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Abstract
We introduce a graph � which is roughly isometric to the hyperbolic plane, and we
study the Steklov eigenvalues of a subgraph with boundary � of �. For (�l)l≥1 a
sequence of subgraphs of � such that |�l | −→ ∞, we prove that for each k ∈ N, the
kth eigenvalue tends to 0 proportionally to 1/|Bl |. The idea of the proof consists in
finding a bounded domain N of the hyperbolic plane which is roughly isometric to �,
giving an upper bound for the Steklov eigenvalues of N and transferring this bound
to � via a process called discretization.

Keywords Spectral geometry · Steklov problem · Graphs with boundary · Discrete
Steklov problem

Mathematics Subject Classification 58J50 · 58C40

1 Introduction

Let (M, g) be a smooth connected compact Riemannian manifold of dimension n ≥ 2
with smooth boundary ∂M . The Steklov problem on (M, g) consists in finding all
σ ∈ R such that there exists a non-zero harmonic function f : M −→ R satisfying
∂ f
∂ν

= σ f on ∂M , where ∂
∂ν

denotes the outward-pointing normal derivative on ∂M .
Such a σ is called a Steklov eigenvalue of M and a corresponding f is called a

Steklov eigenfunction. The (ordered) set of eigenvalues is called the Steklov spectrum
of (M, g).

It is well known that the Steklov spectrum of M forms a discrete sequence

0 = σ0 < σ1 ≤ σ2 ≤ . . . ↗ ∞,
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where each eigenvalue is repeated with multiplicity.
There exists a discrete analog to the Steklov problem, which is called the discrete

Steklov problem and which is defined on graphs with boundary. Let us begin by
defining it.

Definition 1 A graph with boundary is a triplet (�̄, E ′, B), where (�̄, E ′) is a simple
connected undirected graph and B ⊂ �̄ is a non-empty set of vertices, called the
boundary. The set Bc is called the interior of the graph.

In this paper, all graphs will always be simple connected and undirected.
For v,w ∈ �̄, we write v ∼ w when v is adjacent to w. For A ⊂ �̄, we write |A|

the cardinality of A, which is the number of vertices contained in A. For the purpose
of this article, all graphs with boundary are finite. We denote by R

�̄ the space of all
functions u : �̄ −→ R, which is isomorphic to the Euclidean space of dimension
|�̄|. Similarly, we denote by R

B the space of functions u : B −→ R, which is the
Euclidean space of dimension |B|.

We can now introduce the discrete Laplacian operator � : R�̄ −→ R
�̄, defined by

�u : �̄ −→ R

v �−→ �u(v) =
∑

w∼v

(u(v) − u(w)).

The normal derivative ∂
∂ν

: R�̄ −→ R
B is defined by

∂u

∂ν
: B −→ R

v �−→ ∂u

∂ν
(v) =

∑

w∼v

(u(v) − u(w)).

As one can see, the normal derivative coincides with the restriction of the Laplacian
to the boundary.Although this choicemay seemstrange, it is shown in [4] that it leads to
interesting links between the Steklov spectrum of amanifold and the Steklov spectrum
of a graph with boundary which looks like the manifold, see [4, Theorem 3] for more
information about what looks like means in this context.

Definition 2 The discrete Steklov problem on a finite graph with boundary (�̄, E ′, B)

consists in finding all σ ∈ R such that there exists a non-zero function u ∈ R
�̄ such

that
{

�u(v) = 0 if v ∈ �
∂
∂ν
u(v) = σu(v) if v ∈ B.

Such a σ is called a Steklov eigenvalue and a corresponding u is called a Steklov
eigenfunction of (�̄, E ′, B). As said in [14], the Steklov spectrum of a graph with
boundary (�̄, E ′, B) forms a sequence as follows:

0 = σ0 < σ1 ≤ σ2 ≤ . . . ≤ σ|B|−1.
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This problem has recently received a particular attention, one can cite for instance
[6, 9, 13, 14]. An investigation has been made by Colbois, Girouard, and Raveendran
in [4], allowing us to understand some spectral links between the Steklov problem on
a manifold and the discrete Steklov problem of a graph associated to this manifold.
These links will be very useful in this paper. The main problem that we will have to
face is to place ourselves in the hypotheses of Theorem 3 of [4], in order to use it to
our advantage.

Among other things, a question that has been studied by some authors is that of
providing an upper bound for the first—and then for the kth—eigenvalue of some
particular graphs with boundary. These particular graphs that have been studied are
those called subgraphs of an (infinite) host graph. A subgraph of a host graph can be
interpreted as the discrete analog of a bounded domain in a manifold. Let us define
what it is exactly.

Definition 3 Let � = (V , E) be a graph and let � ⊂ V be a finite subset of vertices
connected for �, i.e., for each v,w ∈ �, there exist l ∈ N and v0 = v, v1, . . . , vl =
w ∈ � satisfying {vi , vi+1} ∈ E for all i = 0, . . . , l − 1. The graph with boundary
(�̄, E ′, B) induced by � is defined as follows:

• B = {w ∈ V \� : ∃ v ∈ � such that {v,w} ∈ E};
• �̄ = � ∪ B;
• E ′ = {{v,w} ∈ E : v ∈ �,w ∈ �̄}.

Such a graph with boundary is simply denoted � and is called subgraph of �. The set
of vertices B is the boundary of the subgraph. We refer to � as the host graph of �.

Some interesting results have recently been discovered, providing us with bounds
for the eigenvalues, depending on the host graph �. A first result, due to Han and Hua,
is the following:

Theorem 4 (Theorem 1.2 in [6]) Let Zd be the integer lattice of dimension d. Let �
be a subgraph of Zd . Then we have

d∑

l=1

1

σl(�)
≥ C ′ · |�| 1d − C ′′

|�| ,

where C ′ = (64d3ω
1
d
d )−1,C ′′ = 1

32d and ωd is the volume of the unit ball in Rd .

Another investigation gives some control over the spectrum of a subgraph of a
Cayley graph. We recall that, given a finitely generated groupG and a finite generating
subset S of G, one can define a graph, called Cayley graph and denoted Cay(G, S).
If G is infinite, then so is Cay(G, S), and we can use it as a host graph. The result
provided by Perrin is the following:

Theorem 5 (Corollary 1 in [13]) Let � = (V , E) be a Cayley graph with polynomial
growth of order d ≥ 2. There exists C̃(�) > 0 such that for any finite subgraph � of
�, we have
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σ1(�) ≤ C̃(�) · 1

|B| 1
d−1

.

This theorem is way more general about the class of host graph � but provides
us control over the first non-trivial eigenvalue only, see [13] for details. We gave an
extension to this result in a precedent article:

Theorem 6 (Theorem 5 in [16]) Let � = Cay(G, S) be a polynomial growth Cayley
graph of order d ≥ 2. Let� be a subgraph of�. Then there exists a constant C̄(�) > 0
such that for all k < |B|,

σk(�) ≤ C̄(�) · 1

|B| 1
d−1

· k d+2
d .

As a corollary, we have

Corollary 7 (Corollary 6 in [16]) Let � be a polynomial growth Cayley graph of order
d ≥ 2 and (�l)

∞
l=1 be a sequence of subgraphs of � such that |�l | −→

l→∞ ∞. Fix k ∈ N.

Then we have

σk(�l) −→
l→∞ 0.

All these theorems follow from the investigation upon one class of host graphs �,
which are Cayley graphs of polynomial growth groups. This consideration leads to a
natural question:

What can we say about the eigenvalues of subgraphs of a host graph �, whose
growth rate is more than polynomial?

A first class of graphs we can think of is that of trees. In [7], the authors find upper
bounds for the eigenvalues of a finite tree. Their investigations lead to the following
result:

Theorem 8 (Theorem 1.1 and 1.5 in [7]) Let T be a finite tree with (uniformly)
bounded degree D. Let B be the boundary of the tree, i.e., the set of vertices of degree
one. Then we have

σ1 ≤ 4(D − 1)

|B| .

