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Abstract
Weprove a variant of a square function estimate for the extension operator associated to
the moment curve in non-archimedean local fields. The arguments rely on a structural
analysis of congruences (sublevel sets) of univariate polynomials over field extensions
of the base field. Our analysis can be adapted to the archimedean setting as well.
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1 Introduction

1.1 Statement of the Results

This paper concerns the Fourier restriction theory for curves and associated
Littlewood–Paley-type inequalities. Classically, this theory forms part of Euclidean
harmonic analysis, however here we explore these questions in the setting of a general
locally compact topological field K with a nontrivial topology. Such fields carry a nat-
ural absolute value | · |K and a Haar measure μ. They are classified as archimedean
local fields (when K = R is the real field or when K = C is the complex field)
or non-archimedean local fields such as the p-adic field Qp. The Littlewood–Paley
theory for curves is well known when K = R is the real field so we will state and
prove our results for non-archimedean local fields. In an appendix we will show how
to adapt our arguments to work in the archimedean setting.

Let (K , | · |K ) be a non-archimedean local field with ring of integers oK , residue
class field kK , uniformiser πK and qK := |πK |−1

K . For the reader’s convenience, we
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will review some of the basic concepts of analysis over local fields in Sect. 2 below.
Fix an additive character e : K → C such that e restricts to the constant function 1
on oK and to a non-principal character on π−1

K oK . For n ≥ 2, we define the extension
operator associated to the moment curve by

E f (x) :=
∫
oK

e(x1t + x2t2 + · · · + xntn) f (t) dμ(t) for all f ∈ L1(K )andx ∈ K n . (1)

Here and below, integration is taken with respect to the Haar measure μ on K , which
is normalised so that μ(oK ) = 1.

The operator E is a fundamental object of study in the Fourier restriction theory
over local fields K . This theory was investigated systematically by the authors in [8],
with a focus on the problem of determining Lebesgue space mapping properties. Here,
we are interested in Littlewood–Paley or square function inequalities for the operator
(1). To describe the setup, fix α ∈ N and let I(q−α

K ) denote the collection of qα
K distinct

balls of the form

BK (x, q−α
K ) := {t ∈ oK : |t − x |K ≤ q−α

K }, x ∈ oK .

Thus, I(q−α
K ) defines a decomposition of oK , which induces a decomposition of the

extension operator

E f =
∑

I∈I(q−α
K )

EI f whereEI f := E
(

f χI
)
for allI ∈ I(q−α

K ). (2)

Here, χI denotes the characteristic function of I ∈ I(q−α
K ).

Theorem 1.1 Let (K , | · |K ) be a non-archimedean local field and char kK > n ≥ 2.
For all 1 ≤ m ≤ n and all α ∈ N, the inequality

‖E f ‖L2m (B(x,qαn
K )) ≤ (m!)1/2m

∥∥∥
⎛
⎜⎝ ∑

I∈I(q−α
K )

|EI f |2
⎞
⎟⎠

1/2 ∥∥∥
L2m (B(x,qαn

K ))

holds for all f ∈ L1(oK ) and all x ∈ K n.

Throughout the paper, L p norms are taken with respect to the Haar measure on K n

given by the n-fold product of μ above. The balls B(x, qαn
K ) are defined with respect

to the �∞ norm induced by | · |K : see Sect. 2 for further details.
Theorem 1.1 is an analogue of a Euclidean result from [7, 12, 13], as described

below in Sect. 1.2. Moreover, recently square function inequalities of this type were
investigated in the local field setting in [1] in the case n = 2 for general polynomial
curves.1

1 The methods of [1] imply bounds for n ≥ 2 but only at the level of m = 2.
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By a well-known 2n-orthogonality argument due to Córdoba and Fefferman, the
proof of Theorem 1.1 reduces to establishing the following number-theoretic propo-
sition.

Proposition 1.2 Let (K , | · |K ) be a non-archimedean local field, char kK > n ≥ 2
and a ∈ N. Suppose (x1, . . . , xn), (y1, . . . , yn) ∈ (oK )n satisfy

|x j
1 + · · · + x j

n − y j
1 − · · · − y j

n |K ≤ q−na
K for1 ≤ j ≤ n. (3)

Then, there exists a permutation σ on {1, · · · , n} such that |x j − yσ( j)|K ≤ q−a
K for

all 1 ≤ j ≤ n.

Proposition 1.2 examines the structure of ‘almost solutions’ to a Vinogradov-type
system of equations. In particular, it can be roughly interpreted as saying that every
‘almost solution’ to the system x j

1 + · · · + x j
n = y j

1 + · · · + y j
n for 1 ≤ j ≤ n is

‘almost trivial’. A similar statement appears in the Euclidean context in [7], although
the method of proof used in [7] breaks down completely in the non-archimedean
setting (see the discussion in Sect. 1.3 below).

1.2 Motivation: The Euclidean Case

It is instructive to contrast Theorem 1.1 with counterpart results in the Euclidean
setting. For n ≥ 2 let γ : [0, 1] → R

n be a Cn curve in n-dimensional Euclidean
space which satisfies the non-degeneracy hypothesis det(γ ′(t) · · · γ (n)(t)) 	= 0 for all
t ∈ [0, 1]. Define the associated extension operator

E f (x) :=
∫ 1

0
e2π ix·γ (t) f (t) dt for all f ∈ L1([0, 1])andx ∈ R

n .

Let 0 < δ ≤ 1 be a dyadic number and I(δ) be the decomposition of [0, 1] into closed
dyadic intervals of length δ. We decompose the extension operator as in (2), with q−α

K
replaced by δ. Under these hypotheses, it is known that for each 1 ≤ m ≤ n there
exists a constant Cm ≥ 1 such that

‖E f ‖L2m (Bδ−n ) ≤ Cm

∥∥∥
⎛
⎝ ∑

I∈I(δ)

|EI f |2
⎞
⎠

1/2 ∥∥∥
L2m (wB

δ−n )
(4)

holds for all f ∈ L1([0, 1]). Here Bδ−n is a Euclidean ball of radius δ−n and arbitrary
centre, and wBδ−n is a rapidly decaying weight function concentrated on Bδ−n ; we
refer to [7] for the precise definitions. The inequality in the n = 2 case goes back
to work of Fefferman [6]. The general case is implicit in works of Prestini [12, 13],
albeit the arguments of these papers are somewhat lacking in detail. More recently, the
inequality was rediscovered in [7], which includes a complete proof and contextualises
the result in relation to recent developments in harmonic analysis and analytic number
theory. It is remarked that a reverse form of (4) holds as a simple consequence of a
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classical and elementary square function estimate due to Carleson (see, for instance,
[5]).

