Skip to main content
Log in

Homoclinic Solutions for Partial Difference Equations with Mixed Nonlinearities

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of partial difference equations with sign-changing mixed nonlinearities and unbounded potentials. Some sufficient conditions for the existence and multiplicity of homoclinic solutions are obtained by using critical point theory. Even for ordinary difference equations, our results significantly improve some existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Peyrard, M., Bishop, A.: Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62(23), 2755–2758 (1989). https://doi.org/10.1103/PhysRevLett.62.2755

    Article  Google Scholar 

  2. Christodoulides, D., Lederer, F., Silberberg, Y.: Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature. 424, 817–823 (2003). https://doi.org/10.1038/nature01936

    Article  Google Scholar 

  3. Swanson, B., Brozik, J., Love, S., et al.: Observation of intrinsically localized modes in a discrete low-dimensional material. Phys. Rev. Lett. 82(16), 3288–3291 (1999). https://doi.org/10.1103/PhysRevLett.82.3288

    Article  Google Scholar 

  4. Livi, R., Franzosi, R., Oppo, G.: Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation. Phys. Rev. Lett. 97, 060401 (2006). https://doi.org/10.1103/PhysRevLett.97.060401

    Article  Google Scholar 

  5. Kevrekides, P., Rasmussen, K., Bishop, A.: The discrete nonlinear Schrödinger equation: a survey of recent results. Int. J. Mod. Phys. B. 15, 2833–2900 (2001). https://doi.org/10.1142/S0217979201007105

    Article  Google Scholar 

  6. Eilbeck, J., Johansson, M.: The discrete nonlinear Schrödinger equation: 20 years on, in Localization and energy transfer in nonlinear systems, pp. 44–67. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  7. Alfimov, G., Kevrekidis, P., Konotop, V., et al.: Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential. Phys. Rev. E. 66, 046608 (2002). https://doi.org/10.1103/PhysRevE.66.046608

    Article  MathSciNet  Google Scholar 

  8. Pankov, A.: Gap solitons in periodic discrete nonlinear Schrödinger equations. Nonlinearity. 19, 27–40 (2006). https://doi.org/10.1088/0951-7715/19/1/002

    Article  MathSciNet  MATH  Google Scholar 

  9. Pankov, A.: Gap solitons in periodic discrete nonlinear Schrödinger equations II: a generalized Nehari manifold approach. Discret. Contin. Dyn. Syst. 19(2), 419–430 (2007). https://doi.org/10.3934/dcds.2007.19.419

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, G.: Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials. J. Math. Phys. 50, 013505 (2009). https://doi.org/10.1063/1.3036182

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou, Z., Ma, D.: Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials. Sci. China Math. 58, 781–790 (2015). https://doi.org/10.1007/s11425-014-4883-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, G., Ma, S., Wang, Z.-Q.: Standing waves for discrete Schrödinger equations in infinite lattices with saturable nonlinearities. J. Differ. Equ. 261, 3493–3518 (2016). https://doi.org/10.1016/j.jde.2016.05.030

    Article  MATH  Google Scholar 

  13. Lin, G., Yu, J.: Homoclinic solutions of periodic discrete Schrödinger equations with local superquadratic conditions. SIAM J. Math. Anal. 54, 1966–2005 (2022). https://doi.org/10.1137/21M1413201

    Article  MathSciNet  MATH  Google Scholar 

  14. MacKay, R., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity. 7, 1623–1643 (1994). https://doi.org/10.1088/0951-7715/7/6/006

    Article  MathSciNet  MATH  Google Scholar 

  15. Fleischer, J., Segev, M., Efremidis, N., et al.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature. 422, 147–150 (2003). https://doi.org/10.1109/QELS.2003.238165

    Article  Google Scholar 

  16. Flach, S., Gorbach, A.: Discrete breathers - advance in theory and applications. Phys. Rep. 467, 1–116 (2008). https://doi.org/10.1016/j.physrep.2008.05.002

    Article  Google Scholar 

  17. Vinayagam, P., Javed, A., Khawaja, U.: Stable discrete soliton molecules in two-dimensional waveguide arrays. Phys. Rev. A. 98, 063839 (2018). https://doi.org/10.1103/PhysRevA.98.063839

    Article  Google Scholar 

  18. Chu, J., Liao, F., Siegmund, S., et al.: Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations. Adv. Nonlinear Anal. 11(1), 369–384 (2022). https://doi.org/10.1515/anona-2020-0198

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, S.: Partial Difference Equations. Taylor & Francis, New York (2003)