Higher Steklov eigenvalues are bounded as well: for all k = 2, . . . , |B| − 1, we have

σk ≤ 8(D − 1)2(k − 1)

|B| .

As stated by Remark 1.7 of [7], we can consider as the host graph � the Cayley
graph of a free group and use this result to estimate the Steklov eigenvalues of a
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subgraph � of �. Since the growth rate of such a host graph is exponential, we now
have a completely new class of host graphs for which we can estimate their subgraphs
eigenvalues.

This paper’s objective is to study the subgraphs’s eigenvalues of a host graph �

which is roughly isometric to the hyperbolic planeH2 (see Definition 12). The hyper-
bolic plane is a Cartan–Hadamard manifold of constant sectional curvature −1. Then
� can be seen as a discrete analog of such a manifold. Because of its relation withH2,
the growth rate of � is exponential, and then � does not enter the class of host graphs
of Theorems 4, 5 and 6.

Despite a growth rate identical to that of the trees, the structure of� is very different
from the latter, because of its connection with H2. Therefore, the method we will use
to obtain upper bounds has nothing to do with the one used in [7]. Indeed, He and Hua
were able to work directly on the trees and use the great ease of disconnection of the
trees as a tool to obtain the bounds of Theorem 8, while on our side, we will use the
proximity between � and H

2 to obtain upper bounds.
There are many graphs which are roughly isometric to the hyperbolic plane. This

paper will focus on a particular class of such graphs, coming from a tiling of H2

associated with a triangle group. We shall refer to such a graph as triangle-tiling
graph.

Triangle groups are part of the Coxeter groups, which can be seen as groups gener-
ated by reflections. These groups have been studied by many authors, see for instance
[2, 8, 10]. Triangle groups areCoxeter groupswith three generators that canbe regarded
as reflections through the sides of a triangle. They lead to many beautiful geometric
constructions and tiling, see [1, 5, 12, 18].Wewill recall in Sect. 2 hereafter the notions
that are required for the understanding of the paper.

Our main result is the following:

Theorem 9 Let� be a triangle-tiling graph. Then there exists a constant C = C(�) >

0 such that for all subgraph � of � and all k < |B|, we have

σk(�) ≤ C(�) · 1

|B| · k2.

As we will see in Sect. 2, the host graph � is defined from the choice of three
integers. As a consequence, we will see that there are infinitely many triangle-tiling
graphs.

As a corollary, we obtain the following interesting fact:

Corollary 10 Let (�l)l≥1 be a family of subgraphs of � such that |�l | −→
l→∞ ∞. Then

for all k ∈ N fixed,

σk(�l) −→
l→∞ 0.

The number σk(�l) is of course defined if and only if |Bl | < k. This condition is
satisfied for l big enough thanks to the assumption that |�l | −→ ∞.
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Our approach is sketched this way: we define a triangle-tiling graph � that we use
as a host graph and show that it is roughly isometric toH2 (see Definition 15). Thanks
to the rough isometry, we can naturally associate to a subgraph � of � a bounded
domain N ofH2, whose boundary will be denoted as 	. We can then use results from
[3] to give upper bounds for σk(N ).

Once this task is completed, we use the work of Colbois et al. presented in [4]
in order to discretize a Riemannian manifold with boundary (N , g′), obtained as a
deformation of the domain N (this deformation is necessary since we have to satisfy
the assumptions of [4, Theorem 3]). This discretization will give us a path linking the
eigenvalues of N and the ones of �, which will allow us to conclude.

Our strategy can be summed up in the diagram below:

� �

H
2 (N , g) (N , g′)

(V̄ , Ē, V	)

roughly isometric

subgraph

domain

structure preserved

change of metric

discretization

roughly isometric

Here, by structure preserved, we mean that the structural information of the subgraph
� can be read in the domain N , see the rest of the paper for more details. Moreover,
in the diagram, P ←→ Q reflects the idea that P is in some sense analog to Q, and
P −→ Q reflects the idea that Q is obtained from P . More details are given in the
rest of the paper.

Our result holds for subgraphs of any triangle-tiling graph. However, there exist
many other graphs that are roughly isometric to the hyperbolic plane, and that we could
use as host graphs. This remark naturally leads to many interesting interrogations, that
we will consider and develop in Sect. 5. In particular, one may ask if the result is still
true when using other host graphs roughly isometric toH2. This leads to the following
open question (Question 34):

If � is any graph roughly isometric to the hyperbolic plane, is there a constant
C = C(�) such that a bound as in Theorem 9 exists?

Moreover, if (�l)l≥1 is a sequence of subgraphs such that |�l | −→
l→∞ ∞, then in many

cases (Corollary 7, Corollary 10, [7, Corollary 1.4]) the behavior of σ1(�l) satisfy
σ1(�l) −→

l→∞ 0. However, that is not always true, see [6, Example 3.7]. One may ask

if the property is preserved under rough isometry (Question 36):

Let �1, �2 be two roughly isometric host graphs. Let us assume that in �1, each
sequence of subgraphs (�l)l≥1 such that |�l | −→

l→∞ ∞ satisfies σ1(�l) −→
l→∞ 0. Does

�2 also have this property?

As said before, these interrogations, and other (including some about higher dimen-
sional constructions), will be asked in Sect. 5.
Notation. Throughout this paper, we shall work on graphs, on domains of H2, and
on a manifold obtained from the domains. As stated before, the host graph will be
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denoted � = (V , E). A subgraph of � is denoted �, while N and Ñ are used to
speak about domains ofH2. We use g to denote the metric ofH2 and g′ the one of the
manifold; hence, (N , g′) is the notation we will use to speak about the manifold. A
discretization of the manifold will be called (Ṽ , Ẽ, V	). We shall use the letters v,w

to speak about vertices of graphs and x, y, z for elements of the domains or manifold.
Several constants will appear, we shall call them C1,C2, . . .; each Cl is used exactly
once.
Plan of the paper. In Sect. 2, we define precisely what is a triangle-tiling graph. In
Sect. 3, we make the constructions. The leading idea is actually simple: we want to
associate a domain to a subgraph.However,we encounter somedifficulties for different
reasons. One of them is the question of the isolated boundary vertices, also called bad
boundary vertices in [6,Def. 3.1].We solve this problem inSect. 3.1.Another difficulty
comes from the fact that we want the domain to have a smooth boundary. This is the
object of Sect. 3.2. In Sect. 4 we prove Theorem 9. In order to do so, we want to use
Theorem 3 of [4]. Therefore, we have to make sure that the hypotheses of the theorem
are verified, which is the object of Sect. 4.1. Once it is done, we apply the theorem and
conclude the proof.

2 Triangle Groups and Associated Triangle-Tiling Graphs

Let us begin by explaining what triangle groups are and what links they have with
tessellations of the model spaces S2,E2, andH2. When it is done, we can explain how
to associate a triangle-tiling graph � to a triangle group.

Definition 11 Let p, q, r ≥ 2 be integers. The triangle group T ∗(p, q, r) associated
is

T ∗(p, q, r) = 〈P, Q, R : P2 = Q2 = R2 = (PQ)r = (QR)p = (RP)q = 1〉.

In order to see the links between such an abstract group and a group of reflection, one
can think about P, Q, R as reflections through the opposite sides of a triangle with
angles π

p , π
q , π

r , respectively.
It is well known that a triangle with angles α, β, γ satisfies α + β + γ > π in

the spherical case, while we have α + β + γ = π in the Euclidean case and that
α + β + γ < π in the hyperbolic case. Hence, we can regroup the unordered triplets
p, q, r according to the value of 1

p + 1
q + 1

r . If the number obtained is greater than 1,
we have to think about a spherical triangle, if it is equal to 1 we have to think about a
Euclidean one and if it is less than 1 we have to think about a hyperbolic one.

