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Abstract
Wegeneralize to the RCD(0, N ) setting a family of monotonicity formulas by Colding
and Minicozzi for positive harmonic functions in Riemannian manifolds with non-
negative Ricci curvature. Rigidity and almost rigidity statements are also proven, the
second appearing to be new even in the smooth setting. Motivated by the recent work
in Agostiniani et al. (Invent. Math. 222(3):1033–1101, 2020), we also introduce the
notion of electrostatic potential in RCD spaces, which also satisfies our monotonicity
formulas. Our arguments are mainly based on new estimates for harmonic functions
in RCD(K , N ) spaces and on a new functional version of the ‘(almost) outer volume
cone implies (almost) outer metric cone’ theorem.

Keywords Monotonicity formula · Harmonic functions · RCD spaces · Almost
rigidity

Mathematics Subject Classification 53C21 · 53C24

1 Introduction andMain Results

Monotonicity formulas are in general an important tool in analysis and geometry
and have proven to be crucial in the study of functional inequalities, regularity of
PDEs and minimal surfaces, one example being the celebrated Almgren frequency
function [1]. We refer also to [36] for an overview on this topic and further references.
Recently these formulas also found application in the theory of metric geometry with
particular interest in the regularity of singular spaces. It is, however, important to
recall that, especially on this context, monotonicity formulas are often coupled with
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rigidity and almost rigidity properties. In other words, besides knowing that a quantity
is monotone it is often important to know that, if it happens to be constant or almost
constant, then some extra regularity or almost regularity of the objects involved is
present. An example of this, in the context of singular metric spaces, is the Bishop-
Gromov volume ratio, where this said (almost) regularity is realized as (almost) local
conical structure of the space. This feature was exploited first in [30] to noncollapsed
Ricci-limit spaces and subsequently in [41] to ncRCD spaces in order show that blow-
up limits are cones and was recently developed in [4] to deduce volume bounds for
the singular set, extending the analogous result for Ricci-limit spaces ( [31]). These
works fall in the more general theory of quantitative differentiation which, roughly
said, allows to pass from a monotone quantity with almost rigidity properties (also
called coerciveness) to nontrivial results about effective regularity of the space (or a
particular function). We refer to [28] for a detailed overview on this topic.

All of this motivates the study of newmonotonicity formulas in RCD spaces, where
the Bishop-Gromov volume ratio and the Perelman W functional (see [69]) were up
to now essentially the unique examples.

Our interest will be in extending a class of monotonicity formulas for harmonic
functions in Riemannian manifolds with nonnegative Ricci curvature, to the RCD
setting. These types of formulas were first introduced by a series of works by Colding
and Minicozzi [35–37] and were used by the same authors to prove the uniqueness
of tangent cones for Einstein manifolds [38]. Recently the same monotone quantities
were reinterpreted in [6] in the study of the electrostatic potential of a set and lead to
the proof of new Willmore-type geometrical inequalities for Riemannian manifolds
(see also [13] for the Euclidean setting).

The Monotonicity Formula
Our first main result is the extension to the nonsmooth setting of the whole class of

monotonicity formulas derived in [6]. More precisely,we show that in a nonparabolic
RCD(0, N ) space (see Definition 3.1), if u ∈ L∞(�) ∩ C(�) solves

⎧
⎪⎨

⎪⎩

�|�u = 0,

lim inf y→x u(y) ≥ 1, for every x ∈ ∂�,

u(x) → 0 as d(x, ∂�) →+∞,

(P)

where � is open, unbounded and with ∂� bounded, then the function

(0, 1) � t �→ Uβ(t) := 1

tβ
N−1
N−2

ˆ
|∇u|β+1 dPer({u < t}),

with β ≥ N−2
N−1 , is (continuous) and nondecreasing (see the beginning of Sect. 5.2 for

a discussion on the well definition of the function Uβ ).
Rigidity and Almost Rigidity
As said above,we are also interested in the rigidity and almost rigidity properties of

the functions Uβ and it turns out that, similarly to the Bishop-Gromov inequality, the
special configurations connected toUβ are cones. This is not a coincidence, indeed as
we will see the reason behind the conical structure arising from these two quantities
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is the same, i.e. the existence of a function satisfying a precise PDE: �v = N and
|∇√2v|2 = 1.We refer to the introduction of [35] for a more detailed parallelismwith
the Bishop-Gromov inequality and the interpretation of Uβ as an area functional.

We will prove that

• if the derivative of Uβ vanishes at t0, then {u < t0} is isometric to a truncated
RCD(0,N) cone,

• if the derivative Uβ at t0 is sufficiently small, then {u < t0} is close, in a suitable
sense, to a truncated RCD(0,N) cone.

The first result is a generalization of the rigidity result in [6], while the second is new
even in the smooth setting. It has to be said that almost rigidity results were already
present in the work of Colding-Minicozzi (cf. with [38, Sect. 1.7] and [36, Sect. 2.2]).
However, one of the novelty of our analysis is that, similarly to what happens for the
splitting theorem [45], we are able to show that {u < t0} is close to a cone which
is itself an RCD(0,N) space, while they only prove closeness to a ‘generic’ cone,
moreover we prove that almost rigidity holds for all the functionsUβ , while they only
consider the case β = 3.

Let us point out that, as it is now well understood, nonsmooth (RCD) spaces enter
into play naturally in almost rigidity statements under Ricci curvature lower bounds
even in the smooth case.We recall for example the existence of Riemannian manifolds
having tangent cones at infinity with nonsmooth cross-section (see [39]).

Existence of Solutions
To justify the interest on the function Uβ , it is clearly important to have many

example of solutions to (P). The main examples in the smooth setting are the Green
function (mainly explored in the papers of Colding-Minicozzi) and the electrostatic
potential, whichwas the object of interest in [6]. In RCD spaces theGreen functionwas
already built and studied in [25],while little or nothingwas knowabout the electrostatic
potential. One of our results will be the existence of an electrostatic (or capacitary)
potential for a bounded open set E , under some mild regularity assumptions on its
boundary. That is, we will prove the existence of a solution to (P) with � = X \ Ē ,
continuous up to the boundary of � with u = 1 in ∂�. Moreover, we will also prove
a relation that links the Cheeger energy of u to the Capacity of E (see (8.2)).

NewFunctional Version of the “(Almost)OuterVolumeCone Implies (Almost)
Outer Metric Cone” Theorem

The rigidity and almost rigidity results for Uβ that we described above will follow
from a new functional and “outer” version of the volume cone to metric cone theorem
for RCD(0, N ) spaces proved in [40]. In particular we prove that in an RCD(0, N )

space if a function u satisfies �u = N and |∇√2u|2 = 1 then its superlevel sets are
isometric to truncated cones (see Theorem 6.1).

Moreover,we will prove an effective almost version of the above result that appears
to be new also in the smooth setting. More precisely,we will show that if a function
u satisfies �u = N |∇√2u|2 and |∇√2u| is almost constant, i.e. |∇|∇√u|| is small
(in an integral sense), then the whole space X is close in the pmGH topology to an
RCD(0, N ) space X′, that is a truncated cone outside a bounded set (see Theorem
6.7).
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We will also provide a second version of the almost rigidity result in Theorem 6.7,
which is more in the spirit of the “almost volume annulus implies metric annulus”
theorems of Cheeger-Colding ( [29]). Roughly said under the same hypotheses of
Theorem 6.7, we prove that the sets {t2 < u < t1}, when endowed with their intrinsic
metrics, are close to annuli of an RCD(0,N) cone, also endowed with their intrinsic
metrics (see Theorem 6.9).

Let us remark that a main portion of the proof of Theorem 6.1 is a repetition of the
arguments in [40]; however, in writing this note, the authors realized that some steps
in [40] were overlooked. For this reason along our exposition,we will also take the
chance to fix and adjust some of the original arguments.

New Estimates for Harmonic Functions
As a by-product of our argument we prove some regularity results and estimates for

harmonic functions in RCD(K , N ) spaces, which appear to be new in the nonsmooth
setting and interesting on their own. In particular we prove that if u is harmonic, then
the function |∇u|β hasW1,2-regularity for every β ≥ 1

2
N−2
N−1 , together with an explicit

bound for |∇|∇u|β | (see Theorem 4.4 for the precise statement). It is important to
observe that the exponent β is allowed to be strictly smaller than 1, which makes the
result nontrivial. The estimates that we obtain are similar and strongly inspired by the
ones for Riemannian manifolds obtained in [32].

Future Applications
This work is a part of a project that we are pursuing and whose objective is to

investigate the possibility of developing a second-order analysis on “codimension-1”
sets in RCD spaces (recall that a “first-order” theory in this setting has already been
extensively studied, see eg. [3, 22] and [42]). This is motivated by the recent [6] where,
in the context of smooth Riemannian manifolds, it is proved that the monotonicity
of Uβ (see above) implies a family of inequalities related to the mean curvature of
hypersurfaces (more precisely to a lower bounds on their p-Willmore energy).

In particular in a forthcomingwork [61], wewill propose a notion ofmean curvature
and Willmore energy for the boundary of subsets of RCD spaces. Our definitions will
be tailored to the monotonicity results obtained in this note (in particular formula (5.7)
and the estimate (5.6)) to obtain lower bounds for the Willmore energy, in the spirit
of [6].

Plan of the Paper
The exposition will be organized as follows. In Sect. 2,we will introduce the needed

tools and fix some notations. In Sect. 3,we introduce the notion of nonparabolic RCD
space and derive its main features. In Sect. 4,we will introduce a class of vector fields
with nonnegative divergence (see Corollary 4.5), which are at the core of the proof
of the monotonicity formula. In such section, we will also deduce new estimate for
harmonic functions. In Sect. 5.1, we will prove some key decay estimates for solution
of (P) and subsequently in Sect. 5.2, we will prove the main monotonicity result. In
Sect. 6.1, we will state a new functional version of the “from outer functional cone to
outer metric cone” theorem and prove the main new ingredients for its proof. The rest
of the argument, being analogous to the one in [40], will be postponed to Appendix A.
The ‘almost’ version of the previous theorem will be proved in Sect. 6.2. Then we will
use these functional rigidity and almost rigidity results to deduce in Sect. 7 the main
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rigidity and almost rigidity statements from the monotonicity formula. Finally,the
existence for the electrostatic potential will be given in Sect. 8. This argument relies
on results mainly taken from [19], however,to make the proof self-contained and more
readable, in Appendix B we will redo (and simplify) the proofs of all the results we
need in the setting of RCD spaces.

2 Preliminaries and Notations

2.1 Calculus Tools

Throughout all this note,a metric measure space (abbreviated in m.m.s.) is a triple
(X,d,m) where

(X,d) is a complete and separable metric space and m is a nonnegative and nonzero

Borel measure on X, finite on bounded sets and such that suppm = X.

Wewill also use the notion of pointed metric measure space (abbreviated in p.m.m.s.),
which is a quadruple (X,d,m, x̄), where (X,d,m) is a metric measure space and
x̄ ∈ X.

Two metric measure spaces (Xi ,di ,mi )i=1,2 are said to be isomorphic if there
exists an isometry ι : X1 → X2 as metric spaces such that ι∗m1 = m2.

We will denote by LIP(X), LIPloc(X), LIPb(X), LIPbs(X) and Cbs(X), respectively,
the spaces of Lipschitz functions, locally Lipschitz functions, bounded Lipschitz
functions, Lipschitz functions with bounded support and bounded continuous func-
tions with bounded support in (X,d). For a function f ∈ LIPloc(X),we denote by
lip f : X → [0,+∞) its local Lipschitz constant defined by

lip f (x) := lim sup
y→x

| f (x)− f (y)|
d(x, y)

. (2.1)

2.1.1 Sobolev Spaces Via Test Plans

We will adopt the notion of Sobolev spaces on metric measures spaces via test plans
introduced in [7]. This approach turns out to be equivalent [7] both to the notion
of Sobolev space firstly introduced by Cheeger [27] and to the one introduced by
Shanmugalingam [77].

A curve γ ∈ C([0, 1],X) belongs to the space of absolutely continuous curves
AC([0, 1],X) if there exists f ∈ L1(0, 1) such that d(γt , γs) ≤

´ t
s f (r) dr , for every

0 ≤ s < t ≤ 1. In this case it holds that the limit |γ̇t | := limh→0 h−1d(γt+h, γt )

exists for a.e. t ∈ (0, 1) and is called metric speed at time t . The length L(γ ) of an
absolutely continuous curve γ is defined by

L(γ ) :=
ˆ 1

0
|γ̇t | dt .

123



100 Page 6 of 89 N. Gigli, I. Y. Violo

We recall also the evaluation map et : C([0, 1],X) → X defined by et (t) := γt .

A Borel probability measure π on AC([0, 1],X) is said to be a test plan if

∃C > 0 : et∗π ≤ Cm, ∀t ∈ [0, 1],ˆ ˆ 1

0
|γ̇t |2 dt dπ < +∞.

Definition 2.1 (Sobolev class) The Sobolev class S2(X) is the space of all functions
f ∈ L0(m) such that there exists a nonnegative G ∈ L2(m) for which

ˆ
| f (γ1)− f (γ0)| dπ ≤

ˆ ˆ 1

0
|γ̇t |G(γt ) dt dπ , ∀π test plan. (2.2)

For every f ∈ S2(X), there exists a unique function G with minimal L2(m) norm
such that (2.2) holds, called minimal weak upper gradient and denoted by |Df |.
The minimal weak upper gradient has the following lower semicontinuity property:
suppose that ( fn) ⊂ S2(X) converges to f ∈ L0(m) m-a.e. and |Dfn| converges
weakly in L2(m) to a function G ∈ L2(m), then

f ∈ S2(X) and |Df | ≤ G, m-a.e.. (2.3)

We define the Sobolev spaceW1,2(X) := L2(m)∩S2(X).W1,2(X) becomes a Banach
space, when endowed with the norm

‖ f ‖W1,2(X) :=
√
‖ f ‖2

L2(m)
+ ‖|Df |‖2

L2(m)
.

The Cheeger energy functional Ch : L2(m) → [0,+∞] is defined by

Ch( f ) :=
{

1
2

´ |Df |2 dm, f ∈ W1,2(X),

+∞ otherwise.

It follows from (2.3) that Ch is a convex and lower semicontinuous functional on
L2(m).

A metric measure space is said to be infinitesimally Hilbertian if W1,2(X) is a
Hilbert space or equivalently if Ch is a quadratic form (see [48]).

2.1.2 Tangent Module

We assume the reader to be familiar with theory of L0-normed modules on a m.m.s.
(X,d,m) and we refer to [47] for a detailed account on this theory.
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Definition 2.2 (L0-normed L0-module) An L0-normed L0-module is a triple
(M , |.|, τ ), where M is a module over the commutative ring L0(m), (M , τ ) is a
topological vector space, |.| :M → L0(m) is a map satisfying (in the m-a.e. sense)

|v| ≥ 0 for every v ∈M , with equality if and only if v = 0,

|v + w| ≤ |v| + |w| for every v,w ∈M ,

| f v| = | f ||v| for every f ∈ L0(m) and v ∈M ,

and such that τ is induced by the distance d0(v,w) := ´ |v − w| ∧ 1 dm′ (where m′
is a probability measure on X such that m � m′ � m), which is also assumed to be
complete.

An L0-normed module M is a Hilbert module if for every v,w ∈M it holds

|v + w|2 + |v − w|2 = 2|v|2 + 2|w|2, m-a.e..

If this is the case, by polarization, we can define a scalar product 〈, 〉 :M 0 ×M 0 →
L0(m) that is symmetric, L0(m)-bilinear and satisfies 〈v, v〉 = |v|2, |〈v,w〉| ≤ |v||w|,
m-a.e. for every v,w ∈M 0.

Given an L0-normed moduleM and E a Borel subset of X, we define the localized
module

M |E := {χ Ev : v ∈M }.

M |E inherits naturally a structure of L0-normedmodule and ifM is a Hilbert module
thenM |E is Hilbert as well with 〈., .〉M |E = χ E 〈., .〉M .M |E can also be seen as the

quotient of M by the equivalence relation ‘v ∼ w if and only if |v − w| = 0 m-a.e.
in E’. This identification will be used in the rest of the note without further notice.

Definition 2.3 (Tangent module) Suppose that (X,d,m) is an infinitesimally Hilber-
tian m.m.s.. Then there exists a (unique) couple (L0(TX),∇), where L0(TX) is an
L0-normedmodule and∇ : W1,2(X) → L0(TX), called gradient operator, is a linear
and continuous map such that

|∇ f | coincides with the minimal weak upper gradient of f
{

n∑

i=1

χ Ei∇ fi : {Ei }ni=1 Borel partition of X, { fi }ni=1 ⊂ W1,2(X)

}

is dense in L0(TX).

The gradient operator has the following properties

Locality: ∇ f = ∇g, m-a.e. in { f = g},
Leibniz rule:∇( f g) = g∇ f + f∇g, for every f , g ∈ W1,2(X) ∩ L∞(m),
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Chain rule:∇(ϕ( f )) = ϕ′( f )∇ f , for every f ∈ W1,2(X), ϕ ∈ C1(R) ∩ LIP(R).

Finally, we denote by L2(TX) the subset of L0(TX) containing the elements with
square integrable pointwise norm.

2.1.3 Local Sobolev Spaces

Let (X,d,m) be a proper and infinitesimally Hilbertian m.m.s. and let � be an open
subset of X. We define

W1,2
loc (�) := {u ∈ L2

loc(�) | uη ∈ W1,2(X), for every η ∈ LIPc(�)},

which is actually equivalent to ask that for every Borel set �′ ⊂⊂ � there exists
u′ ∈ W1,2(X) such that u = u′, m-a.e. in �′.

For any u ∈ W1,2
loc (�), we define its gradient∇u as the unique element of L0(T X)|�

such that

∇u := ∇(ηu),m -a.e. in {η = 1}, ∀η ∈ LIPc(�),

which is well defined thanks to the locality property of the gradient. In particular
|∇u| ∈ L2

loc(�). It is straightforward to check that ∇u satisfies the expected locality
property, Leibniz rule and chain rule. We only state explicitly a version of the chain
rule that we will need: if u ∈ W1,2

loc (�) and ϕ ∈ C1(I ), with I open interval, are such
that

u(�′) ⊂⊂ I (up to a m-negligible set), for every �′ ⊂⊂ �, (2.4)

then ϕ(u) ∈ W1,2
loc (�) and ∇ϕ(u) = ϕ′(u)∇u.

Observe that, since ∇u ∈ L0(TX)|�, it makes sense to compute the scalar product

〈∇u, v〉 ∈ L0(�,m), for every v ∈ L0(TX)|�; moreover, this scalar product also
satisfies |〈∇u, v〉| ≤ |∇u||v|, m-a.e. in � (recall the discussion in Sect. 2.1.2).

We also define the spaces

W1,2(�) := { f ∈ W1,2
loc (�) | f , |∇ f | ∈ L2(�)},

W1,2
0 (�) := LIPc(�)

W1,2(X) ⊂ W1,2(X).

We end this subsection with the following technical lemma.

Lemma 2.4 Let u ∈ W1,2
loc (�) be nonnegative and α ∈ (0, 1) be such that

χ {u>0}uα−1|∇u| ∈ L2
loc(�).

Then uα ∈ W1,2
loc (�) and ∇u = α−1u1−α ∇uα , m-a.e. in �.

123



Monotonicity Formulas for Harmonic Functions in RCD spaces Page 9 of 89 100

Proof For the first part, it is enough to show that f := ηuα ∈ W1,2(X) for every
η ∈ LIPc(�) with |η| ≤ 1. Fix ε ∈ (0, 1) arbitrary and define fε = η(u + ε)α. Then
from the nonnegativity of u, we have fε ∈ W1,2(X) and recalling that |∇u| = 0m-a.e.
in {u = 0} we have

|∇ fε| ≤ LipηCα(u + 2)+ αχu>0u
α−1|∇u|, m-a.e..

It follows that the family { fε}ε∈(0,1) is bounded in W1,2(X). Moreover fε → f in
L2, therefore from the lower semicontinuity of the Cheeger energy, it follows that
f ∈ W1,2(X). For the second part, we observe that u ∧ n = (uα ∧ nα)1/α m-a.e. in �

and that (t ∧ nα)1/α ∈ LIP(R). Therefore from the locality and the chain rule for the
gradient

∇u = α−1u1−α ∇uα, m-a.e. in {u ≤ n}

and we conclude from the arbitrariness of n. ��

2.1.4 Laplacian and Divergence Operators

In this section, we assume (X,d,m) to be a proper and infinitesimally Hilbertian
m.m.s.

Definition 2.5 (Measure-valued Laplacian [48]) Let � ⊂ X open. We say that and
u ∈ W1,2

loc (�) belongs to the domain of the measure-valued Laplacian D(�,�) if
there exists a Radon measure �|�u in � such that

−
ˆ

�

〈∇ f ,∇u〉dm =
ˆ

�

f d�|�u, (2.5)

for every f ∈ LIPc(�).

Let us remark that in the above definition with the term Radon measure, we denote
a set function μ : {Borel sets relatively compact in�} → R which can be written as
μ(B) = μ+(B) − μ−(B), for some positive Radon measures μ+, μ−. In particular
we do not require μ to be a Borel measure on the whole �, this weaker assumption
is needed for example in Proposition 2.6 and to write the Laplacian of the distance
function (see also the discussion in [26]).

When no confusion can occur, we will drop the subscript � and simply write �u.

Moreover, we will write D(�) in place of D(�,X) and whenever � � m, we will
use the nonbold notation �.

A function u ∈ D(�,�) is said to be subharmonic if �u ≥ 0, superharmonic if
�u ≤ 0 and harmonic if �u = 0.

Finally, it easily follows from the definition that the Laplacian operator is linear
and satisfies the following locality property:

if u, v ∈ D(�,�) and u = vm-a.e. in U ,
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with U open and relatively compact in �, then �u|U = �v|U .

The following existence and comparison result is proven in [48, Prop 4.13].

Proposition 2.6 Let u ∈ W1,2
loc (�) and suppose that there exists g ∈ L1

loc(�) such that

−
ˆ

�

〈∇ f ,∇u〉 dm ≥
ˆ

�

g f dm, ∀ f ∈ LIPc(�), with f ≥ 0,

Then u ∈ D(�,�) and �u ≥ gm|�.

Remark 2.7 Let u ∈ D(�,�). Suppose that �u � m (resp. �u ≥ gm) with d�u
dm ∈

L2
loc(�) (resp. g ∈ L1

loc(�)). Then, recalling that in an infinitesimally Hilbertian
m.m.s. Lipschitz functions are dense inW1,2(X) (see [7]), by a truncation and cut-off
argument it follows that (2.5) (resp.− ´ 〈∇ f ,∇u〉dm ≥ ´

g f dm) holds also for every
f ∈ W1,2(X) (resp. f ∈ W1,2(X) ∩ L∞(m), f ≥ 0) with support compact in �. ��
Definition 2.8 (Measure-valued divergence [53]) Let v ∈ L0(T X)|� be such that

|v| ∈ L2
loc(�), we say that v ∈ D(div,�) if there exists a Radon measure div|�(v)

in � such that

ˆ
�

〈∇ f , v〉dm = −
ˆ

�

f d div|�(v), (2.6)

for every f ∈ LIPc(�).

It is clear from the definition that given u ∈ W1,2
loc (�), we have ∇ f ∈ D(div,�) if

and only if u ∈ D(�,�) and in this case div|�(∇u) = �|�u. As for the Laplacian,
we will often write simply div(v) instead of div|�(v).

Remark 2.9 Analogously to the measure-valued Laplacian, we have that if div(v) ∈
L2
loc(�), then (2.6) holds also for every f ∈ W1,2(X) with support compact in �. ��

2.2 RCD Spaces

We assume the reader to be familiar with the definition and theory of RCD(K , N )

spaces (see [8, 48]). We limit ourselves to recall some of their main properties that
will be needed.

The Sobolev-to-Lipschitz property holds (the definition we recall comes from [45]
and so does the argument that we adopt to prove the ‘local version’ below - the validity
of this property on RCD(K ,∞) spaces was known from [9]): for every f ∈ W1,2(X)

such that |Df | ∈ L∞(m), f has a Lipschitz representative and Lip f ≤ ‖|Df |‖L∞ .
The local variant we will actually use is the following:

Proposition 2.10 (Local Sobolev-to-Lipschitz property) Let X be an RCD(K , N )

space, K ∈ R and N ∈ [1,+∞) and let� ⊂ X be open. Suppose f ∈ W1,2
loc (�) is such

123



Monotonicity Formulas for Harmonic Functions in RCD spaces Page 11 of 89 100

that ‖|∇ f |‖L∞(�) < +∞, then f has a locally Lipschitz representative. Moreover
for such representative it holds

| f (x)− f (y)| ≤ ‖|∇ f |‖L∞(�) d(x, y), (2.7)

for every x, y ∈ � such that d(x, y) ≤ d(x, ∂�).

Proof The fact that f has a locallyLipschitz representative it follows from theSobolev-
to-Lipschitz property and a cut-off argument.

For the second part, we observe that it is sufficient to consider the case d(x, y) <

d(x, ∂�), since the equality case follows by continuity. Hence for some r > 0, we
have d(x, y) < r < d(x, ∂�) and we can consider f̃ ∈ W1,2(X) such that f̃ = f
m-a.e. in Br (x). Then for ε < (r − d(x, y))/4, we define μ0

ε := m|Bε(x)
m(Bε(x))−1,

μ1
ε := m|Bε(y)

m(Bε(y))−1. thanks to the results in [74] and [75] there exists a unique

πε ∈ OptGeo(μ0
ε, μ

1
ε) such that et∗πε ≤ Cm, ∀t ∈ [0, 1], for some constant C

depending on ε. In particular,πε is a test plan.Moreover from the triangle inequality, it
follows thatπε is concentrated on curves γ with support contained in Br (x). Therefore
from (2.2)

∣
∣
∣
∣

ˆ
f dμ1

ε −
ˆ

f dμ0
ε

∣
∣
∣
∣ ≤

ˆ
| f̃ (γ1)− f̃ (γ0)| dπε(γ )

≤ ‖|∇ f̃ |‖L∞(Br (x))

ˆ ˆ 1

0
|γ̇t |dtdπε ≤ ‖|∇ f |‖L∞W2(μ

0
ε, μ

1
ε).

Letting r → 0+ from the continuity of f , we obtain (2.7). ��

From Proposition 2.10 it also follows that

if � is connected, u ∈ W1,2
loc (�) and |∇u| = 0, m-a.e., then u is constant in �.

(2.8)

The Bishop-Gromov inequality holds (see [81]), i.e.

m(BR(x))

vK ,N (R)
≤ m(Br (x))

vK ,N (r)
, for any 0 < r < R and any x ∈ X,

where for the quantities vK ,N (r) coincides, for N ∈ N, with the volume of the ball
with radius r in the model space of dimension N and Ricci curvature K (see [81] for
the definition of vK ,N (r) for arbitrary N ∈ [1,∞)). In particular (X,d,m) is proper
and uniformly locally doubling. We also note that in the case K = 0, this implies that
the limit

AVR(X) := lim
r→+∞

m(Br (x))

r N
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exists finite and does not depend on the point x ∈ X . We call the quantity AVR(X)

asymptotic volume ratio of X and if AVR(X) > 0 we say that X has Euclidean volume
growth.

We will need the following Laplacian comparison for RCD(0, N ) spaces (see [48,
Corollary 5.15]):

d(x0, .)
2 ∈ D(�) and �d(x0, .)

2 ≤ 2Nm, for every x0 ∈ X, (2.9)

moreover in any RCD(K , N ) space with N < +∞ it holds that

|∇d(x0, .)| = 1, m-a.e.. (2.10)

From to the results in [27] and the fact that lipd(x0, .) ≡ 1 it follows that (2.10)
actually holds in the general setting of doublingm.m.s. satisfying aPoincaré inequality;
however, a more direct proof in the setting of RCD(K , N ) spaces is also available (see
for example [55, Prop. 3.1]).

Recall that, since RCD(K , N ) spaces are infinitesimally Hilbertian, the heat flow
ht : L2(m) → L2(m), t ≥ 0, defined as the gradient flow of Ch on L2(m) is linear,
continuous, self-adjoint and satisfies ht ( f ) ∈ D(�) ∩W1,2(X), moreover the curve
(0,∞) � t �→ ht f ∈ L2(m) is locally absolutely continuous for every f ∈ L2(m)

and

d

dt
ht ( f ) = �ht ( f ) ∈ L2(m), for a.e. t > 0,

(see [47] for further details). Moreover ht has the so-called L∞-to Lipschitz regular-
ization property (see [9]), i.e. there exists a constant C(K ) > 0 such that for every
f ∈ L∞ ∩ L2(m) it holds that |∇ht f | ∈ L∞(m) and

‖|∇ht f |‖L∞(m) ≤ C(K )√
t
‖ f ‖L∞(m), ∀ t ∈ (0, 1). (2.11)

In an RCD(K , N ) space, it can be given also a notion of heat kernel (see [9])
pt : X×X → [0,+∞]which has a locally Hölder-continuous representative (see [78,
79]), which satisfies the following pointwise bounds [67], generalizing the classical
estimates of Li and Yau in the smooth case [70]:

1

C1m(B(x,
√
t))

exp

{

−d2(x, y)
3t

− ct

}

≤ pt (x, y)

≤ C1

m(B(x,
√
t))

exp

{

−d2(x, y)
5t

+ ct

}

,

|∇ pt (x, ·)(y)| ≤ C1√
tm(B(x,

√
t))

exp

{

−d2(x, y)
5t

+ ct

}

for m-a.e. y ∈ X ,

(2.12)
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for any x, y ∈ X , for any t > 0 and where c,C1 are positive constants depending only
on K , N such that c = 0 if K = 0.

