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Abstract
We study two natural problems concerning the scalar and the Ricci curvatures of the
Bismut connection. Firstly, we study an analog of the Yamabe problem for Hermitian
manifolds related to the Bismut scalar curvature, proving that, fixed a conformal Her-
mitian structure on a compact complex manifold, there exists a metric with constant
Bismut scalar curvature in that class when the expected constant scalar curvature is
non-negative. A similar result is given in the general case of Gauduchon connections.
We then study an Einstein-type condition for the Bismut Ricci curvature tensor on
principal bundles over Hermitian manifolds with complex tori as fibers. Thanks to
this analysis, we construct explicit examples of Calabi–Yau with torsion Hermitian
structures and prove a uniqueness result for them.

Keywords Gauduchon–Yamabe problem · Calabi–Yau with torsion structures ·
Bismut scalar curvature · Bismut Ricci curvature

Mathematics Subject Classification 53b35 · 53C30 · 53C55 · 32Q25 · 32Q99 · 32M10

1 Introduction

Given a Hermitian manifold (M, J , g), there are several connections which are com-
patible with both the metric g and the complex structure J , meaning that they leave
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them parallel. Among these, the Bismut connection is the only one which has skew-
symmetric torsion. Thanks to this property, it takes on great interest in String Theory,
see the work of Ivanov and Papadopoulos [15]. It also has applications in Differential
Geometry, see for example [21], and recently, Garcia-Streets and Streets-Tian showed
some interesting links with the Generalized Complex Geometry, see [9] and [24].

In view of having a better understanding of the geometry of the Bismut connection,
in this note, we study the classical problems of constant scalar curvature and constant
Ricci curvature (in the sense that theRicci tensor is amultiple of themetric)with a focus
on the caseRicci flat curvature. In thefirst part of this note,we adapt the techniques used
in [2] for the Chern–Yamabe problem to the general case of Gauduchon connections
∇ t , which are an affine line of Hermitian connections including the Chern connection
∇Ch (for t = 1) and the Bismut connections ∇+ (for t = −1). In this way, in
Theorems 3.1 and 3.2, we could solve the Gauduchon–Yamabe problem of finding
a constant ∇ t -scalar curvature metric in a given conformal class if �t

M ({ω}) ≤ 0 or
�t

M ({ω}) ≥ 0 depending on t > 1
1−n or t < 1

1−n , where n is the complex dimension of
the manifold. Here, �t

M ({ω}) is the Gauduchon degree with respect to ∇ t associated
to the conformal class {ω}, which is defined as

�t
M ({ω}) :=

∫
M

St (η)dμη,

where η is the unique volume-one Gauduchon representative of {ω} and St (η) is the
∇ t -scalar curvature associated to η. The Gauduchon degree with respect to the Chern
connection corresponds to the degree of the anti-canonical line bundle K −1

M (studied
in [11]), while for t = −1, we get the Gauduchon degree of {ω} with respect to the
Bismut connection, which we denote by �+

M ({ω}). Theorems 3.1 and 3.2 extend the
results of [2] about the Chern connection and we have the following theorem as a
particular case of them.

Theorem (Corollary 3.5) Let M be a compact complex manifold with dimC M ≥ 3
and Hermitian structure (ω, J ). If �+

M ({ω}) ≥ 0, then, up to scaling, there exists a
unique ω̃ ∈ {ω} with constant Bismut scalar curvature. Moreover, its Bismut scalar
curvature satisfies S+(ω̃) = �+

M ({ω}).
The second part of the note is devoted to the study of metrics with constant Bismut

Ricci curvature on the total spaces of rank one toric bundles (T 2-bundles) over Her-
mitian manifolds. T 2-fibrations over Calabi–Yau surfaces were used by Fu and Yau
to show explicit solutions to the Hull–Strominger system, see [7, 8], while in [12] the
authors studied the so-called Calabi–Yau with torsion (CYT) condition on the total
spaces of toric bundles over Kähler manifolds. Here, we focus on the vanishing of the
Bismut Ricci tensor, describing the CYT condition for metrics that satisfy a natural
ansatz on this class of manifolds. We then briefly analyze the Einstein-type equation
(Ric+ω)1,1 = λω with λ ∈ R in the same setting.

The CYT manifolds play a role in Physics after the works of Strominger [25] and
Hull [14]. Moreover, CYTmetrics which are also pluriclosed (meaning that theKähler
2-form associated to the metric is ddc-closed) are static points of the pluriclosed flow
of Streets and Tian. Therefore, there is an interest in finding new non-trivial explicit
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examples of them. In Sect. 4 we analyze these structures on the Calabi–Eckmann
manifolds S2n+1 × S

2m+1 (with n, m ≥ 0). Indeed, the simplest examples of Bismut
flatmanifolds are given by theHopf surfaceS1×S

3 and theCalabi–Eckmann threefold
S
3 × S

3, and in [9], the authors asked if it was possible to construct other special
Hermitian structures on the Calabi–Eckmann manifolds of higher dimension. The
existence of CYT structures on them can be obtained by applying Theorem 3 of [13],
while we prove a result about the uniqueness.

Theorem (Corollary 4.8)Given a Calabi–Eckmann manifold Mn,m := S
2n+1×S

2m+1,
the standard Hermitian structure (J , g) gives a CYT structure on it. Moreover, g is
the only homogeneous CYT structure on (Mn,m, J ) up to homothety.

The above theorem comes as a special case of a more general result that has an
analogous statement on Class C manifolds (defined in [19]). These are the total spaces
of homogeneous principal T 2-bundles over the product of two compact irreducible
Hermitian symmetric spaces.

Theorem (Theorems 4.6 and 4.7) Take a class C manifold as in [19], that is a product
M1×M2 fibering over two generalized flag manifolds X1 = G1/H1 and X2 = G2/H2
with S

1-fibers, and equip it with a standard complex structure. Then, there exists a
CYT metric on it. Moreover, if none of the Xi ’s is SO(k +2)/SO(2)×SO(k) for k ≥ 3,
then this metric is the unique (up to homothety) CYT metric among the homogeneous
ones.

The interest in this kind of result comes from the fact that a compact simply con-
nected homogeneous manifold G/H with an invariant complex structure J (called
C-space in [26]) is Kählerian if and only if it is a generalized flag manifold, namely
when G is a semisimple Lie group and H is the centralizer of a torus in G, as stated in
[5]. In such case, in [18] is proved that they can be endowed with a (unique) invariant
Kähler–Einstein metric, while there is a general interest in finding special invariant
metrics on the non-Kähler C-spaces G/H . Theorem 3 in [13] proves the existence of
a CYT structure on compact simply connected homogeneous manifolds G/H with a
G-invariant complex structure of vanishing first Chern class. However, Corollary 4.5
ensures that, in general, it is not unique. On the other hand, the standard Hermitian
structures on class C manifolds are the unique invariant CYT structure on them.