As said before, we want to work on graphs that have exponential growth rates;
therefore, we will only consider the third case in this paper. Since one may ask if
our result is still true for the two other cases, we remark that in the Euclidean case,
the triangle group has polynomial growth rate and then has already been studied in
[16]. Regarding the spherical case, the triangle group is finite, and hence, one can
theoretically compute all different possible situations.
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161 Page 8 of 31 L. Tschanz

Then, from now on, p, q, r ≥ 2 will be integers satisfying

1

p
+ 1

q
+ 1

r
< 1.

Definition 12 We denote by H
2 the hyperbolic plane, represented here by Poincaré’s

disk model, which is

H
2 = {(x, y) ∈ R

2 : x2 + y2 < 1},

endowed with the Riemannian metric

g(x, y) = 4 · dx2 + dy2

(1 − x2 − y2)2
.

We denote by dg(·, ·) the distance induced by the metric g.

Remark 13 It is a known fact that for any triplet 0 ≤ α, β, γ < π such thatα+β+γ <

π , there exists a hyperbolic triangle with angles α, β, γ . Moreover, there is a unique
one up to isometry [1, Exercise 7.12]. Hence, given p, q, r as before, there exists a
unique triangle which has angles π

p , π
q , π

r .

We state now Theorem 2.8 of [12]:

Theorem 14 Let P, Q, R be the reflections in the sides of a hyperbolic triangle �0
with angles π

p , π
q , π

r . The images of �0 under the action of the distinct elements of the
group T ∗(p, q, r) generated by P, Q, R fill the hyperbolic plane without gaps and
overlapping.

This means that the choice of the numbers p, q, r gives rise to a tessellation of the
hyperbolic plane. Moreover, we know [1, Theorem 7.4.1] that reflections through
geodesics are isometries of H2. Hence, each tile of the tessellation is a triangle which
is isometric to the initial one, see Fig. 1.

From such a tiling associated with a triangle group T ∗(p, q, r), one can naturally
define an infinite simple connected undirected graph� = �(p, q, r), called a triangle-
tiling graph and that we will use as a host graph. We explain here how to define �.

Each triangle contains a point that is the center of its inscribed circle [1, Theorem
7.14.1]. We consider these points. They form the set V of vertices of �. The graph
structure of � is defined as follows: two vertices v1, v2 ∈ V are joined by an edge
{v1, v2} if and only if they belong to two adjacent triangles.

It is then obvious that � = (V , E) is an infinite, 3-regular graph.
We can see � as a metric space when endowed with the path metric: each edge is

of length 1, the distance between two vertices v1, v2 ∈ V is the minimal number of
edges we have to cross to go from v1 to v2.

Because of its links withH2, it is clear that� has an exponential growth rate. Hence,
as said in Sect. 1, � does not enter the class of graphs concerned by Theorem 4, 5,
and 6. Moreover, � has cycles; therefore, it is not a tree. Hence, it does not enter the
class of graphs of Theorem 8 either.
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Fig. 1 Tiling of the hyperbolic
plane with congruent triangles of
angles π

2 , π
3 , and

π
9 , coming

from [17]

We recall that, given a connected locally finite graph X and any vertex v of X , the
number of ends of X is limn→∞ ‖X\B(v, n)‖, where B(v, n) is the ball centered at
v with radius n and ‖X\B(v, n)‖ is the number of infinite connected component of
X\B(v, n). It is well known that two roughly isometric graphs have the same number
of ends, see [11, Prop. 8.2.8]. It is obvious that � has 1 end while a Cayley graph
of a free group has infinitely many. Therefore, as said before, the structure of � is
completely different from the graphs concerned by Theorem 8 and this difference will
be felt in the way we solve the problem.

Definition 15 A rough isometry between two metric spaces (X , dX ) and (Y , dY ) is a
map φ : X −→ Y such that there exist constants C1 > 1,C2, C3 > 0 satisfying

C−1
1 · dX (x1, x2) − C2 ≤ dY (φ(x1), φ(x2)) ≤ C1 · dX (x1, x2) + C2

for all x1, x2 ∈ X and satisfying

⋃

x∈X
B(φ(x),C3) = Y .

If there is such a map, we say that X is roughly isometric to Y .

Proposition 16 The host graph � constructed above is roughly isometric to (H2, g),
with constants that depend on the value of p, q, r .

Proof Take φ : � −→ H
2 as the canonical inclusion and take the constants as the

triangle’s diameter. ��
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3 Construction of the Domain N

We consider a finite subset of vertices � ⊂ V , connected for �, giving birth to a
subgraph with boundary � as in Definition 3. We recall that each vertex is the center
of a triangle of the tiling and that all triangles are isometric.

This section aims to detail a method allowing us to associate a smooth-bounded
domain N to the subgraph �. The relevance of the domain N lies within its structural
links with the subgraph �: we will transcribe the structure of � onto N .

Before starting, we want to give an overview of the problems that could happen
and that we will avoid.

The structural information of � is of two types: the neighborhood structure and the
interior/boundary structure. Hence, we have to make sure that the domain of H2 we
will associate to � is able to reflect these two pieces of information.

In other words, for two v1, v2 ∈ �̄, we want v1 to be near v2 in � if and only if v1
is near v2 in the domain. Moreover, for v ∈ B, we want to guarantee the existence of
a part of 	 near v. Reciprocally, for each x ∈ 	, we want to guarantee the existence
of a vertex v ∈ B near x . The sense of the word near is the following: the proximity
between x and v does not depend on the subgraph�. This proximity shall be quantified
by Proposition 32.

As already spotted by Han and Hua in [6], one of the difficulties comes from the
isolated boundary vertices. If v ∈ B is isolated, we have to be clever to make sure
there is x ∈ 	 which is near v, see Example 20.

A second difficulty is the following: we want the domain N to be smooth. This will
give us the possibility to make a change of metric on N , in order to use Theorem 3 of
[4].

Hence, the process contains two steps: at first, we find a domain Ñ which is struc-
turally related to � but whose boundary 	̃ is not smooth, and second, we change this
domain slightly by smoothing the angles in order to get the wanted domain N .

3.1 Construction of the Domain Ñ

Let us begin by considering a vertex v ∈ �̄ and the triangle Tv associated. In this
section, v will always refer to this particular triangle. We call A1, A2, A3 the vertices
of Tv , respectively, at angles π

p , π
q , π

r . We define a map H : {A1, A2, A3} −→ H
2 as

follows:
H(A1) is the uniquepoint of the geodesic segment [v, A1] such thatdg(v, H(A1)) =

9
10 · dg(v, A1). The points H(A2) and H(A3) are defined similarly.

We then connect H(A1), H(A2), and H(A3) with geodesic segments. This gives
birth to a new triangle, denoted T ′

v . By convexity, T ′
v is strictly contained inside the

initial triangle Tv . It is also easy to see that v is contained inside T ′
v .

If w ∈ �̄ is another vertex of the subgraph, then by construction, there is a triangle
Tw of the tiling associated to w, and there is an isometry ψv,w : H2 −→ H

2 such that
ψv,w(Tv) = Tw. This isometry is not necessary unique. If there are several, we just
pick one and call it ψv,w. We consider this isometry and call T ′

w := ψv,w(T ′
v).
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Fig. 2 The vertices x1, y1 of T ′
1 are connected, respectively, to the vertices x2, y2 of T ′

2 because of the
assumption that v1 ∼ v2 in the subgraph �

We apply this process to each vertex of �̄. Hence, we have now at our disposal |�̄|
new triangles, disjoint from each other and isometric to each other.

If v1, v2 ∈ �̄ are such that v1 ∼ v2 in the subgraph, then by definition of �, v1
and v2 represent the centers of two triangles, let us say T1 and T2, having one side in
common. Thus, T1 has two vertices x, y which are also vertices of the triangle T2. As
we said before, there is an isometry ψv,v1 of H

2 such that ψv,v1(Tv) = T1. Without
loss of generality, say that ψv,v1(A1) = x and ψv,v1(A2) = y.