We introduce the algebra of test functions Test(X) [76] defined as

Test(X) := { f ∈ L∞(m) ∩ LIP(X) ∩ D(�) | � f ∈ W1,2(X)}.

It turns out that Test(X) is dense in W1,2(X) and 〈∇ f ,∇g〉 ∈ W1,2(X) for every
f , g ∈ W1,2(X).

We recall the notion of Hessian for a test function as constructed in [47]: for any
f ∈ Test(X) there exists Hess( f ) : [L0(TX)]2 → L0(m), L0-bilinear symmetric
and continuous in the sense that |Hess( f )(v,w)| ≤ |Hess( f )|OP |v||w|, for some
(minimal) function |Hess( f )|OP ∈ L2(m). Moreover Hess( f ) is characterized by the
identity

2
ˆ

hHess( f )(∇ f1,∇ f2)dm

= −
ˆ
〈∇ f ,∇ f1〉div(h∇ f1)+ ∇ f ,∇ f2div(h∇ f2)− div(h∇ f )〈∇ f1,∇ f2〉dm,

for any choice of h, f1, f2 ∈ Test(X). The Hessian also induces an L0-linear and
continuous map Hess( f ) : L0(TX) → L0(TX) characterized by

〈Hess( f )(v), w〉 = Hess( f )(v,w), m-a.e., ∀w ∈ L0(TX)

and which satisfies |Hess( f )(v)| ≤ |Hess( f )|OP |v|. We recall also the following
identity, which essentially is contained in [47, Prop. 3.3.22],

2Hess( f )(∇ f ) = ∇|∇ f |2, ∀ f ∈ Test(X). (2.13)

Combining [56, Theorem 5.1] with the recent [25], we have the following result
(we refer to [47] for the definition of dimension and local base for a normed module).

Theorem 2.11 (Constancy of the dimension) Let X be any RCD(K , N ) space with
K ∈ R and N ∈ [1,∞). Then there exists an integer dim(X) ∈ [1, N ] such that the
tangent module L0(TX) has constant dimension equal to dim(X).

A corollary of this result is the existence of a global orthonormal base: {e1, ..., edim(X)}
⊂ L0(TX) such that 〈ei , e j 〉 = δi, j m-a.e. for every i, j = 1, ..., dim(X). In particular

for every v ∈ L0(TX) it holds that v = ∑dim(X)
i=1 vi ei , where vi := 〈v, ei 〉. Then,

denotedby (H f )i, j the functionsHess( f )(ei , e j ) ∈ L0(m), for i, j ∈ {1, ..., dim(X)},
we can write

Hess( f )(v) =
∑

1≤i, j≤dim(X)

(H f )i, jv j ei , ∀v ∈ L0(TX). (2.14)
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Moreover, we define the trace and Hilbert-Schmidt norm trHess( f ), |Hess( f )|HS ∈
L2(m) as

|Hess( f )|2HS :=
∑

1≤i, j≤dim(X)

(H f )2i, j , , (2.15)

trHess( f ) :=
∑

1≤i≤dim(X)

(H f )i,i , (2.16)

which are well defined in the sense that they do not depend on the choice of the base,
as can be easily verified by a direct computation. It always holds that |Hess( f )|OP ≤
|Hess( f )|HS m-a.e. (see [47, Sect. 3.2]).

In view of the above, we can restate Theorem 3.3 in [63] as follows (see also [14,
44] for the “basic version” of the Bochner inequality.)

Theorem 2.12 (Improved Bochner inequality) Let X be any RCD(K , N ) space with
K ∈ R and N ∈ [1,∞). Then for any f ∈ Test(X), it holds that |∇ f |2 ∈ D(�) and

�

( |∇ f |2
2

)

≥
(
|Hess( f )|2HS + K |∇ f |2 + 〈∇ f ,∇� f 〉

+ (� f − trHess( f ))2

N − dim(X)

)

m, (2.17)

where (� f−trHess( f ))2

N−dim(X)
is taken to be 0 in the case dim(X) = N .

See [73] for a proof of the following result.

Proposition 2.13 (Good cut-off functions) Let X be an RCD(K , N ) space, K ∈ R

and N ∈ (1,∞). Then for every 0 < r < R < +∞, every compact set P and every
open set U containing P, such that diam(U ) < R and d(P,Uc) > r , there exists a
function η ∈ Test(X) such that

1. 0 ≤ η ≤ 1, η = 1 in P and supp η ⊂ U,
2. |∇η| + |�η| ≤ C(R, r , N , K ),

moreover C does not depend on R in the case K = 0.

We recall that for any N ∈ [1,∞) the Euclidean N cone over a m.m.s. (Z ,mZ ,dZ ) is
defined to be the space C(Z) := [0,∞)× Z/({0} × Z) endowed with the following
distance and measure

dC(Z)((t, z), (s, z
′)) :=

√
s2 + t2 − 2st cos(dZ (z, z′) ∧ π),

mC(Z) := t N−1dt ⊗ mZ .

It was proven in [68] that

if the Euclidan Ncone (N ≥ 2) over a m.m.s. Z is an RCD(0, N ) space,

then diam(Z) ≤ π and Z is an RCD(N − 2, N − 1) space.
(2.18)
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2.2.1 Localized Bochner Inequality

Along this subsection, � is an open subset of X. We define

Testloc(�) := {u ∈ LIPloc(�) ∩ D(�,�) | �u ∈ W1,2
loc (�)}.

This definition is motivated by the following observation:

η ∈ Test(X) with supp η ⊂⊂ �, u ∈ Testloc(�) �⇒ ηu ∈ Test(X). (2.19)

This follows from the fact that for any f ∈ LIP(X) ∩ D(�), it holds that |∇ f |2 ∈
W1,2(�), which is essentially a consequence of the following inequality (see [47,
Corollary 3.3.9])

ˆ
|Hess( f )|2HS dm ≤

ˆ
(� f )2 dm− K

ˆ
|∇ f |2 dm, ∀ f ∈ TestX.

(2.19) allows us to define for every u ∈ Testloc(�) the functions |Hess(u)|HS,

trHess(u) ∈ L2
loc(�) as

|Hess(u)|HS := |Hess(ηu)|HS, m-a.e. in �′,
trHess(u) := trHess(ηu), m-a.e. in �′,

for every η ∈ Test(X) with compact support in � and such that η = 1 in �′ ⊂⊂ �.
This definition is well posed thanks to the locality property of the Hessian (see [47,
Prop. 3.3.24]). Recall also from Proposition 2.13 that many such functions η exist.
The following follows directly from (2.17) and the above definitions.

Proposition 2.14 (Local improved Bochner Inequality) Let u ∈ Testloc(�), then
|∇u|2 ∈ D(�,�) and

�|�(|∇u|2) ≥ 2

(

|Hess(u)|2HS +
(�u − trHess(u))2

N − dim(X)

+〈∇u,∇�u〉 + K |∇u|2
)
m|�, (2.20)

where (�u−trHess(u))2

N−dim(X)
is taken to be 0 in the case dim(X) = N .

We conclude this subsection observing that

if u ∈ Testloc(�), then |∇u| ∈ W1,2
loc (�) and ∇|∇u|2 = 2|∇u|∇|∇u|, (2.21)

indeed from (2.13) it follows that |∇|∇u|2||∇u|−1 ≤ 2|Hess(u)|OP ,m-a.e. in {|∇u| >
0} and the claim follows applying Lemma 2.4 with α = 1/2 and |∇u|2 in place of u.
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2.2.2 (Sub)harmonic Functions in RCD Spaces

In this subsection,(X,d,m) is an RCD(K , N ) m.m.s. with N ∈ [1,∞).

Proposition 2.15 Let � be an open and bounded subset of X and let u ∈ D(�,�) be
such that �u ≥ 0. Then

• weak maximum principle: if u is upper semicontinuous in �̄, then

ess sup
�

u ≤ sup
∂�

u,

• strong maximum principle:

if u ∈ C(�), � is connected and u(x) = sup
�

u for some x ∈ �, then u is constant.

Proof The result is a direct consequence of the maximum principle for harmonic
functions, which holds in more general doubling metric measure spaces supporting a
Poincaré inequality (see [19]). We report here a short justification which uses more
direct arguments available in the RCD from [59].

For the first part suppose by contradiction that ess sup� u > sup∂� u. Then there
exists c ∈ R such that sup∂� u < c < ess sup�, in particular from the upper semicon-
tinuity and compactness of ∂� we have that f −min( f , c) ∈ W1,2(X) with compact
support in �. From this point the proof continue exactly as in [59, Thm. 2.3].

For the second part,we apply the strong maximum principle in [59, Thm. 2.8]
to a ball Br (x) ⊂ �, obtaining that u is constantly equal to sup� u in Br (x). In
particular,the set {u = sup� u} ∩� is open (and closed in �) and thus must coincide
with �. ��

It is known that inRCD(K , N ) spaces harmonic functions are continuous. It follows
for example from the existence of Harnack inequalities (see Appendix B) that they
are locally Hölder. It turns out that they are actually locally Lipschitz and that the
following gradient bound, analogous to the one due to Cheng and Yau [34] in the
smooth setting, holds [66, Theorem 1.2]. We state it only in the case N = 0 (see also
[65] for an analogous result).

Theorem 2.16 (Gradient estimate) For every N ∈ [1,∞),there exists a positive con-
stant C = C(N ) such that the following holds. Let X be an RCD(0, N ) space and let
u ∈ D(�, B2R(x)) be positive and harmonic in B2R(x), then

∥
∥
∥
∥
|Du|
u

∥
∥
∥
∥
L∞(BR(x))

≤ C

R
. (2.22)

Lemma 2.17 Let X be an RCD(0, N ) space and let {ui } be a sequence of harmonic
and continuous functions in �. Suppose that

sup
�

|ui | < C,
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then there exists a subsequence uik that converges locally uniformly to a function u
harmonic in �.

Proof The existence of a (non-relabelled) subsequence ui converging locally uni-
formly to a continuous function u follows from the gradient estimate (2.22) and
Ascoli-Arzelà. It remains to prove that u is harmonic in �. Fix �′ ⊂⊂ � and
η ∈ Lipc(�) with η = 1 in �′. Then ηui ∈ W1,2(X) converges to uη in L2(�′).
Moreover, again by (2.22), we have

sup
i
‖|∇(ηui )|‖L2(m) < +∞.

In particular (recall thatW1,2(X) is Hilbert) up to a subsequence uiη⇀ηu inW1,2(X)

and therefore (from the locality of the gradient)
´
�
〈∇u,∇ f 〉 dm = 0 for every

f ∈ LIPc(�′) (see also [48, Prop 5.19] for a similar limiting argument). From the
arbitrariness of �′, we deduce both that u ∈ W1,2

loc (�) and that u is harmonic in �. ��

2.2.3 pmGH-Convergence

Wewill adopt the following definition of pointed-measure Gromov Hausdorff conver-
gence of pointed metric measure spaces, which is equivalent to the usual one in the
case when suppmn = Xn and the measures mn are uniformly locally doubling. We
refer to [54] for a discussion on the various notions of convergence of p.m.m. spaces
and their relations.

Definition 2.18 (pointed-measure Gromov Hausdorff convergence) We say that
the sequence (Xn,dn,mn, xn) of p.m.m.s. pointed-measure Gromov Hausdorff -
converges (pmGH-converges in short) to the p.m.m.s. (X∞,d∞,m∞, x∞), if there
are sequences Rn ↑ +∞, εn ↓ 0 and Borel maps fn : Xn → X∞ such that

(1) fn(xn) = x∞,
(2) supx,y∈BRn (xn) |dn(x, y)− d∞( fn(x), fn(y))| ≤ εn ,
(3) the εn-neighbourhood of fn(BRn (xn)) contains BRn−εn (x∞),
(4) for any ϕ ∈ Cbs(X∞) it holds lim

n→∞
´

ϕ ◦ fn dmn =
´

ϕ dm∞.

It is proven in [54] that there exists a distance dpmGH that metrizes the pmGH-
convergence for the class of RCD(K , N ) spaces with K ∈ R and N < +∞ fixed, and
more generally for every family of uniformly locally doubling metric measure spaces.

It will be also useful to recall the so-called extrinsic approach (see [54]) to pmGH-
convergence, valid in the case of uniformly doubling and geodesic m.m.s.: the pmGH-
convergence can be realized by a proper metric space (Y ,d)where Xi ,X∞ are subsets
of Y such that dY |Xi×Xi

= di ,dY |X∞×X∞
= d∞, dY (xi , x∞) → 0, mi⇀m∞ in

duality with Cbs(Y ) and dYH (BXn
R (xn), B

X∞
R (x∞)) → 0 for every R > 0.

After the works in [9, 54, 71, 80, 81] and in view of the Gromov compactness
theorem [57, Sect. 5.A], the following fundamental compactness result for RCDspaces
is known.
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Proposition 2.19 Suppose (Xn,dn,mn, xn) are RCD(Kn, N ) spaces with N ∈
[1,∞), Kn → K ∈ R and m(B1(xn)) ∈ [v−1, v] for some v > 1. Then there
exists a subsequence (Xnk ,dnk ,mnk , xnk ) that pmGH-converges to an RCD(K , N )

space (X∞,d∞,m∞, x∞).

2.2.4 Stability Results Under pmGH-Convergence

In this subsection, (Xi ,di ,mi , xi ) is a pmGH-converging sequence of RCD(K , N )

spaces, N < +∞, and (Y ,d) is a propermetric spacewhich realizes such convergence
through the extrinsic approach (see the previous subsection).

Definition 2.20 (Locally uniform / uniform convergence) Let fi : Xi → R, f∞ :
X∞ → R. We say that fi converges locally uniformly to f∞ if for every y ∈ X∞ and
every sequence yi ∈ Xi such that dY (yi , y) → 0 it holds that limi fi (yi ) = f∞(y).

We say that fi converges uniformly to f∞ if for every ε > 0 there exists δ > 0 such
that | fi (yi )− f∞(y)| < ε for every i ≥ δ−1 and every yi such that dY (yi , y) < δ.

We point out that in the case of a fixed proper metric space the two notions of con-
vergence in the above definition coincide, respectively, with the usual locally uniform
and uniform convergence.

The following is a version of the Ascoli-Arzelà theorem for varying metric spaces
(see also [83, Prop. 27.20]). The proof can be achieved arguing as in case of a fixed
(proper) metric space and we will skip it.

Proposition 2.21 Let fi : Xi → R be equi-Lipschitz, equibounded functions with
supp fi ⊂ BR(xi ), then there exists a subsequence that converges uniformly to a
Lipschitz function f : X∞ → R .

Definition 2.22 (Weak/strong L2-convergence) A sequence of functions fi ∈ L2(mi )

converges weakly in L2 to a function f ∈ L2(m∞) if fimi⇀ fm∞ in duality with
Cbs(Y ) and supi ‖ fi‖L2(mi )

< +∞.

A sequence of functions fi ∈ L2(mi ) converges strongly in L2 to a function
f ∈ L2(m∞) if it converges weakly in L2 to f and limi ‖ fi‖L2(mi )

= ‖ f ‖L2(m∞).

In the following proposition we collect some basic facts about strong and weak L2

convergence.

Proposition 2.23 (a) If fi ∈ L2(mi ) converge strongly in L2 to f ∈ L2(m∞) and fi
have uniformly bounded support, then ϕ ◦ fi converge strongly in L2 to ϕ ◦ f , for
every ϕ ∈ C(R) such that ϕ(0) = 0 and |ϕ(t)| ≤ C(1 + |t |) for some positive
constant C > 0.

(b) If fi , gi ∈ L2(mi ) are uniformly bounded in L∞(mi ) and converge strongly in
L2, respectively, to f , g ∈ L2(m∞), then fi gi converge strongly in L2 to f g.

(c) If fi : Xi → R, with supp fi ⊂ BXi
R (xi ), converge uniformly to a bounded function

f : X∞ → R then fi converge strongly in L2 to f .

Proof (a) follows from the characterization of L2-strong convergence as weak con-
vergence of the graphs (see [8, Sect. 5.2], [54] and also [10, Remark 5.2]). Indeed
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from [54, (6.6)] L2-convergence is equivalent to weak convergence of (id× fi )∗mi to
(id× f )∗m∞ in duality with ζ ∈ C(Y ×R) satisfying |ζ(y, t)| ≤ ψ(y)+C |t |2. Then
the claim follows observing that: under our assumptions (since ϕ(0) = 0), testing
convergence against such ζ ’s is equivalent to test against ηζ , where η ∈ Cbs(Y )

is such that η ≡ 1 in the supports of fi , f∞ and moreover |η(y)ζ(y, ϕ(t))| ≤
|η(y)|(ψ(y)+ C(1+ |t |)2) for every ϕ ∈ C(R) as in the hypotheses.

The proof of (b) can be found in [10, Proposition 3.3].
(c) is a consequence of [12, Prop 3.2]; however, we include an alternative direct

argument. We first observe that from the properness of Y it follows that the functions
fi are equibounded, moreover they have uniform bounded support by hypothesis.
Therefore we can apply the generalized version of Fatou lemma for varying measure
(see e.g. [41, Lemma 2.5]), first to fiϕ and then to − fiϕ to obtain that

´
fiϕ dmi →´

f ϕ dm, where ϕ is an arbitrary function in Cbs(Y ). Applying the same lemma also
the functions f 2i ,− f 2i we deduce that

´
f 2i dmi →

´
f 2 dm, concluding the proof.

��
We will also need the following result about stability of Laplacian and gradient

with respect to strong L2 convergence. Here �i (resp. �∞) represents the Laplacian
operator in Xi (resp. X∞) and ∇i (resp. ∇∞) represents the gradient operator in Xi

(resp. X∞).

Theorem 2.24 [11, Theorems 2.7, 2.8] Let fi ∈ D(�i ) be such that

sup
i
‖ fi‖L2(mi )

+ ‖�i fi‖L2(mi )
< +∞

and assume that fi converge strongly in L2 to f . Then f ∈ D(�∞), �i f → �∞ f
weakly in L2 and |∇i fi | → |∇∞ f | strongly in L2.

We conclude this subsection with the following technical result.

Lemma 2.25 [10, Lemma 5.8] Let fi ∈ W1,2(Xi ) be such that supi ‖|∇ fi |‖L2(mi )
<

+∞ and converging strongly in L2 to f ∈ W1,2(X∞), then for any A ⊂ Y open it
holds

ˆ
A
|∇∞ f |2 dm∞ ≤ lim inf

i

ˆ
A
|∇i f |2 dmi .

2.3 Regular Lagrangian Flows

In the work of Ambrosio and Trevisan [16],it was extended the theory of flows for
Sobolev vector fields (recall [43] and [2]) to very general metric measure spaces and
in particular for RCD(K ,∞) spaces.

We restate here, using the language we introduced in the previous sections, their
main results of existence and uniqueness.

Definition 2.26 Let vt : [0, T ] → L2(TX) be Borel, we say that a map F : [0, T ] ×
X → X is a Regular Lagrangian Flow associated to vt if the following are satisfied:
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1. There exists C > 0 such that

Ft∗m ≤ Cm, for every t ∈ [0, T ], (2.23)

2. for m-a.e. x ∈ X the function [0, T ] � t �→ Ft (x) is continuous and satisfies
F0(x) = x .

3. for every f ∈ Test(X) it holds that for m-a.e. x ∈ X the function (0, T ) � t �→
f ◦ Ft (x) is absolutely continuous and

d

dt
f ◦ Ft (x) = 〈∇ f , vt 〉 ◦ Ft (x), for a.e. t ∈ (0, T ). (2.24)

Notice that in (2.24),we are implicitly choosing for every t ∈ (0, T ) a Borel repre-
sentative of 〈∇ f , vt 〉, however,(2.23) ensures that the validity of item 3 in Definition
2.26 is independent of this choice.

Observe also that in Definition 2.26, we are assuming that the map F is pointwise
defined;however, the definition is stable under modification in a negligible set of
trajectories in the following sense. If Ft (x) is a Regular Lagrangian Flow for vt (as in
Definition 2.26) and for m-a.e. x , F̃t (x) = Ft (x) holds for every t ∈ [0, T ], for some
map F̃ : [0, T ] × X → X then F̃ is also a Regular Lagrangian Flow for vt . In any
case to avoid technical issues, in our discussion we prefer to fix a pointwise defined
representative for the flow map F .

Remark 2.27 If Ft is a regular Lagrangian flow for a vector field vt , then for m-a.e.
x it holds that the curve [0, T ] � t �→ Ft (x) is absolutely continuous and its metric
speed is given by

| ˙Ft (x)| = |vt | ◦ Ft (x), a.e. t ∈ [0, T ].
This follows from [16, Lemmas 7.4 and 9.2].Observe that this statement is independent
of the chosen representative of |vt |, thanks to (2.23). ��

We will see below in Theorem 2.29 that the existence and uniqueness of a Regular
LagrangianFlow is linked to the existence anduniqueness of a solution to the continuity
equation [50]:

Definition 2.28 Let vt : [0, T ] → L2(TX) be Borel and t �→ μt ∈P(X), t ∈ [0, T ]
be also a Borel map. Suppose also that ‖|vt |‖L2(m) ∈ L1(0, T ) and μt ≤ Cm for
every t ∈ [0, T ] and some positive constant C . We say that μt is a weak solution of
the continuity equation

d

dt
μt + div(vtμt ) = 0,

with initial datum μ0, if for every f ∈ Lipbs(X) the function [0, T ] � t �→ ´
f dμt

is absolutely continuous and

d

dt

ˆ
f dμt =

ˆ
〈∇ f , vt 〉 dμt for a.e. t ∈ (0, T ).
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We refer to [47, Sect. 3.4] for the definition of the space W1,2
C (TX) and the object

∇symv ∈ L2(T 2⊗X). For our purposes it sufficient to know that for any f ∈ Test(X)

we have∇ f ∈ W1,2
C (TX),with∇sym∇ f = ∇(∇ f ) = Hess( f )� (see [47, Sect. 3.2]).

Theorem 2.29 [16] Let vt : [0, T ] → L2(TX) be Borel and such that vt ∈ D(div) for
every t ∈ [0, T ]. Assume furthermore that ‖|vt |‖L2(m) ∈ L1(0, T ), ‖div(vt )−‖L∞ ∈
L∞(0, T ) and ‖∇symvt‖L2(T⊗2X) ∈ L1(0, T ). Then

1. there exists a unique Regular Lagrangian flow Ft associated to vt ,
2. for every initial datum μ0 ∈ P(X) with μ0 ≤ Cm there exists a unique weak

solution μt to the continuity equation and it is given by μt := Ft∗μ0.

We remark that the uniqueness of the Regular Lagrangian Flow in Theorem 2.29
has to be intended up to modification in a negligible set of trajectories, as discussed
above.

Remark 2.30 Let vt be as in Theorem 2.29 and autonomous, i.e. vt ≡ v for some
v ∈ D(div) ∩ W 1,2

C (T X) with div(v)− ∈ L∞(m). Then, thanks to the uniqueness
given by Theorem 2.29, the Lagrangian flow Ft relative to v can be extended uniquely
(up to a set of negligible trajectories) to a map F : [0,∞)× X → X which satisfies
the following group property

Fs ◦ Ft = Fs+t , m-a.e. (2.25)

for every s, t ∈ [0,∞).

Moreover if also div(v) ∈ L∞(m), it can be shown (see for example [58, Lemma
3.18]) that, denoting by F−v

t the Lagrangian flow relative to−v (which exists unique
for all times t ≥ 0, thanks to Theorem 2.29 and the previous observation)

F−v
t ◦ Ft = id, m-a.e,

for every t ≥ 0.Hence setting F−t := F−v
t wecan extend F to F : (−∞,+∞)×X →

X , for which (2.25) is satisfied for every s, t ∈ R . ��

2.3.1 Functions of Bounded Variation

We recall the definition of function of bounded variation on a metric measure space.
For a detailed treatment of this topic see for example [72] and [5].

Definition 2.31 (Functions of bounded variation) We say that function f ∈ L1(m)

belongs to the space BV(X) of functions of bounded variation if there exists a sequence
fn ∈ Liploc(X) such that fn → f in L1(m) and

lim sup
n→+∞

ˆ
lip fn dm < +∞,
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(where lip fn was defined in (2.1)). By localizing this construction we also define

‖Df ‖(A) := inf

{

lim inf
n

ˆ
A
lip fn dm : fn ∈ Liploc(A), fn → f in L1(A)

}

,

for any A ⊂ X open. It is proven in [72] (at least for doubling m.m.s.) that this set
function is the restriction to open sets of a finite and positive Borel measure on X that
we call total variation of f and still denote by ‖Df ‖.
It is proven in [49, Remark 3.5], in the case of proper RCD(K,∞) spaces (and thus
also for any RCD(K , N ), with N < +∞), the equivalence between the total variation
and the weak upper gradient, meaning that if f ∈ BV(X) ∩ Liploc(X), then

‖Df ‖ = |∇ f |m. (2.26)

Definition 2.32 (Sets of finite perimeter) Given a Borel set E ⊂ X and any open set
A ⊂ X we define the perimeter Per(A, E) as

Per(A, E) := inf

{

lim inf
n

ˆ
A
lip fndm : fn ∈ Liploc(A), fn → χ E in L1

loc(A)

}

.

We say that E has finite perimeter if Per(E,X) < +∞. In this case, it can be proved
that the set function Per(E, A) is the restriction to open sets of a finite and positive
Borel measure on X that we still denote by Per(E, .).

Wewill need the following variant of the coarea formula,which follows from (2.26),
the standard coarea formula for m.m.s. (see [72, Remark 4.3]) and a simple truncation
argument.

Proposition 2.33 (Coarea formula) Let X be an RCD(K , N ) m.m.s with N < +∞
and let � ⊂ X open. Let u ∈ LIPloc(�) be positive and such that u−1([a, b]) is
compact in �, for every [a, b] ⊂ (0, 1). Then {u < t} has finite perimeter for a.e.
t ∈ (0, 1) and for any f : � → [−∞,+∞] Borel and in L1

loc(�, |∇u|m|�) it holds
that

ˆ
�

ϕ(u) f |∇u| dm =
ˆ

�

ϕ(t)
ˆ

f dPer({u < t}, .) dt,
∀ϕ : [0, 1] → R Borel, with suppϕ ⊂ (0, 1). (2.27)

3 Nonparabolic RCD Spaces

In this section, we introduce the notion of nonparabolic RCD(0, N ) space: this is the
natural setting to study problem (P), indeed already for smoothmanifolds the existence
of a solution to (P) implies that themanifold is nonparabolic (see for example Theorem
2.3 in [6]).

We recall that a (non-compact) Riemannian manifold is said to be nonparabolic
if it admits a positive global Green function. It has been proved by Varopouls [82]
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that in the case Ric ≥ 0 the nonparabolicity is equivalent to (3.1). This motivates the
following.

Definition 3.1 (Nonparabolic RCD space) Let (X,d,m) be an RCD(0, N ) space with
N < +∞. We say that X is nonparabolic if

ˆ +∞

1

s

m(Bs(x))
ds < +∞, for every x ∈ X . (3.1)

Observe that the above quantity is finite for one x ∈ X if and only if it is finite for all
x ∈ X .

We point out that condition (3.1) in the context of RCD spaces was already introduced
in [25].

Remark 3.2 It follows immediately from the Bishop-Gromov inequality that if X is a
nonparabolic RCD(0, N ) space then it is non-compact and N > 2. ��
In the following two subsections,we develop the two main features of a nonparabolic
RCD space that we will need in this note: the first is the existence of a Green function,
which also provides an explicit solution to (P); the second is that the number of ends
is equal to one (see Definition 3.6).

3.1 The Green Function

It turns out that on a nonparabolic RCD space, it can be given a notion of positive global
Green function. Following [25] we define the Green function G : X×X → [0,+∞]
as

G(x, y) :=
ˆ ∞

0
pt (x, y) dt .

We also set Gx (y) := G(x, y). For any ε > 0 we also define the quasi Green function
Gε : X× X → [0,+∞] as

Gε(x, y) :=
ˆ ∞

ε

pt (x, y) dt (3.2)

and as above we set Gε
x (y) := Gε(x, y). It is proved in [25, Lemma 2.5] that Gε

x ∈
LIP(X) ∩ D(�) with �Gε

x = −pε(x, y)m, in particular Gε
x is superharmonic in the

whole X.

Proposition 3.3 (Estimates for the Green functions, [25, Prop. 2.3], see also [62]) Let
(X,d,m) be a nonparabolic RCD(0, N ) m.m.s. Then there exists a constant C =
C(N ) > 1 such that

1

C

ˆ ∞

d(x,y)

s

m(Bs(x))
ds ≤ G(x, y) ≤ C

ˆ ∞

d(x,y)

s

m(Bs(x))
ds, ∀x, y ∈ X. (3.3)
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Proposition 3.4 Let X be a nonparabolic RCD(0, N ) m.m.s.. Then Gx is positive,
continuous and harmonic in X \ {x}, for every x ∈ X.