Interest in bounds such as (4) has been spurred by the breakthrough work of
Bourgain–Demeter–Guth [2] which settled the long-standingmain conjecture in Vino-
gradov’smeanvalue theorem, a central problem in the theoryofDiophantine equations.
The approach in [2] relied on establishing certain decoupling estimates for the exten-
sion operator associated to the moment curve. These estimates are of a superficially
similar form to the inequality in (4), although (4) is much more elementary than the
key estimate from [2] and is not sufficient to prove the main conjecture. Nevertheless,
in [7] the authors discuss a general philosophy relating square function bounds to
Diophantine equations.

1.3 Remarks on the Proof

Recall that the key ingredient in the proof of Theorem 1.1 is Proposition 1.2. The latter
is a natural non-archimedean analogue of Proposition 1.3 from [7]. It is remarked that
the arguments used in [7] rely heavily on the order structure of the real line and
break down completely in the non-archimedean setting. Consequently, to establish
Proposition 1.2we use amarkedly different approachwhich ismore algebraic in nature
and involves the geometric analysis of sublevel sets, corresponding to a structural
analysis of polynomial congruences.

To describe the rudiments of our approach, we first consider the following refor-
mulation of Proposition 1.2 in the case where K = Qp is the field of p-adic numbers.

Corollary 1.3 Let n, a ∈ N and p be a rational prime such that p > n ≥ 2. Suppose
(x1, . . . , xn), (y1, . . . , yn) ∈ Z

n satisfy the congruence equations

x j
1 + · · · + x j

n ≡ y j
1 + · · · + y j

n mod pna for1 ≤ j ≤ n. (5)

Then, there exists a permutation σ on {1, · · · , n} such that x j ≡ yσ( j) mod pa for
all 1 ≤ j ≤ n.

Corollary 1.3 is easily verified for a = 1.2 Indeed, this case holds as a consequence
of the classical Girard–Newton formulæ together with uniqueness of factorisation of
polynomials over the field Z/pZ: see, for example, [10]. To prove the general case
of Corollary 1.3, we will still make use of the Girard–Newton formulæ. However, we
must now consider polynomials over the ringsZ/pa

Z for a ≥ 2, and therefore, cannot
rely on uniqueness of factorisation.

The key tool used to overcome these issues is a refined version of the Phong–
Stein–Sturm sublevel set decomposition [11], formulated over non-archimedean local
fields. It can be viewed as a refined structural description of polynomial congruences,
extending work of Chalk [4] which is valid for large values of a and work of Stewart
[14] for polynomialswith a nonzerodiscriminant. This decompositionhas been applied
previously by the second author to study complete exponential sums and congruence

2 Moreover, when a = 1 one need only assume (5) holds with pn replaced with p.
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equations [16, 17] and is recalled in Lemma 3.1 below. A slightly curious feature of
the argument is that we apply the sublevel set decomposition over a high degree field
extension of K rather than K itself.

1.4 Archimedean Fields

Our arguments can be adapted to work in the archimedean setting. As a consequence,
we obtain a new proof of the Euclidean estimate (4) for the moment curve. Moreover,
we are also able to prove an analogue of (4) when K = C is the complex field. In this
case, E is the extension operator associated to a certain 2-surface in R

2n � C
n . For

n = 2 this complex estimate is contained in [1], but it appears to be new in higher
dimensions. Adapting the proofs to the archimedean setting is not entirely straightfor-
ward, and a discussion of the necessary modifications is provided in Appendix 1.

Notation

Depending on the context, |A| will either denote the absolute value of a complex
number A or the cardinality of a finite set A.

2 Review of the Basic Concepts from the Theory of Local Fields

2.1 Non-archimedean Local Fields

A valued field (K , | · |K ) is a field K together with an absolute valuemap | · |K : K →
[0,∞) satisfying

(i) |x |K = 0 if and only if x = 0;
(ii) |xy|K = |x |K |y|K for all x , y ∈ K ;
(iii) |x + y|K ≤ |x |K + |y|K for all x , y ∈ K .

The absolute value | · |K is non-archimedean if (iii) can be strengthened to

(iii′) |x + y|K ≤ max{|x |K , |y|K } for all x, y ∈ K ,

otherwise it is archimedean. Note that any field K admits a trivial absolute value is
given by |x |K = 1 for all x ∈ K ∗ (the group of units) and |0|K = 0.

A valued field (K , | · |K ) is endowed with a metric dK by setting dK (x, y) :=
|x − y|K for all x , y ∈ K . For a non-archimedean absolute value d is an ultrametric,
satisfying the ultrametric triangle inequality dK (x, z) ≤ max{dK (x, y), dK (y, z)} for
all x , y, z ∈ K . The ball centred at x ∈ K of radius r > 0 is defined by

BK (x, r) := {y ∈ K : |y − x |K ≤ r}.

Henceforth let (K , | · |K )be avaluedfieldwhere | · |K is a non-trivial, non-archimedean
absolute. The ring of integers of K is defined as

oK := {x ∈ K : |x |K ≤ 1};
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it is easy to see oK is a local ring with unique maximal ideal

mK := {x ∈ K : |x |K < 1}.

The residue class field of K is defined to be the quotient kK := oK /mK . Finally,
the value group 	K := {|x |K ∈ (0,∞) : x ∈ K ∗} is the multiplicative subgroup of
(0,∞) formed by the image of K ∗ under | · |K .

The absolute value | · |K is discrete if the group 	K is discrete. This holds if
and only if the maximal ideal mK is principal. In this case, we let πK ∈ mK denote
some choice of generator, which is referred to as a uniformiser for K . It follows that
	K = {q−ν

K : ν ∈ Z} where qK := |πK |−1
K ∈ (1,∞).

Definition 2.1 A valued field (K , | · |K ) is a non-archimedean local field if | · |K is
a non-trivial discrete non-archimedean absolute value, it is complete and the residue
class field kK is finite.

If (K , | · |K ) is a non-archimedean local field, then oK is a compact subset of K
and, consequently, K is a locally compact metric space. If we fix πK a uniformiser
for K and A ⊆ oK a set of representatives for kK , then every x ∈ K ∗ can be written
uniquely as x = ∑∞

m=M xmπm
K for some sequence (xm)∞m=M of elements from A.