We denote x1 := ψv,v1(H(A1)) and y1 := ψv,v1(H(A2)), which are vertices of
the triangle T ′

1 = ψv,v1(T
′
v). Similarly, we denote x2 := ψv,v2(H(A1)) and y2 :=

ψv,v2(H(A2)) which are vertices of the triangle T ′
2 = ψv,v2(T

′
v).

We then connect x1 to x2 by a geodesic segment, and we do the same with y1 and
y2, see Fig. 2.

We write T ′
1 ∼ T ′

2 in order to say that we have connected the triangles T ′
1 and T ′

2.
This process connecting the triangles according to the structure of � allows us to

notice the following relation: for two vertices v1, v2 ∈ �̄ which are the centers of two
triangles T ′

1, T
′
2, we have

v1 ∼ v2 ⇐⇒ T ′
1 ∼ T ′

2.

Let us suppose that z is the common vertex of 2p triangles such that their centers
v1, . . . , v2p satisfy v1 ∼ v2 ∼ v3 ∼ . . . ∼ v2p ∼ v1 in �. Without loss of gen-
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161 Page 12 of 31 L. Tschanz

Fig. 3 We connected z1 to z2, z2 to z3, z3 to z4, and z4 to z1 because of the assumption that v1 ∼ v2 ∼
v3 ∼ v4 ∼ v1 in �

erality, let us say that ψv,v1(A1) = z. We denote z1 = ψv,v1(H(A1)), . . . , z2p =
ψv,v2p (H(A1)) as before. By applying the process described above, we connect z1 to
z2, z2 to z3, . . . , z2p to z1 by geodesic segments, see Fig. 3.

Of course, there is nothing specific about p and the same holds for q and r .

Remark 17 The previous construction naturally generates different simple polygons
contained inside the hyperbolic planeH2, of which the exhaustive list is the following:

• Each vertex w ∈ �̄ adds one triangle T ′
w;

• Each couple of vertices v1, v2 ∈ �̄ such that v1 ∼ v2 adds one quadrilateral;
• Each vertex z which is the common vertex of 2p triangles such that their centers

v1, . . . , v2p satisfy v1 ∼ v2 ∼ v3 ∼ . . . ∼ v2p ∼ v1 in � adds one 2p-gon;
• Each vertex z which is the common vertex of 2q triangles such that their centers

v1, . . . , v2q satisfy v1 ∼ v2 ∼ v3 ∼ . . . ∼ v2q ∼ v1 in � adds one 2q-gon;
• Each vertex z which is the common vertex of 2r triangles such that their centers

v1, . . . , v2r satisfy v1 ∼ v2 ∼ v3 ∼ . . . ∼ v2r ∼ v1 in � adds one 2r -gon.

Definition 18 We call K the compact subset ofH2 obtained by considering the closure
of the union of all the simple polygons generated by the previous construction. We

also call N̂ the bounded domain ofH2 defined by N̂ = ◦
K , and we call 	̂ the boundary

of N̂ .
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Fig. 4 The crosses represent the interior � of the subgraph, the dots represent the boundary B of the
subgraph. The polygonal curve represents the boundary 	̂ while the polygon (of which 	̂ is the boundary)
is the interior N̂

As this point of the paper, one may ask why we do not simply define the domain as
the thickening of the union of all Tw, for w ∈ �̄. The reason is that by doing so, the
domain would not be able the reflect the neighborhood structure of the subgraph.

Indeed, we recall that by definition of a subgraph, two boundary vertices are never
connected by an edge. Let us consider two vertices w1, w2 ∈ B such that Tw1 is
adjacent to Tw2 (meaning that {w1, w2} ∈ E). Gluing the two triangles Tw1 , Tw2

would give the information that w1 is adjacent to w2 in the subgraph, which is not the
case because they are two boundary vertices.

Thismismatch between the structure of the domain and the structure of the subgraph
would then jeopardize one of our next constructions, namely the rough isometry of
Proposition 32. This proposition claims the existence of a rough isometry whose
constants do not depend on the subgraph � chosen. In order to prove the existence
of such a rough isometry, it is crucial that the domain N we are building reflects the
neighborhood structure of the subgraph �. We give more details about this problem
in Appendix A.
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Remark 19 We recall that, by construction, the domain N̂ has the same neighborhood
structure as the subgraph �. Indeed, we already saw that for v1, v2 ∈ �̄,

v1 ∼ v2 ⇐⇒ T ′
1 ∼ T ′

2.

However, the boundary structure of N̂ is not analog to the one of �. We already
have one implication: for all x ∈ 	̂, there exists w ∈ B such that w is near x .

The reciprocal is not verified. If w ∈ B, there is no guarantee that there exists
x ∈ 	̂ such that x is near w. To see that, one can look at Example 20.

Example 20 Choose a vertex v∗ of the host graph and define � as the ball of radius n
deprived of v∗. This will give rise to a subgraph �, for which v∗ ∈ B. However, there
is no x ∈ 	̂ near v∗. Indeed, the bigger n is, the bigger the distance between 	̂ and v∗
is. Hence, the proximity between 	̂ and v∗ depends on the subgraph, which we want
to avoid. This kind of situation also appears in Fig. 4, where we can see an isolated
boundary vertex.

To solve this problem, we proceed to a surgery of this domain N̂ : for each w ∈ B,
we remove the ball centered at w of radius ρ

2 , where ρ denotes the radius of the circle
inscribed in T ′

w, see Fig. 5

Definition 21 We call Ñ the domain obtained after the removal of the balls, and we
call 	̃ its boundary.

Remark 22 This last surgery obviously gives us the reciprocal we need: for each w ∈
B, there exists x ∈ 	̃ such that x is near w.

This boundeddomain Ñ is not our final domain becauseweneed a smooth boundary.

3.2 Smoothing of the Domain Ñ

As mentioned in the introduction, the domain should be discretized to obtain an upper
bound for the Steklov spectrum of � using Theorem 3 of [4]. Of course, we have
to make sure the assumptions of this theorem are verified before using it. However,
the domain Ñ does not satisfy all these assumptions, see Remark 26. This section is
devoted to modify the domain Ñ and get a new domain N which has the advantage to
have a smooth boundary.

Note that, as always in this paper, we have to make sure that the operations we
make do not depend on the subgraph �, but only on the host graph �.

We recall that 	̃ is composed with the union of 	̂ and many circles. Each circle is
already a smooth connected component of 	̃, hence we only have to smooth 	̂ out.
Each connected component of 	̂ is a simple closed C∞ piecewise curve, composed
with geodesic segments. Note that by construction, there exist at most 4 × 3 − 3 = 9
different segments (two isometric segments are identified). We shall designate by
corner the intersection of two geodesic segments forming 	̂. A corner is therefore
a point of the curve whose neighborhoods are of class C0, but not of class C1. By
construction, a corner is always located on a vertex of a triangle T ′.
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Fig. 5 The crosses represent the vertices of �, the dots represent the boundary B. The balls surrounding
the boundary vertices are removed from the domain and the structure of the subgraph is readable on the
domain

The regularity of our construction allows us to state that the domain Ñ has at most(
4
2

)
× 3 = 18 different internal angles (two congruent angles are identified).

The interest of these comments is to simplify considerably the smoothing of the
domain Ñ . Indeed, there are at most 18 different types of angles to smooth out.

Let us call λ1, . . . , λ9 the length of the geodesic segments and let us denote

λ := min{λ1, . . . , λ9}.

If 	̃ has n corners, let us call them z1, . . . zn . For each corner zi , there exist exactly
two points xi , x ′

i ∈ 	̃ such that

dg(xi , zi ) = dg(x
′
i , zi ) = λ

10
.