    Book  MATH  Google Scholar 

  20. Zhang, B., Yu, J.: Linearized oscillation theorems for certain nonlinear delay partial difference equations. Comput. Math. Appl. 35(4), 111–116 (1998). https://doi.org/10.1016/S0898-1221(97)00294-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, B., Agarwal, R.: The oscillation and stability of delay partial difference equations. Comput. Math. Appl. 45(6–9), 1253–1295 (2003). https://doi.org/10.1016/S0898-1221(03)00099-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, G., Tian, C., Shi, Y.: Stability and chaos in 2-D discrete systems. Chaos Solitons Fractals. 25(3), 637–647 (2005). https://doi.org/10.1016/j.chaos.2004.11.058

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, S., Zhang, Y.: Stability of stochastic 2-D systems. Appl. Math. Comput. 219(1), 197–212 (2012). https://doi.org/10.1016/j.amc.2012.05.066

    Article  MathSciNet  MATH  Google Scholar 

  24. Du, S., Zhou, Z.: On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curvature operator. Adv. Nonlinear Anal. 11(1), 198–211 (2022). https://doi.org/10.1515/anona-2020-0195

    Article  MathSciNet  MATH  Google Scholar 

  25. Kevrekidis, P., Malomed, B., Bishop, A.: Bound states of two-dimensional solitons in the discrete nonlinear Schrödinger equation. J. Phys. A. 34(45), 9615–9629 (2001). https://doi.org/10.1088/0305-4470/34/45/302

    Article  MathSciNet  MATH  Google Scholar 

  26. Karachalios, N., Sánchez-Rey, B., Kevrekidis, P., Cuevas, J.: Breathers for the discrete nonlinear Schrödinger equation with nonlinear hopping. J. Nonlinear Sci. 23(2), 205–239 (2013). https://doi.org/10.1007/s00332-012-9149-y

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, Z., Yu, J.: Existence of periodic and subharmonic solutions for second order superlinear difference equations. Sci. China Ser. A: Math. 46(4), 506–515 (2003). https://doi.org/10.1007/BF02884022

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, M., Guo, Z.: Homoclinic orbits for second order self-adjoint difference equations. J. Math. Anal. Appl. 323(1), 513–521 (2006). https://doi.org/10.1016/j.jmaa.2005.10.049

    Article  MathSciNet  MATH  Google Scholar 

  29. Erbe, L., Jia, B., Zhang, Q.: Homoclinic solutions of discrete nonlinear systems via variational method. J. Appl. Anal. Comput. 9(1), 271-294 (2019). https://doi.org/10.11948/2019.271

  30. Kuang, J., Guo, Z.: Heteroclinic solutions for a class of \(p\)-Laplacian difference equations with a parameter. Appl. Math. Lett. 100, 106034 (2020). https://doi.org/10.1016/j.aml.2019.106034

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, G., Yu, J.: Existence of a ground-state and infinitely many homoclinic solutions for a periodic discrete system with sign-changing mixed nonlinearities. J. Geom. Anal. 32, 127 (2022). https://doi.org/10.1007/s12220-022-00866-7

    Article  MathSciNet  MATH  Google Scholar 

  32. Mei, P., Zhou, Z.: Homoclinic solutions of discrete prescribed mean curvature equations with mixed nonlinearities. Appl. Math. Lett. 130, 108006 (2022). https://doi.org/10.1016/j.aml.2022.108006

    Article  MathSciNet  MATH  Google Scholar 

  33. Long, Y.: Nontrivial solutions of discrete Kirchhoff type problems via Morse theory. Adv. Nonlinear Anal. 11(1), 1352–1364 (2022). https://doi.org/10.1515/anona-2022-0251

    Article  MathSciNet  MATH  Google Scholar 

  34. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian System. Springer, New York (1989)

    Book  MATH  Google Scholar 

  35. Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. Am. Math. Soc. (1986). https://doi.org/10.1090/cbms/065

    Article  MATH  Google Scholar 

  36. Stuart, C.: Locating Cerami sequences in a mountain pass geometry. Commun. Appl. Anal. 15, 569–588 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to take this opportunity to thank the reviewers for their constructive and helpful comments and suggestions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11971126, 12201141) and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT\(_{-}\)16R16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Zhou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, P., Zhou, Z. Homoclinic Solutions for Partial Difference Equations with Mixed Nonlinearities. J Geom Anal 33, 117 (2023). https://doi.org/10.1007/s12220-022-01166-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01166-w

Keywords

Mathematics Subject Classification

Navigation