Here, the series is understood to converge with respect to the metric d introduced
above. It follows that each ball BK (x, q−ν

K ), where x ∈ K and ν ∈ Z, is the union of
precisely |kK | balls of radius q−ν−1

K . For further details, see [3, Chapter 4].

2.2 Field Extensions

Suppose (K , | · |K ) is a non-archimedean local field and L : K is a finite extension
of K of degree d ∈ N. Then there exists a unique extension | · |L of | · |K to L .
Furthermore, (L, | · |L) is also a non-archimedean local field. We say the extension
L : K is totally ramified if the residue class fields kK and kL are isomorphic. In this
case, if πK and πL are uniformisers of K and L , respectively, then |πK |K = |πL |dL .
Thus, 	L = {q−ν/d

K : ν ∈ Z}where qK := |πK |−1
K . For further details, see [3, Chapter

7].
To construct a totally ramified extension of (K , | · |K ) of an arbitrary degree d ∈ N,

consider the polynomial f ∈ K [X ] given by f (X) := Xd − πK . By Eisenstein’s
criterion (see [3, Theorem 2.1]), f is irreducible over K . Thus, if ζ is a root of f ,
lying in the algebraic closure of K , then the simple extension K (ζ ) has degree d and
is totally ramified by [3, Theorem 7.1].

2.3 Vector Spaces

Given a valued field (K , | · |K ) and n ∈ N, the n-dimensional vector space K n over
K is endowed with the norm

|x|K := max{|x1|K , . . . , |xn|K } for allx = (x1, . . . , xn) ∈ K n .
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The ball centred at x ∈ K n of radius r > 0 is then defined by

B(x, r) := {y ∈ K n : |y − x|K ≤ r}.

2.4 Fourier Analysis on Non-Archimedean Local Fields

By the above discussion, any non-archimedean local field (K , | · |K ) is a LCA group,
and therefore, admits an additive Haar measure μ. By appropriately normalising, one
may assume μ(oK ) = 1.

Let K̂ denote the Pontryagin dual of K . There exists a character e ∈ K̂ with the
property that the restriction of e to oK is a principal character on the additive subgroup
oK whilst the restriction of e to π−1

K oK is non-principal on the additive subgroup
π−1

K oK . We will apply Fourier analysis over the vector spaces K n , which are endowed
with the Haar measure given by the n-fold product of μ, also denoted by μ. Given
any ξ ∈ K n , if one defines eξ : K n → C by eξ (x) := e(x · ξ) for x ∈ K n where
x · ξ := x1ξ1 + · · · + xnξn , then ξ �→ eξ is an isomorphism between K n and K̂ n . For
further details see [15, Chapter 1, §8].

Let ν be a Borel measure on K n . By duality, we may also consider this as a measure
on K̂ n (in particular, this applies to the Haar measure). If ν is a finite measure, we
may define the Fourier transform and inverse Fourier transform of ν by

ν̂(ξ) :=
∫

K n
e(x · ξ) dν(x) and qν(x) :=

∫
K̂ n

e(x · ξ) dν(ξ )

With this definition, the rudiments of Fourier analysis such as the inversion formula,
Parseval’s theorem and Plancherel’s theorem hold over K n . For further details see [15,
Chapters 2-3].

3 The Proof of Proposition 1.2

3.1 A Structural Lemma for Sublevel Sets

Central to the proof of Proposition 1.2 is a non-archimedean structural decomposition
for sublevel sets of univariate real polynomials due to Phong–Stein–Sturm [11]. Here
we work in the abstract setting of a non-archimedean local field (K , | · |K ). The
Phong–Stein–Sturm decomposition from [11] was extended to such fields in [16], and
we state this version below in Lemma 3.1.

To introduce the key lemma, suppose ξ = (ξ1, ..., ξn) ∈ (oK )n is an n-tuple of
distinct roots in the ring of integers oK of K and define the monic polynomial Pξ ∈
K [X ] by

Pξ (X) =
n∏

j=1

(X − ξ j ). (6)
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Given 0 < ε ≤ 1, we are interested in analysing the structure of the sublevel sets

{z ∈ oK : |Pξ (z)|K ≤ ε}.

Naturally, this depends on the distribution of the roots ξ j and, to understand this, we
consider root clusters C, which are simply defined to be subsets of {ξ1, . . . , ξn}.
Lemma 3.1 [16] Suppose (K , | · |K ) is a non-archimedean local field and ξ =
(ξ1, ..., ξn) ∈ (oK )n is an n-tuple of distinct roots. For all 0 < ε ≤ 1 we have

{z ∈ oK : |Pξ (z)|K ≤ ε} =
n⋃

j=1

BK (ξ j , r j (ξ , ε))

where

r j (ξ , ε) := min
C�ξ j

(
ε∏

ξi /∈C |ξ j − ξi |K

)1/|C|
. (7)

Here the minimum is taken over all root clusters C containing ξ j .

Remark 3.2 By taking C = {ξ1, . . . , ξn} in the expression defining the radii in (7), we
see that r j (ξ , ε) ≤ ε1/n for 1 ≤ j ≤ n.

We will work with the following ‘self-referential’ formula for the radii (7).

Lemma 3.3 Let ξ and r j (ξ , ε) be as in the statement of Lemma 3.1. For 1 ≤ j ≤ n
define the root cluster

C j := BK (ξ j , r j (ξ , ε)) ∩ {ξ1, . . . , ξn}.

Then

r j (ξ , ε) =
(

ε∏
ξi /∈C j

|ξ j − ξi |K

)1/|C j |
.

Proof Fix 1 ≤ j ≤ n and let C be a root cluster which achieves the minimum in (7),
so that

r j := r j (ξ , ε) =
(

ε∏
ξi /∈C |ξ j − ξi |K

)1/|C|
. (8)

Writing

∏
ξi /∈C

|ξ j − ξi |K =
∏

ξi ∈C j \C
|ξ j − ξi |K

∏
ξi /∈C j

|ξ j − ξi |K

∏
ξi ∈C\C j

|ξ j − ξi |−1
K
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and using the fact that |ξ j − ξi |K ≤ r j if and only if ξi ∈ C j , we deduce that

∏
ξi /∈C

|ξ j − ξi |K ≤ r
|C j \C|−|C\C j |
j

∏
ξi /∈C j

|ξ j − ξi |K . (9)

Combining (8) and (9) together with the elementary count

|C| + |C j \ C| − |C \ C j | = |C j |,

we obtain

r j = r
(|C j \C|−|C\C j |)/|C j |
j

(
ε∏

ξi /∈C |ξ j − ξi |K

)1/|C j |
≥

(
ε∏

ξi /∈C j
|ξ j − ξi |K

)1/|C j |
.