Proof Fix R, δ > 0 with R > δ and define Aδ,R = BR(x) \ B̄δ(x). It enough to
prove that Gx is harmonic on Aδ,R . Recall that Gε

x ∈ LIP(X) ∩ D(�) with �Gε
x =

−pε(x, y)m and that Gε
x → Gx in L1

loc(X). We now observe that from the heat kernel
bounds (2.12) we have supt∈(0,1) ‖pt (x, .) + |∇ pt (x, .)|‖L∞(Aδ,R) < +∞ and that
supε>0 ‖Gε

x‖L∞(Aδ,R) < +∞. From this, following the arguments in the proof of [25,
Lemma 2.5], we can prove that the sequenceGε

x is Cauchy inW
1,2(Aδ,R). In particular

Gε
x → Gx inW1,2(Aδ,R) and, since pt (x, .) → 0 uniformly in Aδ,R , we deduce that

Gx is harmonic in Aδ,R (cf. with Lemma 4.7).
We pass to the continuity of Gx in X \ {x}. We first observe that from (2.12) we

have

‖|∇ pt (x, .)|‖L∞(X\Bδ(x)) ≤ C(N )t−1/2m(B√t (x))
−1e

−δ2
5t =: β(t, δ)

and that, thanks to the Bishop-Gromov inequality and the nonparabolicity assumption,´∞
0 β(t, δ) dt < +∞, for every δ > 0. Therefore from the continuity of pt and
Proposition 2.10 we deduce that

lim sup
z→y

|Gx (z)− Gx (y)| ≤
(ˆ ∞

0
β(t, δ) dt

)

lim sup
z→y

d(z, y) = 0, ∀y ∈ X \ B̄δ(x0),

from which the claimed continuity follows. ��
As anticipated, the Green function provides a solution to (P), in particular we have

the following:

Corollary 3.5 LetX be a nonparabolicRCD(0, N ) and let� ⊂ X be open, unbounded
with ∂� bounded. Then for every x0 ∈ �c there exists λ > 0 such that λGx0 is a
solution to (P).

Proof From Proposition 3.4,it follows thatGx0 is harmonic and continuous in X\{x0},
moreover from (3.3), we have that Gx0(x) → 0 as d(x, x0) →+∞. Therefore, since
∂� is bounded and Gx0 is positive, we can simply take λ = (min∂� Gx0)

−1. ��

3.2 Number of Ends

Let us introduce the notion of ends for a metric space. The definition is usually given
for manifolds;however, since the definition is purely metric, it carries over verbatim
to metric spaces.

Definition 3.6 (Number of ends of a metric space) Let (X ,d) be a metric space and
k ∈ N. We say that X has k ends if both the following are true:

1. for any K compact, X \ K has at most k unbounded (topological) connected
components,
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2. there exists K ′ compact such that X \ K ′ has exactly k unbounded (topological)
connected components.

Remark 3.7 Recall that in a length metric space, the notions of topological/ path/
Lipschitz path connectedness are all equivalent (the standard argument used for man-
ifolds carries over).

The following result generalizes to the nonsmooth setting a well-known result for
Riemannian manifolds.

Proposition 3.8 Suppose (X,d,m) is a noncompact RCD(0, N ) space, N ∈ [1,∞).
Then exactly one of the following holds:

(i) X is a cylinder, meaning that X is isomorphic to the product (R×X′,dEucl ×
d′,L1⊗m′), where (X ′,d′,m′) is a compact RCD(0, N −1) m.m.s. if N ≥ 2 and
a single point if N ∈ [1, 2),

(ii) for every C bounded subset of X, there exists R > 0 such that the following
holds: for every couple of points x, y ∈ X satisfying d(x,C),d(y,C) > R there
exists γ ∈ Lip([0, 1],X) such that γ (0) = x, γ (1) = y, γ ⊂ X \ C and
Lip(γ ) ≤ 5d(x, y). In particular X has one end.

Proof We closely follow [6, Prop. 2.10]. Suppose that i i) does not hold, it follows that
there exists a bounded set C , two sequences of points (xk), (yk) ⊂ X and geodesics
(γk) between xk and yk such that d(xk,C),d(yk,C) → +∞ and γk intersects C for
all k. Since X is proper and C is compact, with a compactness argument (assuming all
the γk parametrized by arc length) we deduce that X contains a line. In particular, begin
X an RCD(0, N ) space, by the splitting theorem [45], we infer that X is isomorphic
to the product (R×X′,dEucl ×d′,L1⊗m′), where (X ′,d′,m′) is an RCD(0, N − 1)
space if N ≥ 2 and a single point if N ∈ [1, 2). It remains to prove that X′ is bounded.

Suppose it is not. We claim that this would imply the validity of (i i) and thus
a contradiction. Indeed suppose that C ⊂ X is bounded, then C ⊂ BR(p) for some
R > 0 and p ∈ X. It is enough to show that for every couple of points x0, x1 ∈ B2R(p)c

there exists γ ∈ Lip([0, 1],X) joining them and with image contained in BR(p)c. In
the case d(x0, x1) ≤ R,we conclude immediately by taking a geodesic between x0
and x1, hence we can suppose that d(x0, x1) > R. Identifying X with R×X′ we have
that p = (t̄, x ′), xi = (ti , x ′i ) i = 0, 1, for some t̄, t0, t1 ∈ R and x ′, x ′0, x ′1 ∈ X′.
Hence I × B ′ ⊂ B2R(p), where I := [t̄ − R, t̄ + R] and B ′ := BR(x ′). In particular
xi ∈ (I × B ′)c, i = 0, 1, i.e. for every i = 0, 1 either ti /∈ I or xi /∈ B ′. We claim that
it is sufficient to deal with the case t0 ∈ R \I and x ′1 ∈ X′ \ B ′, indeed the other cases
follow from this one by concatenating two paths of this type as follows: if t0, t1 /∈ I
and x ′0, x ′1 ∈ B ′ we choose y′ /∈ B ′ (which exists since X′ is unbounded) and we join
(t0, x ′0) to (t0, y′) and then (t0, y′) to (t1, x ′1); if t0, t1 ∈ I and x ′0, x ′1 /∈ B ′ we pick
s /∈ I and we join (t0, x ′0) to (s, x ′0) and then (s, x ′0) to (t1, x ′1).

Hence we can assume that t0 ∈ R \I and x ′1 ∈ X′ \ B ′. To build the required path,
consider a geodesic η : [0, 1] → X ′ going from x ′0 to x ′1 and define the function
s : [0, 1] → R as s(t) = t1 t + (1− t) t0. Then the curve

γ (t) =
{

(t0, η(t)), t ∈ [0, 1),
(s(t), x ′1), t ∈ [1, 2],
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is Lipschitz and has image contained in (I × B ′)c ⊂ BR(p)c, hence (up to a
reparametrization) satisfies all the requirements.

To estimate Lip(γ ) we observe that, up to a reparametrization, we can assume that
Lip(γ ) = L(γ ), hence it is sufficient to bound the length of γ . In the case t0 ∈ R \I
and x ′1 ∈ X′ \ B ′ it is sufficient to observe that L(γ ) = d′(x ′0, x ′1) + |t0 − t1| ≤
2(dEucl × d((t0, x ′0), (t1, x ′1))), where γ is the curve constructed above. The general
case follows concatenating two paths as described above, where we pick y′ and s so
that d′(y′, x ′) < 2R, |t̄− s| < 2R. Indeed it can be easily checked these two resulting
paths have,respectively, length not grater than 2R and 2R + d(x0, x1). Since we are
assuming d(x0, x1) ≥ R, this concludes the proof. ��
Corollary 3.9 If X is a nonparabolic RCD(0, N ) space, then it is not a cylinder and
in particular item (ii) of Proposition 3.8 holds and X has only one end.

Proof Suppose by contradiction X is a cylinder R×X′. Then for any r > 0 and any
(x, t) ∈ X′ × R we have

m(Br ((x, t))) = (L1 ⊗m′)(Br ((x, t))) ≤ (L1 ⊗m′)(X′ × [t − r , t + r ]) = m′(X′) 2r ,

which clearly contradicts the fact that X is nonparabolic. ��

4 New Estimates for Harmonic Functions

4.1 Preliminary Calculus Rules

In this subsection,we collect and prove some versions of the chain and Leibniz rule for
theLaplacian and the divergence operator, thatwill be used in the following subsection.
These results are essentially variants of the ones already contained in [48] and [47].
However, since one of themain obstacles in the proof of Theorem4.4 andCorollary 4.5
is making the computations rigorous and justifying the derivatives taken, we decided
to state and prove in details the results we need.

In everything that follows � is an open subset of a proper and infinitesimally
Hilbertian m.m.s. (X,d,m).

Proposition 4.1 (Leibniz rule for �) Let u ∈ D(�,�) and let g ∈ LIPloc(�) ∩
D(�,�) be such that �g ∈ L2(�). Then ug ∈ D(�,�) and

�(ug) = g�u + u�g + 2〈∇u,∇g〉m.

Proof Let f ∈ LIPc(�). Then using the Leibniz rule for the gradient

ˆ
〈∇(ug),∇ f 〉 dm =

ˆ
〈∇u,∇( f g)〉 dm+

ˆ
〈∇g,∇(u f )〉 dm− 2

ˆ
f 〈∇u,∇g〉 dm.

Since f g ∈ LIPc(�) and f u ∈ W1,2(X) with support compact in �, we conclude
from Remark 2.7. ��
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Proposition 4.2 (Leibniz rule for div) Let v ∈ D(div,�). Then

1. if g ∈ LIPloc(�), then gv ∈ D(div,�) and

div(gv) = 〈∇g, v〉m+ gdiv(v); (4.1)

2. if g ∈ W1,2
loc (�) and div(v) ∈ L2

loc(�), then gv ∈ D(div,�) and (4.1) holds.

Proof Let f ∈ LIPc(�). Using the Leibniz rule for the gradient, we get

−
ˆ
〈∇ f , gv〉dm = −

ˆ
〈∇( f g), v〉dm+

ˆ
f 〈∇g, v〉dm.

The conclusion follows in the first case observing that f g ∈ LIPc(�) and in the second
case observing that f g ∈ W1,2(X) with compact support in � and recalling Remark
2.9. ��
Proposition 4.3 (Chain rule for �) Let u ∈ D(�,�) and let ϕ ∈ C2(I ), where I is
an open interval such that (2.4) holds. Then

1. if u ∈ LIPloc(�) then ϕ(u) ∈ D(�,�) and

�|�(ϕ(u)) = ϕ′(u)�|�u + ϕ′′(u)|∇u|2m|�. (4.2)

2. if �u ≥ gm|� for some g ∈ L1
loc(�) then ϕ(u) ∈ D(�,�) and

�|�(ϕ(u)) ≥
(
ϕ′(u)g + ϕ′′(u)|∇u|2

)
m|�.

Proof Let f ∈ LIPc(�), then from the chain rule and Leibniz rule for the gradient

−
ˆ
〈∇(ϕ(u)),∇ f 〉dm = −

ˆ
〈∇(ϕ′(u) f ),∇u〉dm+

ˆ
f 〈∇ϕ′(u),∇u〉dm.

In the first case, we conclude from the fact that ϕ′(u) f ∈ Lipc(�). In the second
case,we assume also f ≥ 0 and observe that ϕ′(u) f ∈ W1,2(X)∩ L∞(m) is nonneg-
ative with compact support in �, hence from Remark 2.7, it follows that

−
ˆ
〈∇(ϕ(u)),∇ f 〉dm ≥

ˆ
ϕ′(u) f gm+

ˆ
f ϕ′′(u)|∇u|2dm.

The conclusion follows applying Proposition 2.6. ��

4.2 Second-Order Estimates for Harmonic Functions

Before starting the discussion, let us say that this part is independent of all the rest of
the note and we only assume that

X is an RCD(K , N ) with N ∈ [2,+∞) and � an open subset of X.
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The goal of this subsection is to prove the following two results, which can be reinter-
preted as a generalization of the well-known fact that in a Riemannian manifold with
nonnegative Ricci curvature the square norm of the gradient of an harmonic function
is subharmonic.

Theorem 4.4 Let X be an RCD(K , N ) space with N ∈ [2,∞), let u be harmonic in
� and β > N−2

N−1 . Then |∇u|β/2 ∈ W1,2
loc (�), |∇u|β ∈ D(�,�) and

�(|∇u|β) ≥ Cβ,N |∇|∇u| β
2 |2m|� + 2βK |∇u|2m|�, (4.3)

where Cβ,N = 4
β

(
β − N−2

N−1

)
. Moreover |∇u|β ∈ D(�,�) also for β = N−2

N−1 with

(4.3) holding without the term containing Cβ,N .

Corollary 4.5 Let X be an RCD(K , N ) space with N ∈ (2,∞). Suppose u is positive

and harmonic in �, set v = u
−1
N−2 and let β > N−2

N−1 . Then |∇v|β/2 ∈ W1,2
loc (�),

u2∇|∇v|β/2 ∈ D(div,�) and

div(u2∇|∇v|β) ≥ Cβ,N u2|∇|∇v| β
2 |2m|� + 2βKu2|∇v|β m|�, (4.4)

where Cβ,N = 4
β

(
β − N−2

N−1

)
. Moreover u2∇|∇v|β/2 ∈ D(div,�) also for β = N−2

N−1

with (4.4) holding without the term containing Cβ,N .

Let us remark that the results on the rest of this note rely only on Corollary 4.5.
However, we decided to isolate Theorem 4.4, since it contains estimates for general
harmonic functions that appear to be useful and interesting on their own.

The main ingredient for the proof of Theorem 4.4 is the following new Kato-type
inequality. Observe that if dim(X) = N , in which case (from [63]) trHess(u) = �u,
letting t → 0 we recover the standard refined Kato inequality for harmonic functions.

Lemma 4.6 (Generalized refinedKato inequality) LetX be anRCD(K , N )space, with
N ∈ [1,+∞), and let n = dim(X). Then for any u ∈ Testloc(�) (see Sect. 2.2.1) it
holds

t + n

t + n − 1
|∇|∇u||2 ≤ |Hess(u)|2HS +

(trHess(u))2

t
, m-a.e. in �, ∀t>0. (4.5)

Proof Observe that it is enough to prove (4.5) for u ∈ Test(X).
We make the following preliminary observation. Let A be any symmetric n × n

real matrix, then the following inequality holds for every t > 0

t + n

t + n − 1
|A · v|2 ≤ |v|2(trA)2

t
+ |v|2|A|2, ∀v ∈ R

n, ∀N ≥ n. (4.6)

where |A| is the Hilbert-Schmidt norm of A. To prove it we can assume that A is
diagonal with diagonal entries λ1, ..., λn , where λn ≥ λi , i ≤ n and also that |v| ≤ 1.
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Applying twice Cauchy-Schwartz we obtain

(λ1 + · · · + λn)
2

t
+ λ21 + · · · + λ2n−1 + λ2n

≥ (λ1 + · · · + λn)
2

t
+ (λ1 + · · · + λn−1)

2

n − 1
+ λ2n

≥ λ2n

t + n − 1
+ λ2n ≥

t + n

t + n − 1
|A · v|2,

which proves (4.6).
Let e1, ..., en ∈ L0(TX) be a global orthonormal base which exists thanks to

Theorem 2.11. Consider the n × n real matrix A : X → L0(m)n
2
defined by

{Ai, j (x)}i, j = {Hess(u)(ei , e j )(x)}i, j . Define also the vector v : X → L0(m)n

as vi (x) := 〈∇u, ei 〉(x). From (2.13) and the formula (2.14) we have that

2|∇u|∇|∇u| = ∇|∇u|2 = 2
n∑

i=1

n∑

j=1

Ai, jv j ei , in L0(TX).

Taking the square pointwise norm on both sides we obtain

4|∇u|2|∇|∇u||2 = 4|A · v|2, m-a.e..

Since from (2.15) and (2.16) we have that |Hess(u)|2HS = |A|2HS and trHess(u) = trA,
the conclusion follows combining the above identity with (4.6). ��

The second ingredient for the proof is the following simple technical lemma (cf.
with [48, Prop. 4.15])

Lemma 4.7 Let X be an RCD(K , N )space, with N < +∞. Let (un) ⊂ D(�,�)

and u ∈ W1,2
loc (�) be such that |∇un − ∇u|2 → 0 in L1

loc(�). Moreover assume that
�un ≥ gnm for some gn ∈ L1

loc(�) such that
´
gn f dm → ´

g f dm + ´
h f dm,

for every f ∈ LIPc(�) with f ≥ 0, for some fixed functions g ∈ L0(�,m) and
h ∈ L1

loc(�), with g ≥ 0m-a.e.. Then g ∈ L1
loc(�), u ∈ D(�,�) and�u ≥ (g+h)m.

Proof The assumptions guarantee that
´ 〈∇un,∇ f 〉dm → ´ 〈∇u,∇ f 〉dm, for every

f ∈ LIPc(�), therefore we can pass to the limit on both sides of− ´ 〈∇un,∇ f 〉dm ≥´
gn f dm to obtain that

−
ˆ
〈∇u,∇ f 〉dm ≥

ˆ
g f dm+

ˆ
h f dm, ∀ f ∈ LIPc(�), with f ≥ 0.

From this it follows that g ∈ L1
loc(�), indeed we can take for any K compact in � a

function f ∈ LIPc(�) such that f ≥ 0 and f = 1 in K and then bring
´
h f dm to the

other side of the inequality. The conclusion then follows applying Proposition 2.6. ��
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Proof of Theorem 4.4 The proof is based on a inductive bootstrap argument. We make
the following claim

if β >
N − 2

N − 1
is such that |∇u|β ∈W1,2

loc (�), then |∇u|β/2 ∈ W1,2
loc (�) and (4.3) holds.

Observe that, since we already know that |∇u|β ∈ W1,2
loc (�) for every β ≥ 1 (recall

(2.21)), the first part of the conclusion follows iterating the above statement.
We pass to the proof of the claim, hence we fix β > N−2

N−1 such that |∇u|β ∈
W1,2

loc (�). Since u ∈ Testloc(�), from the local Bochner inequality (2.20) combined
with the Kato inequality (4.5) (with t = N − dim(X) if dim(X) < N and letting
t → 0 if N = dim(X), since in the latter case 0 = �u = trHess(u)) we have
|∇u|2 ∈ D(�,�) and

�(|∇u|2) ≥
(

2N

N − 1
|∇|∇u||2 + 2K |∇u|2

)

m|�,

Hence from the chain rule for the Laplacian (second version in Proposition 4.3, applied

with ϕ ∈ C2(R) as ϕ(t) = (t + ε)
β
2 ) we have that (|∇u|2 + ε)

β
2 ∈ D(�,�) and

�((|∇u|2 + ε)
β
2 ) ≥

[

β(|∇u|2 + ε)
β
2−1|∇|∇u||2

(
N

N − 1
+ (β − 2)|∇u|2

|∇u|2 + ε
∧ (β − 2)

)

+2Kβ(|∇u|2 + ε)
β
2

|∇u|2
|∇u|2 + ε

]

m|�, (4.7)

for every ε > 0. Setting vε := ∇(|∇u|2 + ε)
β
2 it is easy to see using dominated

convergence that |vε − ∇(|∇u|β)|2 → 0 in L1
loc(�) as ε → 0+. Moreover for every

β > N−2
N−1 , denoting by gβ,ε ∈ L1

loc(�) the function on the right-hand side of (4.7), we
have that

´
�
gβ,ε f dm → ´

�
gβ f dm + 2Kβ

´
�
|∇u|β f dm, for every f ∈ Lipc(�)

with f ≥ 0, where gβ ∈ L0(�,m) is given by

gβ := β

(

β − N − 2

N − 1

)

χ |∇u|>0|∇u|β−2|∇|∇u||2.

This can be seen applying dominated convergence for the second term in (4.7) and
using,respectively, dominated convergence in the case β ≥ 2 and monotone conver-
gence in the case N−2

N−1 < β < 2, to deal with the first term.We are therefore in position
to apply Lemma 4.7 and deduce both that gβ ∈ L1

loc(�) and that |∇u|β ∈ D(�,�)

with�(|∇u|β) ≥ (gβ+2Kβ|∇u|β)m|�.Moreover the fact that gβ ∈ L1
loc(�) together

with Lemma 2.4 implies that |∇u|β/2 ∈ W1,2
loc (�). This shows the claim and thus con-

cludes the proof of the first part.
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We pass to the case β = N−2
N−1 . From the previous part, we know that |∇u|β ∈

W1,2
loc (�), hencewe can repeat the above argument and observe that in this case gβ = 0,

from which the conclusions follows. ��
Proof of Corollary 4.5 We start observing that from the positivity and local Lips-
chitzianity of u follows that u−1 ∈ Liploc(�) and thus uα ∈ W1,2

loc (�) for every
α ∈ R . Moreover, from the chain rule for the Laplacian (first version in Proposition
4.3, applied with u and ϕ(t) = tα , α ∈ R) and by the harmonicity of u, we deduce that
uα ∈ D(�,�) with �(uα) = α(α − 1)uα−2|∇u|2m|�. Hence from the Leibniz rule

for the Laplacian (Proposition 4.1) and Theorem 4.4we have that |∇u|βuα ∈ D(�,�)

with

�(|∇u|βuα) ≥
(
uαgβ + α(α − 1)uα−2|∇u|β+2 + 2αuα−1〈∇|∇u|β,∇u〉

)
m|�

+2Kβuα|∇u|β m|�,

for every β ≥ N−2
N−1 and every α ∈ R, where gβ is the same as in the proof of Theorem

4.4.
Applying the Leibniz rule for the divergence (Proposition 4.2), we deduce that

u2∇(|∇u|βuα) ∈ D(div,�) with

div(u2∇(|∇u|βuα)) ≥
(

uα+2gβ + α(α + 1)uα|∇u|β+2

+ 2(α + 1)uα+1〈∇|∇u|β,∇u〉
)

m|�
+ 2Kβuα+2|∇u|β m|�,

(4.8)

for every β ≥ N−2
N−1 and every α ∈ R.

We now assume that β > N−2
N−1 . Since |∇v| = (N − 2)−1u

1−N
N−2 |∇u| and since from

Theorem 4.4 we have |∇u|β/2 ∈ W1,2
loc (�), it follows that |∇v|β/2 ∈ W1,2

loc (�).
To see (4.4),we just take α = −β N−1

N−2 in (4.8). Then a direct computation gives
that the right-hand side of (4.8) equals the right-hand side of (4.4).

Finally choosing β = N−2
N−1 , α = −1 in (4.8) and recalling that in this case gβ = 0,

shows also the second part of the statement, thus finishing the proof. ��

5 TheMonotonicity Formula

5.1 Decay Estimates

Throughout this section, (X,d,m) is a nonparabolic RCD(0, N ) space (recall from
Remark 3.2 that in this case N > 2), � ⊂ X is open, unbounded, with ∂� bounded,
x0 ∈ �c is fixed and u is a solution to (P). It follows from the maximum principle that

0 < u < ‖u‖L∞ , in �.
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Moreover from Corollary 3.9, we must have that �c is bounded.

Proposition 5.1 Set R0 := 3diam(�c)+ 1, then

|∇u|(x)
u(x)

≤ C

d(x, x0)
, for m-a.e. x ∈ BR0(x0)

c,

where C = C(N ) is a positive constant depending only on N.

Proof Immediate from the gradient estimate (2.22) with R = d(x, x0)/4. ��
Proposition 5.2 For every D, M > 0, there exists a positive constant C2 =
C2(N , D, M) such that the following holds. Let u, � x0 ∈ �c as above with
diam(�c) ≤ D and ‖u‖L∞ ≤ M, then setting δ := d(x0, {u ≤ 1/2}) ∧ 1 we have

δN−2

2
d(x0, x)

2−N ≤ u(x) ≤ C2

ˆ +∞

d(x,x0)
s
m(B1(x0))

m(Bs(x0))
ds, ∀x ∈ BR0(x0)

c, (5.1)

where and R0 := 3diam(�c)+1 and the first inequality actually holds in�∩Bδ(x0)c.

Before passing to the proof we notice that from the assumption lim inf y→∂� u(y) ≥ 1
we have d(x0, {u ≤ 1/2}) > 0, in particular the left inequality in (5.1) is nontrivial.

Proof of Proposition 5.2 We start with the first inequality.
From Laplacian comparison (2.9), we know that d2x0 ∈ D(�) and �d2x0 ≤ 2Nm.

Moreover from (2.10) |∇d2x0 |2 = 4d2x0 . Define now the function h = d2−N
x0 , then from

the chain rule for the Laplacian we have that h ∈ D(�,X \ {x0}), and

�h = 2− N

2
d−N
x0 �d2x0 +

2− N

2

(
2− N

2
− 1

)

4d2x0d
−N−2
x0

= N − 2

2
d−N
x0 (2Nm−�d2x0) ≥ 0.

Hence h is subharmonic inX\{x0}.Moreoverwe have thatλh ≤ 1/2 in Bδ(x0)c, where
λ := δN−2/2. Finally from the assumption d(x0, {u ≤ 1/2}) > δ, we have u ≥ λh in
�∩ Bδ(x0)c. Fix now r > 0 and define the open set �r := {x ∈ � : d(x,�c) > r}.
Observe that the function λh − u is subharmonic in �r . Therefore from the weak
maximum principle (see Proposition 2.15), we deduce that

sup
�r∩BR (x0)∩Bδ(x0)c

(λh − u) ≤ max
∂�r∩Bδ(x0)c

(λh − u) ∨ max
∂Bδ (x0)∩�r

(λh − u) ∨ max
∂BR (x0)

(λh − u)

≤ max
∂�r

(1/2− u) ∨ 0 ∨ max
∂BR (x0)

(λh − u) ,

for every R > R0. Sending R to +∞ and r to 0, recalling that both h and u vanish at
infinity (since N > 2) and that lim inf x→∂� u(x) ≥ 1, we conclude that λh ≤ u in
� ∩ Bδ(x0)c. This proves the first inequality in (5.1).

We now pass to the second inequality in (5.1). We argue by comparison with the
quasi Green function G1(x) := G1(x0, x) (recall its definition in (3.2)). Recall that
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G1 is superharmonic in X. Moreover, using the upper bound for the Green function
and the estimates of the heat kernel, we deduce that

c−1
1

ˆ +∞

1

e−
d(x0,x)2

3s

m(B√s(x0))
ds

(2.12)≤ G1(x)≤G(x, x0)
(3.3)≤ c1

ˆ +∞

d(x,x0)

s

m(Bs(x0))
ds, (5.2)

for every x ∈ X \ {x0}, for some positive constant c1 = c1(N ) > 1. From Bishop-
Gromov inequality and using the change of variable s = td(x0, x)2, we obtain

G1(x) ≥ c−1
1

d(x0, x)2−N

m(B1(x0))

ˆ +∞
1

d(x0,x)2

e− 1
3t

t
N
2

dt ≥ C1
d(x0, x)2−N

m(B1(x0))
, ∀x ∈ B1(x0)

c,

for some constantC1 depending only on N . Therefore, takingλ := Mm(B1(x0))
RN−2
0
C1

,

we have λG1 ≥ M ≥ u in ∂BR0(x0). Hence, since λG1 − u is superharmonic in �,
from the weak maximum principle it follows that for every R > R0

inf
BR(x0)∩BR0 (x0)c

(λG1 − u) = min
∂BR(x0)∪∂BR0 (x0)

(λG1 − u) ≥ min(0, min
∂BR(x0)

(λG1 − u) ).

Sending R to +∞ and recalling that both G1 and u go to 0 at infinity, we conclude
that u ≤ λG1 in BR0(x0)

c, which combined with the second bound in (5.2) gives the
second inequality in (5.1). ��

5.2 Monotonicity

As in the previous section (X,d,m) is a nonparabolic RCD(0, N ) space, � ⊂ X is
open, unbounded, with ∂� bounded and u is a solution to (P).

We start with the following simple remark, which allows to define Uβ and will be
needed to justify the many applications of the coarea formula along all this section.

Remark 5.3 Since u is locally Lipschitz (recall Proposition 5.1), satisfies
lim infx→∂� u(x) ≥ 1 and vanishes at infinity, it follows that u satisfies the hypotheses
needed to apply the coarea formula (2.27) in �. In particular for every f ∈ L1

loc(�)

with fm|� � |∇u|m|� we have

ˆ 1

0
ϕ(t)

ˆ
g dPer({u < r}) dr

=
ˆ

�

ϕ(u) f dm < +∞ , ∀ϕ : [0, 1] → R Borel, with suppϕ ⊂ (0, 1),

(5.3)
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where g is any Borel representative of the function
d( fm|�)

d(|∇u|m|�)
. Therefore, by the

arbitrariness of ϕ, we also deduce that:

for any f ∈ L1
loc(�) with fm|�

� |∇u|m|� and for any Borel representative g of
d( fm|�)

d(|∇u|m|�)
,

the function (0, 1) � r �→
ˆ

g dPer({u < r}) is in L1
loc(0, 1)

and (its a.e. equivalence class)

does not depend on the choice of the representative g.