2 Preliminaries and Notation

In all the following sections, (M, g, J ) will be a Hermitian manifold of complex
dimension n ≥ 2, and ω := g(J ·, ·) will denote its associated Kähler (1, 1)-form. In
particular, in local holomorphic coordinates {zi }i ,

ω = √−1gi jdzi ∧ dz j ,

where gi j = g
(

∂
∂zi

, ∂
∂z j

)
. Moreover, (gi j )i, j will henceforth denote the inverse of

(gi j )i, j .
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2.1 Gauduchon Connections

For t ∈ R, the Gauduchon connections ∇ t associated to (g, J ) are Hermitian con-
nections on M with prescribed torsion, where by Hermitian connections we mean
connections ∇ which are compatible with both the metric and the complex structure,
i.e., ∇g = ∇ J = 0. They are described wrt the Levi-Civita connection ∇LC as,

g(∇ t
x y, z) = g(∇LC

x y, z) + t − 1

4
Jdω(x, y, z) + 1 + t

4
dω(J x, y, z) ,

where J acts as Jdω(·, ·, ·) = −dω(J ·, J ·, J ·). Since the Levi-Civita connection is
torsion free, the above formula is prescribing the torsion of these connections as

T t (x, y, z) = 1 − t

2
Jdω(x, y, z) + 1 + t

4
(dω(J x, y, z) + dω(x, J y, z)) .

In particular, for t = 1, we recover the Chern connection, while for t = −1, we get the
Bismut connection, which thus has torsion equal to−Jdω. We remark that the Bismut
connection is the unique Hermitian connection with totally skew-symmetric torsion.
We will henceforth indicate the Bismut connection as ∇+, and any of its curvature
tensors with the superscript +. The Christoffel symbols of the Gauduchon connection
can be easily computed and are

(
�t)k

i j = gks
(
1 + t

2
∂i g js + 1 − t

2
∂ j gis

)

(
�t)k

i j = 1 − t

2
gks

(
∂ i g js − ∂s g ji

)
(
�t)k

i j = 0 (2.1)

At a fixed point p ∈ M , we can choose special holomorphic coordinates {zi } such
that gi j (p) = δi j and the Christoffel symbols of the Levi-Civita connection vanish at

p, i.e., (�LC )k
i j (p) = 0. With these coordinates, we compute the curvature tensors of

the Gauduchon connections as

Rt
i jkl

(g) = −δpl

(
∂

∂z j

(
�t)p

ik − ∂

∂zi

(
�t)p

jk
+ (

�t)s
ik

(
�t)p

js
− (

�t)s
jk

(
�t)p

is

)

= 1 − t

2

(
∂2gkl

∂zi∂z j
− ∂2gk j

∂zi∂zl
− ∂2gil

∂zk∂z j

)
− 1 + t

2

∂2gkl

∂zi∂z j

+
∑

q

(1 − t)2
∂gql

∂zi

∂gk j

∂zq
− t2

∂giq

∂zk

∂gql

∂z j
(2.2)

We define the Ricci tensor associated to the Gauduchon connection ∇ t as the contrac-
tion of the endomorphism part of its curvature tensor; hence, in local coordinates,

123



On the Curvature of the Bismut Connection... Page 5 of 23 153

Rict··(g) = gkl Rt
··kl

(g).

Contracting again we obtain the ∇ t -scalar curvature

St (g) = gi j Rict
i j

(g).

From a direct computation using (2.2), we obtain the following useful formula,
which is well known for the Bismut connection.

Proposition 2.1 Let (M, g, J ) be a Hermitian manifold of complex dimension n, and
let ω be its associated Kähler (1, 1)-form. For t ∈ R, the Ricci curvature form of the
Gauduchon connection ∇ t associated to (g, J ) is given by the formula:

Rict (g) = t − 1

2
dd∗

gω − √−1∂∂ logωn .

In particular, the (1,1)-component of the Gauduchon Ricci curvature form satisfies

(Rict (g))1,1 = t − 1

2
(∂∂∗

gω + ∂∂
∗
gω) − √−1∂∂ logωn . (2.3)

In the above proposition, d∗
g = ∂∗

g + ∂
∗
g where ∂∗

g : ∧p+1,q M → ∧p,q M and

∂
∗
g : ∧p,q+1M → ∧p,q M are the L2

g-adjoint operators of ∂ and ∂ , respectively. We
recall the local formulas for these operators, which can be found, for example, in [23].
In local holomorphic coordinates,

(
∂∗

gω
)

k
= √−1g pq

(
∂q gpk − ∂k gpq

)
(
∂

∗
gω

)
j
= √−1g pq (

∂pg jq − ∂ j gpq
)
.

We also fix here the notation for the trace of a two form α with respect to ω:

trωα := √−1gi jαi j ,

where we used local holomorphic coordinates {zi }i .
Thanks to Proposition 2.1, we can describe the case where two Gauduchon scalar
curvatures with different Gauduchon parameters coincide.

Proposition 2.2 Let (M, g, J ) be a compact Hermitian manifold and take two Gaudu-
chon parameters t1 
= t2. Then the following conditions are equivalent:

i. Rict1(ω) = Rict2(ω);
ii. St1(ω) = St2(ω);
iii. g is balanced, namely d∗ω = 0.
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Proof Obviously, (i) ⇒ (i i). As for (i i) ⇒ (i i i), taking the trace in (2.3) we have
that st1 = st2 if and only if

trω(∂∂∗
gω + ∂∂

∗
gω) = 0.

Then, integrating over M we get that

0 =
∫

M
trω(∂∂∗

gω) = (∂∂∗
gω,ω)g = (∂∗

gω, ∂∗
gω)g = |∂∗

gω|2g,

and similarly for trω(∂∂
∗
gω). Thus both ∂∗

gω and ∂
∗
gω vanish, which means that θ =

Jd∗ω = 0 and g is balanced. Finally, going backward through this argument yields
(i i i) ⇒ (i). �

We compute the variation of the ∇ t -Ricci curvature under a conformal change,
which easily comes from the above formulas:

(Rict (e f g))1,1 = (Rict (g))1,1 + (t − nt − 1)
√−1∂∂ f , (2.4)

while the (2, 0) and the (0, 2) components do not change. Taking the trace, we obtain

St (e f g) = e− f
(

St (g) + (1 + nt − t)
√−1trω∂∂ f

)
.

2.2 Chern Laplacian

We recall the definition of the Chern Laplacian
Ch
ω associated to the Hermitianmetric

ω on a smooth function f as


Ch
ω f = 2

√−1trω∂∂ f ,

or, in local holomorphic coordinates {zi }i as


Ch
ω

loc= −2gi j∂i∂ j .