The desired identity immediately follows. ��
Weemphasise that Lemmas 3.1 and 3.3 are valid in any non-archimedean local field.

We will apply them to certain field extensions of the field K appearing in Proposition
1.2.

3.2 TheMain Argument

Here,we apply the tools introduced in the previous subsection to prove Proposition 1.2.

Proof (of Proposition 1.2) The argument is broken into steps.
Step 1. Suppose x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ (oK )n satisfy (3), so that

|p j (x) − p j (y)|K ≤ N−n for1 ≤ j ≤ n,

where the p j ∈ K [X1, . . . , Xn] are the degree j power sums p j (X) = ∑n
�=1 X j

� for
1 ≤ j ≤ n and N := (qK )a for some a ∈ N. Without loss of generality, we may
assume that the elements of x are distinct and that the elements of y are distinct. It
follows that x, y also satisfy

|e j (x) − e j (y)|K ≤ N−n for1 ≤ j ≤ n, (10)

where the e j ∈ K [X1, . . . , Xn] are the the degree j elementary symmetric polynomi-
als e j (X) = ∑

k1<···<k j
Xk1 · · · Xk j for 1 ≤ j ≤ n. Indeed, this is a direct consequence

of the Girard–Newton formulæ

je j (X1, . . . , Xn) =
j∑

i=1

(−1)i−1e j−i (X1, . . . , Xn)pi (X1, . . . , Xn) 1 ≤ j ≤ n,

since the hypothesis char kK > n ensures | j |K = 1 for 1 ≤ j ≤ n.
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Step 2. Given an n-tuple of roots ξ = (ξ1, . . . , ξn) ∈ (oK )n , define the polynomial
Pξ ∈ K [X ] as in (6). In particular,

Pξ (X) =
n∏

j=1

(X − ξ j ) =
n∑

j=0

(−1)n− j en− j (ξ)X j . (11)

Let K◦ : K be a finite extension, and | · |K◦ the unique extension of | · |K to K◦.
We can then interpret Pξ as lying in the polynomial ring K◦[X ]. Moreover, for x, y as
in Step 1, it then follows that

{
z ∈ oK◦ : |Px(z)|K◦ ≤ N−n} = {

z ∈ oK◦ : |Py(z)|K◦ ≤ N−n}
. (12)

To see this, we note (11), (10) and the ultrametric triangle inequality imply

|Px(z) − Py(z)|K◦ ≤ max
0≤ j≤n

|en− j (x) − en− j (y)|K |z| j
K◦ ≤ N−n for allz ∈ oK◦ .

The desired identity (12) now follows from another application of the ultrametric
triangle inequality.
Step 3. In remaining steps we will analyse the structure of the sublevel sets featured
in (12) in order to determine information about x, y. We will carry out this analysis at
two separate scales: a course scale, introduced here in Step 3, and a finer scale which
is analysed in the remaining steps.

By the Phong–Stein–Sturm sublevel set decomposition from Lemma 3.1, and in
particular the observation in Remark 3.2, for any ξ = (ξ1, . . . , ξn) ∈ (oK◦)

n we have

{
z ∈ oK◦ : |Pξ (z)|K◦ ≤ N−n} ⊆

n⋃
j=1

BK◦(ξ j , N−1). (13)

From this and (12), we see that:

• For all 1 ≤ j ≤ n there exists some 1 ≤ j ′ ≤ n such that |x j − y j ′ |K ≤ N−1;
• For all 1 ≤ j ≤ n there exists some 1 ≤ j ′ ≤ n such that |y j − x j ′ |K ≤ N−1.

This sets up a bipartite graph G = (X , Y , E) where the vertex sets X := {x1, . . . , xn}
and Y := {y1, . . . , yn} are formed by the components of x and y and xi ∈ X and
y j ∈ Y are adjacent if and only if |xi − y j |K ≤ N−1. It follows from the above
that there are no isolated vertices. Furthermore, the ultrametric property implies the
connected components G1, . . . , G M of G are complete bipartite graphs.

Write Gm = (Um, Vm, Em) for 1 ≤ m ≤ M . The vertex sets Um ⊆ X and Vm ⊆ Y
are referred to as superclusters. We let αm := |Um | and βm := |Vm |. In light of the
above, the problem is reduced to showing

αm = βm for1 ≤ m ≤ M . (14)
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Indeed, if this is the case, then we can define a permutation σ on {1, . . . , n} such that
if x j ∈ Um for some 1 ≤ j ≤ n and 1 ≤ m ≤ M , then yσ( j) ∈ Vm . By the properties
of the superclusters, it follows that |x j − yσ( j)|K ≤ N−1 for all 1 ≤ j ≤ n.
Step 4. To prove (14), we argue by contradiction. Suppose there exists some 1 ≤ m ≤
M such that αm 	= βm . By relabelling, we may assume without loss of generality that
β1 > α1 and, moreover, that β1/α1 > 1 maximises the ratio βm/αm over all choices
of 1 ≤ m ≤ M .

We now analyse the problem at a smaller scale, within the superclusters Um and
Vm . Refining (13), we know from (12) and Lemma 3.1 that

n⋃
j=1

BK◦(x j , r j (x, N−n)) =
n⋃

j=1

BK◦(y j , r j (y, N−n)).

Our first observation is that if x j ∈ Um and y j ′ ∈ Vm′ for m 	= m′, then the balls
BK◦(x j , r j (x, N−n)) and BK◦(y j ′, r j ′(y, N−n)) are disjoint. This allows us to home
in and analyse the superclusters U1, V1 individually.

To simplify notation, for u ∈ U1 and v ∈ V1, write rX (u) := ri (x, N−n) and
rY (v) := r j (y, N−n) where 1 ≤ i, j ≤ n is such that u = xi and v = y j . By the
above observations,

⋃
u∈U1

BK◦(u, rX (u)) =
⋃
v∈V1

BK◦(v, rY (v)).