(5.4)

��
Choosing in the above remark f = |∇u|β+2

u
β N−1
N−2

∈ L1
loc(�), withβ > −2, and observing

that supp(Per({u < t})) ⊂ {u = t},we deduce that, fixed a Borel representative of
|∇u|, the function

Uβ(t) := 1

tβ
N−1
N−2

ˆ
|∇u|β+1 dPer({u < t}) ∈ L1

loc(0, 1), (5.5)

is well defined and independent of the representative chosen for |∇u|. It worth to recall
that after the work of [42] a canonical choice for the representative of |∇u| could be
its quasi-continuous representative (see [42] for the precise definition). An interesting
point would be to investigate the relation between the representative of Uβ given by
this canonical choice and the continuous representative of Uβ , which exists thanks to
Theorem 5.4. We will not investigate this point in the present paper.

We are ready to state our main result regarding monotonicity.

Theorem 5.4 Let X be a nonparabolic RCD(0, N ) space and let � ⊂ X be open,
unbounded, with ∂� bounded. Suppose that u is a solution of (P) and let Uβ , with

β ≥ N−2
N−1 , be the function defined in (5.5). Then Uβ ∈ W 1,1

loc (0, 1), U ′
β ∈ BVloc(0, 1)

and

U
′−
β (t) ≥ Cβ,N

t2

ˆ
{u<t}

u2|∇|∇u 1
2−N | β

2 |2dm, ∀ t ∈ (0, 1], (5.6)

(recall that |∇u 1
2−N | β

2 ∈ W1,2
loc (�) for every β > N−2

N−1 byCorollary 4.5) where Cβ,N =
4
β

(
β − N−2

N−1

)
, U

′−
β is the left continuous representative of U ′

β and where the left-hand

side is taken to be 0 if β = N−2
N−1 . In particular Uβ is non-decreasing.

To prove Theorem 5.4, we start computing the first derivative of Uβ (which does
not evidently carry a sign).
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Proposition 5.5 With the sameassumptions as in Theorem5.4, the functionUβ belongs

to W 1,1
loc (0, 1) and its derivative is given by

U ′
β(t) =

ˆ 〈 ∇u
|∇u| ,∇

( |∇u|β
uβ N−1

N−2

)〉

dPer({u < t}), a.e. t ∈ (0, 1), (5.7)

where the right-hand side has to be intended as in (5.4) with f = 〈∇u,∇
(

|∇u|β
u

β N−1
N−2

)

〉.

Proof Consider the vector field v := ∇u|∇u|β
u

β N−1
N−2

∈ L0(TX)|� for β ≥ N−2
N−1 and observe

that from the Leibniz rule for the divergence (second version in Proposition 4.2)
v ∈ D(div,�) with

div(v) =
〈

∇u,∇
( |∇u|β
uβ N−1

N−2

)〉

∈ L1
loc(�),

thanks to the harmonicity of u. In particular div(v)m� |∇u|m, hence recalling (5.3)
and integrating by parts we have

ˆ 1

0

ˆ
div(v)

|∇u| dPer({u < t})ϕ(t)dt
(5.3)=

ˆ
div(v)ϕ(u)dm

= −
ˆ |∇u|β+2

uβ N−1
N−2

ϕ′(u)dm
(2.27)= −

ˆ 1

0
Uβ(t)ϕ′(t)dt,

for every ϕ ∈ C1
c (0, 1), where in the last step we used that supp(Per({u < t}, .)) ⊂

{u = t} and with div(v)
|∇u| denoting any Borel representative of

d(div(v)m|�)

d(|∇u|m|�))
. The conclu-

sion follows. ��
To prove that U ′

β is nonnegative, we need to push our analysis to the second order

and in particular to compute the derivative of U ′
β(t)t2. The reason for the term t2 is

that the key vector field with nonnegative divergence of Corollary 4.5 presents a term
u2.

Proposition 5.6 With the same assumptions as in Theorem 5.4 , the function U ′
β(t)t2

belongs to BV loc(0, 1) and

(U ′
β(t)t2)′ ≥ Cβ,N

(ˆ
u2|∇|∇u 1

2−N | β
2 |2

|∇u| dPer({u < t})
)

L1|(0,1) ≥ 0, (5.8)

where Cβ,N = 4
β

(
β − N−2

N−1

)
and where the right-hand side has to be intended as in

(5.4) with f = u2|∇|∇u 1
2−N | β

2 |2 when β > N−2
N−1 (recall also that from Corollary 4.5

|∇u 1
2−N | ∈ W1,2

loc (�)), and identically 0 in the case β = N−2
N−1 .
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Proof Consider any nonnegative ϕ ∈ C1
c (0, 1). Applying formula (5.7) and the coarea

formula (5.3)

ˆ 1

0
(U ′

β(t)t2)ϕ′(t)dt =
ˆ 1

0

ˆ 〈 ∇u
|∇u| , u

2∇
( |∇u|β
uβ N−1

N−2

)〉

ϕ′(u)dPer({u < t})

(5.3)=
ˆ
〈∇(ϕ(u)), u2∇

( |∇u|β
uβ N−1

N−2

)

〉 dm,

observing that ϕ(u) ∈ LIPc(�) and recalling from Corollary 4.5 that u2∇
(

|∇u|β
u

β N−1
N−2

)

∈
D(div,�), we obtain

−
ˆ 1

0
(U ′

β(t)t2)ϕ′(t)dt =
ˆ

ϕ(u) ddiv
(

u2∇
( |Du|β
uβ N−1

N−2

))

.

We now plug in (4.4) and (when β > N−2
N−1 ) apply the coarea formula (5.3) (observe

that ||∇|∇u 1
2−N | β

2 |2|m� |∇u|m) to obtain

−
ˆ 1

0
(U ′

β(t)t2)ϕ′(t)dt

≥ C̃β,N

ˆ 1

0

ˆ
u2|∇u|−1|∇|∇u 1

2−N | β
2 |2m|�dPer({u < t})ϕ(t) dt

≥ 0, (5.9)

with u2|∇u|−1|∇|∇u 1
2−N | β

2 |2 denoting any Borel representative of

d

(

u2|∇|∇u 1
2−N | β2 |2m|�

)

d(|∇u|m|�))
. The proof is concluded observing that (5.9) gives at once

that the distributional derivative of U ′(t)t2 is a locally finite measure (it is positive)
and that (5.8) holds. ��

Justified by Proposition 5.5, from this point onwards, we will identify Uβ

with its continuous representative. Moreover Proposition 5.6 guarantees that U ′
β ∈

BV loc(0, 1), thus we will denote by U
′−
β its representative which is left continuous

in (0, 1] (notice that U ′−
β might take value +∞ at t = 1). We observe also that (5.8)

implies that

(0, 1] � t �→ U
′−
β (t)t2 is a nondecreasing function. (5.10)

To prove Theorem 5.4, we aim to integrate (5.8); however,to do so,we still need to
know that Uβ is bounded close to 0. In particular,we prove the following:

Proposition 5.7 With the same assumptions as in Theorem 5.4,

Uβ ∈ L∞(0, 1/2). (5.11)
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Proof It is enough to show that

∣
∣
∣
∣
∣

ˆ 1
2

0
Uβϕ dt

∣
∣
∣
∣
∣
≤ C

ˆ 1
2

0
|ϕ|, ∀ϕ ∈ C1

c (0, 1/2), (5.12)

for some positive constant C independent of ϕ.

We start observing that, integrating by parts and applying the coarea formula (5.3),

0 =
ˆ

�

�uϕ(u) dm = −
ˆ

�

|∇u|2ϕ′(u) dm

= −
ˆ 1

0

ˆ
|∇u| dPer({u < r})ϕ′(r) dr , ∀ϕ ∈ C1

c (0, 1),

in particular
´ |∇u| dPer({u < r}) = D for a.e. r ∈ (0, 1), for some constant D.

Therefore using again the coarea formula

∣
∣
∣
∣
∣

ˆ 1
2

0
Uβϕ dt

∣
∣
∣
∣
∣
≤
ˆ

uβ 1−N
N−2 |∇u|β+2|ϕ(u)| dm

≤
∥
∥
∥|∇u|βuβ 1−N

N−2

∥
∥
∥
L∞({u≤1/2})

ˆ
|∇u|2|ϕ(u)|dm

(5.3)=
∥
∥
∥|∇u|βuβ 1−N

N−2

∥
∥
∥
L∞({u≤1/2})

ˆ 1
2

0

ˆ
|∇u| dPer({u < r})|ϕ(r)| dr

= D
∥
∥
∥|∇u|βuβ 1−N

N−2

∥
∥
∥
L∞({u≤1/2})

ˆ 1
2

0
|ϕ|, ∀ϕ ∈ C1

c (0, 1/2).

Therefore to prove (5.12) it remains to show that
∥
∥
∥|∇u|βuβ 1−N

N−2

∥
∥
∥
L∞({u≤1/2}) < +∞.

Let R0 be as in Proposition 5.2 and observe that u, being positive and satisfying
lim infx→∂� u(x) ≥ 1, is bounded away from zero in BR0(x0) ∩�. Moreover again
thanks to lim inf x→∂� u(x) ≥ 1 we have d(∂�, {u ≤ 1/2}) > 0. Therefore, since
u ∈ LIPloc(�), we have

∥
∥
∥|∇u|βuβ 1−N

N−2

∥
∥
∥
L∞({u≤1/2}∩BR0 (x0))

< +∞.

Moreover combining Proposition 5.1 and the lower bound in (5.1),we obtain

‖|∇u|βuβ 1−N
N−2 ‖L∞(�∩BR0 (x0)c) ≤

∥
∥
∥
∥
∥

(
C(N )

d(., x0)N−2u

)β
∥
∥
∥
∥
∥
L∞(�∩BR0 (x0)c)

< +∞.

Combining the two estimates we conclude. ��
We are now ready to prove the main monotonicity result.
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Proof of Theorem 5.4 We start observing that, thanks to (5.8), settingμ := (Uβ(t)′t2)′
≥ 0 we have

U
′−
β (t)t2 −U

′−
β (s)s2 = μ([s, t)) ≥

ˆ t

s

ˆ
gdPer({u < r}) dr

(5.3)=
ˆ
{s<u<t}

�(u)dm,

for every 0 < s < t ≤ 1, with �(u) = Cβ,Nu2|∇|∇u 1
2−N | β

2 |2 when β > N−2
N−1 ,

�(u) = 0 when β = N−2
N−1 and where g is a Borel representative of

d(�(u)m|�)

d(|∇u|m|�))
.

Therefore to conclude it is enough to prove that there exists a sequence sn → 0+ such
that U

′−
β (sn)s2n → 0.

To achieve this, we first prove that U
′−
β (t) ≥ 0 for every t ∈ (0, 1). We assume by

contradiction that there exists T ∈ (0, 1) such that U
′−
β (T ) < 0. From (5.10)

U
′−
β (s) ≤ U

′−
β (T )

T 2

s2
, ∀s < T ,

from which integrating with respect to s on the interval (t, T )

Uβ(T )−Uβ(t) ≤ U
′−
β (T )T 2

(
1

t
− 1

T

)

.

Sending t → 0+ and recalling thatU
′−
β (T ) < 0, we obtainUβ(t) →+∞ as t → 0+,

which, however, contradicts (5.11).
Since U

′−
β (t) ≥ 0, we have that Uβ is non-decreasing and also nonnegative, hence

it admits a limit as t → 0+. In particular U
′−
β ∈ L1(0, 1

2 ), therefore

an :=
ˆ 2−n

2−(n+1)
U

′−
β (t)dt → 0, as n →+∞.

Moreover from Markov inequality,we have |{U ′−
β > an2n+2} ∩ (2−(n+1), 2−n)| ≤

1
22

−(n+1), thus for every n we can find sn ∈ (2−(n+1), 2−n) such that U
′−
β (sn) ≤

an2n+2. Therefore

U
′−
β (sn)sn ≤ an2

n+2sn < 4an → 0

and the proof is complete. ��
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6 Functional Versions of the Rigidity and Almost Rigidity

6.1 FromOuter Functional Cone to Outer Metric Cone

The following result is a variant of the “from volume cone to metric cone” theorem
for RCD spaces (see [40]). The two main differences with the work in [40] are that
here we start from a function satisfying an equation (instead that from a condition
on the measure), from which we deduce a conical structure on the complement of a
bounded set (instead that on a ball). Related to this type of results, we mention also [4,
23] and [24] where functional versions of the splitting theorem in nonsmooth setting
have been obtained. Finally we recall that the almost splitting theorems in the smooth
setting proved in [29] were also based on a functional formulation similar to the one
we are considering here.

Theorem 6.1 Let (X ,d,m) be an RCD(0, N ) space with N ∈ [2,∞) and U ⊂ X
be open with ∂U bounded. Suppose there exists a positive and continuous function
u ∈ D(�,U ) such that �u = N m-a.e. in U, |∇√2u|2 = 1 m-a.e. in U, u0 :=
lim supx→∂U u(x) < +∞ and {u > u0} $= ∅. Then
(i) there exists unique anRCD(N−2, N−1) space (Z ,dZ ,mZ )with diam(Z) ≤ π

and a bijective measure preserving local isometry S : {u > u0} → Y \ Br (OY ),
with r := √

2u0 and where (Y ,dY ,mY ) is the Euclidean N cone built over Z
with vertex OY ,

(ii) – if DZ := diam(Z) < π then local isometry of point i) is an isometry between
Y \ BrZ (OY ) and

{
u > r2Z/2

}
, where rZ := r(1− sin DZ/2)−1 > r ,

– if diam(Z) = π , then (X ,d,m) isomorphic to (Y ,dY ,mY ),
(iii) the function u has the following explicit form

u(x) = 1

2
dY (S(x), OY )2 = 1

2
(d(x, ∂{u > u0})+

√
2u0)2, ∀x ∈ {u > u0},

(6.1)

in particular the level set {u = t2
2 }, for every t > u0, is Lipschitz path connected

and isometric (with its induced intrinsic distance) to (Z , tdZ ).

Remark 6.2 It might be worth to remark that the hypotheses of Theorem 6.1 are not
stable with respect to taking products with R. This is because ∂U does not remains
bounded under this operation and (since the natural transformation would be ‘u →
u(x) + t2

2 ’) the new function would also not satisfy lim supx→∂U u(x) < +∞. This
is particularly relevant to the extra rigidity statement present in i i).

We observe that the uniqueness part of Theorem 6.1 is an immediate consequence
of the rest of the statement. Indeed, from the last part of i i i), we deduce that the metric
space (Z ,dZ ) (and thus (Y ,dY )) is uniquely determined up to isometries. Moreover,
since S is measure preserving, the measure mY is uniquely determined as well, hence
from the definition of the measure in an N cone,we obtain that also mZ is uniquely
determined.
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As already said, the proof of the above Theorem is mainly an adaptation of the
proof in [40]. However, some parts will require new arguments. The first main point
is that in [40],the starting point is the gradient flow of the distance function d, which
is used to deduce analytical information on d. Here instead we start from an analytical
information, i.e. a PDE, and we want to build a flow. This will be done through the
tool of Regular Lagrangian Flows. One of the main tools we need to develop in this
regard is an a-priori estimate of local type, which seems to be missing in literature and
does not follows immediately from the standard global a-priori estimates in [16].

The second main difference is that here the analysis takes place in the complemen-
tary of a bounded set, while in [40] all the work is done inside a fixed ball. Among
other things, this difference will mainly affect the way in which we deduce that the
cone is itself an RCD(0, N ) space. Indeed in [40] this follows from the fact that a
whole ball with centre x0 is isometric to a ball centred at the tip of the cone, therefore
any blow-up of the space at x0 will converge to the said cone. Then from the closedness
of the RCD(0, N ) condition,the conclusion follows. However, in our case, the same
argument cannot be applied, indeed our isometry is by nature far from the tip of the
cone. This issue will be overcome noticing that our isometry is almost global, meaning
that the space is isometric to the cone outside a bounded set. This allow us to deduce
that any blow down of the space will converge to the cone, which gives the conclusion
again by the closedness of the RCD(0, N ) class.

Since they are interesting on their own and independent of the rest of the proof,
we isolate the two ingredients that we just described in the following two subsections.
The remaining part of the argument will be outlined in Appendix A.

6.1.1 The Blow Down Argument

Proposition 6.3 Let (X,dX,mX) be a m.m.s. and let V ⊂ X be closed and bounded.
Suppose that there exists an Euclidean N cone, (Y ,dY ,mY ) over a m.m.s. Z, N ∈
[1,∞), with tip OY and a bijective local isometry T : V c → Y \ BR(OY ), for some
R > 0, which is measure preserving, i.e. T∗mX|V c = mY |BR(OY )

. Then for every
x0 ∈ X and every sequence rn →+∞ it holds that

(X, r−1
n dX, r−N

n mX, x0)
pmGH−→ (Y ,dY ,mY , OY ).

In particular if X is an RCD(0, N ) space, then Y is an RCD(0, N ) space as well.
Finally if X is RCD(0, N ) and diam(Z) = π then X is isomorphic to Y as m.m.s..

Remark 6.4 Observe that in Proposition 6.3, the assumptions that V is bounded and
that T is surjective onto the complementary of a bounded set are crucial. Otherwise
we would easily build a counterexample taking the product X × R (cf. with Remark
6.2).

Proof of Proposition 6.3 Fix x0 ∈ X and observe that, up to increase R and enlarge V ,
it is not restrictive to assume that x0 ∈ V .

Set D := diam(V ), δn := 1
4rn

(D + R) and define Xn := (X, r−1
n dX, r−N

n mX, x0).
Without loss of generality we will assume that rn ≥ 1.
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Since Y is an Euclidean N cone,it follows that Yn := (Y , r−1
n dY , r−N

n mY ) is iso-
morphic to (Y ,dY ,mY ) via the map in : Yn → Y , defined as in(t, z) := (t/rn, z) in
polar coordinates, which satisfies in(BR(OY )) = Br−1

n ROY for every R > 0. Observe

that in particular in∗mY = r Nn mY .

We extend T to the whole X by setting T (x) = OY for every x ∈ V and we denote
this new map again by T . It is straightforward to check that

|dX (x1, x2)− dY (T (x1), T (x2))| ≤ 2(R + D), ∀ x1, x2 ∈ X . (6.2)

Define now the map Tn : Xn → Y as Tn = in ◦ T . It follows from (6.2) and the
properties of in that Tn is a δn-isometry. Moreover it can be readily checked that
BY
R−D(OY ) ⊂ T (BX

R (x0)), for any R > D. In particular it follows that BY
R−δn

(OY ) ⊂
Tn(B

Xn
R (x0)), for every R > D. Finally we let ϕ ∈ Cb(Y ) be of bounded support,

since T is measure preserving we have

r−N
n

ˆ
ϕ ◦ Tndm = r−N

n

ˆ
V

ϕ ◦ Tndm+ r−N
n

ˆ
Y\BR(OY )

ϕ ◦ indmY

= r−N
n

ˆ
V

ϕ ◦ dTn∗m+
ˆ
Y\B

r−1
n R

(OY )

ϕdmY .

Passing to the limit, observing that the first term on the right-hand side vanishes as
rn →+∞, we obtain r−N

n

´
ϕ ◦ Tndm→ ´

ϕdmY as rn →+∞. This concludes the
first part.

The second part follows immediately from the closedness of the RCD(0, N ) con-
dition under pmGH-convergence.

Suppose now thatX is anRCD(0, N ) space and diam(Z) = π . ThenY must contain
a line. Therefore, since from the previous partY is anRCD(0, N ) space, it follows from
the splitting theorem [45, 46] that Y is isomorphic to (R×Y ′,dEucl × d′,L1 ⊗ m′

Y )

for some m.m.s. (Y ′,d′,mY ′). In particular OY = (t̄, ȳ) for some t̄ ∈ R and ȳ ∈ Y ′
and mY (Br (OY )) = mY (Br (s, ȳ)), for any r > 0 and any s ∈ R .

Therefore taking s big enough, we have that O ′ := (s, ȳ) ∈ Y satisfies O ′ ∈
{dY (., OY ) > R + 1}. Therefore, since T |V c is a measure preserving local isometry,
mY (Br (O ′)) = mX (Br (T−1(O ′))) holds for every r ∈ (0, 1). Hence

lim
r→0+

m(Br (T−1(O ′)))
r N

= lim
r→0+

mY (Br (O ′))
r N

= lim
r→0+

mY (Br (OY ))

r N
= mY (B1(OY )) =: θ,

since OY is the vertex of Y . On the other hand, since Xn := (X, r−1
n dX, r−N

n mX, x0)
pmGH−→ (Y ,dY ,mY , OY ) we have
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lim
rn→+∞

m(Brn (T
−1(O ′)))

rn N
= lim

rn→+∞
mX (Brn (x0))

r Nn
= lim

n
mXn (B1(x0)) = mY (B1(OY )) = θ.

From Bishop-Gromov inequality,we deduce that m(Br (T−1(O ′)))
r N

= θ for every r > 0
and from [40, Thm. 1.1] we must have that X is a cone, which must evidently coincide
with Y . ��

6.1.2 Local a-Priori Estimate for Regular Lagrangian Flows in RCD Spaces

The following local version of the a-priori estimates in [16, Prop. 4.6] will be crucial
for the argument of Appendix A to work (see Proposition A.6).

Proposition 6.5 Let {vt , μt }t∈[0,T ] be as in Theorem 2.29. Assume additionally that
{μt }t∈[0,T ] are all concentrated in a common bounded Borel set B. Then setting ρt :=
dρt
dm , t ∈ [0, T ], it holds that

sup
t∈(0,T )

‖ρt‖L∞ ≤ ‖ρ0‖L∞e
´ T
0 ‖div(vt )−‖L∞(Bt ) dt , (6.3)

for any family {Bt }t∈[0,T ] of Borel sets such that ρt = 0 m-a.e. in Bc
t and the map

(x, t) �→ χ Bt (x) is Borel.

For the proof of Proposition 6.5,we will need the following :

Lemma 6.6 (Commutator estimate [16, Lemma 5.8]) LetX be anRCD(K ,∞)m.m.s.,
then there exists a positive constant C = C(K ) > 0 such that the following holds. Let
v ∈ W 1,2

C (T X) with div(v) ∈ L∞(m), then

ˆ
〈∇ht ( f ), v〉gdm+

ˆ
f div(ht (g)vt )dm

≤ C
(‖∇v‖L2(T⊗2X) + ‖div(v)‖L∞

) ‖ f ‖L2∩L4‖g‖L2∩L4 , (6.4)

for every f , g ∈ L2(m)∩L4(m) and every t > 0. In particular for fixed g,the left-hand
side of (6.4) defines a functional in (L2(m) ∩ L4(m))∗ = L2(m) + L4′(m), denoted
by C t (g, v), which satisfies

‖C t (g, v)‖L2(m)+L4′ (m)
≤ C

(‖∇symv‖L2(T⊗2X) + ‖div(v)‖L∞
) ‖g‖L2∩L4 . (6.5)

Moreover it holds that

‖C t (g, v)‖L2(m)+L4′ (m)
→ 0, as t → 0+. (6.6)

We can now pass to the proof of the local a-priori estimate.
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Proof of Proposition 6.3 We start with the preliminary observation that, combining the
fact that μt = Ft∗μ0 with (2.23) and recalling that B is bounded, we have

sup
t∈[0,T ]

‖ρt‖Lq (m) < +∞, ∀ q ∈ [1,∞]. (6.7)

To conclude it is sufficient to prove that for every p > 1 the function [0, T ] � t �→´
(ρt )

pdm is absolutely continuous and

d

dt

ˆ
(ρt )

pdm ≤ (p − 1)
ˆ

(ρt )
pdiv(vt )

−dm, for a.e. t ∈ (0, T ). (6.8)

Indeed (6.3) would follow first applying Gronwall Lemma (noticing that ρt = 0m-a.e.
outside Bt ) and then letting p →+∞.

So we fix p > 1. Pick a sequence sn ↓ 0 and define ρn
t := hsnρt . From the fact

that ρt is a solution of the continuity equation and the selfadjointedness of the heat
flow, we obtain that for every f ∈ LIPbs(X), the function t �→ ´

f ρn
t dm is absolutely

continuous and

d

dt

ˆ
f ρn

t dm =
ˆ
〈∇hsn f , vt 〉ρt dm

=
ˆ

f [C sn (ρt , vt )− div(ρn
t vt )]dm, for a.e. t ∈ (0, T ), (6.9)

whereC sn (ρt , vt ) is defined as in Lemma 6.4. Set now ηnt := C sn (ρt , vt )−div(ρn
t vt ).

From the Leibniz rule and the L∞-to Lipschitz regularization of the heat flow (2.11)
we have that

‖div(ρn
t vt )‖L2 ≤ ‖ρt‖L2‖div(vt )‖L∞ + c(K )

‖ρt‖L∞√
sn

‖|vt |‖L2 .

This bound together with (6.5), (6.7) and the hypotheses on vt , guarantees that ηnt ∈
L1((0, T ), L2(m) + L4′(m)). Denote by V the Banach space L2(m) + L4′(m) and
observe that L2 ∩ L4 = V ∗. Then (6.9) can be restated as: for a weakly*-dense set
of ϕ ∈ V ∗ the function [0, T ] � t �→ ϕ(ρn

t ) is absolutely continuous and d
dt ϕ(ρn

t ) =
ϕ(ηnt ). It follows (see e.g. Remark 4.9 in [16]) that ρn

t is absolutely continuous in
L1((0, T ), V ) and strongly differentiable a.e. with d

dt ρ
n
t = ηnt .

Pick a convex function β : [0 +∞) → [0 +∞) such that β(t) = t p for every
t ≤ 2 supt∈(0,T ) ‖ρt‖L∞ < +∞ and such that β ′ is globally bounded. In particular
from the maximum principle for the heat flow we have that β(ρn

t ) = (ρn
t )p for every

t and n. Moreover, since ρt are uniformly bounded in Lq(m) for every 1 ≤ q ≤ ∞,
from the contractivity of the heat flow we have also that ρn

t are bounded in Lq(m) for
every 1 ≤ q ≤ ∞, uniformly in t and n. Finally, observing that β ′(t)/t is globally
bounded, we deduce that β ′(ρn

t ) are again bounded in Lq(m) for every 1 ≤ q < ∞,
uniformly in t and n.
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Observe now that from the convexity of β, we have that

ˆ
β(ρn

t )− β(ρn
s )dm ≤

ˆ
β ′(ρn

t )(ρn
t − ρn

s )dm, ∀t, s ∈ [0, T ]. (6.10)

This in turn gives

ˆ
β(ρn

t )− β(ρn
s )dm ≤ sup

t∈[0,T ]
‖β ′(ρn

t )‖L2∩L4(m)‖ρn
t − ρn

s ‖L2+L4′

≤ sup
t∈[0,T ]

‖β ′(ρn
t )‖L2∩L4

ˆ t

s
‖ηnr ‖L2+L4′ dr ,

for every t, s ∈ [0, T ], with s ≤ t . Hence the function
´

β(ρn
t )dm is absolutely

continuous in [0, T ] and from (6.10),we deduce that

d

dt

ˆ
β(ρn

t )dm ≤
ˆ

β ′(ρn
t )ηnt dm, for a.e. t ∈ (0, T ).

Then from the definition of ηnt and β and integrating by parts,we obtain

d

dt

ˆ
β(ρn

t )dm ≤ −
ˆ
[β ′(ρn

t )ρn
t − β(ρn

t )]div(vt )dm+
ˆ

C sn (ρt , vt )β
′(ρn

t )dm

≤ (p − 1)
ˆ

(ρn
t )pdiv(vt )

−dm+ p
ˆ

C sn (ρt , vt )(ρ
n
t )p−1dm,

for a.e. t ∈ (0, T ). Observe now that combining (6.5) with (6.6), an application of
dominated convergence gives that

´ T
0 ‖C sn (ρt , vt )‖L2+L4′ → 0 as sn → 0. Then,

recalling that div(vt )− ∈ L∞((0, T ), L∞(m)) and (6.7), we can let sn → 0 in the
above and obtain at once the absolute continuity of

´
(ρt )

pdm together with (6.8). ��

6.2 From Almost Outer Functional Cone to Almost Outer Metric Cone

Our aim in this section is to prove the following.

Theorem 6.7 For every ε ∈ (0, 1/3), R0 > 0, γ > 1
2
N−2
N−1 , N ∈ [2,∞), L > 0 there

exists 0 < δ = δ(ε, γ, N , R0, L) such that the following holds. Let (X,d,m, x0)
be a pointed RCD(−δ, N ) m.m.s. with m(B1(x0)) ∈ (ε, ε−1). Let U ⊂ X be
open with Uc ⊂ BR0(x0) and v ∈ D(�,U ) ∩ C(U ) be positive and such that
lim supx→∂U v(x) ≤ 1, �v = N |∇√2v|2, v ≥ 1 + ε in BR0(x0)

c $= ∅ and
‖|∇√v|‖L∞(U ) ≤ L. Suppose furthermore that

ˆ
U

1

vN−2

∣
∣∇|∇√v|γ ∣∣2 dm < δ, (6.11)

where it is intended that vN−2 ≡ 1 in the case N = 2.
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Then there exists a pointed RCD(0,N) space (X′,d′,m′, x ′) such that

dpmGH ((X,d,m, x0), (X
′,d′,m′, x ′)) < ε (6.12)

and (X′,d′,m′, x ′) is a truncated cone outside a compact set K ⊂ B2R0(x
′), i.e. there

exists an RCD(0,N) N cone Y , with vertex OY , over an RCD(N − 2, N − 1) space
Z, and a measure preserving local isometry T : X′ \ K → Y \ B̄r (OY ), for some
r > L−1.