Let us consider a corner zi as well as the two points xi , x ′
i associated.

123



161 Page 16 of 31 L. Tschanz

Fig. 6 The curve α1 can be seen as a smoothing of the angle at the corner zi

We then create a smooth curve

α1 : [0, 1] −→ H
2

such that

• α1(0) = xi , α1(1) = x ′
i ;

• For all t ∈ (0, 1) we have α1(t) ∈ Ñ ;
• For all t ∈ [0, 1] we have dg(α1(t), zi ) ≤ λ

10 ;• A curve whose image is

[zi−1, xi ] ∪ α1([0, 1]) ∪ [x ′
i , zi+1]

is smooth, see Fig. 6.

Then suppose that zi is a corner associated with an angle which is not congruent to
the previous one. We then create a smooth curve

α2 : [0, 1] −→ H
2

with the same four properties as the previous curve, see Fig. 7.
We continue the process and create a smoothing curve for each type of angle, at

most 18 times as said before.

Remark 23 If z j is another corner of the same type as zi , meaning that the angle at z j
is congruent to the angle at zi , there is then an isometry � : H2 −→ H

2 which sends
the angle at zi onto the angle at z j . The smoothing curve at angle z j is then given by
� ◦ αμ, where μ ∈ {1, . . . , 18} depends on the nature of the angle.

Thus, we smooth out the domain Ñ with these 18 curves and obtain a new connected
domain with smooth boundary.
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Fig. 7 The curve α2 is a smoothing of the angle at zi

We obtain the domain N that we wanted, whose boundary is denoted 	. By con-
struction, the domain N has the following characteristics:

• N is connected;
• The boundary 	 is smooth;
• 	 is composed of at most 28 types of curve:

– The 9 geodesic segments (coming from triangles and quadrilaterals);
– The 18 smoothing curves α1, . . . , α18;
– The circles resulting from the removal of the balls.

Moreover, the domain N is constructed in a way that the structure of the subgraph
� is readable in it. Indeed, if we call smoothed triangle a region of N of the form
N ∩ T ′

w, for w ∈ �̄, then

• A smoothed triangle N ∩ T ′
v1

is connected to a neighbor N ∩ T ′
v2

if and only if
v1 ∼ v2 in �;

• A vertex w is part of B if and only if there exists x ∈ 	 such that x is near w. As
said before, Proposition 32 will clarify the sense of the word near.

Remark 24 Since each w ∈ B adds one connected component of 	 as a circle, we
have the inequality

|	| ≥ C4 · |B|, (1)

where C4 corresponds to the perimeter of a circle of radius ρ
2 .
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Fig. 8 The crosses represent the vertices of �, the dots represent the boundary B. The balls surrounding
the boundary vertices are removed from the domain, the structure of the subgraph is readable in the domain
and 	 is smooth

4 Proof of theMain Theorem

Let us begin by recalling Theorem 1.2 of [3].

Theorem 25 There exists a constant C5 such that for all bounded domain N of the
hyperbolic space H2 and for all k ≥ 0,

σk(N , g) ≤ C5 · k

|	| . (2)

Actually, the result of Colbois et al. is more general than that, but this statement is
enough for our needs.

The domain N being structurally similar to the subgraph �, we will show that a
bound of the same type exists for the subgraph’s spectrum. The goal of this section is
to transfer this result to the subgraph.

To do this, we want to discretize the domain N . Let us recall the conditions that the
domain must satisfy to be discretized:

We have to assume the existence of constants κ > 0 and r0 ∈ (0, 1) such that

• The boundary	 admits a neighborhood which is isometric to the cylinder [0, 1]×
	, whose boundary corresponds to {0} × 	;

• The Ricci curvature of N is bounded below by −κ;
• The Ricci curvature of 	 is bounded below by 0;
• For all x ∈ N such that dg(x, 	) > 1, we have injM (x) > r0;
• For all x ∈ 	, we have inj	(x) > r0.

For further investigation on this topic and to understand why these assumptions are
made, one can look at [4].

Remark 26 The last four conditions are trivially satisfied by N .Moreover, the constants
κ, r0 do not depend on the subgraph �. Indeed, the regularity of the construction of
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the domain N allows to give constants κ, r0 valid for any domain N obtained by the
process described above.

In other words, if we call M = M(κ, r0) the class of 2-dimensional manifolds
which satisfy the last four properties, then N ∈ M whatever the chosen subgraph �.

On the other hand, the first assumption is not satisfied by the domain. Indeed, 	

does not have a neighborhood isometric to a cylinder. To remedy this, we will proceed
to a change of metric on N in order to obtain a new Riemannian manifold which
satisfies the five properties.

4.1 Changing theMetric on the Domain

The main difficulty of this subsection is proceeding to a change of metric which is
uniform for all domains N obtained by the procedure described in Sect. 3.

Here, the word uniform reflects the existence of a constant C6 as in Proposition 28
which is valid for all domains.

Let us denote

N (δ) = {x ∈ N : dg(x, 	) ≤ δ}

the δ-neighborhood of the boundary.

Proposition 27 (Lemma 34 of [4]) There exist on N a δ > 0 (depending only on the
28 types of curves) and a Riemannian metric g′ such that

• (N (δ), g′) is isometric to [0, 1] × 	;
• The metrics g and g′ are homothetic on N\N (3δ).

Proof We will use the Fermi parallel coordinates: we parametrize each connected
component of 	 by arc length and call s the parameter. We then use the distance t to
	 as a second parameter to describe the points of N lying in a close neighborhood of
	. In these coordinates, the hyperbolic metric is expressed by

g(s, t) = ϕ(s, t) · ds2 + dt2,

where ϕ is a smooth positive function satisfying ϕ(s, 0) = 1.
Let δ > 0 be small enough to have 1

2 ≤ ϕ(s, t) ≤ 2 on N (3δ) (such a δ exists
because ϕ is smooth).

We call g0 the product metric which, in the Fermi coordinates (s, t), is expressed
by

g0(s, t) = ds2 + dt2.

We then take a smooth function

χ : [0, 3δ] −→ [0, 1]
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such that χ ≡ 0 on [0, δ], χ ≡ 1 on [2δ, 3δ], and such that χ is strictly increasing on
[δ, 2δ].

Then we define the metric

gδ(s, t) = χ(t)g(s, t) + (1 − χ(t))g0(s, t).

This metric coincides with the hyperbolic metric on N (3δ)\N (2δ), then it can be
extended all over the domain N into a metric that we continue to call gδ .

Moreover, endowedwith this metric, N (δ) is isometric to [0, δ]×	.We then define
the metric

g′ := 1

δ2
gδ,

for the cylindrical neighborhood to have length 1.
��

The value of δ depends only on the 28 types of curves composing 	. That is the
reason we built the domain N with such regularity. Thanks to the process, we can
choose δ independently of the subgraph � chosen.

Proposition 28 (Lemma 34 of [4]) There exists a constant C6 > 1 that does not
depend on the subgraph �, such that for all x ∈ N and all v ∈ Tx N , v �= 0, we have

1

C6
≤ g′(x)(v, v)

g(x)(v, v)
≤ C6.

Proof We distinguish three cases:

• x ∈ N\N (2δ);
• x ∈ N (δ);
• x ∈ N (2δ)\N (δ).