Remark 2.3 With this notation, the variation formula for the∇ t -scalar curvature under
a conformal change becomes:

St (e f g) = e− f
(

St (g) + 1

2
(1 + nt − t)
Ch

g f

)
. (2.5)

In [11], Gauduchon made explicit the relation between the Hodge-de Rham Lapla-
cian 
d, ω and the Chern Laplacian 
Ch

ω on smooth functions through the torsion
1-form, which we recall is defined by the equation

dωn−1 = θ ∧ ωn−1.
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Lemma 2.4 ([11], pp. 502–503) Let M be a compact complex manifold endowed with
a Hermitian metric ω with torsion 1-form θ . The Chern Laplacian on smooth functions
f has the form


Ch
ω f = 
d f + (d f , θ)ω.

In particular, the Chern Laplacian is a differential elliptic operator of 2nd order
without terms of order 0 and its index agrees with the index of the Hodge-de Rham
Laplacian, as is outlined in [10]. Moreover, the Chern Laplacian and the Hodge-de
Rham Laplacian on smooth functions coincide when ω is balanced, and 
Ch

ω f|p ≥ 0
whenever f is a smooth real function on M which attains a local maximum at p ∈ M .

2.3 Hermitian Conformal Structures

Given a metric ω on M , the Hermitian conformal class of ω will be denoted by

{ω} :=
{
exp( f ) ω

∣∣∣∣ f ∈ C∞(M;R)

}
.

The following fundamental result byGauduchon ensures the existence of aGauduchon
metric (i.e., a metric with d∗θ = 0) in any Hermitian conformal class.

Theorem 2.5 ([10], Théorème 1) Let M be a compact complex manifold of complex
dimension dimC M ≥ 2, and fix a Hermitian conformal structure {ω}. Then there
exists a unique Gauduchon metric η in {ω} such that

∫
M dμη = 1.

Using this result, we can consider the following normalized conformal class

{ω}1 :=
{
exp( f )η ∈ {ω}

∣∣∣∣
∫

M
exp( f )dμη = 1

}
⊂ {ω},

where we denoted by η ∈ {ω} the unique Gauduchon representative of volume 1.
With this choice of η, we can also introduce a natural invariant of the conformal class
{ω}, namely, the Gauduchon degree

�M ({ω}) ∈ R,

defined as

�M ({ω}) := 1

(n − 1)!
∫

M
cBC
1 (K −1

M ) ∧ ηn−1 =
∫

M
SCh(η)dμη.

We extend it to any Gauduchon parameter t ∈ R,

�t
M ({ω}) :=

∫
M

St (η)dμη.
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This value is related to the expected constant ∇ t -scalar curvature as follows.

Proposition 2.6 Let (M, g, J ) be a compact Hermitian manifold. Assume that ω′ ∈
{ω} has constant ∇ t -scalar curvature equal to λ ∈ R. Then ω′ ∈ {ω}1 if and only if

�t
M ({ω}) = λ.

In particular, the sign of the ∇ t -scalar curvature of a potential constant ∇ t -scalar
curvature metric in {ω} agrees with the sign of �t

M ({ω}).
Proof Suppose that e f ω ∈ {ω}1 has constant ∇ t -scalar curvature λ. As representative
in {ω}, fix the unique Gauduchon metric η ∈ {ω} of volume 1 and denote by θ its
torsion 1-form. Equation (2.5) yields

1

2
(1 + nt − t)

∫
M


Ch
η f dμη +

∫
M

St (η)dμη = λ

∫
M
exp( f )dμη,

where
∫

M

Ch

η f dμη =
∫

M

d f dμη +

∫
M

(d f , θ)dμη

=
∫

M

d f dμη +

∫
M

( f , d∗θ)dμη = 0,

since η is Gauduchon. Therefore,

�t
M ({ω}) =

∫
M

St (η)dμη = λ

∫
M
exp( f )dμη = λ,

yielding the first implication.
On the other hand, if we have a metric e f ω ∈ {ω}with constant∇ t -scalar curvature

equal to�t
M ({ω})we can scale it by a constant ec so that e f +c ω stays in the normalized

conformal class {ω}1 and its Gauduchon scalar curvature becomes e−c �t
M ({ω}). Here

c is such that

e−c =
∫

M
e f dμη.

Note that e f +c ω is a constant ∇ t -scalar curvature metric in {ω}1, hence it has scalar
curvature equal to �t

M ({ω}). Thus, finally, c = 0. �

3 Gauduchon–Yamabe Problem

The Yamabe problem, consisting in finding a constant scalar curvature metric in the
conformal class of a given Riemannian metric, is well understood in the Riemannian
setting,while in theHermitian setting, theChern–Yamabe problemwas introduced and
studied in [2]. In this note, we study it for all the Gauduchon connections, i.e., given
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a Hermitian manifold (M, g, J ) we look for a constant ∇ t -scalar curvature metric ω̃

in the conformal class {ω}. Thanks to the conformal changing equation for the scalar
curvature of ∇ t (2.5), this problem reduces to solve a semi-linear elliptic equation of
2nd order:

Ct

Ch
ω f + St (ω) = λ exp(2 f ) , (3.1)

where Ct = 1+ nt − t and λ is the expected constant scalar curvature value, equal to
�t

M ({ω}) by Proposition 2.6.
Note that for t = 1 we recover the Chern–Yamabe problem which has been studied
in [2] by Angella, Calamai and Spotti. In what follows, we extend their arguments to
the more general Gauduchon–Yamabe problem, obtaining their results on the Chern
connection and our results on theBismut connection as particular choice ofGauduchon
connections in Theorems 3.1 and 3.2.

3.1 Linear Case

In case of �t
M ({ω}) = 0, the semi-linear elliptic differential Eq. (3.1) becomes just

linear since we shall take λ = 0, and so we get a solution for the corresponding
Gauduchon–Yamabe problem whenever Ct 
= 0.

Theorem 3.1 Let M be a compact complex manifold with Hermitian structure (ω, J ).
If the Gauduchon parameter t is such that Ct 
= 0 and �t

M ({ω}) = 0, then there exists
a unique metric ω̃ ∈ {ω}1 such that it has constant scalar curvature with respect to
the ∇ t Gauduchon connection. Moreover, St (ω̃) = �t

M ({ω}) = 0.

Proof Fix η ∈ {ω} the unique Gauduchon representative in {ω} with volume 1. We
should solve (3.1) with λ = 0, that is

Ct

Ch
η f = −St (η).