We now apply an ultrametric version of the Vitali cover procedure to pass to disjoint
families of balls. In particular, there exist subcollections U ⊆ U1 and V ⊆ V1 such
that the collections of balls

{
BK◦(u, rX (u)) : u ∈ U

}
and

{
BK◦(v, rY (v)) : v ∈ V

}

are pairwise disjoint and

⋃
u∈U

BK◦(u, rX (u)) =
⋃

u∈U1

BK◦(u, rX (u)) =
⋃
v∈V1

BK◦(v, rY (v)) =
⋃
v∈V

BK◦(v, rY (v)).

At this point, we assume our ambient field K◦ is a totally ramified finite extension
of K . Under this hypothesis, the residue class field of kK◦ is isomorphic to kK . In
particular, since by hypothesis |kK | ≥ char kK > n, any ball BK◦(x, r) cannot be
written as a union of n (not necessarily distinct) balls with strictly smaller radii.
Consequently, |U | = |V | and there exists enumerations of the sets U = {u1, . . . , uL},
V = {v1, . . . , vL} such that

BK◦(u�, rX (u�)) = BK◦(v�, rY (v�)) for1 ≤ � ≤ L. (15)

At this stage, we wish to conclude that

rX (u�) = rY (v�) for1 ≤ � ≤ L. (16)
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If we work with K◦ = K in (12), then (16) does not necessarily follow from (15)
owing to the discrete nature of the value group. To address this, we now further assume
that K◦ : K is a degree n! totally ramified extension. Under this hypothesis, the value
groups 	K and 	L take the form

	K = {q−ν
K : ν ∈ Z} and 	K◦ = {q−ν/n!

K : ν ∈ Z}.

In particular, 	K◦ contains the quantities rX (u�) and rY (v�). Thus, working over oK◦ ,
we may deduce (16) from (15).
Step 5. We now apply the self-referential form of the Phong–Stein–Sturm sublevel
decomposition from Lemma 3.3 to obtain a formula for the radii appearing in (16).
For 1 ≤ � ≤ L , let

CX (u�) := BK◦(u�, rX (u�)) ∩ X and CY (v�) := BK◦(v�, rY (v�)) ∩ Y

denote the clusters appearing in Lemma 3.3, which realise the minimum in (7).
We first consider the contributions to the radii arising from roots in superclusters

other than U1 and V1. By the ultrametric property, for each 2 ≤ m ≤ M there exists
some Dm > N−1 such that

|u� − u′|K = |v� − v′|K = Dm for1 ≤ � ≤ Landu′ ∈ Um, v′ ∈ Vm .

Consequently, recalling the definition of the αm and βm from Step 3, we have

∏
u′∈X\U1

|u� − u′|K =
M∏

m=2

Dαm
m and

∏
v′∈Y\V1

|v� − v′|K =
M∏

m=2

Dβm
m . (17)

We now turn to the contributions of roots within U1 and V1. For 1 ≤ �, �′ ≤ L with
� 	= �′ we have

|u� − u′|K = |u� − u�′ |K = |v� − v�′ |K = |v� − v′|K for allu′ ∈ CX (u�′), v′ ∈ CY (v�′).

In particular, if we define s� := |CX (u�)| and t� := |CY (v�)| for 1 ≤ � ≤ L , it follows
that

∏
u′∈U1

u′ /∈CX (u�)

|u� − u′|K =
∏

1≤�′≤L
�′ 	=�

|u� − u�′ |s�′K and
∏

v′∈V1
v′ /∈CY (v�)

|v� − v′|K =
∏

1≤�′≤L
�′ 	=�

|v� − v�′ |t�′K (18)

whilst we also have

s1 + · · · + sL = α1 < β1 = t1 + · · · + tL . (19)

123



Littlewood–Paley Theory for Curves Page 13 of 22 104

Combining Lemma 3.3 with (17) and (18), and applying the identity (15), we
conclude that

⎛
⎜⎜⎝ N−n

∏
1≤�′≤L

�′ 	=�

|u� − u�′ |s�′K
∏M

m=2 Dαm
m

⎞
⎟⎟⎠
1/s�

=

⎛
⎜⎜⎝ N−n

∏
1≤�′≤L

�′ 	=�

|v� − v�′ |t�′K
∏M

m=2 Dβm
m

⎞
⎟⎟⎠
1/t�

(20)

for all 1 ≤ � ≤ L . Thus, raising the above display to the s�t� power and rearranging
the resulting expression gives

N−n(t�−s�)
∏

1≤�′≤L
�′ 	=�

|u� − u�′ |−(s�′ t�−s�t�′ )
K =

M∏
m=2

D
t�αm−s�′βm
m . (21)

Taking the product of either side of the identity (21) over all choices of �, we deduce
from (19) that

N−n(β1−α1)
∏

1≤�,�′≤L
�′ 	=�

|u� − u�′ |−(s�′ t�−s�t�′ )
K =

M∏
m=2

Dβ1αm−α1βm
m

and therefore, by parity considerations,

N−n(β1−α1) =
M∏

m=1

Dβ1αm−α1βm
j .

From our labelling of the superclusters, we know β1/α1 ≥ βm/αm for all 1 ≤ m ≤ M .
Furthermore, since α1 + · · · + αM = β1 + · · · + βM = n and β1/α1 > 1, there must
exist at least one choice of m for which β1/α1 > βm/αm (that is, the inequality is
strict). Consequently, all of the exponents β1αm − α1βm are non-negative and at least
one exponent is strictly positive. Thus, since Dm > N−1 for 1 ≤ m ≤ M , we conclude
that

N−n(β1−α1) > N−n(β1−α1),

which is a contradiction. This arises from the assumption that (14) fails, and so (14)
must hold, concluding the proof. ��

4 The Córdoba–Fefferman Argument

In this section, we apply the standard Córdoba–Fefferman argument [6] to obtain
Theorem 1.1 from Proposition 1.2.
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Proof (of Theorem 1.1) By translation invariance, we may assume x = 0. Letting δ :=
q−α

K and ϕ := χBδ−n denote the characteristic function of the ball Bδ−n := B(0, qαn
K ),

we have

|E f |2m · ϕ =
∑

I j ,J j ∈I(δ)

1≤ j≤m

m∏
j=1

E fI j · ϕ

m∏
j=1

E f Jj · ϕ.