Let us start with the first one. Let x ∈ N\N (2δ) and 0 �= v ∈ Tx N . We have

g′(x)(v, v)

g(x)(v, v)
=

1
δ2
gδ(x)(v, v)

g(x)(v, v)
=

1
δ2
g(x)(v, v)

g(x)(v, v)
= 1

δ2

because on N\N (2δ), the metric gδ coincides with the hyperbolic metric g.
For the second case, let x ∈ N (δ) and 0 �= v ∈ Tx N . we have

g′(x)(v, v)

g(x)(v, v)
= g′(x)(v, v)

(ϕ(s, t)ds2 + dt2)(v, v)
≤ g′(x)(v, v)

( 12ds
2 + 1

2dt
2)(v, v)

=
1
δ2
gδ(x)(v, v)

1
2 (ds

2 + dt2)(v, v)
=

1
δ2
g0(x)(v, v)

1
2g0(x)(v, v)

= 2

δ2

123



The Steklov Problem on Triangle-Tiling Graphs in the Hyperbolic Plane Page 21 of 31 161

because gδ coincides with the product metric g0 on N (δ).
In a similar way, we have

g′(x)(v, v)

g(x)(v, v)
= g′(x)(v, v)

(ϕ(s, t)ds2 + dt2)(v, v)
≥ g′(x)(v, v)

(2ds2 + 2dt2)(v, v)

=
1
δ2
gδ(x)(v, v)

2(ds2 + dt2)(v, v)
=

1
δ2
g0(x)(v, v)

2g0(x)(v, v)

= 1

2δ2
.

Let us now look at the third case. Let x ∈ N (2δ)\N (δ) and 0 �= v ∈ Tx N .
We recall that on N (2δ)\N (δ), the metric gδ interpolates the product metric g0 and

the hyperbolic metric g with the help of a smooth increasing function χ .
Then we have

g′(x)(v, v)

g(x)(v, v)
=

1
δ2
gδ(x)(v, v)

g(x)(v, v)
=

1
δ2

(χ(t)g(s, t) + (1 − χ(t))g0(s, t))(v, v)

g(x)(v, v)

= 1

δ2

(
χ(t) + (1 − χ(t))

g0(s, t)(v, v)

g(x)(v, v)

)

≥ 1

δ2

(
χ(t) + (1 − χ(t))

g0(s, t)(v, v)

2g0(x)(v, v)

)

= χ(t)

δ2
+ 1 − χ(t)

2δ2
≥ 1

2δ2
.

Similarly, we have

g′(x)(v, v)

g(x)(v, v)
=

1
δ2
gδ(x)(v, v)

g(x)(v, v)
=

1
δ2

(χ(t)g(s, t) + (1 − χ(t))g0(s, t))(v, v)

g(x)(v, v)

= 1

δ2

(
χ(t) + (1 − χ(t))

g0(s, t)(v, v)

g(x)(v, v)

)

≤ 1

δ2

(
χ(t) + (1 − χ(t))

g0(s, t)(v, v)
1
2g0(x)(v, v)

)

= χ(t)

δ2
+ 1 − χ(t)

1
2δ

2

≤ 1
1
2δ

2
= 2

δ2
.

Then the ratio is bounded for all x ∈ N and for all v ∈ Tx N , v �= 0, and we can
choose

C6 := 2

δ2
.
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Moreover, this constant C6 does not depend on the chosen subgraph �. Indeed, the
function ϕ depends only on the, at most, 28 types of curves forming	 (which we have
fixed once and for all), and δ depends only on ϕ. Thus, as said before, the constant
δ > 0 can be chosen independently of the subgraph, which allows us to fix a universal
value of C6 > 1 for all the domains N obtained thanks to the procedure described in
Sect. 3. ��

We now have at our disposal a new Riemannian manifold with boundary, denoted
(N , g′), which is related to (N , g) in the sense of Proposition 28. We recall now
Proposition 32 of [4]:

Proposition 29 Let N beaRiemannianmanifold of dimensionm, compactwith smooth
boundary and let g, g′ be twoRiemannianmetrics on N. Let us assume that there exists
a constant C6 > 1 such that for all x ∈ N and for all v ∈ Tx N , v �= 0, we have

1

C6
≤ g′(x)(v, v)

g(x)(v, v)
≤ C6.

Then we have

1

C2m+1
6

≤ σk(N , g′)
σk(N , g)

≤ C2m+1
6 .

The assumption is exactly what we prove at Proposition 28. Hence, we can apply
this result to (N , g) and (N , g′) in order to get:

σk(N , g′) ≤ C5
6 · σk(N , g). (3)

4.2 Discretization of the Manifold (N, g′)

Let us recall that we proceeded to a change of metric on N in order to give it the ability
to be discretized, according to constants r0 and κ , as said in Remark 26. There exist
several ways to discretize a manifold. In this paper, we apply the process described in
[4], for we want the discretization to have a spectral link with the manifold.

This process is the following:
We choose ε ∈ (0, r0/4), and we choose V	 a maximal ε-separated subset of 	.

Then we call V ′
	 the copy of V	 lying 4ε away from the boundary:

V ′
	 = {4ε} × V	.

Thenwe choose VI amaximal ε-separated subset of N\[0, 4ε]×	 such that V ′
	 ⊂ VI .

Then we consider the subset Ṽ = V	 ∪ VI and grant it the structure of a graph by
decreeing

• Two vertices v,w ∈ Ṽ are adjacents as soon as dg′(v,w) ≤ 3ε;
• A vertex v ∈ V	 is adjacent to its counterpart v′ ∈ V ′

	 .
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This process gives a graph with boundary (Ṽ , Ẽ, V	), simply denoted (Ṽ , V	); here-
after, whose boundary is V	 and that we call ε-discretization of N .

Theorem 3 point 4) of [4] allows us to state:

Theorem 30 There exists a constant C7 > 0 depending only on κ, r0 and ε such that
for all k ≤ |V	 |, we have

σk(Ṽ , V	) ≤ C7 · σk(N , g′) · k. (4)

4.3 Rough Isometry Between (Ṽ,V6) andÄ

We now want to exploit the graph (Ṽ , V	) for which we have an upper bound relative
to its spectrum to control the spectrum of our initial subgraph �. In order to do it, we
will have to deal with the concept of rough isometry once again. This will allow us
to use Proposition 16 of [4] to compare the Steklov spectra of the graphs. The main
difficulty here is that we have to make sure the constants of the rough isometry are
independent of the subgraph �. Let us begin by defining what is a rough isometry in
the context of graphs with boundary.

Definition 31 A rough isometry φ between two graphs with boundary (�̄1, E ′
1, B1)

and (�̄2, E ′
2, B2) is a rough isometry which sends B1 onto B2 and such that the

restriction of φ to B1 is a rough isometry B1 −→ B2 when considering extrinsic
distances on B1 and B2.

Proposition 32 There exists a rough isometry φ̄ : (Ṽ , V	) −→ �̄ whose constants
C1,C2,C3 are independent from the subgraph �.

Proof We have to define a map φ̄ : (Ṽ , V	) −→ �̄ and show that it is a rough
isometry.

Remark that the vertices v of Ṽ can be of different types. There are boundary
vertices coming from the 28 different kind of curves forming 	, and there are interior
vertices coming from N . As a consequence, the definition of φ̄ is a little bit heavy,
but the idea to define the rough isometry is very natural: each vertex v ∈ Ṽ is sent
onto the vertex w of �̄ which is of same nature (interior or boundary) and which is
the nearest from it.

Let us define

φ̄ : (Ṽ , V	) −→ �̄.

For the vertices of the boundary:

• For v ∈ V	 such that v is part of a side of a triangle T ′, we choose φ̄(v) ∈ B the
vertex at the center of T ′;

• For v ∈ V	 such that v is part of the boundary of a ball that had been removed,
we choose φ̄(v) ∈ B the vertex at the center of the removed ball;

• For v ∈ V	 such that v is part of a side of a quadrilateral, we find the side of a
triangle closest to v and we choose φ̄(v) ∈ B as if v were on this triangle’s side;
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Fig. 9 The vertices of V	 are represented by diamonds, the dot vertex belongs to B. All of the diamonds
are sent to the dot by φ̄

• For v ∈ V	 such that v is part of a smoothing curve, we find the side of a triangle
closest to v and choose φ̄(v) ∈ B as if v were on this triangle’s side.