Using the relation in Lemma 2.4, it can be shown (see [11]) that the Kernel of the
Chern Laplacian consists of just the constant functions. Indeed, we recall that


Ch
η f = 
d f + (d f , θ)η,

where θ denotes the torsion 1-form of η. Thus if we take a function u in ker(
Ch) we
have

0 =
∫

M
u
Ch

η u dμη =
∫

M

(
|∇u|2 + 1

2
(du2, θ)

)
dμη =

∫
M

|∇u|2 dμη ,

since d∗θ = 0 because η is Gauduchon.
It follows that two conformal metrics with zero Gauduchon scalar curvature differ by
a multiplicative constant, which in turn must be one if they are both in {ω}1, and so
we get the uniqueness.

123



153 Page 10 of 23 G. Barbaro

From the above equality, it is also possible to compute (see [11]) the adjoint of
Ch
η

on smooth functions u as

(
Ch
η )∗u = 
du − (du, θ)η.

Thus the same computation applies and hence also the Kernel of the adjoint of the
ChernLaplacian of aGauduchonmetric consists of just the constants. Since the integral

of −St (η) is zero by hypothesis, −C−1
t St (η) ∈

(
ker(
Ch

η )∗
)⊥ = im
Ch

η . We thus

achieve the existence of a metric of zero Gauduchon scalar curvature. �

3.2 Non-linear Case

Here we provide a positive answer for the Gauduchon–Yamabe problem when
Ct�

t
M ({ω}) < 0. As a particular case, we will obtain the solution of the Bismut–

Yamabe problem when the Gauduchon degree �−1
M ({ω}) is strictly positive and the

complex dimension of the manifold is greater than three.

Theorem 3.2 Let M be a compact complex manifold with Hermitian structure (ω, J ).
Fix a Gauduchon parameter t for which Ct�

t
M ({ω}) < 0. Then there exists a unique

ω̃ ∈ {ω}1 with constant ∇ t -scalar curvature. Moreover, its Gauduchon scalar curva-
ture satisfies St (ω̃) = �t

M ({ω}).

Proof Fix η ∈ {ω} the unique Gauduchon representative in {ω} with volume 1. By
hypothesis, we have

Ct�
t
M ({ω}) = Ct

∫
M

St (η)dμη < 0.

The proof of the existence of a constant ∇ t -scalar curvature metric consists of two
steps. We apply a continuity method to prove the existence of a constant ∇ t -scalar
curvature metric in {ω} of class C2,α; then we exploit the structure of the elliptic
equation by a standard bootstrap argument to prove that it is smooth.

Before starting with the continuity method, we need a preliminary step. Namely,
we prove that in the normalized conformal class {ω}1, there is a metric which has ∇ t -
scalar curvature of constant sign−sign(Ct ). By this, we can assume thatCt St (ω) < 0
at every point.
Consider the equation


Ch
η f = −St (η) +

∫
M

St (η)dμη . (3.2)

Since η is Gauduchon, arguing as in the proof of Theorem 3.1, the above equation has
a solution f ∈ C∞(M;R), which is unique once we require

∫
M exp(2 f /Ct )dμη = 1.

Then exp(2 f /Ct )η ∈ {ω}1 satisfies
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Ct St (exp(2 f /Ct )η) = exp(−2 f /Ct )Ct

(
St (η) + 
Ch

η f
)

= exp(−2 f /Ct )Ct

∫
M

St (η)dμη

= exp(−2 f /Ct )Ct�
t
M ({ω}) < 0 .

Now we can set up the following continuity path using as reference metric in the
conformal class of η the above metric ω with Ct St (ω) < 0. Consider the map, for
α ∈ (0, 1),

GaYa : [0, 1] × C2,α(M;R) → C0,α(M;R) ,

such that

GaYa(s, f ) := 
Ch
ω f + sSt (ω) − λ exp(2 f /Ct ) + λ(1 − s).

Let us define the set

S :=
{

s ∈ [0, 1]
∣∣∣∣ ∃ fs ∈ C2, α(M;R) such that GaYa(s, fs) = 0

}
,

which trivially is non-empty since GaYa(0, 0) = 0. Thus, we should prove that it is
also open and closed since the expected solution is achieved when s = 1.

We start with the open condition. The implicit function theorem for Hilbert spaces
guarantees that S is open as long as the linearization of GaYa with respect to the second
variable is bijective. Hence, we prove that, for a fixed solution GaYa(s0, fs0) = 0, the
linearized operator of GaYa,

D : C2, α(M;R) → C0, α(M;R),

defined by

v �→ Dv := 
Ch
ω v − λ exp

(
2 fs0/Ct

) · 2v/Ct ,

is bijective. Let us remark that D differs from the Chern Laplacian by a compact
operator, thus they have the same index, zero. This means that injectivity directly
implies surjectivity, hence we are reduced to prove the former.

If v belongs to ker D, then at a maximum point p for v there holds

−λ exp(2 ft0(p)/Ct ) · 2v(p)/Ct ≤ 0 , (3.3)

and hence v(p) ≤ 0, since −λ/Ct > 0. Similarly, at a minimum point q for v, there
holds v(q) ≥ 0. Thus, ker D = {0}.

To show that S is also closed we argue as follows. Take {sn} ⊂ S a sequence
converging to s∞ and fsn ∈ C2,α(M;R) such that GaYa(sn, fsn ) = 0 for any n; we
will use the Ascoli–Arzelà theorem to prove that the fsn converge in C2,α(M;R) to
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a function f∞ such that GaYa(s∞, fs∞) = 0. To use that theorem, we firstly need
uniform L∞ estimates of the solutions fsn .

Lemma 3.3 There exists a positive constant K , depending only on M, ω, λ and t such
that, for any n, we have

‖ fsn ‖L∞ ≤ K . (3.4)

Proof By hypothesis the functions fsn satisfy GaYa(sn, fsn ) = 0, which means that
the following equality holds:


Ch
ω fsn + sn St (ω) − λ exp

(
2 fsn /Ct

) + λ(1 − sn) = 0 . (3.5)

We distinguish the two cases Ct > 0 and Ct < 0 which correspond to λ < 0 or λ > 0
respectively. We also recall that, by the preliminary step in the proof, St (ω) can be
supposed to be a negative function when Ct > 0 and positive when Ct < 0.

Suppose Ct > 0 and take a maximum point p for fsn . Then, at p, there holds

−λ exp
(
2 fsn (p)/Ct

) ≤ −sn St (ω)(p) − λ(1 − sn) ≤ −
(
min

M
St (ω)

)
− λ . (3.6)

On the other hand, at a minimum point for fsn , say q, there holds

−λ exp
(
2 fsn (q)/Ct

) ≥ −sn St (ω)(q) − λ(1 − sn) ≥ sn(−St (ω)(q) + λ) − λ

≥ min

{
min

M

(−St (ω)
)
, −λ

}
> 0.