Remark 6.8 Observe that inequality (6.12) is non-trivial because X′ is a cone outside
a compact set K ⊂ B2R0(x

′) with R0 independent of ε > 0. This means that for an
arbitrary large radius R & R0, up to choosing ε > 0 sufficiently small, we have that
the ball BR(x0) is as close as we want in the GH-sense to a ball of radius R > 0, which
is a truncated cone up to removing a set of diameter less than 4R0 (which is fixed and
independent of R).

Observe that (6.11) makes sense thanks to Corollary 4.5.
Notice also that the assumption u ≥ 1+ ε in BR0(x0)

c is necessary as the function
v ≡ 1 shows.Wewill also prove another version of the above result, which is Theorem
6.9. Before passing to its statement, we need some definitions and notations.

For any couple of compactmetric spaces (X1,d1), (X2,d2),wedefine theirGromov
Hausdorff distance as

dGH ((X1,d2), (X2,d2)) := inf{ε > 0 : ∃ f : X1 → X2 such that f (X1) is ε-dense in X2

and |d1(x, y)− d2( f (x), f (y))| ≤ ε, ∀x, y ∈ X1}.

For a sequence of compact metric spaces (Xn,dn) converging to (X,d) in the GH-
sense, we say that a sequence of maps fn : Xn → X realizes the convergence if
there exists a sequence εn → 0 such that f (Xn) is εn-dense in X and |dn(x, y) −
d( fn(x), fn(y))| ≤ εn , ∀x, y ∈ Xn .

Moreover we recall the notion of Sturm distance D for compact m.m.s. which was
first introduced in [80] in the case of renormalized spaces (see also [54]):

D((X1,d2,m2), (X2,d2,m1)) := inf

∣
∣
∣
∣log

m1(X1)

m2(X2)

∣
∣
∣
∣+W2

(
ι1∗m̃1, ι2∗m̃2

)
,

where m̃i = mi
m(Xi )

, i = 1, 2 and the infimum is taken among all the complete and

separable metric spaces (Y ,d) and isometric embeddings Xi
ιi

↪→ Y , i = 1, 2.Observe
that D is well defined since we are assuming that supp(mi ) = Xi .

It is important to recall that an upper bound onD does not imply in general an upper
bound on dGH , indeed this holds only if we restrict ourselves to a family of uniformly
doubling metric measure spaces. However, we will need to apply D to spaces which
are not a-priori uniformly doubling, for this reason we will need to work both with
dGH and with D.
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Finally, for any (X,d) complete metric space and A ⊂ X we define the intrinsic
metric on A to be the distance function dA : A → [0,+∞] defined by

dA(x, y) := inf
γ

L(γ ), ∀x, y ∈ A,

where the infimum is taken among all curves γ ∈ AC([0, 1],X) with values in A and
such that γ (0) = x , γ (1) = y.

If we also assume that A is relatively compact, then for every x, y ∈ A such that
d(x, y) < +∞, there exists an absolutely continuous curve γ with values in Ā such
that dA(x, y) = L(γ ).

We are ready to state the second version of Theorem 6.7, which is more in the spirit
of the ‘volume annulus implies metric annulus’ theorem of Cheeger and Colding,
which is also based on a functional formulation similar to the present one (see [29,
Theorem 4.85]).

Theorem 6.9 For every ε ∈ (0, 1/3), R0 > 0, γ > 1
2
N−2
N−1 , N ∈ [2,∞), L > 0,

η ∈ (0, ε−1) there exists 0 < δ = δ(ε, γ, N , R0, L, η) such that, given X, U and v as
in Theorem 6.7, there exists an RCD(0,N) N cone (Y ,dY ,mY ) with vertex OY , over
an RCD(N − 2, N − 1) space Z, and a constant λ ∈ (0, L) such that the following
holds.

For every 1 + ε + η < t1 ≤ t2 < ε−1 satisfying {√v ≤ t2 + 2η} ⊂ BR0(x0), it
holds

dGH
(
({t1 ≤

√
v ≤ t2},dη

X),
({t1 ≤ λdOY ≤ t2},dη

Y

))
< ε, (6.13)

where dOY := dY (., OY ) and dη
X and dη

Y denote the intrinsic metrics on {t1 − η <√
v < t2 + η} and on {t1 − η < λdOY < t2 + η} (see definition above). Moreover,

provided that t1 + ε < t2,

D

(
({t1 ≤

√
v ≤ t2},dε

X,m|{t1≤√v≤t2}
)
,
({t1 ≤ λdOY ≤ t2},dε

Y ,mY |{t1≤λdOY ≤t2}
)
)

< ε.

(6.14)

Moreover the cone Y can be taken so that the conclusion of Theorem 6.7 holds (with
the same ε, R0 and L) with Y and for some RCD(0, N ) space X′.

We point out that in general we cannot say anything better than λ ≤ L . This is
immediately seen by taking v = L2|x |2 in Rn and U = R

n \B̄1/L(0).
It is important to notice that the information in (6.13) is not contained in (6.14),

indeed, as said above, it is not clear to us if, fixed ε, γ, N , R0, L as in Theorem 6.9, the
metric measure spaces ({√t1 ≤ √

v ≤ √
t2},dη

X,m|{t1≤√v≤t2}), for arbitrary v, t1, t2
as in the hypotheses, satisfy some uniform doubling condition.

For the proof of Theorem 6.9, we will need the following elementary lemma. The
proof is a direct consequence of the definition of distance in a cone andwill be omitted.
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Lemma 6.10 Let (Y ,d) be an Euclidean cone of vertex OY and for any 0 < a < b let
da,b be the intrinsic metric on {a < d(., OY ) < b}. Then for every 0 < ε < a < b it
holds

da−ε,b+ε ≤ da,b ≤ a

a − ε
da−ε,b+ε, in {a < d(., OY ) < b}.

Moreover for any two sequences (an), (bn) such that an → a, bn → b it holds

({an ≤ d(., OY ) ≤ bn},dan−ε,bn+ε)
GH→ ({a ≤ d(., OY ) ≤ b},da−ε,b+ε)

and the map fn(t, z) :=
(

(t−an)(b−a)
(bn−an) + a, z

)
(in polar coordinates) realizes such

convergence.

Finally for proof of Theorem 6.9,we will need the following result (see below for
the definition of mGH-convergence):

Proposition 6.11 ([54, Prop. 3.30]) Let (Xn,dn,mn) be compact m.m. spaces mGH-
converging to a compact m.m.s. (X∞,d∞,m∞). Then

D((Xn,dn,mn), (X∞,d∞,m∞)) → 0.

Definition 6.12 (measure Gromov Hausdorff convergence) We say that the sequence
(Xn,dn,mn) of m.m.s. measure Gromov Hausdorff -converges (mGH-converges in
short) to a compact m.m.s. (X∞,d∞,m∞), if there are Borel maps fn : Xn → X∞
such that

(1) supx,y∈BRn (xn) |dn(x, y)− d∞( fn(x), fn(y))| ≤ εn ,
(2) fn(Xn) is εn-dense in X∞,
(3) fn∗mn⇀m∞ in duality with C(X∞).

Notice that if (Xn,dn,mn) → (X∞,d∞,m∞) in themGH-sense, thendGH ((Xn,dn, ),
(X∞,d∞)) → 0.

Proof of Theorems 6.7 and 6.9 The proof of Theorem 6.7 is essentially the same as
Theorem 6.9, except that it stops earlier. For this reason,we will prove both theorems
together. The reader interested only in the proof of the first result can ignore the second
half of the argument.

Proof of Theorem 6.7:
We argue by contradiction. Suppose that there exist numbers ε ∈ (0, 1/3), N ∈

[2,∞), R0 > 0, γ ≥ 1
2
N−2
N−1 , L > 0, a sequence δn → 0, a sequence (Xn,dn,mn, xn)

of RCD(−δn, N ) m.m.s., a sequence of open sets Un ⊂ Xn , with Uc
n ⊂ BR0(xn),

functions vn ∈ D(�,Un) satisfying �vn = 2N |∇√vn|2 such that:

(a) lim supx→∂Un
vn(x) ≤ 1, vn ≥ 1+ ε in BR0(x0)

c $= ∅, ‖|∇√vn|‖L∞(Un) ≤ L,

(b) mn(B1(xn)) ∈ (ε, ε−1),
(c) (6.11) holds (with vn , mn , γ and δ = δn),
(d) for every n the conclusion of Theorem 6.7 does not hold.
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We first observe that, since vn ≥ 1 + ε in BR0(x0)
c, removing the set {vn ≤ 1}

from Un does not effect neither the hypotheses of the theorems nor their conclusions,
therefore it is not restrictive to assume that vn > 1 in Un .

Moreover by compactness, up to passing to a nonrelabelled subsequence, we can
assume that the p.m.m. spaces (Xn,dn,mn, xn) pmGH-converge to a to an RCD(0,N)

pointed m.m.s. (X∞,d∞,m∞, x∞).

Passing to the extrinsic approach, we consider a proper metric space (Y ,dY ) that
realizes such convergence, in particular we identify the metric spaces Xn and X∞ with
the corresponding subsets of Y such that dY (xn, x∞) → 0, mn⇀m∞ in duality with
Cbs(Y ) and dYH (BXn

R (xn), B
X∞
R (x∞)) → 0 for every R > 0. In particular for every

x ∈ X∞, there exists a sequence yn ∈ Xn such that dY (x, yn) → 0 and conversely for
every R > 0 and every sequence yn ∈ BXn

R (xn) there exists a subsequence converging
to a point x ∈ X∞. These two facts will be used repeatedly in the proof without further
notice.

Define the compact sets Kn = Uc
n ⊂ Xn and observe that, since Kn ⊂ BR0(xn),

they are all contained in a common ball in Y centred at x∞. Hence from the metric
version of Blaschke’s theorem (see [20, Theorem 7.3.8]), there exists a compact set
K∞ ⊂ X∞ such that, up to a subsequence, dYH (K∞, Kn) → 0.

Define the open (in the topology of X∞) set U∞ := X∞ \ K∞ and for every
r > 0, define the open sets U<r

n = {x ∈ Xn : dn(x, Kn) < r} and U<r∞ = {x ∈
X∞ : d∞(x, K∞) < r}. Analogously we define the sets U>r

n ,U≤r
n ,U≥r

n and the
corresponding ones for n = ∞.

From the assumptions lim supx→∂Un
vn(x) ≤ 1 and ‖|∇√vn|‖L∞(Un) ≤ L , apply-

ing Proposition 2.10,it follows that

vn ≤ (1+ RL)2, in BR(xn) ∩Un, {vn ≤ 1+ ε/4} in U≤4ρ
n ∩Un, (6.15)

for every R > 0 and for some small constant 0 < ρ = ρ(ε, L) < ε, independent of n.
For every n and every k ∈ N with k ≥ R0 + 100, thanks to Proposition 2.13,

there exists a cut-off function ηnk ∈ Test(X), 0 ≤ ηnk ≤ 1, such that supp ηkn ⊂
U>ρ/2
n ∩ Bk+2(xn), ηkn = 1 on U≥ρ

n ∩ Bk+1(xn) and Lipηkn + |�ηkn| ≤ C , for some
constant C depending only on ε, N , L . Observe also that we can choose ηkn so that
ηkn = ηk+1

n in Bk+1(xn), for every k.
Define the functions vkn := vnη

k
n, ṽkn := √

vnη
k
n and observe that from (6.15)

and the assumption ‖|∇√vn|‖L∞(Un) ≤ L they are equi-Lipschitz, equibounded in
n and all supported on Bk+2(xn). Hence by Ascoli-Arzelà (see Prop. 2.21), up to a
subsequence, as n → +∞, they converge uniformly to functions vk∞, ṽk∞ ∈ C(X∞)

with support in B̄k+2(x∞).
From Proposition 2.23, it follows that vkn, ṽ

k
n converge also strongly in L2, respec-

tively, to vk∞, ṽk∞. It is clear from the construction and the uniform convergence that
vk∞ = vk+1∞ on Bk(x∞). Therefore the assignment v∞ := vk∞ in Bk(x∞) for every k,
well defines a function v∞ ∈ C(X∞). Analogously we can define ṽ∞ ∈ C(X∞) and
we observe that ṽ∞ = √

v∞ in U≥2ρ∞ .
We make the following two claims:

(A) v∞ ≤ 1+ ε/4 in U≤3ρ∞ ,
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(B) {v∞ > 1 + ε/4} $= ∅, v∞ ∈ D(�) and (up to multiplying v∞ by a positive
constant C0) it holds that �v∞ = N , |∇v∞|2 = 2v∞ m-a.e. in {v∞ > 1+ ε/4}.

We start with claim (A). It is clearly enough prove that

vk∞ ≤ 1+ ε/4, in U≤3ρ∞

for any k. Pick any y ∈ U≤3ρ∞ , then there exists a sequence yn ∈ Xn such that yn → y
in Y and by uniform convergence vkn(yn) → vk∞(y). Moreover it must hold that
dY (yn, Kn) < 4ρ if n is big enough. If yn /∈ Un , then vkn(yn) = 0 by construction. If
instead yn ∈ Un from the second in (6.15) and the fact that ηnk ≤ 1 we deduce that
vkn(yn) ≤ vn(yn) ≤ 1+ ε/4. Combining these two observations, we get claim (A).

We pass to the proof of claim (B). It is easy to check, since vn ≥ 1 in Un

(recall the observation made at the beginning of the proof), that supn ‖�vkn‖L∞(Xn) <

+∞ and supn ‖�ṽkn‖L∞(Xn) < +∞. Moreover by Bishop-Gromov inequality,we
have supn mn(BR(xn)) < +∞, for every R ≥ 1. Therefore supn ‖�vkn‖L2(Xn)

,

supn ‖�ṽkn‖L2(Xn)
< +∞ and applying Theorem 2.24 we deduce that vk∞, ṽk∞ ∈

D(�), that �vkn converges to �vk∞ weakly in L2 and that |∇ṽkn | → |∇ṽk∞| strongly
in L2. The locality of Laplacian follows that v∞ ∈ D(�). Additionally, since L ′ :=
supn ‖|∇ṽkn |‖L∞ < +∞, applying a) of Proposition 2.23 (with ϕ(t) = (t ∧ L ′)α), we
also deduce that |∇ṽkn |α → |∇ṽk∞|α strongly in L2, for every α > 0. We make the
intermediate claim that

�v∞ = N |∇√2v∞|2, m-a.e. in U>2ρ∞ ∩ Bk(x∞). (6.16)

In particular from Corollary 4.5,this implies that |∇√v∞|γ ∈ W1,2
loc (U>2ρ∞ ∩ Bk(x∞)).

To prove (6.16) pick any ϕ ∈ LIPc(U
>2ρ∞ ∩ BX∞

k (x∞)). Consider also a function
η ∈ LIP(Y ) such that η ≡ 1 in supp ϕ, dY (supp η, K∞) > 2ρ and supp η ⊂ BY

k (x∞).
Moreover, since dYH (Kn, K∞) → 0, for n big enough, we have {y : dY (y, K∞) >

2ρ} ⊂ {y : dY (y, Kn) > ρ} and analogously, since xn → x∞ in Y , for n big enough
BY
k (x∞) ⊂ BY

k+1(xn). Therefore supp η ∩ Xn ⊂ U>ρ
n ∩ BXn

k+1(xn) for n big enough.
We now extend ϕ to a function ϕ′ ∈ LIP(Y ) and define ϕ̄ = ηϕ′ ∈ LIPbs(Y ). Since
by the locality of the Laplacian and gradient we have �vkn = �vn = N |∇√2vn|2 =
2N |∇ṽkn |2 mn-a.e. in supp ϕ̄, we can compute

ˆ
ϕ�vk∞dm∞ =

ˆ
ϕ̄�vk∞dm∞ = lim

n

ˆ
ϕ̄�vkndmn = lim

n

ˆ
¯ϕ2N |∇ṽkn |2dmn

=
ˆ

ϕ̄2N |∇ṽk∞|2dm∞ =
ˆ

ϕ̄2N |∇√v∞|2dm∞.

This and the locality of the Laplacian prove (6.16).
For every n and every k as above,we consider a cut-off function ξ kn ∈ LIP(Xn)

analogous to ηkn but with smaller support, more precisely we require that 0 ≤ ξnk ≤ 1,

supp ξ kn ⊂ U>ρ
n ∩ Bk+2(xn), ξ kn = 1 on U≥2ρ

n ∩ Bk+1(xn) and Lipξ kn ≤ C ′, for some
constant C ′ depending only on ε, N , L . Up to a subsequence, from Ascoli-Arzelà,
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we have that ξ kn → ξ k∞ uniformly, for some ξ k∞ ∈ LIP(X∞) satisfying ξ k∞ = 1 in

U>2ρ∞ ∩ BX∞
k (x∞). In particular the same convergence holds also strongly in L2.

We set wn,k := ξ kn |∇√vn|γ ∈ W1,2(Xn) and w∞,k := ξ k∞|∇ṽk∞|γ ∈ W1,2(X∞)

and observe that by construction and the locality of the gradient wn,k = ξ kn |∇ṽkn |γ
mn-a.e.. In particular, since we proved that |∇ṽkn |γ → |∇ṽk∞|γ strongly in L2 and
recalling supn ‖|∇ṽkn |‖L∞ < +∞, we have from Proposition 2.23 that wn,k → w∞,k

strongly in L2.
Combining (6.11) with the first in (6.15) and Lipξn,k ≤ C ′ we deduce that

supn ‖|∇wn,k |‖L2(mn)
< +∞. We now apply Lemma 2.25 with the open set

A = {dY (K∞, .) > 3ρ} ∩ BY
k (x∞) that, combined with the observation that

A ∩ Xn ⊂ U≥2ρ
n ∩ Bk+1(xn) for n big enough, gives

ˆ
U>3ρ∞ ∩Bk (x∞)

|∇|∇ṽk∞|γ |2 dm∞ ≤ lim inf
n

ˆ
U≥2ρ
n ∩Bk+1(xn)

|∇|∇√vn|γ |2 dmn

(6.15)≤ (1+ RL)2N−4 lim inf
n

ˆ
Un

v2−N
n |∇|∇√vn|γ |2 dmn

(6.11)= 0.

Therefore, from the locality of the gradient and the arbitrariness of k,we obtain that
|∇|∇√v∞|γ | = 0 m∞-a.e. in U>3ρ∞ . Consider now the open set {v∞ > 1 + ε/4} ⊂
U>3ρ∞ . Observe that from the assumption vn ≥ 1+ ε in BR0(xn)

c $= ∅ and (6.15),we
deduce that for every n there exists yn ∈ Xn ∩ B2R0(xn) ∩U>4ρ

n such that vkn(yn) =
vn(yn) ≥ 1 + ε for every k, therefore by compactness and uniform convergence we
deduce that {v∞ > 1 + ε/4} $= ∅. From (A) it holds ∂{v∞ > 1 + ε/4} = {v∞ =
1 + ε/4}, in particular since v

(2−N )/2∞ ( ln(v−1/2∞ ) if N = 2) is harmonic in U>2ρ∞
(recall (6.16)), from the maximum principle,it follows that the connected components
of {v∞ > 1 + ε/4} are unbounded. Let U ′ be one of these components. It follows
that |∇√v∞| ≡ C m-a.e. in U ′ for some constant C , that must be positive. Indeed if
C = 0, we would have that v∞ is constant in U ′, but since ∂U ′ ⊂ {v∞ = 1 + ε/4},
v∞ should be constantly equal to 1+ ε/4, which contradicts U ′ ⊂ {v∞ > 1+ ε/4}.
Finally,the assumption vn ≥ 1+ ε in BR0(xn)

c ensures that X∞ \U ′ ⊂ B2R0(x∞). It
follows that the function (2C2)−1v∞|U ′ satisfies the hypotheses of Theorem 6.1 with
U = U ′. In particular X∞ has Euclidean volume growth and from Corollary 3.9,it has
one end, fromwhichwe deduce that {v∞ > 1+ε/4} is connected. Therefore repeating
the above argument forU ′ = {v∞ > 1+ ε/4} proves claim (B) with C0 := (2C2)−1.

Combining (A) and (B), from Theorem 6.1,we deduce the existence of an
RCD(0, N ) N cone (Y ′,dY ′,mY ′)with vertex OY ′ and a bijective measure preserving
local isometry T : {1+ ε/4 < v∞} → { r < dY ′(OY ′, .)}, for some r > 0 which also
satisfies (recall (6.1))

√
v∞(x) = λdY ′(OY ′, T (x)), for every x ∈ {v∞ > 1+ ε/4}, (6.17)

where λ := (2C0)
−1/2 (C0 being the constant in (B)). We claim that λ ≤

supn ‖|∇√vn|‖L∞ , which in particular gives that r ≥ λ−1(1 + ε/4) ≥ L−1. Indeed
from (6.17), the fact that Y ′ is geodesic and the fact that T is a local isometry we
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deduce that for every x ∈ {v∞ > 1+ε/4} and every r ′ > 0 small enough, there exists
y ∈ BX∞

r ′ (x) such that |√v∞(x) −√
v∞(y)| = λd∞(x, y),. The claim now follows

from uniform convergence and the Sobolev-to-Lipschitz property. Since, as observed
above, X∞ \ {1+ ε/4 < v∞}c ⊂ B2R0(x∞), the conclusion of Theorem 6.7 holds for
every sufficiently large n, which contradicts item d) above. This concludes the proof
of Theorem 6.7.

Proof of Theorem 6.9: We argue by contradiction exactly as above, except that we
substitute the assumption d) with the following:

d ′) there exist a number η > 0 and two sequences (tn1 ), (tn2 ) ⊂ (1+ ε + η, ε−1) with
tn1 ≤ tn2 , such that {√vn ≤ tn2 + 2η} ⊂ BR0(xn) and the conclusion of Theorem
6.9 is false with tn1 , tn2 , for every n.

Since assumption d) was not used until the very end of the proof of Theorem 6.7
above, we can, and will, repeat all the first part of the proof up to this point together
with all the constructions and objects introduced along the argument.

Up to passing to a subsequence,we can assume that tni → t∞i ∈ [1+ ε + η, ε−1],
i = 1, 2.

It will be useful later to remark that

√
vn = ṽkn in {1+ ε/2 ≤ √

vn ≤ tn2 + 2η}, for every k, (6.18)

which follows from the second in (6.15) and the assumption {√vn ≤ tn2 + 2η} ⊂
BR0(xn).

We claim that

an := sup
s∈(t∞1 −η,t∞2 +η)

dYH ({√vn = s}, {√v∞ = s}) → 0, as n →+∞. (6.19)

(We point out that this does not follows from the uniform convergence, indeed we
need first to prove some regularity of the level sets of

√
v∞). The key observation is

that for every ε′ > 0,there exists δ′ > 0 such that for every t ∈ [1+ ε, 2ε−1] it holds

BX∞
ε′ (x) ∩ {√v∞ = t ′} $= ∅, ∀x ∈ {√v∞ = t},∀t ′ ∈ [t − δ′, t + δ′]. (6.20)

This is an immediate consequence of (6.17), the fact that T is a local isometry and the
fact that, since Y ′ is a cone, for every y′ ∈ Y ′,there exists a ray emanating from OY ′
and passing through y′.

Suppose now that (6.19) does not hold. Then, up to a passing to nonrelabelled
subsequence, there exists a sequence (sn) ⊂ (t∞1 − η, t∞2 − η) and ε′ > 0 such that
sn → s̄ ∈ [t∞1 − η, t∞2 + η] ⊂ [1+ ε, 2ε−1] and

dYH ({√vn = sn}, {√v∞ = sn}) > ε′, ∀n.

Therefore, up to passing to a further subsequence, there exists either a sequence yn ∈
{√vn = sn} such that dY (yn, {√v∞ = sn}) > ε′, for all n, or a sequence yn ∈

123



100 Page 52 of 89 N. Gigli, I. Y. Violo

{√v∞ = sn} such that dY (yn, {vn = sn}) > ε′, for all n. In the first case, since
by assumption {√vn = sn} ⊂ {tn1 − 2η ≤ √

vn ≤ tn2 + 2η} ⊂ BR0(xn) for n big
enough, up to passing to a further subsequence we have that yn → y∞ ∈ X∞ and by
uniformconvergence (recall (6.18)) that

√
v∞(y∞) = s̄. In particulard(y∞, {{√v∞ =

sn}}) > ε′/2 for every n big enough, which contradicts (6.20). In the second case,
again up to a subsequence and from the continuity of

√
v∞, we have that yn → y∞ ∈

{√v∞ = s̄}. Moreover from (6.20),it follows the existence of a δ′ > 0 such that
there exist y+∞, y−∞ ∈ BX∞

ε′/4(y∞) such that
√

v∞(y±∞) = t̄ ± δ′. Finally, from uniform

convergence (recall again (6.18)), for every n big enough there exist y+n , y−n ∈ Xn such
that dY (y±n , y±∞) < ε′/4 and |vn(y±n )−(s̄±δ′)| < δ′/2. In particular by the continuity
of vn , for every k big enough, there exists zn which lies on a geodesic connecting y+n and
y−n such that zn ∈ {vn = sn}. From the triangle inequality it follows that d(zn, yn) < ε′
if n is big enough, which is a contradiction since yn ∈ {√v∞ = sn}.

From (6.19) it follows that dYH ({tn1 ≤ √
vn ≤ tn2 }, {tn1 ≤ √

v∞ ≤ tn2 }) → 0 as
n →+∞. Moreover it is clear that dYH ({tn1 ≤

√
v∞ ≤ tn2 }, {t∞1 ≤ √

v∞ ≤ t∞2 }) → 0
as n →+∞ (recall (6.17)), therefore

bn := dYH ({tn1 ≤
√

vn ≤ tn2 }, {t∞1 ≤ √
v∞ ≤ t∞2 }) → 0, as n →+∞.

(6.21)

In particular, since both sets are compact, we can build a Borel map fn : {tn1 ≤
√

vn ≤
tn2 } → {t∞1 ≤ √

v∞ ≤ t∞2 } that has bn-dense image and such that dY (x, fn(x)) ≤ 2bn
for all x ∈ {tn1 ≤

√
vn ≤ tn2 }.

We claim that

fn∗
(

mn |{tn1≤√vn≤tn2 }

)

⇀m∞|{t∞1 ≤√v∞≤t∞2 }, in duality with C({t∞1 ≤ √
v∞ ≤ t∞2 }).

(6.22)

From the fact that dY (., fn(.)) ≤ 2bn and using dominated convergence, it is enough
to show that

mn|{tn1≤√vn≤tn2 }
⇀m∞|{t∞1 ≤√v∞≤t∞2 }, in duality with Cbs(Y ).

To prove the above we first define for every δ > 0 the closed set Cδ := {y ∈ Y :
dY (y, {√v∞ = t∞1 } ∪ {√v∞ = t∞2 }) ≤ δ} and observe that for every ε′ > 0 there
exists δ′ such that

m∞(Cδ′) < ε′. (6.23)

This can be seen using the fact that T is a measure preserving local isometry, the
Bishop-Gromov inequality and formula (6.17).

We also define for any δ > 0 the sets Aδ := {y ∈ Y : dY (y, X∞ \ {t∞1 ≤ √
v∞ ≤

t∞2 }) ≥ δ} and Bδ := {y ∈ Y : dY (y, {t∞1 ≤ √
v∞ ≤ t∞2 } ≤ δ)}. We claim that
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Bδ1 \ Aδ2 ⊂ C2δ1+2δ2 , for every δ1, δ2 > 0. To see this let y ∈ Bδ1 \ Aδ2 , which
implies d(y, {t∞1 ≤ √

v∞ ≤ t∞2 }) ≤ δ1,d(y, X∞ \ {t∞1 ≤ √
v∞ ≤ t∞2 }) < δ2.

Taking two points y1, y2 ∈ X∞ which realize these two distances we must have that
d∞(y1, y2) = dY (y1, y2) ≤ δ1 + δ2. Moreover any geodesics in X∞ from y1 to y2,
by the continuity of v∞, must intersects {√v∞ = t∞1 } ∪ {√v∞ = t∞2 }, from which
the claim follows.

We finally fix ϕ ∈ Cbs(Y ) and ε′ > 0 arbitrary. Let δ′ = δ′(ε′) be the one given by
(6.23) and pick η ∈ Cb(Y ) such that 0 ≤ η ≤ 1, η = 1 in Aδ′/4 and supp(η) ⊂ Aδ′/8.
Observe that by uniform convergence (recall also (6.18)), for n big enough we have
that Aδ′/8 ∩ supp(ϕ) ∩ Xn ⊂ {tn1 ≤

√
vn ≤ tn2 } ⊂ Bδ′/4, therefore

lim sup
n

∣
∣
∣
∣

ˆ
ϕ dmn|{tn1≤√vn≤tn2 }

−
ˆ

ϕ dm∞|{t∞1 ≤√v∞≤t∞2 }

∣
∣
∣
∣

≤ lim sup
n

∣
∣
∣
∣

ˆ
ϕη dmn −

ˆ
ϕη dm∞

∣
∣
∣
∣+

+ lim sup
n

‖ϕ‖∞mn(Bδ′/4 \ Aδ′/4)+ ‖ϕ‖∞m∞({t∞1 ≤ √
v∞ ≤ t∞2 } \ Aδ′/4)

≤ lim sup
n

mn(Cδ′)+m∞(Cδ′)
(6.23)≤ 2ε′.