And for the interior vertices:

• For v ∈ VI such that v is part of a triangle whose center is w ∈ �, we choose
φ̄(v) = w;

• For v ∈ VI such that v is part of a triangle whose center is w ∈ B, then there
exists at least one w′ ∈ � such that w ∼ w′. We then choose φ̄(v) = w′. If there
are several possibilities, we choose one once and for all;

• For v ∈ VI such that v is part of a quadrilateral, then two opposite sides of this
quadrilateral are the sides of two triangles T ′

1, T
′
2. At least one of them has a center

w ∈ �. We then choose φ̄(v) = w. If there are two possibilities, we choose one
once and for all;

• For v ∈ VI such that v is part of a 2p-gon (respectively, 2q-gon, 2r -gon), then
this 2p-gon (resp. 2q-gon, 2r -gon) is surrounded by 2p (resp. 2q, 2r ) triangles
T ′
1, . . . , T

′
2p (resp. T

′
2q , T

′
2r ) of which at least p (resp. q, r ) have a center w ∈ �.

We then choose φ̄(v) = w once and for all.

In order to show that φ̄ is a rough isometry, let us partition the domain N into
cobblestones: a cobblestone C is defined as the intersection of a triangle T of the
initial tiling with N . If w ∈ �̄ is the center of a triangle Tw, we denote by Cw the
associated cobblestone. We also write Cw ∼ Cw′ to say that two cobblestones are
adjacent.

Then we choose C1 as the cardinality of the biggest possible ε-separated set con-
tained inside a cobblestone multiplied by max{p, q, r}. Then we choose C2 = C1.
Thus, if two vertices v1, v2 ∈ Ṽ belong to the same cobblestone, we have dṼ (v1, v2) ≤
C1.

We recall that by our construction of the domain N , for w,w′ ∈ �̄, we have

w ∼ w′ ⇐⇒ Cw ∼ Cw′ ,
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Fig. 10 The diamond vertices are part of VI , the cross vertices belong to �. All of the diamonds vertices
are send to the bottom left cross vertex by φ̄

i.e., the neighborhood structure of the subgraph is readable onto the domain. There-
fore, for w1, w2 ∈ �̄, w1 �= w2, the distance d�̄(w1, w2) represents the number of
cobblestones that separate w1 from w2 plus one. Thus, if v1, v2 ∈ Ṽ are such that
φ̄(v1) = w1 and φ̄(v2) = w2, then we have

C−1
1 dṼ (v1, v2) − C2 ≤ d�̄(w1, w2) ≤ C1dṼ (v1, v2) + C2.

Moreover, φ̄ is a surjective map so we can choose C3 = 1 and we get

⋃

v∈Ṽ
B(φ̄(v),C3) = �̄.

��
We can now recall Proposition 16 of [4]:

Proposition 33 Given C1 ≥ 1,C2,C3 ≥ 0, there exist some constants C8,C9 depend-
ing only onC1,C2,C3 and of themaximal degree of the vertices such that for all graphs
with boundary (�1, B1), (�2, B2) roughly isometric with constants C1,C2,C3, we
have

C8 ≤ σk(�1, B1)

σk(�2, B2)
≤ C9.

Applied to this situation, we obtain

σk(�) ≤ 1

C8
σk(Ṽ , V	). (5)
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4.4 Conclusion

In this section, we prove Theorem 9 and Corollary 10.

Proof Throughout the paper, we got different results that we can now assemble to
finally obtain Theorem 9:

σk(�)
(5)≤ 1

C8
· σk(Ṽ , V	)

(4)≤ 1

C8
· C7 · σk(N , g′) · k

(3)≤ 1

C8
· C7 · C5

6 · σk(N , g) · k
(2)≤ 1

C8
· C7 · C5

6 · C6 · k

|	| · k
(1)≤ 1

C8
· C7 · C5

6 · C6 · k

C4 · |B| · k

=: C · 1

|B| · k2.

All along the paper, we took care of specifying on which parameters the constants
depend. It happens that they do not depend on the subgraph � chosen. They only
depend on the host graph � and on ε. Therefore, if we set a value for ε, we can take
the same constant C for all subgraph � of �; it is now fixed once and for all.

As a consequence, for a choice of three integers p, q, r ≥ 2 such that 1
p + 1

q + 1
r < 1,

giving birth to a tessellation of the hyperbolic plane and to a host graph � as defined
in Sect. 2, there exists a constant C = C(�) such that for any subgraph � of �, we
have

σk(�) ≤ C(�) · 1

|B| · k2. ��
From this statement, let us prove Corollary 10.

Proof It is enough to notice the following fact: for (�l , Bl)l≥1 a family of subgraphs
of � such that |�l | −→ ∞, then we also have |Bl | −→ ∞.

Therefore, for all k ∈ N fixed, we have

σk(�l , Bl) ≤ C(�) · 1

|Bl | · k2 −→
l→∞ 0. ��

5 Consideration and Interrogation

All the constructions above were about a host graph �, which was a triangle-tiling
graph. However, one may have noticed that we could have used other polygons rather
than triangles and still obtained the result. The informationwe used is the finite number
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of possible situations, like the 28 different kinds of curves composing	 or the 18 types
of angles to smooth out.

All these constructions could have emerged from any exact tessellation of the hyper-
bolic plane, as long as the tiles are compact and the number of different polygon in
the tessellation is finite (the tessellation is exact if and only if each edge of a tile is
an edge of exactly two polygons of the tessellation). If we used other polygons rather
than triangles, the number of different possible situations would have been larger, and
the constants would have been different. Nevertheless, the result would have been the
same.

This comment shows that the result we get in this paper is more general than it
primarily seems. Unfortunately, it has its limits. If we get interested in a tiling of the
hyperbolic plane which has infinitely many kinds of tiles, then our construction is
not relevant anymore. In the same way, if a tile of the tessellation is not compact, we
cannot use our method either.

This consideration leads to an open question:

Question 34 If � is any graph roughly isometric to the hyperbolic plane, is there a
constant C = C(�) such that a bound as in Theorem 9 exists?

This question naturally leads to a more general interrogation. In order to properly
define the problem, let us give a definition.

Definition 35 We say that a host graph � has the property (P) if for each k ∈ N and
each family (�l)l≥1 of subgraphs of �, we have

|�l | −→
l→∞ ∞ �⇒ σk(�l) −→

l→∞ 0.

Now we can ask the following open question:

Question 36 Let �1, �2 be two roughly isometric graphs. Let us assume that �1 has
the property (P). Does �2 also have the property (P)?

Reformulated in the language of geometric group theory, the question becomes

Is the property (P) a large scale invariant?

This question, apparently not so hard, appears to be more thorny than expected.
If positively answered, it would automatically generalize our result to any graph

roughly isometric to the hyperbolic plane, and it would certainly have many other
applications.

Another interesting interrogation one may have consists in wondering if some sim-
ilar constructions could be done in the hyperbolic spaceHn , with n ≥ 3. In particular,
a first question is the following:

Is there a natural class of graphs, analogous to triangle-tiling graphs, that would be
roughly isometric to Hn?

The answer to this question is yes. Using [15, Sect. 6.8], we can generate tessellations
of Hn with polyhedra, for any n ≥ 2. From such a tessellation, we can define a host
graph� in the samemanner as we did in this paper. It could be interesting to study such
a host graph and see if some results analogous to Theorem 9 hold in higher dimension.
This consideration leads to the following open question:
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Question 37 Let � be a graph coming from a polyhedral tessellation of Hn, n ≥ 3.
Does a constant C = C(�) exist, such that a bound as in Theorem 9 holds?
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Appendix A About the importance of the small triangles in our con-
struction

We provide here an example which shows that, given a subgraph � of �, we cannot
simply consider the domain that we get when thickening the union of Tw for allw ∈ �̄.

Let us consider the subgraph given by the following figure:
We are particularly interested in the boundary vertices namedw1 andw2 in Fig. 11.