The above estimates provide the claimed uniform constant K0. The same argument
holds also for Ct < 0, indeed, in this case, at a maximum point p for fsn , we have

λ exp
(
2 fsn (p)/Ct

) ≥ sn St (ω)(p) + λ(1 − sn) ≥ sn(St (ω)(p) − λ) + λ

≥ min

{
min

M

(
St (ω)

)
, λ

}
,

while at a minimum point q for fsn , there holds

λ exp
(
2 fsn (q)/Ct

) ≤ sn St (ω)(q) + λ(1 − sn) ≤ max
M

St (ω) + λ . (3.7)

Hence the lemma is proved. �
Now it remains to prove the uniform equicontinuity of the functions { fsn } in

C2,α(M;R). We define the elliptic operators

Ln f := 
Ch
ω f + sn St (ω) + λ(1 − sn).
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For the functions fsn , we get the equalities

Ln fsn = λ exp
(
2 fsn /Ct

)
.

The estimate of Lemma 3.3 gives a uniform L∞ control of the right-hand side
λ exp

(
2 fsn /Ct

)
of the equation and hence a uniform L p control of Ln fsn for any

p ∈ (1,∞). Then, by the Calderon–Zygmund inequality, we can control the p-norm
of the second-order derivatives by the p-norms of the function and its Laplacian;
hence, iterating it twice, we get that fsn ∈ W 4,p(M;R) with uniform bound on the
norms. Finally, we can use the Sobolev embedding taking p large enough so that we
find an a-priori C3 uniform bound on the solutions. Thus nowwe can apply the Ascoli–
Arzelà theorem so that we get a subsequence (which we still call { fsn }) converging in
C2,α(M;R) to a function fs∞ . We can take the limit in the Eq. (3.5); in this way, we
see that fs∞ is a solution of GaYa(s∞, fs∞) = 0 as needed.

So far we achieved the existence of a C2,α solution f to the Gauduchon–Yamabe
equation, GaYa(1, f ) = 0. Hence we have f ∈ C2,α such that


Ch
ω f = λe2 f /Ct − St (ω).

Notice that the right-hand side has the same regularity of f , hence the smooth regularity
of the solution follows by the usual bootstrap argument via Schauder’s estimates for
elliptic operators.

Now we have a smooth function f solving 
Ch
ω f = λe2 f /Ct − St (ω) and we want

to prove its uniqueness.
Notice that by Proposition 2.6 since we have λ = �t

M ({ω}), e f ω must be in {ω}1;
moreover, any other metric in {ω}1 with constant ∇ t -scalar curvature must solve the
same equation.

Now suppose we have two conformal metrics ω1 = exp(2 f1/Ct )ω and ω2 =
exp(2 f2/Ct )ω in {ω}1 with constant ∇ t -scalar curvatures equal to λ. Hence we have
the equations


Ch
ω f1 + St (ω) = λ exp (2 f1/Ct ) and 
Ch

ω f2 + St (ω) = λ exp (2 f2/Ct ) .

Taking the difference of these, we get the equation


Ch
ω ( f1 − f2) = λ(exp (2 f1/Ct ) − exp (2 f2/Ct )).

At a first glance, we should distinguish the cases Ct > 0 or Ct < 0 for which we,
respectively, have λ < 0 and λ > 0; however, in both cases at a maximum point p
for f1 − f2, we find f1(p) − f2(p) ≤ 0, while at a minimum point q, we have
f1(q) − f2(q) ≥ 0, proving that f1 and f2 coincide. �
Remark 3.4 In case Ct�

t
M ({ω}) > 0, the maximum principle does not apply and the

Gauduchon–Yamabe equation loses its good analytical properties. For the Chern con-
nection, this case corresponds to have positive Gauduchon degree and it is investigated
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in Section 5 of [2] where some sufficient criterion for the existence of positive con-
stant Chern scalar curvature metrics is found. Moreover, non-homogeneous examples
of Hermitianmetrics of positive constant Chern scalar curvature have been constructed
in [3, 16].
Similarly, it would be interesting to find new explicit examples of constant Bismut
scalar curvaturemetrics aswell as some sufficient (and, possibly, necessary) conditions
which ensure the existence of metrics with negative constant scalar curvature for the
Bismut connection.
We also remark that the “critical” Gauduchon connection for which the constant Ct

vanishes are left out by these theorems. In particular, in complex dimension 2, it
happens for the Bismut connection, since Ct = 1 + nt − t = 1 + t .

We then have the following result.

Corollary 3.5 Let M be a compact complex manifold with dimC M ≥ 3 and Hermitian
structure (ω, J ). If �+

M ({ω}) ≥ 0, then there exists a unique ω̃ ∈ {ω}1 with constant
Bismut scalar curvature. Moreover, S+(ω̃) = �+

M ({ω}).
Remark 3.6 In [17], the authors extended the results of Angella, Calamai, and Spotti
on the Chern–Yamabe problem to the non-integrable case. M. Lejmi suggested that
it should also be possible to extend our results (Theorems 3.1 and 3.2) to the non-
integrable case.

4 Constant Bismut Ricci curvature

We study the CYT equation on rank one toric bundles over Hermitian manifolds
imitating the setting of [12]. In that article, the authors derive useful formulas for the
Bismut Ricci curvature of special metrics on principal toric bundles over compact
Kähler manifolds. Using them they construct CYT structures on the manifolds (k −
1)(S2 × S

4)#k(S3 × S
3) for all k ≥ 1.

Given a Hermitian manifold (X , ωX ), consider a principal toric bundle

S
1 × S

1 ↪→ M
π−→ X ,

with characteristic classes of type (1, 1). We take a connection one formwith values in
the Lie algebra of S1×S

1 given by (θ1, θ2) such that dθi = π∗ωi , withωi (1, 1)-forms
on X . Once we fix a complex structure on the torus, M inherits a complex structure
from that of X , such that the projection map π from M to X is holomorphic, see
Lemma 1 of [12] for details on this. We consider the Hermitian metrics on M for
which π becomes a Riemannian submersion. These are all of the forms

ω = π∗(ωX ) + f θ1 ∧ θ2,

where f is a positive function on M , which is constant along the fibers (thus we will
usually think of it as a function on X ). The Bismut Ricci form of ω is given by

Ric+(ω) = π∗ (
Ric+(ωX )

) − dd∗( f θ1 ∧ θ2) . (4.1)
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Indeed, from Proposition 2.1,

Ric+ω = RicChω − dd∗ω = π∗ RicChωX − dd∗ω
= π∗ (

Ric+ωX + dd∗ωX
) − dd∗ω

= π∗ (
Ric+ωX

) + dd∗(π∗ωX ) − dd∗ω = π∗ Ric+(ωX ) − dd∗( f θ1 ∧ θ2)

where the second equality comes from the following lemma.

