→∞ θξ∗
0
(t) = π

2 .

Proof Since ξ∗
0 >

g
4 lnm and ξ ′′

ξ∗
0
(0) = − sin(2θ∗)(e

4
g ξ∗

0 − m) < 0, ξ ′
ξ∗
0
(0) = 0 one

has that ξ ′
ξ∗
0
(t) becomes negative for small times t . Then by Lemma 4.1, it must reach

g
4 ln(m) in finite time. Since ξ ′

ξ∗
0
(t) < 0 for all t > 0 this yields part (i).

One also has that θ ′
ξ∗
0
(t) �= 0 for all t > 0, as otherwise Lemma 4.2 implies that

θξ∗
0

= θ∗ in finite time. This gives part (ii).
θξ∗

0
is then monotonous in t and bounded by π

2 , whence it converges. Since ξ∗
0 is

bounded above, one has that all derivatives of the parameters are bounded and hence
θ ′
ξ∗
0
(t) = sin α sin(2θ) → 0. It is clear that sin α cannot converge to 0 as α′(t) would

then be asymptotically equal to −2l(θ), which does not converge to 0. Hence θ → π
2 ,

giving part (iii). ��
Lemma 4.13 ξ∗

0 is not of type 3.

Proof Let (ξε(t), θε(t)) denote the solution to (∗) with initial condition (ξ, θ, α) (t =
0) = (ξ∗

0 + ε, θ∗, π
2 ) where ε > 0. Note that ξ∗

0 + ε is type 1 by the definition of ξ∗
0 ,

in particular there is a T1(ε) so that θε(t) has a local maximum and ξ ′
ε(T1) < 0 for all

t ∈ (0, T1].
Assuming that ξ∗

0 is of type 3 and using that ξε and θε converge uniformly on
compacta to ξε=0 and θε=0 as ε → 0 one finds that θε(T1) → π

2 as ε → 0. This
also implies T1(ε) → ∞ for ε → 0, giving for ε small enough that one has ξε(T1) <
g
4 ln(m) − δ.
After the extremum at θε(T1), one has that ξε becomes a graph over θ because no

more extrema of θ are possible until after θ = θ∗. As in Lemma 4.9, the graph ODE
for ξ yields:

d2ξε

dθ2

dξε

dθ
(1 + (

dξ
dθ

)2)
= −e

4
g ξε − m
dξε

dθ

− 2H(θ).

Integrating this for the lower graph from x := θ∗+π/2
2 to θε(T1), one gets

− ln

⎛
⎝ dξε/dθ√

1 + (
dξε

dθ
)2

(x)

⎞
⎠ ≥ −m2 ln(

π

2
− θε(T1)) + O(1)

where − e
4
g ξ −m
dξ
dθ

≥ 0 and dξ
dθ

(θ(T1)) = +∞ were used.

As ε → 0 this implies that dξε

dθ
(x) becomes arbitrarily small, in particular we may

assume it to be smaller than 4m
g

1
2 (x−θ∗)δ. Remarking, however, that if ξ <

g
4 ln(m)−δ
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then −(e
4
g ξ − m) > 4

gmδ, one gets:

d2ξε

d2θ
(θ) >

4

g
mδ

for all θ ∈ (θ∗, x). With dξε

dθ
(x) < 4m

g
1
2 (x − θ∗)δ, one immediately gets dξε

dθ
( θ∗+x

2 ) <

0, contradicting that ξε is type 1. ��
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