From the arbitrariness of ε′ and ϕ ∈ Cbs(Y ),the convergence in (6.22) follows.
We now pass to the study of the behaviour of fn with respect to the intrinsic

metrics. More precisely for every τ > 0 we set Aτ
n := {tn1 − τ <

√
vn < tn2 + τ },

Aτ∞ := {t∞1 − τ <
√

v∞ < t∞2 + τ }, Aτ∞,n := {tn1 − τ <
√

v∞ < tn2 + τ } and
denote by dτ

n,d
τ∞,dτ∞,n the intrinsic metrics on Aτ

n, Aτ∞, Aτ∞,n , respectively (see the
beginning of this section). It is clear that the metrics dτ

n,d
τ∞,dτ∞,n induce on the sets

{tn1 ≤
√

vn ≤ tn2 }, {t∞1 ≤ √
v∞ ≤ t∞2 }, {tn1 ≤

√
v∞ ≤ tn2 } the same topology induced

by the metrics dn,d∞.
Notice also that, from (6.17) and since T is a local isometry on {√v∞ > 1+ ε/4},

({s ≤ √
v∞ ≤ t},ds,t,τ∞

)
is isometric to ({s ≤ λdOY ′ ≤ t},ds,t,τY ′ ),

∀τ ∈ (0, η), ∀ t ≥ s > 1+ ε + η, (6.24)

whereds,t,τ∞ andds,t,τY ′ are the intrinsicmetrics,respectively, on {s−τ <
√

v∞ < t+τ }
and on {s − τ < λdOY ′ < t + τ }, the isometry being T itself, which also measure
preserving. In particular there exists a constant D > 0 such that for every τ ∈ (0, η)

it holds diam({t∞1 ≤ √
v∞ ≤ t∞2 },dτ∞) ≤ D.

Observe that from (6.18)wededuce that the functions
√

vn,
√

v∞ are equi-Lipschitz
on {tn1 − η ≤ √

vn ≤ tn2 + η}, {t∞1 − η ≤ √
v∞ ≤ t∞1 + η} and we fix M ≥ 2 a bound

on their Lipschitz constant.
Putting εn := 2max(bn, an) (where an, bn are the ones in (6.19) and (6.21)) it is

not restrictive to assume both that
√

εn < η/(2M) and that |tn1 − t∞1 |, |tn2 − t∞2 | < εn ,
for every n.

Pick any x0, x1 ∈ {tn1 ≤ √
vn ≤ tn2 } and set yi = fn(xi ) ∈ {t∞1 ≤ √

v∞ ≤ t∞2 },
i = 0, 1, where fn was defined above and recall that dY (xi , fn(xi )) ≤ εn . Consider an
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absolutely continuous curve γ : [0, 1] → A
ε−2M

√
εn∞ such that γ (i) = yi , i = 0, 1 and

L(γ ) = d
η−2M

√
εn∞ (y0, y1) ≤ D.Letting Nn := '2D/

√
εn(, there exist 0 = t0 < t1 <

... < tNn = 1 such that d∞(γ (ti ), γ (ti+1) ≤ L(γ |[ti ,ti+1])) ≤ L(γ )/Nn, for every

i = 0, ..., Nn−1. Thanks to (6.19) and theM-Lipschitzianity of
√

vn there exist points

xi ∈ A
η−M

√
εn

n i = 1, ..., Nn − 1, such that dY (xi , γ (ti )) < εn , i = 1, ..., Nn − 1,
and in particular |dn(xi , xi+1) − d∞(γ (ti ), γ (ti+1)| ≤ 2εn, for every i = 0, ..., Nn .

Therefore dn(xi , xi+1) < L(γ )/Nn + 2εn ≤ √
εn , and thus any geodesic (in Xn)

γi from xi to xi+1 has image contained in Aη
n . We define γ̄ : [0, 1] → Aη

n as the
concatenation of all the geodesics γi (appropriately reparametrized), in particular

dη
n(x0, x1) ≤ L(γ̄ ) ≤ Nn

(
L(γ )

Nn
+ 2εn

)

≤ d
η−2M

√
εn∞ ( fn(x0), fn(x1))+ 4D

√
εn . (6.25)

Conversely pick an absolutely continuous curve γ̄ : [0, 1] → Aη
n such that γ̄ (i) = xi ,

i = 0, 1 and L(γ̄ ) = dη
n (x, y) ≤ 2D, which exists thanks to (6.25). Arguing exactly

as above we can construct an absolutely continuous curve γ : [0, 1] → A
η+2M

√
εn∞

such that γ (i) = yi , i = 0, 1 and

d
η+2M

√
εn∞ ( fn(x0), fn(x1)) ≤ L(γ ) ≤ dη

n(x0, x1)+ 4D
√

εn .

Recalling (6.24),we are in position to apply Lemma 6.10 and deduce that

d
η±2M

√
εn∞ ( fn(x0), fn(x1)) → dη∞( fn(x0), fn(x1)) as n → +∞, uniformly in

x0, x1 ∈ {tn1 ≤ √
vn ≤ tn2 }. Moreover again from Lemma 6.10,we have that the

image of fn is cbn-dense in {t∞1 ≤ √
v∞ ≤ t∞2 } w.r.t. the metric dη∞, for some

constant c independent of n.
Combing this with the above inequalities and (6.22),we obtain

({tn1 ≤
√

vn ≤ tn2 },dη
n, μn

) mGH→ ({t∞1 ≤ √
v∞ ≤ t∞2 },dη∞, μ∞

)
, (6.26)

with μn := mn|{tn1≤√vn≤tn2 }
, μ∞ := m∞|{t∞1 ≤√v∞≤t∞2 } and where, if t∞1 = t∞2 , the

convergence is intended only in the GH-sense. Finally from Lemma 6.10 and recall-

ing (6.24) we have that
({tn1 ≤

√
v∞ ≤ tn2 },dη∞,n

) GH→ ({t∞1 ≤ √
v∞ ≤ t∞2 },dη∞

)
,

and that such convergence can be realized by a map gn : {tn1 ≤ √
v∞ ≤ tn2 } →

{t∞1 ≤ √
v∞ ≤ t∞2 } that (if tn1 $= tn2 ) also satisfies gn∗

(

m∞|{tn1≤√v∞≤tn2 }

)

=
(t∞2 )N−(t∞1 )N )

((tn2 )N−(tn1 )N )
m∞|{t∞1 ≤√v∞≤t∞2 }. In particular

({tn1 ≤
√

v∞ ≤ tn2 },dη∞,n, μ∞,n
) mGH→ ({t∞1 ≤ √

v∞ ≤ t∞2 },dη∞, μ∞
)
, (6.27)
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with μ∞,n := m∞|{tn1≤√v∞≤tn2 }
and where in the case t∞1 = t∞2 the convergence is

intended only in the GH-sense.
If t∞1 = t∞2 , combining (6.26) with (6.27), and recalling (6.24), we obtain that

(6.13) holds for n big enough. Therefore, since we are assuming d ′) (see above), up to
a subsequence, we must have that either (6.14) is false every n big enough or the last
claim about Y in Theorem 6.9 is false. The latter cannot happen, indeed in the first half
of the proof we proved precisely that Theorem 6.7 holds with the same Y and with
the same ε, L, R0. Hence we must be n the first case and in particular t∞1 + ε < t∞2
and we can apply Proposition 6.11 together with (6.26) and (6.27) and obtain that
(6.14) holds for n big enough, which is a contradiction. This concludes the proof of
Theorem 6.9. ��

7 Rigidity and Almost Rigidity from theMonotonicity Formula

7.1 Rigidity

The following rigidity result follows almost immediately combining the explicit lower
bound on the derivative of U ′

β in (5.6) and Theorem 6.1 about “from outer functional
cone to outer metric cone”.

Theorem 7.1 Let X, �, u,Uβ , with β > N−2
N−1 , be as in Theorem 5.4 and suppose

that U
′−
β (t0) = 0 for some t0 ∈ (0, 1].Then the hypotheses of Theorem 6.1, and in

particular also its conclusions, are satisfied choosing u = Cu
2

2−N , u0 = Ct
2

2−N
0 and

U = {u < t0}, for some constant C > 0.

Proof Suppose U
′−
β (t0) = 0 for some t0 ∈ (0, 1] and observe that, thanks to (5.6),

since Cβ,N > 0, we must have that |∇|∇u 1
2−N |β/2| = 0 m-a.e. in {u < t0}. We claim

that {u < t0} is connected. Indeed, if t0 < 1, from the continuity of u follows that
∂{u < t0} ⊂ {u = t0}, hence from the strongmaximumprinciplewe deduce that all the
connected components of {u < t0} are unbounded.Moreover ∂{u < t0} is bounded and
thus from Corollary 3.9,it follows that {u < t0} is connected. If t0 = 1, we conclude
observing that {u < 1} is the union of the sets {u < t} with t < 1. Therefore we

have that |∇u 1
2−N |2 ≡ C m-a.e. in {u < t0}, for some constant C . We now claim that

C > 0. Indeed if C = 0 we would have that ∇u = −(2− N )u
N−1
N−2 ∇u 1

2−N = 0m-a.e.
in {u < t0} and therefore u would be constant in {u < t0} (recall (2.8)). However, u
goes to 0 at +∞ and {u < t0} is unbounded, therefore u ≡ 0 in {u < t0}, but this
violates the positivity of u. Setting v = u

1
2−N , by the chain rule for the Laplacian, the

harmonicity of u and by locality we have

�
v2

2
= 1

2
�(u

2
2−N ) = N

(2− N )2

|∇u|2
u2

N−1
N−2

= CN , m-a.e. in {u < t0}.
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Moreover |∇v2/2|2 = v2|∇v|2 = 2C v2

2 . Therefore the function u = C−1v2/2

satisfies the hypotheses of Theorem 6.1 withU = {u < t0} and u0 = C−1t2/(2−N )
0 /2.

This concludes the proof. ��

7.2 Almost Rigidity

The goal of this subsection is to prove the following.

Theorem 7.2 For all numbers ε ∈ (0, 1/3), R0 > 0, β > N−2
N−1 , N ∈ (2,∞) and for

every function f : (1,+∞) → R
+ in L1(1,+∞) there exists 0 < δ = δ(ε, β, N , f )

such that the following holds. Let (X,d,m, x0) be a pointed RCD(0, N ) m.m.s. such
that m(B1(x0)) ≤ ε−1 and s

m(Bs (x0))
≤ f (s) for s ≥ ε−1. Let u be a solution to

(P) with ‖u‖L∞(�) ≤ ε−1 and such that there exists t ∈ (ε, 1] satisfying diam({u >

t − εt}c) < R0, d(x0, {u ≤ t}) > ε, ‖|∇u|‖L∞({u<t}) ≤ ε−1 and

U−
β

′
(t) < δ. (7.1)

Then there exists a pointed RCD(0,N) space (X′,d′,m′, x ′) such that

dpmGH ((X,d,m, x0), (X
′,d′,m′, x ′)) < ε (7.2)

and (X′,d′,m′, x ′) is a truncated cone outside a compact set K ⊂ B2R0(x
′), i.e. there

exists an RCD(0,N) Euclidean N cone Y , with tip OY , over an RCD(N − 2, N − 1)
space Z and a measure preserving local isometry T : X′ \ K → Y \ B̄r (OY ), for
some r > 0.

Remark 7.3 Observe that inequality (7.2) is non-trivial because X′ is a cone outside a
compact set K ⊂ B2R0(x

′) with R0 independent of ε > 0 (cf. with Remark 6.8).

We will also prove the following alternative version of the above statement (see
Sect. 6.2 for the definition of D,dGH and of intrinsic metric).

Theorem 7.4 For all numbers ε ∈ (0, 1/3), R0 > 0 β > N−2
N−1 , N ∈ (2,∞),

η > 0 and for every function f : (1,+∞) → R
+ in L1(1,+∞) there exists

0 < δ = δ(ε, β, N , f , η) such that, givenX, v and t as in Theorem 6.7, there exists an
RCD(0,N) Euclidean N cone (Y ,dY ,mY ), with tip OY , over an RCD(N −2, N −1)

space Z anda constantλ > 0 such that the followingholds. For every (1+ε+η)t
1

2−N <

t1 < t2 < ε−1t
1

2−N it holds

dGH

(
({t1 ≤ u

1
2−N ≤ t2},dη

X),
({t1 ≤ λdOY ≤ t2,d

η
Y

))
< ε,
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where dOY := dY (., OY ) and dη
X and dη

Y denote the intrinsic metrics on {t1−ηt
1

2−N <

u
1

2−N < t2 + ηt
1

2−N } and on {t1 − η < λdOY < t2 + η}. Moreover, provided that
t1 + εt < t2,

D

(
({t1 ≤ u

1
2−N ≤ t2},dη

X,m|
{t1≤u

1
2−N≤t2}

)
,
({t1 ≤ λdOY ≤ t2},dη

Y ,mY |{t1≤λdOY ≤t2}
)
)

<ε.

Before passing to the proof,we explain why the bound on ‖|∇u|‖L∞({u<t}) is natural
and often satisfied. The immediate observation is that from the gradient bound for
harmonic functions (2.22) we deduce

|∇u| ≤ C(N )

ε
, m-a.e. in {u < 1} ∩ {x : d(x, ∂�) > ε}, ∀ ε > 0. (7.3)

In particular for fixed ε > 0, thanks to the assumption lim inf x→∂� u(x) ≥ 1, for t suf-
ficiently small (but depending on u) the gradient bound ‖|∇u|‖L∞({u<t}) ≤ C(N )ε−1

is always satisfied. An estimate on the value of t can be given in the case Bε(x0) ⊂ �.

Indeed applying the lower bound for u given by (5.1), it is immediately seen that

{u < t} ⊂ {x : d(x, ∂�) > ε} for any 0 < t < 1
2

(
ε

diam(�c)+ε

)N−2
.

Somethingmore explicit can be said if we consider u to be an electrostatic potential.
Indeed combining (7.3) with the continuity estimate (8.1) one can easily prove the
following:

Proposition 7.5 For all numbers ε ∈ (0, 1/3), N ∈ (2,∞) there exists 0 < C =
C(ε, N ) such that the following holds. Let (X,d,m) be a noncompact RCD(0, N )

m.m.s. and let E ⊂ X be open and bounded with uniformly Cap-fat boundary with
parameters (ε, ε) (see Definition B.3). Let u be the capacitary potential relative to E
(see Theorem 8.4). Then

|∇u| ≤ C(ε, N ), m-a.e. in {u < t}, for every t ∈ (0, 1− ε).

We pass to the proof of Theorem 7.2 and Theorem 7.4, which are almost corollaries
of Theorem 6.7 and Theorem 6.9.

Proof of Theorem 7.2 and Theorem 7.4 Observe first that by Bishop-Gromov inequal-
ity

m(B1(x0)) ≥ m(Bε−1)εN ≥ εN−1/ f (ε−1).

From the second in (5.1) we have that there exist a positive constant C1 =
C1(ε, R0, N ), such that

u(x) ≤ C1

ˆ ∞

d(x,x0)
f (s) ds, ∀x ∈ Bε−1∨R0

(x0)
c. (7.4)
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In particular, since t > ε, diam({u < t}c) ≤ diam({u < ε}c) ≤ C2, for some constant
C2 depending only on ε, R0, N , f . Therefore, again since t > ε, up to rescaling u as
ut−1 we can assume that t = 1 (observe also that, called Ũβ the function relative to

t−1u, it holds that Ũβ(s) = Uβ(ts)tβ
N−1
N−2−β−1, s ∈ (0, 1)).

Define v := u
2

2−N and set �′ = {u < 1} = {v > 1}. Note also that diam({v ≤
1+cN ε}c) < R0 for some constant cN ≤ 1. From (P) we have that�v = N |∇√2v|2,
m-a.e. in �′ and that lim supx→∂�′ v(x) ≤ 1.

To apply Theorems 6.7 and 6.9 it still remains to check the bounds on |∇√v|.
Observe that from the assumption d(x0, {u ≤ 1}) > ε and the first in (5.1) we

deduce that

un(x) ≥ cd(xn, x)
2−N , for every x ∈ �′, (7.5)

for somepositive constant c = c(ε). Combining (7.5), the assumption‖|∇u|‖L∞({u<1})
≤ ε−1 and the gradient estimate (2.22), it easily follows that

|∇√v| = (N − 2)−1|∇u|u 1−N
N−2 ≤ C3,

for some positive constant C3 = C3(ε). Finally from (5.6) and (7.1) we have

ˆ
{u<1}

1

vN−2

∣
∣
∣∇|∇√v|β/2

∣
∣
∣
2
dm ≤ C−1

β,NU
−
β

′
(1) < C−1

β,N δ.

We are therefore in position to apply Theorem 6.7 and conclude the proof of Theorem
7.2.

Theorem7.4 follows fromTheorem6.9 andobserving that {u = s
1

2−N } = {√v = s}
and that, thanks to (7.4), for every t > 0

{√v ≤ t} ⊂ BR1(x0),

for some R1 = R1(t, ε, N , f , R0). ��

8 The Electrostatic Potential

It was already discussed in Sect. 3 that a solution (P) is not granted, in particular already
for Riemannian manifolds, the existence of solutions implies nonparabolicity. We also
showed (see Corollary 3.5) that the Green function solves (P). In this short section,we
provide another example of solution to (P) given by the electrostatic potential. We
recall that this type of solution was crucial in the recent work [6].

Definition 8.1 (Electrostatic potential) Given (X,d,m) an (unbounded) infinitesi-
mally Hilbertian m.m.s. and E ⊂ X open and bounded, an electrostatic potential
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for E is a function u ∈ D(�,X \ Ē) ∩ C(X \ E) solution to

⎧
⎪⎨

⎪⎩

�|X\Ē u = 0,

u = 1, in ∂E,

u(x) → 0 as d(x, ∂E) →+∞.

Remark 8.2 In an RCD(K , N ) space if an electrostatic potential for E exists, then
it is also unique, and this follows immediately from the maximum principle (see
Proposition 2.15).

Remark 8.3 If u is a solution to (P), then the function (1−ε)−1u|{u≤1−ε} is immediately
seen to be the electrostatic potential for the open set X \ {u ≤ 1− ε}.

We pass to our main existence result for the electrostatic potential, which holds
for sets with sufficiently regular boundary, namely with Cap-fat regular boundary. We
refer to Appendix B for the definition of Cap-fat regular boundary and for examples
of sets satisfying this condition.

Theorem 8.4 Let (X,d,m) be a nonparabolic RCD(0, N ) m.m.s. and let E ⊂ X be
open and bounded with Cap-fat boundary. Then the electrostatic potential u for E
exists. Moreover the following continuity estimate holds: for every x ∈ ∂E it holds

1− u(y) ≤ d(y, x)αx , ∀y ∈ Brx/2(x) ∩ Ec, (8.1)

for some positive constant αx = α(rx , cx , N ) > 0, where rx , cx are the Cap-fatness
parameters of x.

Finally the function

ũ :=
{
u, X \ E,

1, Ē,

belongs to S2(X) (recall Definition 2.1) and

ˆ
X
|Dũ|2 dm ≤ lim

r→+∞Cap(E, Br (x)), ∀x ∈ E . (8.2)

Let us make some comments before passing to proof of this result. We first observe
that the limit in (8.2) does not depend on x ∈ E and that it is actually an inf and
thus finite. It is not true in general that ũ ∈ W1,2(X), indeed it might not be square
integrable, as can be seen taking E to be a ball in R

3 . Nevertheless, if the measure
satisfies 0 < lim infr→+∞ r−λm(Br (x)) ≤ lim supr→+∞ r−λm(Br (x)) < +∞ for
some λ > 2, then u ∈ L p(m) for every p > λ

λ−2 (see for example the upper bound in
(5.1)).

Proof of Theorem 8.4 We will actually build ũ and then define u to be the restriction
of ũ to Ec. The argument is by compactness. Fix x0 ∈ E and set Bn := Bn(x0) with
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n ∈ N and n > diam(E)+ 100. Theorem B.1 guarantees the existence of a function
un ∈ W1,2

0 (Bn) ∩ C(B) harmonic in Bn \ E , such that 0 ≤ un ≤ 1, un = 1 on Ē and´
X |∇un|2 dm = Cap(E, Bn). Moreover from the comparison principle in Proposition
B.9,we must have that un ≤ un+1 in Bn .

It follows from Lemma 2.17 that, up to a (non-relabelled) subsequence, un con-
verges in X \ Ē uniformly on compact sets to a function ũ ∈ C(X \ Ē) harmonic in
X \ Ē . In particular un → ũ m-a.e.. Moreover, since Cap(E, Br (x0)) is decreasing in
r , we have that supn ‖|∇un|‖L2(X) < +∞. Therefore from the lower semicontinuity
of weak upper gradients (2.3), we deduce that ũ ∈ S2(X) and

ˆ
X
|∇ũ|2 dm ≤ lim inf

n

ˆ
X
|∇un |2 dm ≤ lim inf

n
Cap(E, Bn) = lim

r→+∞Cap(E, Br (x0)).

The continuity estimate follows directly from the fact that un ≤ ũ ≤ 1 for every n
and from the continuity estimate in Theorem B.1, observing that in the case K = 0
we can drop the dependence on the diameter of E .

It remains to show that u goes to 0 at infinity. We prove it by comparison with the
quasi Green function G1

x0 (recall (3.2)). We have that G1
x0 is Lipschitz and superhar-

monic in X. Moreover G1
x0 is positive, hence λG1

x0 ≥ χ E for a large enough constant
λ > 0. In particular the comparison principle in Theorem B.1 implies that un ≤ λG1

x0
for every n, which in turn gives u ≤ λG1

x0 . Finally from the estimate for the Green
function in (3.3),we have

G1
x0 ≤ Gx0(x) ≤

ˆ ∞

d(x,x0)

s

m(Bs(x))
ds,

in particular G1
x0(x) → 0 at infinity. This concludes the proof. ��
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A Appendix: FromOuter Functional Cone to Outer Metric Cone -
Additional Details

This section is devoted to the proof of Theorem 6.1 given the two results presented in
Section 6.1 (that is Proposition 6.3 and Proposition 6.5).
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Up to Sect. A.4 (included),the proof is in large part the same as [40], hence some
steps will be only outlined; however, there will be differences and new arguments that
will be explained in detail and emphasized along the exposition.

After Sect. A.4 (in particular in Sects. A.5, A.6 and A.7),the argument diverges
from the one in [40], indeed (following a suggestion of an anonymous referee) we
replace the second-order analysis of [40] with a more direct argument which uses the
differentiation formula in [60] and is inspired by [24, Sect. 3.1]. This strategy is in turn
analogous to the one previously employed by Cheeger and Colding [29] to derived
quantitative almost splitting results via Hessian estimates. We remark that these type
of arguments (as for the one used in [24]) were not possible at the time of the writing
of [45] and [40] (which contains, respectively,the first versions of the splitting theorem
and the volume cone to metric cone theorem in RCD spaces), since the differentiation
formula in [60] was not yet available.

We also mention the recent [33] where a similar argument exploiting [60] is used
to prove a version of the (almost) volume annulus to metric annulus in RCD setting.

A.1 The Gradient Flow of u and Its Effect on theMeasure

From the chain rule for the Laplacian (4.2), the positivity of u and recalling that
�u = N and |∇u|2 = 2u m-a.e. in U , it follows that

v :=
{
u

2−N
2 , if N > 2,

ln( 1√
u
), if N = 2,

is harmonic in U .

In particular the maximum principle and the fact that u0 = lim supx→∂U u(x) ensure
that

every connected component of {u > u0} is unbounded. (A.1)

Since by assumption {u > u0} is nonempty we must have that X is unbounded.
For technical reasons,we will work locally, in particular we fix a set V open and

relatively compact in U and consider η ∈ Test(X) such that η = 1 in V , 0 ≤ η ≤ 1
and supp η ⊂ U , which exists thanks to Proposition 2.13. We then define

u := ηu.

Since u ∈ Testloc(U ) from (2.19) we deduce that u ∈ Test(X).
Wepoint out thatwewould like to take right awayV to be of the form {t0 < u < T0};

however, to ensure that this set is relatively compact in U , we need first to know that
u blows up at infinity. This will be proved in Lemma A.2.

We now consider the regular Lagrangian flow F : [0, T ]×X → X associated to the
autonomous vector field v = −∇u.Observe that since�u ∈ L∞(m) and u ∈ Test(X)

the assumptions of Theorem 2.29 are satisfied. In particular the flow F exists unique.
Moreover, again thanks to �u ∈ L∞(m) and Remark 2.30 we can extend the map F
to (−∞,+∞)× X .
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Proposition A.1 1. For m-a.e. x ∈ X it holds that Ft (Fs(x)) = Fs+t (x) for every
s, t ∈ R .

2. For m-a.e. x ∈ U it holds that (−∞,∞) � t �→ Ft (x) is continuous. Moreover
denoted by (ax , bx ) the maximal interval such that Ft (x) ∈ U for all t ∈ (ax , bx )
(which in particular satisfies ax < 0, bx > 0 and possibly ax = −∞ or bx =
+∞), it holds

u(Ft (x)) = e−2tu(x), ∀t ∈ (ax , bx ) (A.2)

and

d(Fs(x), Ft (x)) ≤ |e−t − e−s |√2u(x), ∀t, s ∈ (ax , bx ). (A.3)

Proof The first is just (2.25).
(A.2) follows observing that from (2.24), since |∇u|2 = 2u m-a.e. inU , for m-a.e.

x ∈ U it holds that

d

dt
u(Ft (x)) = −2u(Ft (x)), for a.e. t ∈ (ax , bx ).

(A.3) instead can be derived from the fact that, recallingRemark 2.27, form-a.e. x ∈ U

it holds
.|Ft (x)| = √

2u(Ft (x)) for a.e. t ∈ (ax , bx ). ��
Recall that, as remarked at the beginning of the section, X is unbounded, hence the

following result makes sense.

Lemma A.2

u(x) →+∞ as d(x,Uc) →+∞. (A.4)

Proof Suppose (A.4) is false. Then we can find a ball B2R(x̄) ⊂ U such that R >

100
√
u(x̄) + 1. We choose η ∈ Test(X) such that η = 1 in BR(x̄), 0 ≤ η ≤ 1 and

supp η ⊂ U , which exists from Proposition 2.13. We define u := uη ∈ Test(X) and
consider the regular Lagrangian flow Ft relative to −∇u. Then from (A.3) (with the
choice V = BR(x̄)), the continuity of u and the choice of R we can find x ′ ∈ B1(x̄)
such that the curve Ft (x ′) is contained in BR(x̄) for all t > 0. This together with (A.2)
contradicts the positivity of u. ��

From now until the very last part of the proof, we fix t0, T0 ∈ R
+ such that u0 <

t0 + 1 < T < T0 − 1 and T0 − T > T − t0, where T is to be chosen later.
Thanks to both (A.4) and u0 = lim supx→∂U u(x) we have that {t0 < u < T0} is

compactly contained in U . Hence we can pick a cut-off function η ∈ Test(X) such
that η = 1 in {t0 ≤ u ≤ T0}, 0 ≤ η ≤ 1, supp η ⊂ U and define u := ηu ∈ Test(X).

As above we consider Ft the flow relative to −∇u, which is defined for all positive
and negative times.

Define for every a, b ∈ [u0,∞), the open set

Aa,b := {a < u < b}.
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From the definition of u, the hypotheses on u and the locality of the gradient and the
Laplacian, we have

�u = N , m-a.e. in At0,T0 .

|∇u|2 = 2u, m-a.e. in At0,T0 .
(A.5)

The following can be proven arguing as in [40, Sect. 3.6.1]; however, we give a shorter
proof, which use the improved Bochner inequality (2.17).

Proposition A.3

Hess(u) = id m-a.e. in At0,T0 .

Proof Localizing (2.17) to At0,T0 and recalling (A.5) we obtain

N ≥ |Hess(u)|2HS +
(N − trHess(u))2

N − dim(X)
m-a.e. in At0,T0 .

By Cauchy-Swartz and recalling (2.15), (2.16) we observe that |Hess(u)|2HS =
∑

1≤i, j≤dim(X) Hess(u)(ei , e j )2 ≥ ∑dim(X)
i=1 Hess(u)(ei , ei )2 ≥ trHess(u)2

N . Plugging
this in the above inequality and applying again Cauchy-Swartz we obtain

N ≥ trHess(u)2

N
+ (N − trHess(u))2

N − dim(X)
≥ N m-a.e. in At0,T0 .

Hence all the inequality we used were actually equalities, in particular Hess(u)(ei , e j )
= 0m-a.e. in At0,T0 , for every i $= j andHess(u)(ei , ei ) = 1m-a.e. in At0,T0 for every
i = 1, ..., dim(X), which concludes the proof. ��
Proposition A.4 1. For m-a.e. x ∈ X it holds that Ft (Fs(x)) = Fs+t (x) for every

s, t ∈ R .

2. For m-a.e. x ∈ At0,T0 it holds that Ft (x) ∈ At0,T0 and

u(Ft (x)) = e−2t u(x), (A.6)

for every t ∈ ( 12 log
u(x)
T0

, 1
2 log

u(x)
t0

), moreover

d(Fs(x), Ft (x)) = |e−t − e−s |√2u(x), (A.7)

for every s, t ∈ ( 12 log
u(x)
T0

, 1
2 log

u(x)
t0

), in particular the curve ( 12 log
u(x)
T0

,

1
2 log

u(x)
t0

) � t �→ Ft (x) is supported on a geodesic.