Lemma (Lemma 3 of [12]) Let RicChω and RicChωX be the Ricci forms of the Chern
connections on (M, ω) and (X , ωX ) respectively. Then RicChω = π∗(RicChωX ).

We work on a Hermitian frame {e1, . . . , e2n, t1, t2} on an open subset of M which
comes from a local Hermitian frame {e1, . . . , e2n} on an open subset of X extended
so that the vector fields t1, t2 are dual to the 1-forms θ1, θ2.

Lemma 4.1 The following equations hold:

• [ti , e j ] = 0 for any i = 1, 2 and j = 1, . . . , 2n;
• θi (

∑
j [e2 j−1, e2 j ]) = −trωX (ωi ) for i = 1, 2.

Proof We derive these equations from the conditions dθi = π∗ωi (i = 1, 2).
First of all, since the Lie brackets are π -related, i.e., π∗[u, v] = [π∗u, π∗v] for any
smooth vector fields u, v, we have that [ti , e j ] must be vertical. However,

θk([ti , e j ]) = −dθk(ti , e j ) = −π∗ωk(ti , e j ) = 0,

We similarly obtain the second equation, indeed

θi ([e2 j−1, e2 j ]) = −dθi (e2 j−1, e2 j ) = −ωi (e2 j−1, e2 j ),

thus

θi

⎛
⎝∑

j

[e2 j−1, e2 j ]
⎞
⎠ = −

∑
j

ωi (e2 j−1, e2 j ) = −trωX ωi .

�
We now compute dd∗ω̂ where ω̂ := f θ1 ∧ θ2. First of all, recall that the co-

differential of a tensor could be expressed in terms of the contraction of Levi-Civita
connection as

d∗ω̂ = −
2n∑
j=1

∇LC
e j

ω̂(e j , ·) −
∑

i=1,2

∇LC
ti ω̂(ti , ·) ,

moreover for any smooth vector fields u, v, w on a Hermitian manifold

−2
(
∇LC

u ω̂(v,w)
)

= dω̂(u, Jv, Jw) − dω̂(u, v, w) ,
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hence we have

dd∗ω̂ = d

⎛
⎝∑

j

dω̂(J ·, e2 j−1, e2 j ) + dω̂(J ·, t1, t2)

⎞
⎠

= d

⎛
⎝∑

j

dω̂
(
t2, e2 j−1, e2 j

)
θ1 −

∑
j

dω̂
(
t1, e2 j−1, e2 j

)
θ2 + dω̂(J ·, t1, t2)

⎞
⎠

= d

⎛
⎝−

∑
j

ω̂
([e2 j−1, e2 j ], t2

)
θ1 +

∑
j

ω̂
([e2 j−1, e2 j ], t1

)
θ2 + dω̂(J ·, t1, t2)

⎞
⎠

= d

⎛
⎝− f

⎛
⎝θ1

⎛
⎝∑

j

[e2 j−1, e2 j ]
⎞
⎠ θ1 + θ2

⎛
⎝∑

j

[e2 j−1, e2 j ]
⎞
⎠ θ2

⎞
⎠ + ((

(Je j )
)

f
)

e j

⎞
⎠

= d
(

f (tr ω1 θ1 + tr ω2 θ2) + (
(Je j ) f

)
e j

)

= d f ∧ (tr ω1 θ1 + tr ω2 θ2) + f d(tr ω1 θ1 + tr ω2 θ2) + d
((

(Je j ) f
)

e j
)

= (
ei (Je j ) f − e j (Jei ) f

)
ei ∧ e j + f (tr ω1 π∗ω1 + tr ω2 π∗ω2)

+ [
e j ( f tr ωi ) − ti (Je j ) f

]
e j ∧ θ i + [t1( f tr ω2) − t2( f tr ω1)] θ1 ∧ θ2 (4.2)

wherewe used the Einstein notation and dropped the subscriptωX on the traces trωX ωi

for convenience. Since f is constant along the fibers, we obtain

dd∗ω̂ = π∗ddc f + f (tr ω1 π∗ω1 + tr ω2 π∗ω2) + [
e j ( f tr ωi )

]
e j ∧ θ i . (4.3)

From this identity and Eq. (4.1), we get the following result.

Proposition 4.2 On the total space M of a principal toric bundle of rank oneS1×S
1 ↪→

M
π−→ X over a Hermitian manifold (X , ωX ) with connection one forms (θ1, θ2), the

metric ω = π∗(ωX ) + f θ1 ∧ θ2, defines a Calabi–Yau with torsion structure if

{
Ric+(ωX ) = ddc f + (c1ω1 + c2ω2)

f trωX ωi = ci

Notice that if trωX ωi vanishes at some point then it must vanish everywhere since
f trωX ωi is supposed to be a constant function and f > 0. We now analyze the case
of trωX ω1 and trωX ω2 simultaneously zero, which is completely understood from the
following Lemma.

Lemma 4.3 (Lemma 6 of [12]) Suppose that the Ricci form of the Bismut connection
of a Hermitian metric gM is ∂∂-exact on a manifold M of dimension greater than
two. Then the metric gM is conformally a CYT structure. In other words, there exists
a conformal change of gM such that the Ricci form of the induced Bismut connection
vanishes.
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Proof We recall the argument of the proof in [12]. The result directly comes from
the formula for the conformal change of the Ricci curvature form of the Gauduchon
connections. Indeed, setting t = −1 in (2.4), we obtain

(
Ric+(e f ω)

)1,1 = (
Ric+(ω)

)1,1 + (n − 2)ddc f .

Then it is sufficient to notice that the (2, 0) and the (0, 2) components of the Bismut
Ricci tensor are invariant for conformal changes and are zero by hypothesis. �

Wemay consider a trivial S1 ×S
1-principal bundle over (X , ωX ) since the compu-

tations are the same. In this case, we have the following result.

Proposition 4.4 Given a compact Hermitian manifold (X , ωX ) such that the Bismut
Ricci curvature is ddc-exact, i.e., Ric+(ωX ) = √−1∂∂ f , then M := S

1 × S
1 × X,

equipped with the induced complex structure, admits a CYT metric.

Proof We can suppose that f is positive since it is defined up to constants on a compact
manifold. Thus we can define the metric on M as usual: ω = π∗(ωX ) + f θ1 ∧ θ2,
where π is the trivial projection of M onto X and θ1, θ2 are dual to the coordinates
t1, t2 on the fibers. We hence have that

Ric+(π∗(ωX ) + f θ1 ∧ θ2) = π∗(Ric+(ωX )) − dd∗( f θ1 ∧ θ2) = 0,

since from (4.3) we get

dd∗( f θ1 ∧ θ2) = π∗(ddc f ) .

�
From this result, using the transformation law of the Bismut Ricci form under a

conformal change (2.4), we directly get the following corollary.