Thus, by Parseval’s theorem,

‖E f ‖2m
L2m (Bδ−n )

=
∑

I j ,J j ∈I(δ)

1≤ j≤m

∫
K n

( m∏
j=1

E fI j · ϕ
)̂

(ξ)
( m∏

j=1

E f J j · ϕ
)̂

(ξ) dμ(ξ). (22)

Let ν denote the pushforward of theHaarmeasure on oK under themomentmapping
γ : oK → on

K given by γ (t) := (t, t2, . . . , tn) for all t ∈ oK . Observe that

Eg = ( gdν )q forg ∈ L1(oK )

and so (E fI · ϕ)̂ = ϕ̂ ∗ f Idν for any I ∈ I(δ). Thus, fixing I j , J j ∈ I(δ) for
1 ≤ j ≤ n, it follows that the right-hand integrand in (22) can be written as

(
ϕ̂ ∗ f I1dν

) ∗ · · · ∗ (
ϕ̂ ∗ f Imdν

)
(ξ)

(
ϕ̂ ∗ f J1dν

) ∗ · · · ∗ (
ϕ̂ ∗ f Jndν

)
(ξ). (23)

By a simple computation, ϕ̂ = δ−n2χB(0,δn) and, in particular,

supp (ϕ̂ ∗ f Idν) ⊆ {
ξ ∈ K̂ n : |ξ − γ (s)|K ≤ δnfor somes ∈ I

}
forI ∈ I(δ).

Moreover, if ξ ∈ K̂ n lies in the support of the function in (23), then

∣∣∣ξ −
m∑

j=1

γ (s j )
∣∣∣
K

≤ δnand
∣∣∣ξ −

m∑
j=1

γ (t j )
∣∣∣
K

≤ δnfor somes j ∈ I j , t j ∈ J j , 1 ≤ j ≤ m.

Now suppose the support of the function in (23) is non-empty for some choice of
I j , J j ∈ I(δ) for 1 ≤ j ≤ m. By the preceding observations, there must exist s j ∈ I j ,
t j ∈ J j for 1 ≤ j ≤ m such that

∣∣∣
m∑

j=1

γ (s j ) −
m∑

j=1

γ (t j )

∣∣∣
K

≤ q−αn
K .

Applying Proposition 1.2, there exists a permutation σ on {1, · · · , m} such that |t j −
sσ( j)|K ≤ q−α

K for all 1 ≤ j ≤ m. By the ultrametric property, this can only happen
if J j = Iσ( j) for all 1 ≤ j ≤ m.
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In light of the discussion of the previous paragraph, we see that all the ‘off-diagonal’
terms of the right-hand sum in (22) are zero and, in particular,

‖E f ‖2m
L2m (Bδ−n )

≤ m!
∑

I1,...,Im∈I(δ)

∫
K n

∣∣∣
( m∏

j=1

E fI j · ϕ
)̂

(ξ)

∣∣∣2 dμ(ξ)

= m!
∥∥∥( ∑

I∈I(δ)

|E fI |2
)1/2∥∥∥2m

L2m (Bδ−n )

where the second step is a consequence of Plancherel’s theorem. This concludes the
proof. ��
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Appendix A. Adapting the Argument to Archimedean Local Fields

Key Ingredients

In this section, we sketch how the arguments of Sect. 3 can be adapted to work in the
archimedean setting. The main result is as follows.

Proposition A.1 Let (K , | · |K ) be an archimedean local field and n ∈ N. There exists
a constant Cn ≥ 1, depending only on n, such that the following holds. Let N ≥ 1
and suppose (x1, . . . , xn), (y1, . . . , yn) ∈ BK (0, 1)n satisfy

|x j
1 + · · · + x j

n − y j
1 − · · · − y j

n |K ≤ N−n for1 ≤ j ≤ n.

Then, there exists a permutation σ on {1, · · · , n} such that |x j − yσ( j)|K ≤ Cn N−1

for all 1 ≤ j ≤ n.

Proposition A.1 can be combined with the Córdoba–Fefferman argument described
in Sect. 4 to yield the analogue of Theorem 1.1 for archimedean local fields. The proof
of Proposition A.1 closely follows that of Proposition 1.2, albeit with a few minor
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points of divergence. Here, we review the key tools used in the argument and how they
differ from those used in the non-archimedean setting.
The Phong–Stein–Sturm decomposition. An approximate version of Lemma 3.1 holds
over archimedean local fields. Moreover, if (K , | · |K ) is any valued field with non-
trivial absolute value and ξ = (ξ1, ..., ξn) ∈ BK (0, 1)n is an n-tuple of roots, then for
all 0 < ε ≤ 1 we have

n⋃
j=1

BK (ξ j , 2
−nr j (ξ , ε)) ⊆ {z ∈ K : |Pξ (z)| ≤ ε} ⊆

n⋃
j=1

BK (ξ j , 2
nr j (ξ , ε));

see [9, Proposition 3.3]. We also note that for any λ ≥ 1 we have

λ1/nr j (ξ , ε) ≤ r j (ξ , λε) ≤ λr j (ξ , ε).

Using the above observations, Steps 1 - 3 in the proof of Proposition 1.2 can
be carried over in a straightforward manner to the archimedean setting, with addi-
tional constant factors appearing throughout the argument. In contrast with the
non-archimedean case, we work directly over the field K rather than some field exten-
sion (indeed, no rich theory of field extensions is available in the archimedean setting).
The superclusters are defined using the condition |x − y|K ≤ ρN−1, where ρ ≥ 1 is
a parameter which is chosen large, depending only on n, so as to force a contradiction
at the end of the argument.
A Vitali-type covering lemma. Step 4 of the proof of Proposition 1.2 featured an
application of the ultrametric Vitali covering lemma, which was used to pass to the
two identical families of balls in (15). The ultrametric covering lemma is very clean,
owing to the fact that any two balls in an ultrametric space are either nested or disjoint.
To adapt the argument to the archimedean setting, we make use of the following
somewhat technical variant of the original Vitali covering lemma.

Lemma A.2 LetBX ,BY be finite sets of closed balls inRd of cardinality at most n ∈ N.
Suppose that λ ≥ 1 is such that

⋃
BX ∈BX

BX ⊆
⋃

BY ∈BY

λ · BY and
⋃

BY ∈BY

BY ⊆
⋃

BX ∈BX

λ · BX . (24)

Then, there exist B′
X = {B1

X , . . . , BL
X } ⊆ BX and B′

Y = {B1
Y , . . . , BL

Y } ⊆ BY and a
constant R = R(n, λ) such that the following hold:

(1) Strong separation For all 1 ≤ � < �′ ≤ L, we have

2R · B�
X ∩ 2R · B�′

X = ∅ and 2R · B�
Y ∩ 2R · B�′

Y = ∅.