Proof Everything except for the equality in (A.7) follow Proposition A.1 together with
the observation that in this case ax = 1

2 log
u(x)
T0

and bx = 1
2 log

u(x)
t0

.

123



100 Page 64 of 89 N. Gigli, I. Y. Violo

To show equality in (A.7), it is enough to show it for t = 0 and s > 0. Hence we
fix s ∈ (0, 1

2 log
u(x)
t0

). Thanks to (A.3), we only need to show that

d(Fs(x), x) ≥ (1− e−s)
√
2u(x). (A.8)

We make the intermediate claim that

d(x,Uc) ≥ √2u(x)−√2u0, ∀x ∈ U . (A.9)

To prove it we first observe that, since u is positive, we have that
√
u ∈ W1,2

loc (U ) and

|∇√2u| = 1 m-a.e. in U .
The properness of the space X ensures that there exists x̄ ∈ ∂U such that d(x, x̄) =

d(x, ∂U ). Moreover, since X is geodesic, there exists a sequence xn ⊂ U such that
xn → x and d(x, xn) ≤ d(x, ∂U ). Hence recalling that |∇√2u| = 1 m-a.e., we are
in position to apply (2.7) and deduce that

d(x, x̄) = lim
n

d(x, xn) ≥ lim inf
n

√
2u(x)−√2u(xn) ≥

√
2u(x)−√2u0,

which proves (A.9).
From (A.3) and by howwe chose s, we have thatd(Fs(x), x) ≤ (1−e−s)

√
2u(x) ≤√

2u(x) − √
2t0 ≤ √

2u(x) − √
2u0. Hence from (A.9) we deduce d(Fs(x), x) ≤

d(x, ∂U ) and applying again (2.7) combined with (A.6) we obtain (A.8). ��
Lemma A.5 For every t ∈ (0, 1

2 log
T0
t0

) it holds that

m(Ae2t t0,T0) = eNtm(At0,e−2t T0). (A.10)

Proof The argument is essentially the same as in [40, Prop. 3.7] but reversed, indeed
here we start from �u = N and |∇u|2 = 2u and deduce information on the measure.

��
The following result has not a direct counterpart in [40]; however, it morally sub-

stitutes the bound (3.1) in [40, Prop. 3.2] (cf. with (A.12) below). We remark that the
proof of the following Proposition relies on the local estimate of Proposition 6.5.

Proposition A.6 For every t ∈ (0, 1
2 log

T0
t0

) it holds that

(Ft∗m)|At0,e−2t T0

= Ft∗
(

m|Ae2t t0,T0

)

= eNtm|At0,e−2t T0

. (A.11)

Proof Consider the probability measure μ0 =
m|Ae2t t0,T0
m(Ae2t t0,T0

)
. By Theorem 2.29

{Fs∗μ0}s∈[0,t] are all Borel probabilitymeasures, absolutely continuouswith respect to
m and solve the continuity equation with initial datumμ0. Moreover (A.6) implies that
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Fs∗μ0 is concentrated on At0,T0 for every s ∈ [0, t]. Therefore setting Ft∗μ0 = ρtm
we are in position to apply (6.3), that combined with (A.5) gives

‖ρt‖∞ ≤ m(Ae2t t0,T0)
−1eNt . (A.12)

However, applying now (A.10) and observing that and that Ft∗μ0 is concentrated in
At0,e−2t T0 , again thanks to (A.6), we can compute

0 ≤
ˆ
At0,e−2t T0

m(Ae2t t0,T0)
−1eNt − ρtdm = m(Ae2t t0,T0)

−1eNtm(At0,e−2t T0)− 1 = 0,

that gives the second in (A.11).
The first in (A.11) follows directly from (A.6). ��

Having at our disposal (A.11) and (A.7), we can argue exactly as in [40, Cor. 3.8] to
obtain the following

Proposition A.7 (Continuous disintegration) We have

u∗m|At0,T0
= cr

N
2 −1L1|(t0,T0),

where c := N
2

m(At1,t2 )

t N/2
1 −t N/2

2

, for any t1, t2 ∈ R
+ with t0 ≤ t2 < t2 ≤ T0. Moreover there

exists a weakly continuous family of Borel measures (t0, T0) � r �→ mr ∈ P(X) such
that

ˆ
ϕdm = c

ˆ T0

t0

ˆ
ϕdmr r

N/2−1dr , ∀ϕ ∈ Cc(At0,T0). (A.13)

Finally, for every t ∈ (0, log T0
t0

) the measures mr satisfies

Ft∗mr = me−2t r , for a.e. r ∈ (e2t t0, T0).

The following result has not a counterpart in [40], since it deals with large scales,
while the analysis in [40] is local.

Corollary A.8 X has Euclidean volume growth, in particular {u > u0} is unbounded,
connected with {u > u0}c bounded.
Proof Combining (A.6) and (A.7), it can be shown that At0,T0 ⊂ B4

√
T0+C (x0) for

every T0 > 2t0 for some fixed constant C > 0 (recall that what we proved so far holds
for an arbitrary T0 > T ). Therefore A

t0,
(R−C)2

16
⊂ BR(x0) for every R big enough and

the conclusion follows using (A.13).
Since X has Euclidean volume growth, it is not compact and not a cylinder in

the sense of i) of Proposition 3.8. Now observe that ∂{u > u0} is bounded (as a
consequence of (A.4)), hence compact, and that each connected component of {u >
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u0} is unbounded (by (A.1)). Hence the conclusion follows from Proposition 3.8 and
the fact that {u > u0} is not empty. ��
Lemma A.9 [40, Lemma3.11]Let f ∈ L p(m)with p < +∞, then themap t �→ f ◦Ft
is continuous in L p(m). Moreover if f ∈ W1,2(X) the map t �→ f ◦ Ft is C1 in L2

and its derivative is given by

d

dt
f ◦ Ft = −〈∇ f ,∇u〉 ◦ Ft .

A.2 Effect on the Dirichlet Energy

Thanks to (A.5) and (A.11), we can repeat almost verbatim the analysis done in [40,
Sect. 3.2]. Indeed all the proofs contained there rely only on the analogous properties
of the function b and Flt , i.e. “|Db|2 = 2b,�b = N and Flt∗m = eNtm”.

This said, we will only state, adapted to our case and without proof, the final result
in [40, Sect. 3.2] (i.e. Corollary 3.17), since it is the only statement that is needed for
the rest of the argument.

Theorem A.10 Let t ∈ (0, log T0
t0

), and f ∈ L2(m) with support in At0,e−2t T0 . Then

f ∈ W1,2(X) if and only if f ◦ Ft ∈ W1,2(X) and in this case

|∇( f ◦ Ft )| = e−t |∇ f | ◦ Ft ,m− a.e.

A.3 Precise Representative of the Flow

The following proposition is the analogous of [40, Thm. 3.18]. We point out that
the proof in [40] contains an oversight in the proof that Flt has a locally Lipschitz
representative. Indeed it is claimed that this follows from the fact that Flt is Lipschitz in
Fl−1
t (Br (x0)) for every small enough ball Br (x0). However, since Flt is not yet proven

to be continuous, we do not know enough information on the sets Fl−1
t (Br (x0)) to

‘patch’ them and obtain the claimed local Lipschitzianity.
For this reason,wewill give a complete proofwhich also fixes the original argument.

Proposition A.11 Let Ut0,T0 ⊂ R×X be the open set given by

Ut0,T0 :=
{

(x, t) : x ∈ At0,T0 and t ∈
(
1

2
log

u(x)

T0
,
1

2
log

u(x)

t0

)}

.

Then the map

F : Ut0,T0 → At0,T0 ,

has a continuous representative w.r.t the measure L1 ⊗ m. Moreover for such repre-
sentative (which we denote again by F) the map Ft : Ae2t t0,T0 → At0,e−2t T0 is locally
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e−t -Lipschitz having F−t as its inverse, which is locally et -Lipschitz. Also for every
x ∈ At0,T0 and every s, t ∈ ( 12 log

u(x)
T0

, 1
2 log

u(x)
t0

)

d(Ft (x), Fs(x)) = |e−s − e−t |√2u(x) (A.14)

and

u(Ft (x)) = e−2t u(x). (A.15)

Finally for every t ∈ (0, log T0
t0

) and every curve γ with values in Ae2t t0,T0 , putting
γ̃ := Ft ◦ γ we have

|
.

γ̃ s | = e−t | .
γ s |, for a.e. s ∈ [0, 1], (A.16)

meaning that one is absolutely continuous if and only if the other is absolutely con-
tinuous, in which case (A.16) holds.

Proof Fix t ∈ [0, log T0
t0

). We start claiming that

Ft |Ae2t t0,T0

has a continuous representative that we denote by F̄t and

F̄t (Ae2t t0,T0) = At0,e−2t T0 .
(A.17)

For the first part,it is sufficient to show that for every a, b ∈ R such that e2t t0 < a <

b < T0 the map Ft |Aa,b
has a continuous representative. Hence we fix such a, b ∈ R

and define the open sets A′ := Ae−2t a,e−2t b and A := At0,e−2t T0 . Observe that the
continuity of u implies d(A′, Ac) =: δ > 0. Consider now the countable family of
1-Lipschitz functions D ⊂ LIP(X) defined as

D := { fn,k | n, k ∈ N} = {max(min(d(., xn), k − d(., xn)), 0) | n, k ∈ N},

where {xn}n∈N is a dense subset of A.We pick a cut-off function η ∈ LIPc(A) such that
0 ≤ η ≤ 1 and η ≡ 1 in A′ and define the set ηD ⊂ LIPc(A) as ηD := {η f | f ∈ D}.
For any f ∈ D it holds

Lip( f η) ≤ Lipη sup
A
| f | + Lip f ≤ Lipη diam(A)+ 1 =: L,

hence the functions in ηD are L-Lipschitz. We now make the key observation that

d(x, y) = sup
f ∈D

| f (x)− f (y)| = sup
f ∈D

|η f (x)− η f (y)|
= sup

f ∈ηD
| f (x)− f (y)|, (A.18)
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for every x, y ∈ A′. Thanks to Corollary (A.10), we know that f ◦ Ft ∈ W1,2(X) for
every f ∈ ηD and |D( f ◦Ft )| = e−t |Df |◦Ft ≤ e−t L m-a.e. Then from the Sobolev-
to-Lipschitz property of X , we deduce that f ◦ Ft has an L-Lipschitz representative.
Thus there exists anm-negligible set N ⊂ X such that for every f ∈ ηD the restriction
of f ◦ Ft to X \ N is L-Lipschitz. Moreover from (A.6) it follows the existence of an
m-negligible set N ′ such that Ft (Aa,b \ N ′) ⊂ A′. Therefore from (A.18) it follows
that for every x, y ∈ Aa,b \ (N ∪ N ′)

d(Ft (x), Ft (y)) = sup
f ∈ηD

| f (Ft (x))− f (Ft (y))| ≤ e−t Ld(x, y).

This proves the first part of (A.17). We now show ⊂ of the second part. From (A.6) it
follows the existence of a negligible set N such that for every setU relatively compact
in Ae2t t0,T0 we have that F̄t (U \ N ) is relatively compact in At0,e−2t T0 . Moreover,
since negligible sets have empty interior we deduce thatU \ N containsU . Therefore

F̄t (U ) ⊂ F̄t (U \ N ) ⊂ F̄t (U \ N ) which is contained in Ae2t t0,T0 thanks to the
first observation. We now show ⊃. Again thanks to (A.6) the set N := At0,e−2t T0 \
F̄t (Ae2t t0,T0) is negligible. Pick any set U relatively compact in At0,e−2t T0 and define

V := F̄−1
t (U \ N ) which is relatively compact in Ae2t t0,T0 . Therefore, since F̄t is

continuous, the set Ft (V̄ ) is compact in At0,e−2t T0 and, since negligible sets have
empty interior, contains U . This concludes the proof of (A.17).

For any t ∈ (log t0
T0

, 0),we can now argue exactly as above, to deduce that

Ft |At0,e2t T0

has a continuous representative that we denote by F̄t and

F̄t (At0,e2t T0) = Ae−2t t0,T0 .
(A.19)

In particular, since Ft (F−t ) = id m-a.e., we deduce that F̄−t is the continuous inverse
of F̄t .

Having proved (A.17) and (A.19) we can complete the proof arguing as in [40]
with the obvious modifications. ��

From now on we denote by F a representative of F : R×X → X which is
continuous (in space and time) on Ut0,T0 .

A.4 Properties of Level Set {u = T}

In this short subsection,we prove that the level set {u = T } is Lipschitz path connected
when T is big enough. We remark that the argument will rely on Proposition 3.8 and
is different from the one used in [40] to prove the same property for the “sphere”.

For the following result recall fromSect. A.1 that in our construction,we first choose
T and then we choose t0 and T0 accordingly.

Lemma A.12 There exists T > u0 and a constant c > 0 (depending only on T , t0
and u) such that, if T0 is big enough, for every couple of points x, y ∈ {u = T },
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there exists γ ∈ LIP([0, 1],X) joining x and y and such that γ ⊂ At0+1,T0−1 and
Lip(γ ) ≤ 5d(x, y).

Proof From (A.4), we know that d({u = T }, {u > t0 + 1}c) → +∞ as T → +∞.
Moreover {u > t0 + 1}c is bounded and, as proven in Corollary A.8, X has Euclidean
volume growth and in particular it is not a cylinder (since N ≥ 2). Therefore from
Proposition 3.8, provided T is big enough, we have that for every couple of points
x, y ∈ {u = T } there exists a Lipschitz path γ from x to y and such that γ ⊂ {u >

t0 + 1} and Lip(γ ) ≤ 5d(x, y). Therefore, again from (A.4) and since {u = T } is
bounded, if T0 is big enough then it holds that γ ⊂ At0+1,T0−1. ��

Consider now the closed set ST := {u = T } and the projection map Pr : At0,T0 →
ST defined as

Pr(x) := F1
2 log u(x)

T
(x).

Note that from Proposition A.11 and (A.14), we have that Pr is well defined and locally
Lipschitz.

Proposition A.13 The set ST is Lipschitz path connected,meaning that for every couple
of points x, y ∈ ST there exists a Lipschitz curve γ taking values in ST , joining x and
y. Moreover we can choose γ so that Lip(γ ) ≤ c d(x, y), for some uniform constant
c > 0.

Proof From Proposition A.12, we now that there exists a Lipschitz path connecting
x and y taking values in At0+1,T0−1, which is relatively compact in At0,T0 , then we
simply consider the curve

γ̃ := Pr ◦ γ,

which remains a Lipschitz curve, since Pr is locally Lipschitz. The claimed bound on
Lip(γ̃ ) follows from the bound on Lip(γ ) given in Proposition A.12 and again by the
local Lipschitzianity of Pr. ��

A.5 The Cosine Formula Holds

The goal of this section is to prove the following.

Proposition A.14 (Local cosine formula) For every ε > 0 there exists ρ = ρ(ε) > 0
such that for every x ∈ At0+ε,T0−ε it holds

d(x, y)2 = 2u(x)+ 2u(y)− 4
√
u(x)u(y)

(

1− d(Pr(x), Pr(y)2)
4T

)

, ∀y ∈ Bρ(x).

(A.20)

To prove this statement, we need to construct some objects and prove some preliminary
technical facts.
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Fix any x ∈ At0+ε,T0−ε and δ > 0 small and to be chosen. For every r > 0
and y ∈ Bδ(x) ∪ Bδ(Pr(x)) define the measures μr := (m(Br (Pr(x))))−1m|Br (Pr(x))
and νr := (m(Br (y)))−1m|Br (y). Let t̄ ∈ R be such that Ft̄ (Pr(x)) = x (i.e. t̄ =
1
2 log

T
u(x) ). For every t ∈ [0, t̄] (or in [t̄, 0] if t̄ < 0) we also set μr

t := Ft∗μr . Finally

for everyone of these t’s we also consider the unique W2-geodesic {ηt,rs }s∈[0,1] going
from νr to μr

t . For the main computations, we will need the following technical fact:

there exists ρ = ρ(ε) > 0 such that, provided r , δ < ρ,

supp(ηt,rs ) ⊂ At0,T0 for all s ∈ [0, 1]. (A.21)

Since themeasures η
t,r
s are concentrated on the support of geodesics going from Br (y)

to Ft (Br (x)), to check the above it is sufficient to prove the following.

Proposition A.15 For every x ∈ At0+ε,T0−ε there exists ρ = ρ(ε) > 0 such that the
following holds. Let t̄ ∈ R be such that Ft̄ (Pr(x)) = x (i.e. t̄ = 1

2 log
T

u(x) ). Then every
geodesic γ going from a point y ∈ Bρ(Pr(x))∪ Bρ(x) to a point x ′ ∈ Ft (Bρ(Pr(x))),
with t ∈ [0, t̄] (or [t̄, 0]), γ is contained in At0,T0 .

This in turn will follow from the next simpler result, which roughly says that if two
points are sufficiently close, then all the geodesics connecting one of them to the flow
line of the other, are contained in At0,T0 .

Lemma A.16 For every ε > 0,there exists ρ = ρ(ε) > 0 such that the following holds.
For every x, y ∈ At0+ε,T0−ε such that d(x, y) < ρ and every geodesic γ going from
y to a point of the type z = Ft (x) ∈ At0+ε,T0−ε, γ is contained in At0,T0 .

Proof We first notice that arguing as in the proof of (A.9), we have

d(x, {u = t0}) ≥
√
2u(x)−√2t0,

d(x, {u = T0}) ≥
√
2T0 −

√
2u(x), ∀x ∈ At0,T0 .

Fix x, y ∈ At0+ε,T0−ε with d(x, y) < ρ and fix some point z = Ft (x) ∈ At0+ε,T0−ε.

We will only consider the case t > 0, since the other one is analogous. Notice that
in this case d(x, z) = √

2u(x)−√
2u(z). Moreover, since u is Lipschitz, |√2u(y)−√

2u(x)| ≤ C
√

ρ for some C depending only on u.
Fix a geodesic γ going from y to z. Suppose by contradiction that γ exits At0,T0 .

This means that γt ∈ {u = t0} ∪ {u = T0} for some t ∈ (0, 1). Since γ is a geodesic
we also have

d(z, y) ≥ max{d(γt , z),d(γt , y)}.

Moreover from (A.14) and the triangle inequality we deduce that d(z, y) ≤ √
2u(x)−√

2u(z)+ ρ.

We now have two possibilities: either γt ∈ {u = t0} or γt ∈ {u = T0}. In the first
one, combining the above observations we have

√
2u(x)−√2u(z)+ ρ ≥ d(z, y) ≥ d(γt , y) ≥

√
2u(y)−√2t0
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≥ √2u(x)− C
√

ρ −√2t0,

which gives

√
2t0 + ρ + C

√
ρ ≥ √2u(z) ≥ √2(t0 + ε),

that is clearly a contradiction provided ρ is chosen small enough. In the case that
γt ∈ {u = T0} we analogously have

√
2(T − ε)−√2u(z)+ ρ ≥ √2u(x)−√2u(z)+ ρ ≥ d(z, y)

≥ d(γt , z) ≥
√
2T0 −

√
2u(z),

which is again a contradiction if ρ is small enough. ��
We can now prove Proposition A.15, which as observed above, proves also (A.21).

Proof of Proposition A.15 Since Ft̄ is locally Lipschitz in At0,T0 (recall Proposition
A.11), there exists δ = δ(ε) > 0 such that

Ft̄ (Bδ(Pr(x)) ⊂ At0+ε/2,T0−ε/2

Moreover, since u is monotone along flow lines, we also have Ft (Bδ(Pr(x)) ⊂
At0+ε/2,T0−ε/2 for every t ∈ [0, t̄] ∪ [t̄, 0]. Let now ρ = ρ(ε/2) be the one given
by Lemma A.16 corresponding to ε/2 and note that we can assume that ρ < δ. Then
the conclusion for y ∈ Bρ(Pr(x)) follows immediately from Lemma A.16.

For the cases inwhich y is close to x ,weobserve that, again by the localLipschitzian-
ity of Ft̄ , there exists ρ̄(ε) ∈ (0, ρ/2) so that Ft̄ (Bρ̄ (Pr(x))) ⊂ Bρ/2(x). In particular
for every y ∈ Bρ̄ (x) and x ′ ∈ Ft̄ (Bρ̄ (Pr(x))),we have d(y, x ′) < ρ/2+ρ̄ < ρ. There-
fore we conclude again by Lemma A.16 that every geodesic from y to Ft (Bρ̄ (Pr(x))),
with t ∈ [0, t̄] ∪ [t̄, 0], is contained in At0,T0 . ��
Proof of Proposition A.14 It is sufficient to prove that for every ε > 0 there exists
ρ(ε) > 0 such that, for every x ∈ At0+ε,T0−ε and every y ∈ Bρ(x) ∪ Bρ(Pr(x)) it
holds

d(x, y)2

2
= u(x)+ u(y)+

√
u(x)

T

(
d(Pr(x), y)2

2
− T − u(y)

)

. (A.22)

Then (A.20) follows applying (A.22) first with x = x ′ ∈ At0+ε,T0−ε and y = y′ ∈
Bρ′(x) (for some ρ′ < ρ(ε) to be chosen) and then with x = y′ and y = Pr(x ′). The
second application of (A.22) is possible because d(y, Pr(x)) = d(Pr(x ′), Pr(y′)) ≤
Cεd(x ′, y′) ≤ Cερ

′ < ρ(ε) (recall that Pr is locally Lipschitz) if we choose ρ′(ε)
small enough.

Fix x ∈ At0+ε,T0−ε and let t̄ ∈ R be such that Ft̄ (Pr(x)) = x . We will assume that
t̄ > 0, since the other case is exactly the same. Let r , δ < ρ(ε), where ρ(ε) is given
by (A.21). Then we also fix y ∈ Bρ(x) ∪ Bρ(Pr(x)). Finally we define the measures
μr , νr , μr

t , η
t,r
s as above, for t ∈ [0, t̄] and s ∈ [0, 1].
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From Theorem 2.29, we have that the curve of measures [0, 1] � t �→ μr
t satisfies

the continuity equation with vector field−∇u. Then combining [50, Theorem 3.5] and
[50, Proposition 3.10] we have that the function R � t �→ W 2

2 (μr
t , ν

r ) is absolutely
continuous and

d

dt

1

2
W 2

2 (μr
t , ν

r ) = −
ˆ
〈∇ϕt ,∇u〉 dμr

t , a.e. t, (A.23)

where ϕt are suitable (Lipschitz) Kantorovich potentials from μr
t to ν.Moreover from

the second differentiation formula along Wasserstein geodesics [60, Thm. 5.13] we
have that, for every t , [0, 1] � s �→ ´

u dηt,rs is C2[0, 1] and
d

ds

ˆ
u dηt,rs = 1

s

ˆ
〈∇u,∇ψs〉 dηt,rs , ∀s ∈ [0, 1],

d2

ds2

ˆ
u dηt,rs = 1

s2

ˆ
〈Hess(u)(∇ψs, ψs)dη

t,r
s , ∀s ∈ [0, 1],

(A.24)

whereψs are any choice ofKantorovich potentials fromη
t,r
s to νr .Wenowfix t ∈ [0, t̄]

such that the formula in (A.23) holds. Since η
t,r
1 = μr

t , we can combine it with the
first in (A.24) at s = 1 to get

d

ds |s=1

ˆ
u dηt,rs = − d

dt |t=1

1

2
W 2

2 (μr
t , ν

r ). (A.25)

Our goal is now to derive an explicit expression for d
ds |s=1

´
u dηt,rs . To do so we

use the second in (A.24) and the fact that Hess(u) = id on supp(ηt,rs ) (which is ensured
by (A.21))

d2

ds2

ˆ
u dηt,rs = 1

s2

ˆ
〈Hess(u)(∇ψs, ψs)dη

t,r
s = 1

s2

ˆ
|∇ψs |2 dηt,rs ∀s ∈ [0, 1].

We now apply the metric version of Brenier theorem ( [8], see also [15]) to obtain that´ |∇ψs |2 dηt,rs = W 2
2 (η

t,r
s , νr ) for every s ∈ [0, 1], which combined with the fact that

η
t,r
s is a W2-geodesic from μr

t to νr gives

d2

ds2

ˆ
u dηt,rs = W 2

2 (μr
t , ν

r ), ∀s ∈ [0, 1].

Since s �→ ´
u dηt,rs is C2[0, 1], we must have

´
u dηt,rs = a + bs + W 2

2 (μr
t , ν

r ) s
2

2
for every s ∈ [0, 1]. Substituting s ∈ {0, 1} we deduce that

ˆ
udηts =

ˆ
udνr +

(ˆ
udμr

t −
ˆ

udνr − W2(μ
r
t , ν

r )2

2

)

s

+W 2
2 (μr

t , ν
r )
s2

2
, ∀s ∈ [0, 1],
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using which we can finally compute

d

ds |s=1

ˆ
udηts =

ˆ
udμr

t −
ˆ

udνr + W2(μ
t
r , ν

r )2

2
.

Combining this with (A.25) we obtain that, setting f (t) := W2(μ
r
t , νr )

2/2, t ∈ [0, t̄],
f is absolutely continuous and

f ′(t) =
ˆ

udνr −
ˆ

udμr
t − f (t), a.e. t ∈ (0, t̄).

Note that the right-hand side is actually a continuous function in t , hence f ∈ C1[0, 1].
Since we know the value of f (0) we can now find f explicitly:

W2(μ
r
t , νr )

2

2
= f (t) = e−t

ˆ t

0
es
(ˆ

udνr −
ˆ

udμr
s

)

ds

+W2(μ
r
0, νr )

2

2
e−t , ∀ t ∈ [0, t̄].

We now let r → 0+ to obtain

d(Ft (Pr(x)), y)2

2
= e−t

ˆ t

0
es(u(y)− u(Fs(Pr(x))))ds

+d(Pr(x), y)2

2
e−t , ∀ t ∈ [0, t̄].

Note that to pass the limit inside the integral sign, we can use that
∣
∣
´
udμr

s

∣
∣ ≤ ´ |u| ◦

Fsdμr ≤ ‖u‖∞ and the dominated convergence theorem. Plugging in u(Fs(Pr(x))) =
e−2su(Pr(x)) = e−2sT (see (A.15)) and choosing t = t̄ , we obtain

d(x, y)2

2
= d(Ft̄ (Pr(x)), y)

2

2

= u(y)e−t̄ (et̄ − 1)+ T e−t̄ (e−t̄ − 1)+ d(Pr(x), y)2

2
e−t̄ =

= u(x)+ u(y)+ e−t̄
(
d(Pr(x), y)2

2
− T − u(y)

)

,

that is precisely (A.22), since t̄ = 1
2 log

T
u(x) . ��

A.6 Intrinsic Metric on the Level Set

Definition A.17 We put X′ := ST . For x ′, y′ ∈ ST we define d′(x ′, y′) as

d′(x ′, y′)2 := inf
ˆ 1

0
|γ̇t |2dt,
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where the infimum is taken among all Lipschitz path γ : [0, 1] → X ′ ⊂ X joining x ′
and y′ and the metric speed is computed w.r.t. the distance d.

Lemma A.18

d(x, y) ≤ d′(x, y) ≤ cd(x, y), for every x, y ∈ X′, (A.26)

where c > 0 is the constant given in Proposition A.13

Proof The first in (A.26) is immediate from the definition of d′, while the second
follows directly from Proposition A.13. ��
Corollary A.19 The topology induced by d′ on X ′ is the same as the one induced by
the inclusion X ′ ⊂ X .

We now define the measure m′ on X ′ as

m′ := mT ,

where mT is given in Proposition A.7. Observe that, thanks to Corollary A.19, m′ is
a Borel probability measure on X ′.

A straightforward computation, exploiting (A.13), gives also that

Pr∗m|Aa,b = ca,b m
′,

for every a, b ∈ R such that t0 ≤ a < b ≤ T0, where ca,b = c
´ b
a r N/2−1dr , with c as

in Proposition A.7.
The only step that remains to conclude is to link d′ to the formula for the distance

with separation of variables given by (A.20). To do so we define a new “distance” on
ST by:

D(x, y) := arccos

(

1− d(x, y)2

4T

)

, ∀ x, y ∈ ST such that d(x, y)2 < 4T ,

where we take the range of arccos(.) to be in (−π/2, π/2). We point out that Dmight
not be a distance on the whole ST ; however, we will show that it is so at least locally.
Note also that c−1d(x, y) ≤ D(x, y) ≤ cd(x, y) for some constant c = c(T ) > 1.

Our main goal is to prove the following.

Proposition A.20 (D locally coincides with d′) For every p ∈ ST there exists r > 0
such that

d′(x, y)√
2T

= D(x, y), ∀x, y ∈ Br (p) ∩ ST .

To prove the above proposition we need first to show that D is locally an intrinsic
distance.
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Proposition A.21 (D is a locally geodesic distance) For every p ∈ ST there exists
δ > 0 such that

i) D(., .) is a distance when restricted to Bδ(p) ∩ ST ,
ii) there exists a constant λ = λ(T ) < 1 such that for every x, y ∈ Bλδ(p)∩ ST there

exists a Lipschitz curve γ : [0, 1] →⊂ Bδ(p) ∩ ST that is a geodesic for D, i.e.
such that γ0 = x, γ1 = y and D(γt , γs) = |t − s|D(γ0, γ1) for every t, s ∈ [0, 1].