Corollary 4.5 Given a complex manifold (X , J ) with a CYT metric gX , for any positive
function f > 0, we can construct a CYT structure on S

1 × S
1 × X by taking the

submersion metric ω = π∗(e f ωX ) + (n − 2) f θ1 ∧ θ2.

4.1 Class Cmanifolds

In [19] the author defined Class C manifolds as homogeneous manifolds M = G/L ,
where G = G1 × G2 are compact simply connected simple Lie groups G1, G2 and L
is a connected closed subgroup of G. There should also exist two irreducible compact
Hermitian symmetric spaces G1/H1, G2/H2 so that the subgroups Hi are of the form
Hi =< Zi > · Li for i = 1, 2 and L = L1 × L2. Therefore, we have the following
setting
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G1/H1

S
1 × S

1 (G1/L1) × (G2/L2) (G1/H1) × (G2/H2)

G2/H2

φ1×φ2

π1

π2

where the φi are the Tits fibrations given by

φi : Gi/Li → Gi/Hi : g · Li �→ g · Hi .

M is then the product of two manifolds M = (G1/L1) × (G2/L2) where G1/L1 and
G2/L2 areM-manifolds as defined in [19], meaning that L1 and L2 are the semisimple
part of the centralizer of some torus, Hi = CGi (< Zi >). Then by Theorem C in
[26], the manifolds Gi/Hi are also simply connected, hence they are generalized flag
manifolds. In [18], it is proved that any generalized flag manifold can be endowed
with an invariant Kähler–Einstein Fano metric which is unique (up to homothety)
once we fix the invariant complex structure on it. Moreover, the left-invariant complex
structures on M are all given by choosing left-invariant complex structures on the
symmetric spaces G1/H1, G2/H2 and on the torus S1 × S

1. Once we fix the complex
structures on the symmetric spaces, the standard complex structure on M is that given
by choosing I (Z1) = Z2. By exploiting the structure of class C manifolds, we can
explicitly construct submersion metrics on them which are CYT, namely, we prove
the following theorem.

Theorem 4.6 Take a class C manifold as in [19], that is a product M = M1 × M2
of M-manifolds which fibers through the Tits fibrations φi over two generalized flag
manifolds X1 = G1/H1 and X2 = G2/H2 with S1-fibers, and equip it with a standard
complex structure. Set ωi the unique invariant Kähler-Einstein metrics on Xi with
Einstein constants ni = dim(Xi ). Then the metric on M given by

ω = φ∗
1 (ω1) + φ∗

2 (ω2) + θ1 ∧ θ2,

where θ1 and θ2 are the connections one forms on the fiber bundles such that dθi =
φ∗

i ωi , defines a CYT structure on M.

Proof The metric on the base space X = X1 × X2 is ωX = ω1 + ω2. Then the metric
ω satisfies {

Ric+(ωX ) = ddc(1) + n1ω1 + n2ω2

trωX ωi = ni for i = 1, 2

hence it is Bismut Ricci flat by Proposition 4.2. Thus, we only need to check that
the Tits fibrations represent the U (1)-principal bundles over Gi/Hi with curvature
ωi ∈ c1(Gi/Hi ) chosen to be the unique Kähler-Einstein metrics on Xi . We know that
the isomorphism classes of principalU (1)-bundles over amanifold X are parametrized
by its cohomology group H2(X); moreover, we can extract the following piece from
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the exact sequence in the cohomology of the Tits fibration:

R ∼= H1(S1)
δ−→ H2(G/H)

φ∗
−→ H2(G/L) = 0,

where the last term vanishes since the M-manifolds have zero second Betti number
by Theorem D in [26]. Thus, on the U (1)-principal bundles on the Gi/Hi given by
the Tits fibrations, we can always find connections one forms θi with curvature in
c1(Gi/Hi ). �

The existence of CYT Hermitian structures on the class C manifolds can also be
derived by Theorem 3 in [13]. Indeed, the metric −B(·, ·) given by the negative of the
Killing form of G is Hermitian with respect to the standard complex structures on M .
To see this, consider the decomposition of the Lie algebra g of G as

g = g1 + g2 = (m1 + l1) + (m2 + l2) = (n1 + R Z1 + l1) + (n2 + R Z2 + l2).

Here, g1 and g2 are theLie algebras ofG1 andG2, respectively,while the li ’s are theLie
algebras of the Li ’s; moreover, the Lie algebras hi ’s of the Hi ’s satisfy hi = li +R Zi

for i = 1, 2. The Killing form B is Hermitian on n, moreover, the tori 〈Z1〉 and 〈Z2〉
are orthogonal to the ni ’s as well as one to each other. It only remains to verify that B
is Hermitian on t, that is B(Z1, Z1) = B(Z2, Z2).

TheCYTmetrics constructed above can be characterized as the uniqueCYTmetrics
among the homogeneous ones. Namely, we prove the following result.

Theorem 4.7 Take a class C manifold M as in Theorem 4.6. Suppose that none of the
Xi ’s is SO(k + 2)/SO(2) × SO(k) for k ≥ 3, then the metric

ω = φ∗
1 (ω1) + φ∗

2 (ω2) + θ1 ∧ θ2,

constructed in Theorem 4.6, is the unique (up to homothety) homogeneous CYT metric
on M.

Proof First of all, we verify that the homogeneous metrics on M make φ1 × φ2 a
Riemannian submersion. Indeed, with the same notations as above, a G-invariant
Hermitian metric g′ on M , can be seen as an ad (l1 + l2)-invariant Hermitian inner
product on m1 + m2. As the li ’s are not trivial, l = l1 + l2 acts non-trivially on
n = n1 + n2 and trivially on t, therefore g′(t, n) = 0. Moreover, the ad(l)-modules ni

are mutually non-equivalent, hence g′(n1, n2) = 0. Since we are avoiding the special
case of gi = so(n + 2) and hi = so(2) + so(n), for n ≥ 3 the ni ’s are li -irreducible.
Hence, the Schur Lemma implies that g′ on ni × ni restricts to a multiple (λi ∈ R+)
of the Killing form on Gi , i.e.,

g′|ni ×ni
= −λi (Bi )|.