(2) Vitali covering

⋃
BX ∈BX

BX ⊆
L⋃

�=1

R · B�
X and

⋃
BY ∈BY

BY ⊆
L⋃

�=1

R · B�
Y
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(3) Comparable balls For all 1 ≤ � ≤ L, we have

B�
X ⊆ R · B�

Y and B�
Y ⊆ R · B�

X .

Here, given a ball B ⊆ R
d and λ > 0, we let rad B denote the radius of B and

λ · B denote the ball concentric to B but with radius λrad B. In applying the lemma,
we identify the archimedean local field C with the metric space R2.

Remark A.3 A key feature of Lemma A.2 is that the parameter R is allowed to depend
on the number of balls n (in stark contrast with the classical Vitali covering lemma).
This flexibility allows for the comparability between the balls B�

X and B�
Y . It also

allows for the strong separation property in (1), where the separation parameter 2R is
larger than the dilation parameter in (2).

The comparability property (3) is a surrogate for the identification between balls in
(15) in the archimedean setting. Similarly, the strong separation property (1) is used
to establish approximate versions of the identities in (18).

Since Lemma A.2 is a new feature of the argument, we present the full proof in
Sect. 2 below.
The self-referential formula for the radii. The final ingredient we highlight from the
proof of Proposition 1.2 is the self-referential formula for the radii from Lemma 3.3;
recall, this is used to establish the identity (20) in Step 5. The proof of Lemma 3.3 does
not rely on the ultrametric triangle inequality, and the result remains valid as stated
in any valued field (K , | · |K ) with non-trivial absolute value. However, for the proof
of Proposition A.1 we require a slight extension of the formula. For 1 ≤ j ≤ n and
λ ≥ 1 define the root cluster

C j,λ := BK (ξ j , λr j (ξ , ε)) ∩ {ξ1, . . . , ξn}.

Then, the proof of Lemma 3.3 shows that

r j (ξ , ε) ≤
( ε∏

ξi /∈C j,λ
|ξ j − ξi |K

)1/|C j,λ| ≤ λr j (ξ , ε).

The approximate formula can be used to establish an approximate version of (20).

Proof of the Vitali-Type Lemma

In this section,weproveLemmaA.2. Thefirst step is the following simple consequence
of the classical Vitali covering lemma.

Lemma A.4 Let B be a finite collection of balls in R
d of cardinality at most n and

R ≥ 1. Then, there exists a subcollection B′ ⊆ B and a constant λ = λ(n, R) ≥ 1
depending only on n and R such that

(1) Strong separation The large dilates {λR · B ′ : B ′ ∈ B′} are pairwise disjoint.
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(2) Vitali covering The small dilates {λ · B ′ : B ′ ∈ B′} form a Vitali cover in the
sense that

⋃
B∈B

B ⊆
⋃

B′∈B′
λ · B ′.

Proof The proof is based on repeated application of the classicalVitali covering lemma
and pigeonholing. Starting with B0 := B, we recursively construct a chain of proper
subsets Bm ⊂ Bm−1 ⊂ · · · ⊂ B0 such that

⋃
B∈B

B ⊆
⋃

Bm∈Bm

λm · B (25)

where λm := (3R)m .
Suppose thatBm has already been constructed and satisfies (25). Apply the classical

Vitali covering lemma to the collection of dilated balls {Rλm · B : B ∈ Bm} to obtain
a subcollection Bm+1 ⊆ Bm such that

{Rλm B : B ∈ Bm+1} are pairwise disjoint

and, noting λm+1 = 3Rλm ,

⋃
B∈B

B ⊆
⋃

B∈Bm

Rλm · B ⊆
⋃

B∈Bm+1

λm+1 · B.

If Bm+1 = Bm , then the algorithm terminates; otherwise, Bm+1 ⊂ Bm is a proper
subset, as required.

By pigeonholing, the algorithm must terminate after at most n − 1 steps. If 0 ≤
M ≤ n − 1 is the terminal step, then the desired properties hold with B′ := BM and
λ := λM . ��

We now turn to the proof of Lemma A.2. For a pair of balls B1, B2 ⊆ R
d we

frequently make use of the following consequence of triangle inequality:

IfB1 ∩ B2 	= ∅, thenB1 ⊆ λ · B2whererad (λ · B2) = 2rad B1 + rad B2. (26)

Note, in particular, that the dilate λ · B2 in the above display satisfies

rad (λ · B2) ≤ 3max{rad B1, rad B2}.

Proof (of LemmaA.2) We first note that it suffices to construct families B′
X and B′

Y
satisfying properties (2) and (3) only. Indeed, once this is achieved, one may apply
Lemma A.4 to pass subcollections of B′

X and B′
Y which satisfy (1) in addition to (2)

and (3), with a larger (but nevertheless still admissible) choice of R. More precisely,
we first apply Lemma A.4 to, say, the collection B′

X (or balls obtained by suitably
dilating the B ′

X ∈ B′
X ) to pass to a subcollection which satisfies the strong separation.
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One can then pass to a suitable subcollection of B′
Y using the comparability property

(3).
We now turn to the task of constructing the sets B′

X and B′
Y satisfying 2) and 3). To

this end, we will construct a sequence of balls B1
X , . . . , B�

X ∈ BX and B1
Y , . . . , B�

Y ∈
BY and a sequence of constants C� ≥ · · · ≥ C1 ≥ 1 using a recursive algorithm. In
particular, defining

BX ,� := {BX ∈ BX : BX ∩ Ck · Bk
X = ∅ for all 1 ≤ k ≤ �}, (27)

BY ,� := {BY ∈ BY : BY ∩ Ck · Bk
Y = ∅ for all 1 ≤ k ≤ �},

these objects have the following properties:

(1) Strong separation Let ρ ≥ 1 be a fixed parameter, chosen suitably large depend-
ing only on n and λ to satisfy the forthcoming requirements of the proof.

(1)X ,� If BX ∈ BX ,�, then BX ∩ ρCk · Bk
X = ∅ for 1 ≤ k ≤ �,

(1) Y ,� If BY ∈ BY ,�, then BY ∩ ρCk · Bk
Y = ∅ for 1 ≤ k ≤ �.

This condition will play a minor technical role in the proof.

(2) Vitali condition Let C = C(n, λ) := λn1/d .