Proof We preliminarily note that for every a, b ∈ [0, π/2], there exists λ ∈ [0, 1]
such that

√
λ2 + 1− 2λ cos(a)+

√
λ2 + 1− 2λ cos(b) = √2− 2 cos(a + b). (A.27)

An immediate geometric proof of this fact is the following: take three points P, Q, S
on the unit circle of centre O so that the length of the arcs PQ,QS and PS
is,respectively,a, b and a + b, denote by M the intersection between the segments
PS and QO , then λ is precisely the distance from M to the centre O . Alternatively
(A.27) follows also by continuity and the subadditivity of

√
2− 2 cos(.) in [0, π ].

Fix now ε > 0 small so that T ∈ (t0 + ε, T0 − ε) and fix p ∈ ST . Let also
ρ = ρ(ε) > 0 be the one given by Proposition A.14. By continuity of u and Ft (recall
(A.14) and (A.15)) there exist δ = δ(ε, p) > 0, t̄ = t̄(ε, p) > 0 both small and such
that Ft (Bδ(p)) ⊂ Bρ/2(p) for all t ∈ [0, t̄]. In particular

for every x, y ∈ Ft (Bδ) and every t ∈ [0, t̄], (A.20) holds. (A.28)

Proof of i): We only need to prove that the triangular inequality holds. We argue by
contradiction assuming that there exist x, y, z ∈ Bδ(p) ∩ ST such that

D(x, z) > D(x, y)+ D(y, z).

We also let λ be the one given by (A.27) and corresponding to a = D(x, y), b =
D(y, z). Finally let t ≥ 0 be such that e−2t T = λ2T . Note that λ → 1 as a + b → 0,
hence up to decreasing δ we can assume that t < t̄ . In particular thanks to (A.28) we
can apply (A.20) to x, Ft (y) and to Ft (y), z, that coupled with (A.27) gives

d(x, Ft (y))+ d(Ft (y), z) =
√
4T − 4T cos (D(x, y)+ D(y, z))

<
√
4T − 4T cos (D(x, z)),

where we have used the strict monotonicity of
√
1− cos(.). However, using again

(A.20) and the definition of D we see that
√
4T − 4T cos (D(x, z)) = d(x, z), which

is clearly a contradiction. This concludes the proof of i).
Proof of ii): It is sufficient to show that for every couple of points in Bδ/2(p),there
exists a D-midpoint, then the conclusion follows from standard arguments (see,e.g.
[20, Thm. 2.4.16]) and the fact that ST is closed (with respect to d) and that D is
comparable to d.

Let x, y ∈ ST ∩ Bδ(p). Take z such that d(z, x) = d(z, y) = 1
2d(x, z), which

exists because (X,d) is geodesic. We claim that Pr(z) is a D-midpoint for x and y.
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Observe that from (A.28), (A.20) holds for the couple of points x, y; x, z and z, x .
From (A.20) we immediately see that

D(Pr(z), x) = D(Pr(z), y).

Hence it is sufficient to show thatD(Pr(z), x) ≤ D(x,y)
2 . To this aim set l̃ := D(Pr(z), x)

and l := d(x, z) and observe that by (A.20)

cos(l̃) = 2u(z)+ 2T − l2

4
√
u(z)T

=
u(z)
T + 1− (l/

√
2T )2

2
√

u(z)
T

Moreover, since
√
2u is 1-Lipschitz in Bδ(p) (provided δ is small enough), we see

that
√

u(z)
T ∈ (1 − l/

√
2T , 1 + l/

√
2T ) and that l/

√
2T < 1 if δ is small enough.

Next we observe that for any a ∈ (0, 1) the minimum of the function t2+1−a2
2t for

t ∈ (1− a, 1+ a) is
√
1− a2, which is achieved at t = √

1− a2. Therefore

cos(l̃) ≥
√

1− (l/
√
2T )2

and plugging in the identity l2 = d(x, y)2/4 = T − T cos(D(x, y)) (obtained from
(A.20)) we reach

cos(l̃) ≥
√
T + T cos(D(x, y))

2T
=
√
1+ cos(D(x, y))

2
= cos

(
D(x, y)

2

)

,

which shows that l̃ ≤ D(x,y)
2 and concludes the proof of ii). ��

We are now ready to prove that D and d′ coincides inside small balls.

Proof of Proposition A.20 Fix p ∈ ST and let δ = δ(p) > 0, λ = λ(T ) be the ones
given by Proposition A.21. We fix r > 0 small and to be chosen and fix x, y ∈
Br (p) ∩ ST . Since d′ is a geodesic distance there exists a constant speed geodesic
from x to y (for d′) {γt }t∈[0,1] ⊂ ST . Moreover from (A.26) we have that γ ⊂ Bδ(p),
provided r is chosen small enough. Note also that, since D is comparable with d, γ is
a Lipschitz curve with respect to D (which is a metric in Bδ(p)∩ ST ). Take t ∈ (0, 1)
such that |γ̇t | exists, then since |γ̇t | coincides with the metric speed computed using
d, we have

d′(x, y) = |γ̇t | = lim
h→0

d(γt+h, γt )

h
= lim

h→0

√
4T

h

√
1− cos(D(γt+h, γt ))

= √
2T lim

h→0

D(γt+h, γt )

h
.

In particular the length of the curve γ computed with the metric D is
√
2T

−1
d′(x, y)

and since the length is always greater or equal than the distance between the two
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endpoints we just proved that

D(x, y) ≤ d′(x, y)√
2T

.

On the other hand, from ii) in Proposition A.21, if we choose r < λδ, there exists a
curve γ : [0, 1] → ST ∩ Bδ that is a geodesic from x to y with respect to D. As above
we have that γ is a Lipschitz curve with respect to d′ and that, for any t ∈ (0, 1) such
that the metric speed |γ̇t | (computed with D) exists, we have

|γ̇t | = 1√
2T

lim
h→0

d(γt+h, γt )

h
.

In particular the length of the curve γ with respect to the metric d′ is
√
2TD(x, y),

which shows that

d′(x, y) ≤ √
2TD(x, y).

��

A.7 Building the Cone and Conclusion

Let us define the (Z ,dZ ,mZ ) as
(
X ′, d′√

2T
,m′
)
. We then define the metric mea-

sure space (Y ,dY ,mY ) as the N -euclidean cone over the metric measure space
(Z ,dZ ,mZ ).

For every 0 < a < b < ∞ we set AY
a,b = {y ∈ Y : dY (y, OY ) ∈ (

√
2a,

√
2b)} =

{(r , z) ∈ Y : r ∈ (
√
2a,

√
2b)} ⊂ Y .

We then define the map T : AY
t0,T0

→ At0,T0 as

T ((r , z)) := F1
2 log

2T
r2

(z),

which is well defined thanks to (A.15), and the map S : At0,T0 → AY
t0,T0

defined as

S(x) := (
√
2u(x),Pr(x)). (A.29)

It is immediate from the definition that S(Aa,b) = AY
a,b and T (AY

a,b) = Aa,b for every
t0 ≤ a < b ≤ T0.

Moreover it is clear from the definition of Pr, (A.15) and the fact that F−t = F−1
t ,

that S and T are one the inverse of the other.
The following result follows from the definitions, Proposition A.14, Proposition

A.20 and Proposition A.7.

Proposition A.22 The maps S : At0,T0 → AY
t0,T0

and T : AY
t0,T0

→ At0,T0 are measure
preserving local isometries.
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We can now give the last details which complete the proof of the main theorem.

Proof of Theorem 6.1 We already know from above, that themaps S and T are measure
preserving local isometries from At0,T0 to AY

t0,T0
and viceversa.

Pick now any t ′0, T ′0 ∈ (u0,∞) such that t ′0 < t0 < T < T0 < T ′0, then we can
repeat all the arguments in the previous sections with t ′0, T ′0 in place of t0, T0 (but
using the same T to define X ′ as in subsect. A.4) to obtain a map S′ : At ′0,T ′0 → AY

t ′0,T ′0
that is a local isometry, with an inverse T ′, which is also a local isometry. The key
observation is that S′ agrees with S in At0,T0 . Indeed from (A.29) we deduce that S′ on
At0,T0 depends only on the value of the function u

′ and the map Pr′ on At0,T0 . From the
construction it is clear that u′ agrees with u on At0,T0 , since both agree with u on this
set. Therefore we need to show that the two projection maps Pr,Pr′ : At0,T0 → ST
agree. Suppose they do not, i.e. there exists x ∈ At0,T0 such that Pr(x) $= Pr′(x). Recall
that Pr(x) = F1

2 log u(x)
T

(x) and that the curve γ 1
t = Ft (x) for t ∈ [0, 1

2 log
u(x)
T ] is (up

to a reparametrization) a minimizing geodesic joining x to Pr(x) and with values in
At0,T0 , as shown in Proposition A.4. With the same argument we deduce the existence
of a geodesic γ 2 joining x and Pr′(x) with values in At0,T0 . Moreover from (A.14) we
have that d(x,Pr(x)) = d(x,Pr′(x)) = √

2|√T − √
u(x)|, in particular γ 1, γ 2 are

geodesics with same length. Since S is a local isometry we have that the curves S(γ i
t )

are both geodesics in Y with the same length. In particular dY (S(x), S(Pr(x))) =
dY (S(x), S(Pr′(x))) which using the expression for S gives

√
2|√T −√u(x)| = dY ((

√
2u(x),Pr(x)), (

√
2T ,Pr(x)))

= dY ((
√
2u(x),Pr(x)), (

√
2T ,Pr′(x))).

However, recalling that Pr(x) $= Pr′(x) and from the definition ofdY , we easily deduce
that the rightmost term in the above identity is strictly bigger than

√
2|√T −√

u(x)|,
which is a contradiction.

We can now send t0 → u0 and T0 → +∞ and obtain a map S : {u > u0} →
Y \B√2u0(OY )which is a surjective and measure preserving local isometry. Moreover

extending analogously the maps T : AY
t0,T0

→ At0,T0 , which are the inverses of the

maps S, we obtain a map T : Y \ B√2u0(OY ) → U , which is the inverse of S and a
local isometry as well.

Observe now that, since S and T are a local isometries, they send geodesics to
geodesics. This easily implies that

d(x, ∂{u > u0}) = dY (S(x), B√2u0(OY )) = √2u(x)−√2u0,

from which (6.1) follows.
We are now in position to apply Proposition 6.3 to obtain that Y is an RCD(0, N )

space, which is the unique tangent cone at infinity to X. Moreover from the fact that Y
is an RCD(0, N ) and from (2.18) it follows that (Z ,dZ ,mZ ) is an RCD(N−2, N−1)
space satisfying diam(Z) ≤ π.

Suppose now that diam(Z) = π , then again from Proposition 6.3 we obtain that X
is isomorphic to Y .

123



Monotonicity Formulas for Harmonic Functions in RCD spaces Page 79 of 89 100

The fact that X has Euclidean volume growth was already proved in Corollary A.8.
It remains to prove the first part of ii). Let r = √

2u0 and rZ as in the statement. It is
enough to show that for every couple of points y1, y2 ∈ Y such that dY (yi , OY ) > rZ ,
i = 1, 2, all the geodesics connecting them are contained in {d(., OY ) > r}.Moreover
we can clearly restrict ourselves to consider points y1, y2 of the form yi = (t, zi ), with
zi ∈ Z , i = 1, 2 and t > rZ . For such points we have that

dY (y1, y2) = t
√
2− 2 cos(d(z1, z2)) ≤ t

√
2− 2 cos(diam(Z))

Let now γ be a geodesic between y1 and y2, then by the triangle inequality

d(γt , OY ) ≥ t − dY (y1, y2)

2
> rZ

(

1−
√
1− cos(diam(Z))

2

)

= r , ∀t ∈ [0, 1],

where the last identity follows from the definition of rZ . ��

B Appendix: Obstacle Problem in RCD

B.1 Relative Capacitary Potential for Sets with Cap-fat boundary

This appendix is devoted to the proof of the existence (and uniqueness) of a relative
capacitary potential in RCD space and we will mainly focus on boundary regularity.
The results contained here are needed only in the proof of Theorem 8.4.

Let us say that we are not proving anything substantially new, since all the results
were essentially already present in [19]. Let us alsomention that the results concerning
boundary regularity and Wiener criterion for harmonic functions originally appeared
in [17, 18, 21]. However, the results we needed were spread in many different chapters
of [19] and often the language used there (for example for some type of Sobolev
spaces) does not coincide with the one we use in this note. For this reason we decided
to gather here in a self-contained exposition all the results that we required. Finally let
us say that working in the context of RCDwill allow to simplify some of the arguments
in [19].

Along all this appendix (X,d,m) is an RCD(K , N ) m.m.s., N < +∞. Even if we
will only apply the result below for K = 0, wewill consider arbitrary K for generality.
We only remark that every time a constant will depend on some radius (or diameter
of a set), in the case K = 0 this dependence can be dropped. This is a consequence of
the fact that RCD(0,N) spaces are uniformly doubling.

Our main goal is to prove the following (see below for the definition of relative
Capacity).

Theorem B.1 Let E ⊂ X be an open set and B be a ball such that E ⊂⊂ B. Suppose
also that E has Cap-fat boundary. Then there exists u ∈ W1,2

0 (B) ∩ C(B), superhar-
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monic in B and harmonic in B \ Ē with 0 ≤ u ≤ 1, u = 1 in E and

Cap(E, B) =
ˆ
B
|∇u|2 dm.

Moreover we have the following continuity estimate: for every x ∈ ∂E it holds

1− u(y) ≤ Cxd(y, x)αx , ∀y ∈ Brx/2(x) ∩ B,

for some positive constants Cx = Cx (rx , cx , K , N , δ) αx = α(rx , cx , K , N , δ) > 0,
where rx , cx are the Cap-fatness parameters of x and δ > 0 is such that d(E, Bc) ≥ δ.

Finally u satisfies the following comparison principle: for every v ∈ W1,2(B) super-
harmonic and such that v ≥ χ E m-a.e. in B, it holds that

u ≤ v, m-a.e. in B.

Definition B.2 (Variational 2-Capacity) Let E ⊂ X and � open containing E . We
define

Cap(E,�)

= inf

{ˆ
�

|∇u|2 dm : u ∈ W1,2
0 (�) and u ≥ 1m-a.e. in a neighbourhood of E

}

Definition B.3 (Cap-fat boundary points) We say that an open set E is Cap-fat at a
point x ∈ ∂E if there exists r , c > 0 such that

Cap(Bs(x) ∩ E, B2s(x))

Cap(Bs(x), B2s(x))
≥ c , ∀ s ∈ (0, r).

Moreover we say that E has (uniformly) Cap-fat boundary if it is Cap-fat at every
point x ∈ ∂E (with global parameters c, r > 0).

A geometric condition that is enough to ensure Cap-fatness of the boundary is
the following interior corkscrew condition. This follows essentially from the doubling
property of the measure and the Poincaré inequality (see for example [19, Prop. 6.16]).

Definition B.4 (Corkscrew condition) Let λ ∈ (0, 1) and r > 0.We say that E satisfies
the (interior) (λ, r)-corkscrew condition at x ∈ ∂E if for every s ∈ (0, r) there exists
an ball of radius λs contained in Bs(x) ∩ E .

It is easily verified that any ball of radius > δ satisfies the (interior) (1/4, δ)-
corkscrew condition. Moreover arbitrary unions of sets satisfying the (interior)
(λ, r)-corkscrew condition still satisfies the (interior) (λ, r)-corkscrew condition. In
particular union of balls with radius uniformly bounded below satisfies the interior
corkscrew condition. It follows that any ε-enlargements of a set, i.e. a set of the form
Sε = {x : d(x, S) < ε}, with ε > 0 and S an arbitrary set, satisfies the interior
corkscrew condition.
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B.2 Preliminaries

We will need the following variational characterization of sub(super)harmonic func-
tions (see [59, Theorem 2.5] and also [48, 53]).

Proposition B.5 Let� ⊂ X be open. A function u ∈ W1,2(�) is superharmonic (resp.
subharmonic) in � if and only if

ˆ
�

|∇u|2dm ≤
ˆ

�

|∇(u + ϕ)|2dm,

for every ϕ ∈ LIPc(�)with ϕ ≥ 0 (resp. ϕ ≤ 0) or equivalently for every ϕ ∈ W1,2
0 (�)

with ϕ ≥ 0 (resp. ϕ ≤ 0) m-a.e..

Since, as shown in [74], RCD(K , N ) spaces support a (1,1) Poincarè inequality and
they are also (uniformly) locally doubling, a class of Sobolev embeddings can be shown
to hold (see for example [64] and also [19, Chap. 4–5 ]). Therefore a Moser iteration
can be performed to obtain the following Harnack inequalities (see for example [65]
for the case K = 0).

Proposition B.6 For every R0 > 0 there exists two positive constants Ci =
Ci (R0, K−, N ), i = 1, 2, such that the following hold for any R < R0

1. if u is subharmonic function in a ball B2R(x), then

ess sup
BR(x)

u ≤ C2

 
B2R(x)

|u|dm,

2. if u is a nonnegative superharmonic function in a ball B2R(x), then

ess inf
BR(x)

u ≥ C1

 
B2R(x)

udm.

The above Harnack inequalities imply that harmonic functions have a locally Hölder
continuous representative (which is actually locally Lipschitz by [66]) and that super-
harmonic functions have a lower semicontinuous representative (see for example [19,
Theorem 8.22]). From now on we will always tacitly consider these special represen-
tatives.

Lastly, we will need the following technical lemma, whose simple proof is omitted.

Lemma B.7 Let u ∈ W1,2
0 (�), then u+ ∈ W1,2

0 (�).

Let v ∈ W1,2(�), u ∈ W1,2
0 (�) be such that 0 ≤ v ≤ u, then v ∈ W1,2

0 (�)
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B.3 The Obstacle Problem

Given a ball B ⊂ X and a (Borel) set E ⊂⊂ B we consider the followingminimization
problem

Obs(E, B) := inf
u∈FE,B

ˆ
B
|∇u|2 dm, (O)

where FE,B = {u ∈ W1,2
0 (B) : u ≥ χ E m-a.e. in B}.

It is clear that if E is open, then

Obs(E, B) = Cap(E, B).

The proof of the following result is a straightforward application of the direct
method of the calculus of variations, recalling that the embeddingW1,2

0 (B) ↪→ L2(X)

is compact (see for example [54, Theorem 6.3]) and from the lower semi continuity
and (strict) convexity of the Cheeger energy.

Proposition B.8 There exists a unique minimizer to (O). Moreover this minimizer is
superharmonic in E .

We now show the two main properties of the minimizers of (O): the first is that u is
harmonic far from the obstacle E and the second says that u is essentially the smallest
superharmonic function which stays above χ E .

Proposition B.9 Let u be the minimum of (O) for some E ⊂⊂ B. Then u = 1 m-a.e.
in E and the following hold:

1. u is harmonic in B \ Ē ,
2. comparison principle: for every v ∈ W1,2(B) superharmonic and such that v ≥

χ E , m-a.e., it holds that

u ≤ v, m-a.e. in B.

Proof We start by showing that u ≤ 1m-a.e. in B. Indeed u∧1 ∈ FE,B and
´
B |∇(u∧

1)|2 ≤ ´
B |∇u|2dm, from which the claim follows. Since u ≥ χ E , m-a.e. it also

follows that u = 1 m-a.e. in E .
We pass to the harmonicity. Fix ϕ ∈ LIPc(B \ Ū ). Clearly (u + ϕ)+ ∈ FE,B ,

therefore
ˆ
B\Ē

|∇(u + ϕ)|2 dm ≥
ˆ
B\Ē

|∇(u + ϕ)+|2 dm

=
ˆ
B
|∇(u + ϕ)+|2 dm−

ˆ
Ē
|∇u|2 dm ≥

ˆ
B\Ē

|∇u|2dm,

where in the equality step we have used that ϕ = 0 in Ē and the locality of the gradient.
This and Proposition B.5 prove the claimed harmonicity.
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It remains to prove the comparison principle. We start claiming that (u − v)+ ∈
W1,2

0 (B) and min(u, v) ∈ FE,B . Indeed we have that 0 ≤ (u − v)+ ≤ u, m-a.e. in B
and χ E ≤ min(u, v) ≤ u m-a.e. in B, therefore the claim follows applying Lemma
B.7.

Observe that max(u, v) = v + (u − v)+, hence from the superharmonicity of v,
Proposition B.8, and the locality of the gradient we have

ˆ
{u>v}

|∇u|2 dm ≥
ˆ
{u>v}

|∇v|2 dm.

Therefore from the locality of the gradient it follows that

ˆ
B
|∇ min(u, v)|2 dm ≤

ˆ
B
|∇u|2 dm,

that combinedwithmin(u, v) ∈ FE,B and the uniqueness of the solution to (O) implies
that min(u, v) = u m-a.e. in B. ��

We conclude this part with the following technical result.

Lemma B.10 Let u be the minimum of (O) for some E ⊂⊂ B. Then for every m ∈
(0, 1], the function u

m ∧ 1 is the minimum of (O) in B with E = {u > m}.
Proof Set um = u

m ∧ 1 and fix v ∈ F{u>m},B . Observe that um ≥ χ {u>m} and
that um ∈ W1,2

0 (B) by Lemma B.7, hence um ∈ F{u>m},B . Define the function

ū := u+m(v− um) and observe that ū ∈ W1,2
0 (E). Moreover ū ≥ u ≥ 0m-a.e. in B

and, since from Proposition B.9 u = 1 m-a.e. in E , we also have that ū = 1 m-a.e. in
E . Therefore ū ∈ FE,B . This and the fact that ū = mv m-a.e. in {u ≤ m} and ū = u
m-a.e. in {u > m} gives

ˆ
B
|∇v|2 dm ≥

ˆ
{u≤m}

|∇v|2 dm ≥ 1

m2

ˆ
{u≤m}

|∇u|2 dm =
ˆ
B
|∇um |2 dm.

Since v ∈ F{u>m},B was arbitrary we conclude. ��

B.4 Proof of Theorem B.1

Proposition B.11 For every r0 < 4diam(X) there exists C = C(r0, K , N ) > 0 such
that the following holds. Let E ⊂ Br (x) be open, r < r0 let 2B = B2r (x) and let u
be the solution to (O) for E in 2B. Then

u ≥ C
Cap(E, 2B)

Cap(B, 2B)
, m-a.e. in Br (x).

Proof Set B ′ = B 3
2 r

(x) and observe that, since r0 < 4diam(X), ∂B ′ $= ∅. Define
m := max∂B′ u, which exists because u is continuous in ∂B ′. We claim that m > 0.
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Indeed if m = 0, from the maximum principle (Proposition 2.15) we would have that
u = 0 in the ball 2B (recall that balls are connected), and thus u = 0 in E , which
contradicts the fact that u = 1 m-a.e. in E with E open. We claim that

u ≤ m, in 2B \ B ′. (B.1)

To see this let m′ > m and observe that (u − m′)+ ≤ u+ hence by Lemma B.7
(u−m′)+ ∈ W1,2

0 (2B). Moreover, from the continuity of u and the definition ofm,we
have that (u−m′)+ = 0 in a neighbourhood of ∂B ′. These two observations together
imply that (u − m′)+ ∈ W1,2

0 (2B \ B̄ ′). Observe that min(u,m′) = u − (u − m′)+
hence from harmonicity of u we deduce that

ˆ
2B\B̄′

|∇u|2 d m ≤
ˆ
2B\B̄′

|∇ min(u,m′)|2 dm,

which combined with the locality of the gradient gives that |∇u| = 0 m-a.e. in {2B \
B̄ ′} ∩ {u ≥ m′}. Therefore again by locality |∇(max(u,m′))| = 0 m-a.e. in {2B \ B̄ ′}
and thus u ≤ m′ in 2B \ B̄ ′. Since m′ > m was arbitrary (B.1) follows.

Define the functions u1 = u
m ∧ 1, u2 = u−mu1

1−m and observe that u1, u2 ∈ FE,2B .
In particular for every t ∈ (0, 1) tu1 + (1− t)u2 ∈ FE,2B and

ˆ
2B
|∇u|2 dm ≤ t2 I1 dm+ (1− t)2 I2,

where Ii =
´
2B |∇ui |2 dm. Optimizing in t we obtain that

1´
2B |∇u|2 dm

≥ 1

I1
+ 1

I2
. (B.2)

Observe now that u2 = 0 in {u ≤ m} and u2 = (1 − m)−1(u − 1) in {u > m}
, therefore |∇u2| = χ {u>m}|∇u|(1 − m)−1 m-a.e. in 2B. In particular I2 ≤ (1 −
m)−2

´
2B |∇u|2 dm, that combined with (B.2) gives

Cap(E, 2B) =
ˆ
2B
|∇u|2 dm ≤ (2m − m2)I1 ≤ 2mI1.

This combined with Lemma B.10 gives

Cap(E, 2B) ≤ 2m Obs({u > m}, 2B)

≤ 2m Obs(B ′, 2B) = 2mCap(B ′, 2B), (B.3)

where in the second inequality we have used (B.1).
From the definition of m, there exists a ball B ′′ = Br/2(y) with y ∈ ∂B ′ such that

supB′′ u ≥ m. Applying twice the Harnack inequality, recalling that u is harmonic in
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B ′′ and superharmonic in B, and using the doubling property, we obtain that

m ≤ sup
B′′

u ≤ C(r0, K , N ) ess inf
B

u.

The conclusion then follows from (B.3) and recalling that thanks to the doubling
condition and the Poincaré inequality we have Cap(B ′, 2B) ≤ cCap(B, 2B), for
some constant c depending only on r0, K and N (see [19, Prop. 6.16]) ��
Theorem B.12 For every r0 < 4diam(X) there exists C = C(r0, K , N ) > 0 such that
the following holds. Let E ⊂ Br (x) be open, r < r0, and set Bi := B21−i r (x) for
i ∈ N∪{0}. Let u be the capacitary potential for E in B0, then for every i ≥ 1 it holds
that

1− u ≤ exp

⎛

⎝−C
i∑

j=1

Cap(E ∩ Bj , Bj−1)

Cap(Bj , Bj−1)

⎞

⎠ , m-a.e. in Bi .

Proof Let ui be the solution to (O) for E ∩ Bi in Bi+1 (in particular u = u1) and
define ai := Cap(E∩Bi ,Bi−1)

Cap(Bi ,Bi−1)
for i ∈ N. Proposition B.11 ensures that

ess inf
Bi

ui ≥ Cai ≥ 1− e−Cai . (B.4)

Define the functions vi ∈ W1,2
0 (B0) inductively as v1 = u1 and vi = 1− eCai−1(1−

vi−1), for i ≥ 2. Observe that, since u1 is superharmonic in B0, vi is superharmonic
in B0 for all i ≥ 1. We claim that

vi ≥ 0, m-a.e. in Bi−1. (B.5)

We will actually show the stronger estimate vi ≥ ui m-a.e. in Bi−1. We proceed by
induction. By definition v1 = u1, now suppose that vi ≥ ui in Bi−1. It follows from
(B.4) that vi+1 ≥ 1 − eCai (1 − ui ) ≥ 0 m-a.e. in Bi . Moreover, since u1 = 1 in
E ∩ B1, evidently vi+1 = 1 m-a.e. in E ∩ Bi+1. Combining these two observations
we obtain that vi+1 ≥ χ E∩Bi+1 m-a.e. in Bi . Recalling that vi is superharmonic in
B (and thus also on Bi ) we can apply the comparison principle of Proposition B.9 to
deduce that vi+1 ≥ ui+1 m-a.e. in Bi . This proves the claim. Therefore from (B.5)

1− u = 1− v1 = e−C(a1+···+ai−1)(1− vi ) ≤ e−C(a1+···+ai−1), m-a.e. in Bi−1,

that concludes the proof. ��
Proof of Theorem B.1 Fix x ∈ ∂E and let c, r be its Cap-fat parameters. Let B ′ :=
Br0(x)with r0 := (δ∧r)/4 and letu to be the solution to (O) for E in 2B ′. Fix y ∈ B ′\Ē
with d(y, x) < r/2. There exists i ∈ N0 such that 2−i−1r0 < d(x, y) < 2−i r0 < r .
Therefore from Theorem B.12 and the continuity of u in B ′ \ Ē we have

1− u(y) ≤ (e−i )c·C ≤ (2−i )c·C ≤ (2r−1
0 )c·Cd(x, y)c·C

123



100 Page 86 of 89 N. Gigli, I. Y. Violo

= (8δ ∧ r)−c·Cd(x, y)c·C . (B.6)

Let now ū to be the solution of (O) for E in B (where B is as in the hypotheses). Fix
x ∈ ∂E and let u as in the previous part of the proof. Since B2r0(x) ⊂ B, from the
comparison principle of Proposition B.9, we have that ū ≥ u m-a.e. in Br0(x) and
since both ū and u are continuous in Br0(x) \ Ē we have that (B.6) holds for ū and
every y ∈ B \ Ē with d(y, x) < r/2. This proves that limBr0 (x)\Ē�y→x ū(y) = 1 for
every x ∈ ∂E (recall that ū ≤ 1) and since ū is also lower semicontinuous we deduce
that ū = 1 in Ē .

The comparison principle is already contained in Proposition B.9. ��
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