There are two properties that w1 and w2 have

• w1 is close to w2 in the host graph. Indeed, they belong to two adjacent triangles
of the tessellation. Therefore, d�(w1, w2) = 1 (where we used the notation d� for
the distance in the host graph).

• w1 is far fromw2 in the subgraph. Indeed, by definition there is no edge betweenw1
and w2 in the subgraph. In fact, we have d�(w1, w2) = 33, which is the diameter
of the subgraph (we used the notation d� for the distance in the subgraph).

Because we are building a domain which is a sort of analog of the subgraph, we have
to make sure that the distance between w1 and w2 is large in the domain, see Fig. 12.

The domain N̂ that we get from this subgraph, using the strategy presented in this
paper (using the small triangles), is the following:

Here is now the domain that we get while considering the union of triangle Tw for
all w ∈ �̄:

If we were to pursue our construction with the domain given by Fig. 13, we would
have a real problem when building the rough isometry of Proposition 32.

Indeed, let us now consider a family of subgraphs (�l)l≥1, such that |�| −→
l→∞ ∞

and such that each subgraph of the family has the same particular property as the
subgraph of Fig. 11 (the property concerning w1 and w2 we discussed above). In that
case, the constants in the rough isometry would then have to be chosen according
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Fig. 11 The crosses vertices form the interior of the subgraph, the dot vertices form the boundary

Fig. 12 Using now dN̂ as a notation for the distance in N̂ , we can easily see that dN̂ (w1, w2) is large,

roughly as the diameter of N̂
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Fig. 13 We can see that the distance in the domain between w1 and w2 is small

to each subgraph (the diameter of each subgraph would do). This would obviously
destroy our result.

References

1. Beardon, A.F.: The geometry of discrete groups. Vol. 91. Graduate Texts in Mathematics. Corrected
reprint of the 1983 original. Springer, New York (1995), pp. xii+337. ISBN: 0-387-90788-2

2. Bourbaki,N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV:
Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre
VI: systèmes de racines. Actualités Scientifiques et Industrielles [Current Scientific and Industrial
Topics], No. 1337. Hermann, Paris, (1968), 288 pp. (loose errata)

3. Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the Steklov spectrum. J. Funct. Anal.
261(5), pp. 1384–1399 (2011). ISSN: 0022-1236. https://doi.org/10.1016/j.jfa.2011.05.006

4. Colbois, B., Girouard, A., Raveendran, B.: The Steklov spectrum and coarse discretizations of mani-
folds with boundary. Pure Appl. Math. Q. 14(2), 357–392 (2018). ISSN: 1558-8599. https://doi.org/
10.4310/pamq.2018.v14.n2.a3

5. Conway, J.H., Conway, H., Goodman-Strauss, C.: The symmetries of things. A K Peters, Ltd., Welles-
ley, MA, (2008), pp. xviii+426. ISBN: 978-1-56881-220-5; 1-56881-220-5

6. Han, W., Hua, B.: Steklov Eigenvalue problem on subgraphs of integer lattices. Commun. Anal.
Geometry To appear. Preprint: arXiv:1902.05831

7. He, Z., Hua, B.: Upper bounds for the Steklov eigenvalues on trees. : Calc. Var. Partial Differ. Equ.
61(3) (2022). Paper No. 101, 15. ISSN: 0944-2669. https://doi.org/10.1007/s00526-022-02207-6

8. Hiller, H.: Geometry of Coxeter groups. Vol. 54. Research Notes in Mathematics. Pitman (Advanced
Publishing Program), Boston, Mass.-London, (1982), pp. iv+213. ISBN: 0-273-08517-4

123

https://doi.org/10.1016/j.jfa.2011.05.006
https://doi.org/10.4310/pamq.2018.v14.n2.a3
https://doi.org/10.4310/pamq.2018.v14.n2.a3
http://arxiv.org/abs/1902.05831
https://doi.org/10.1007/s00526-022-02207-6


The Steklov Problem on Triangle-Tiling Graphs in the Hyperbolic Plane Page 31 of 31 161

9. Hua, B., Huang, Y., Wang Zuoqin: First eigenvalue estimates of Dirichletto-Neumann operators on
graphs. Calc. Var. Partial Differ. Equ. 56(6), Art. 178, 21 (2017). ISSN: 0944-2669. https://doi.org/10.
1007/s00526-017-1260-3

10. Humphreys, J.E.: Reflection groups and Coxeter groups. Vol. 29. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge (1990), pp. xii+204. ISBN: 0-521-37510-X.
https://doi.org/10.1017/CBO9780511623646

11. Löh, C.: Geometric group theory. Universitext. An introduction. Springer, Cham (2017), pp. xi+389.
ISBN: 978-3-319-72253-5; 978-3-319-72254-2. https://doi.org/10.1007/978-3-319-72254-2

12. Magnus, W.: Noneuclidean tesselations and their groups. Pure and Applied Mathematics, Vol. 61.
Academic Press [Harcourt Brace Jovanovich, Publishers], New York, (1974), pp. xiv+207

13. Perrin, H.: Isoperimetric upper bound for the first eigenvalue of discrete Steklov problems. J. Geom.
Anal. 31(8), pp. 8144–8155 (2021). ISSN: 1050-6926. https://doi.org/10.1007/s12220-020-00572-2

14. Perrin, H.: Lower bounds for the first eigenvalue of the Steklov problem on graphs. Calc. Var. Partial
Differ. Equ. 58(2), Art. 67, 12 (2019). ISSN: 0944-2669. https://doi.org/10.1007/s00526-019-1516-1

15. Ratcliffe, J.G.: Foundations of hyperbolic manifolds. Vol. 149. Graduate Texts in Mathematics. Third
edition [of 1299730]. Springer, Cham, (2019), pp. xii+800. ISBN: 978-3-030-31597-9; 978-3-030-
31596-2. https://doi.org/10.1007/978-3-030-31597-9

16. Tschanz, L.: Upper bounds for Steklov eigenvalues of subgraphs of polynomial growth Cayley graphs.
Ann. Glob. Anal. Geom. 61(1), 37–55 (2022). ISSN: 0232-704X. https://doi.org/10.1007/s10455-021-
09799-w

17. Wikipedia.: File:Hyperbolic domains 932 black.png. 2022. https://commons.wikimedia.org/wiki/File:
Hyperbolic_domains_932_black.png. Accessed 3 Oct 2022

18. Wikipedia.: Triangle group. 2022. https://en.wikipedia.org/wiki/Triangle_group. Accessed 1 Oct 2022

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00526-017-1260-3
https://doi.org/10.1007/s00526-017-1260-3
https://doi.org/10.1017/CBO9780511623646
https://doi.org/10.1007/978-3-319-72254-2
https://doi.org/10.1007/s12220-020-00572-2
https://doi.org/10.1007/s00526-019-1516-1
https://doi.org/10.1007/978-3-030-31597-9
https://doi.org/10.1007/s10455-021-09799-w
https://doi.org/10.1007/s10455-021-09799-w
https://commons.wikimedia.org/wiki/File:Hyperbolic_domains_932_black.png
https://commons.wikimedia.org/wiki/File:Hyperbolic_domains_932_black.png
https://en.wikipedia.org/wiki/Triangle_group

	The Steklov Problem on Triangle-Tiling Graphs in the Hyperbolic Plane
	Abstract
	1 Introduction
	2 Triangle Groups and Associated Triangle-Tiling Graphs
	3 Construction of the Domain n, sigma
	3.1 Construction of the Domain n Prime Sigma
	3.2 Smoothing of the Domain n Prime Sigma Prime 

	4 Proof of the Main Theorem
	4.1 Changing the Metric on the Domain
	4.2 Discretization of the Manifold n Sigma g Prime
	4.3 Rough Isometry Between discrétisation and initial
	4.4 Conclusion

	5 Consideration and Interrogation
	Acknowledgements
	Appendix A About the importance of the small triangles in our construction 
	References