(2)X ,� If BX ∈ BX ,k−1, then rad BX ≤ Crad Bk
X for 1 ≤ k ≤ �;

(2) Y ,� If BY ∈ BY ,k−1, then rad BY ≤ Crad Bk
Y for 1 ≤ k ≤ �;

(3) Comparable balls Let C̄ = C̄(n, λ) := 2C + 1.

(3)� For all 1 ≤ k ≤ �, we have

Bk
X ⊆ C̄ · Bk

Y and Bk
Y ≤ C̄ · Bk

X .

Suppose B1
X , . . . , B�

X ⊆ BX , B1
Y , . . . , B�

Y ⊆ BY and (Ck)
�
k=1 have already been

constructed and satisfy the properties listed above.
Stopping condition If either BX ,� = ∅ or BY ,� = ∅, then the algorithm termi-
nates.
Recursive stepSuppose the algorithmhas not terminated at step � so thatBX ,� 	=
∅ and BY ,� 	= ∅. Let B�+1,∗

X ∈ BX ,� and B�+1,∗
Y ∈ BY ,� be balls of maximal radii

lying in these sets.
By symmetry, we may assume that rad B�+1,∗

X ≥ rad B�+1,∗
Y . In this case, we define

B�+1
X := B�+1,∗

X , so that Property 2)X ,�+1 clearly holds.
We claim that

B�+1
X ⊆

⋃
BY ∈BY ,�

λ · BY . (28)
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Indeed, suppose the above inclusion fails so that, by the hypothesis (24), there exists
some BY ∈ BY \ BY ,� such that

B�+1
X ∩ λ · BY 	= ∅. (29)

Since BY ∈ BY \ BY ,�, there exists some 1 ≤ k ≤ � such that

BY ∩ Ck · Bk
Y 	= ∅. (30)

We choose k to be minimal with this property. Thus, BY ∩ C j · B j
Y = ∅ for all

1 ≤ j ≤ k − 1, which is precisely the condition BY ∈ BY ,k−1. Consequently, by
Property 2) Y ,k , we have rad BY ≤ Crad Bk

Y . Recalling (30) and applying the triangle
inequality in the form of (26) together with Property 3)�, we see that

λ · BY ⊆ (ρ/2)Ck · Bk
Y ⊆ ρCk · Bk

X , (31)

provided ρ is suitably chosen. Combining (29) and (31), we have

B�+1
X ∩ ρCk · Bk

X 	= ∅.

By Property 1) X ,�, it follows that B�+1
X /∈ BX ,�, but this contradicts our choice of

B�+1
X .
In view of (28), we fix some B�+1

Y ∈ BY ,� such that λ · B�+1
Y has non-trivial

intersection with B�+1
X with maximal possible radius. It follows that

rad B�+1
Y ≤ rad B�+1,∗

Y ≤ rad B�+1,∗
X = rad B�+1

X , (32)

whilst

Ld(
B�+1

X

) ≤
∑

BY ∈BY ,�

λ·BY ∩B�+1
X 	=∅

Ld(
λ · BY

) ≤ CdLd(
B�+1

Y

)
,

where Ld denotes the d-dimensional Lebesgue measure. Thus, rad B�+1
X ≤ C B�+1

Y .
Combining these observations with (26) establishes Property 3)�+1. Similarly, arguing
as in (32), given BY ∈ BY ,�, it follows that rad BY ≤ rad B�+1

X . Combining this with
Property 3)�+1, we have rad BY ≤ Crad B�+1

Y , and so Property 2) Y ,�+1 also holds.
It remains to construct the constant C�+1 and verify 1)X ,�+1 and 1) Y ,�+1. For

0 ≤ m ≤ 2n + 1 consider the sets

B(m)
X ,�+1 := BX ,� ∩ {BX ∈ BX : BX ∩ C�ρ

m · B�+1
X = ∅},

B(m)
Y ,�+1 := BY ,� ∩ {BY ∈ BY : BY ∩ C�ρ

m · B�+1
Y = ∅}.
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By a pigeonholing argument, there must exist some choice of 0 ≤ m ≤ 2n such that

B(m+1)
X ,�+1 = B(m)

X ,�+1 and B(m+1)
Y ,�+1 = B(m)

Y ,�+1. (33)

With this fixed value of m, define C�+1 := C�ρ
m so that BX ,�+1 = B(m)

X ,�+1 and

BY ,�+1 = B(m)
Y ,�+1. It immediately follows from (33) and 1)X ,� and 1) Y ,� that 1)X ,�+1

and 1) Y ,�+1 hold.
The above algorithm must terminate after finitely many steps since the BX ,� as

defined in (27) formnested sequence of subsets of thefinite setBX of strictly decreasing
cardinality. Indeed, note that B�+1

X is chosen from BX ,� in the above algorithm, so
that B�+1

X ∈ BX ,� whilst clearly B�+1
X /∈ BX ,�+1. Suppose the algorithm terminates

after the Lth step. We show that the resulting families B′
X := {B1

X , . . . , BL
X } and

B′
Y := {B1

Y , . . . , BL
Y } satisfy the desired properties 2) and 3) from the statement of the

lemma.
First we note that, provided R ≥ C̄ , Property 3) immediately follows from Property

3)L of the algorithm.
It remains to show Property 2). By the definition of the stopping condition, we

know either BX ,L = ∅ or BY ,L = ∅. By symmetry we may assume that BX ,L = ∅.
Using the standard Vitali covering argument, Property 2)X ,L implies that

for allBX ∈ BX there exists some1 ≤ � ≤ Lsuch thatBX ⊆ (R/8) · B�
X , (34)

provided R ≥ 1 is chosen sufficiently large depending only on n and λ. This is a
slightly stronger version of the first inclusion in Property 2) of the lemma. We turn
to the second inclusion. If BY ∈ BY \ BY ,L , then we may argue as above to show
that BY ⊆ (R/8) · B�

Y for some 1 ≤ � ≤ L . Thus, it suffices to consider the case
BY ∈ BY ,L . By (24) and (34), we know BY ∩ (R/4) · B�

X 	= ∅ for some 1 ≤ � ≤ L .
On the other hand, Property 2)Y ,L of the algorithm implies rad BY ≤ Crad B�

Y for all
1 ≤ � ≤ L . Thus, (26) and Property 3)L give us

BY ⊆
L⋃

�=1

(R/2) · B�
X ⊆

L⋃
�=1

R · B�
Y ,

again provided R is chosen sufficiently large. ��
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