In other words, the homogeneous metrics on M are all of the types

ω′ = λ1φ
∗
1 (ω1) + λ2φ

∗
2 (ω2) + λθ1 ∧ θ2,
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and by Proposition 4.2 any homogeneous CYT metric g′ have to satisfy
{

Ric+(λ1ω1 + λ2ω2) = n1ω1 + n2ω2

λtr(λ1ω1+λ2ω2) ωi = ni for i = 1, 2

However, for i = 1, 2,

ni = λtr(λ1ω1+λ2ω2) ωi = λ

λi
tr(ω1+ω2) ωi = λ

λi
ni ,

proving that λ = λ1 = λ2, and hence g′ is a positive multiple of g. �
Theorem 4.6 and Theorem 4.7 apply to give unique homogeneous CYT metrics on

the Calabi–Eckmann manifolds when they are equipped with their standard complex
structures. Indeed, these are the total spaces Mn1,n2

∼= S
2n1+1 × S

2n2+1 of rank one
toric bundles over the product of complex projective spaces CPn1 × CP

n2 . As class
C manifolds, they are given by taking Gi = SU(ni + 1), Li = SU(ni ), and Hi =
SU(ni ) × U(1). The Tits fibrations agree with the Hopf fibrations S1 ↪→ S

2ni +1 φi−→
CP

ni . Then the standard Calabi–Eckmann structure J on

T Mn1,n2 = HCPn1 ⊕ 〈Z1, Z2〉 ⊕ HCPn2 ,

is J = JCPn1 ⊕ I ⊕ JCPn2 where JCPn1 and JCPn2 are the complex structures of CPn1

and CP
n2 , respectively, pulled-back on the horizontal spaces HCPn1 and HCPn2 , and

I (Z1) = Z2.

Corollary 4.8 Given a Calabi–Eckmann manifold Mn1,n2 equipped with its standard
complex structure. Consider the Fubini–Study metrics ωi ’s on the complex projective
spaces CP

ni ’s with Einstein constants ni ’s, and set θ1 and θ2 the connections one
forms on the fiber bundles such that dθi = φ∗

i ωi for i = 1, 2. Then, the metric

ω = φ∗
1 (ω1) + φ∗

2 (ω2) + θ1 ∧ θ2,

is a CYT metric on Mn1,n2 ; moreover, it is the unique homogeneous CYT metric on it.

We remark that in [4] a complete description of the Bismut curvature tensor for
the homogeneous metrics on the Hopf manifolds was given. In particular, given a
homogeneous metrics g(α, β) on an n-dimensional Hopf manifold, it holds (in the
standard local holomorphic coordinates {zi }),

Ric+(g(α, β)) =
(
2 − n + β

α
(1 − n)

) (
δi j

|z|2 − zi z j

|z|4
)

dzi ∧ dz j .

This identically vanishes if and only if the ratio β
α
equals 2−n

n−1 , giving explicit CYT
metrics on any Hopf manifold S

1 × S
2n+1, unique among the homogeneous ones.
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4.2 Bismut Hermitian Einstein

The pluriclosed flow is a parabolic flow ofmetrics in the family of Hermitian curvature
flows introduced by Streets and Tian in [22]. It has the property of preserving the
pluriclosed condition, that is ∂∂ω = 0. As a matter of fact, given a pluriclosed metric
ω0, it evolves as

{
∂
∂t ω = − (

Ric+(ω)
)1,1

ω(0) = ω0.

The static points of the pluriclosed flow are pluriclosed metrics ω which satisfy

(
Ric+(ω)

)1,1 = λω , λ ∈ R , (4.4)

and are called in the literature Bismut Hermitian Einstein metrics. We distinguish
the case of λ = 0 from that of λ 
= 0. The only known examples of non-Kähler
pluriclosedmetrics which also satisfy (Ric+ω)1,1 = 0 are that given by theBismut flat
structures. These are Hermitian structures such that the whole Bismut curvature tensor
R+ vanishes and Theorem 9 in [1] ensures that their Hermitianmetrics are pluriclosed.
Particular examples are given by the standard Calabi–Eckmann structures on the Hopf
surface S1 × S

3 and the Calabi–Eckmann threefold S
3 × S

3 which are known to be
Bismut flat. In [9], the authors asked if the other Calabi–Eckmann manifolds admit
such special Hermitian structures. The answer is negative and it comes from the fact
that, for cohomological reasons, S1 × S

1, S1 × S
3 and S

3 × S
3 are the only Calabi–

Eckmann manifolds which can admit a pluriclosed structure, see Example 5.17 in
[6]. On the other hand, when equipped with the standard Calabi–Eckmann complex
structure, thesemanifolds can be equippedwithmetrics such that (Ric+ω)1,1 vanishes.
Hence we have the following picture:

• S
1 × S

1 has a flat Kähler metric;
• S

3 × S
1 has a Bismut flat, hence pluriclosed, metric;

• S
3 × S

3 has a Bismut flat, hence pluriclosed, metric;
• S

2n+1×S
2m+1 with n ≥ 2,m ≥ 0 haveBismutRicci flatmetrics (byCorollary 4.8)

which are not pluriclosed.

On the other hand, when λ 
= 0, there are restrictions that suggest that the Eq. (4.4)
should imply that the Hermitian structure is Kähler (see [9], p. 172). Some of these
can be found in [20] (e.g., Proposition 3.5), where the author classifies solitons of the
Pluriclosed Flow.

Proposition (Proposition 3.5 of [20]) Let (M2n, J ) be a compact Kähler manifold,
and suppose (g, f ) is a pluriclosed steady or shrinking soliton on M. Then (g, f ) is
a Kähler-Ricci soliton.

Here we show that on S
1 × S

1-principal bundles over Hermitian manifolds there
are no metrics satisfying (4.4) with λ 
= 0. We take a slightly more general setting
than that of the previous section, namely, we equip the total space M of the rank one
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toric fibration over (X , ωX ) with a metric ω = π∗(ωX ) + f θ1 ∧ θ2 where f is any
positive function on M . Using the computation of (4.2) we prove the following result.

Proposition 4.9 Given a principal toric bundle,S1×S
1 ↪→ M

π−→ X, over a Hermitian
manifold (X , ωX ), with connection one forms θ1, θ2 such that dθi = π∗ωi for (1, 1)-
forms ωi , there are no Hermitian metric of type ω = π∗(ωX ) + f θ1 ∧ θ2, where f is
a positive function on M, which satisfy the equation

(
Ric+(ω)

)1,1 = λω,

for λ 
= 0.

Proof Thanks to (4.2) the Bismut Einstein problem (4.4) in this setting reduces to
solve

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π∗ (
Ric+(ωX )

)1,1 = λπ∗(ωX ) + (
ei (Je j ) f − e j (Jei ) f

)
ei ∧ e j + f (trωX ω1π

∗ω1

+trωX ω2π
∗ω2)

trωX ω1 t2 f − trωX ω2 t1 f = λ f((
e j ( f trωX ωi ) − ti (Je j ) f

)
θ i ∧ e j

)1,1 = 0

In particular, f has to verify

trωX ω1 t2 f − trωX ω2 t1 f = λ f .

Since the fibers are compact, if we fix one of them, there should be a critical point for
f on it. At this point, both t1 f and t2 f vanish giving a contradiction with the above
equality, since f > 0. �
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