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Abstract
We solve the problem of simultaneously embedding properly holomorphically intoC2

a whole family of n-connected domains�r ⊂ P
1 such that none of the components of

P
1 \�r reduces to a point, by constructing a continuous mapping � : ⋃

r {r}×�r →
C
2 such that�(r , ·) : �r ↪→ C

2 is a proper holomorphic embedding for every r . To this
aim, a parametric version of both the Andersén–Lempert procedure and Carleman’s
Theorem is formulated and proved.

Keywords Proper holomorphic embedding · Approximation theory ·
Andersén–Lempert theory · Several complex variables

1 Introduction

Existence of proper holomorphic embeddings of Riemann surfaces R into 2-
dimensional complex manifolds X , e.g., X = C

2, with prescribed geometrical
properties, e.g., being complete, has been an active area of research over the recent
years. Various techniques have been developed, but in several cases, positive results
have been obtained only at the cost of perturbing the complex structure of R (see
Černe–Forstnerič [4], Alarcón [1] and Alarcón–López [2]). It can be hoped, however,
that if you let r be a local parameter on the moduli space of Riemann surfaces of a
given type, and you perform various constructions continuously with the parameter
r near a given point r0, then you will get a perturbation of the complex structure for
each given r , but at least one perturbation will correspond to your initial r0. Indeed
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this is the philosophy behind the embedding results of Globevnik–Stensønes [7]. The
purpose of this article is to take a first step toward results of this type that may be
generalized to larger classes of Riemann surfaces.

We will consider the following. It is known that any n-connected domain � in the
Riemann sphere may be mapped univalently onto a domain in the Riemann sphere
whose complement consists of n parallel disjoint slits with a given inclination � to
the real axis. The univalent map achieving this is uniquely determined by � and the
choice of a certain normalization of the Laurent series expansion at a chosen point
ζ ∈ � being sent to ∞ (see Goluzin [8, p. 213]). Considering a continuous family
of n-connected domains, we obtain a continuously varying family of uniformizing
slit-maps.

Let C j ⊂ C be compact disks and I j ⊂ R>0 be compact intervals, j = 1, . . . , n.
Set Bj := C j × I j and B := B1 × · · · × Bn . Let r = ((a1, b1), . . . , (an, bn)) denote
the coordinates on B, and letting lr , j denote the closed straight line segment which
is parallel to the real axis with right end-point a j (r) and of length b j (r), we assume
that Lr := {lr ,1, . . . , lr ,n} is a set of pairwise disjoint slits, and thus P1 \ Lr is an
n-connected domain, none of whose boundary components are isolated points. After
possibly having to apply the map z �→ (z − a1(r))/b1(r), we may assume that for all
r we have that lr ,1 = [−1, 0] ⊂ C.

The goal is to prove the following.

Theorem 1.1 In B × P
1 set

� = (B × P
1) \

( ⋃

r∈B
{r} × Lr

)
.

Then, there exists a continuous map � : � → C
2 such that for each r ∈ B, we have

that �(r , ·) : �r → C
2 is a proper holomorphic embedding.

2 The Setup

We will now introduce a setup to prove Theorem 1.1. First, we need the notion of a
certain directed family of curves.

Let C > 0 and R > 1. Let � denote the half line � = {x ∈ R ⊂ C : x ≥ R − 1},
let B ⊂ R

m be a compact set, and denote by (r , x) the coordinates on B × �. Let
h, h′ = ∂h

∂x ∈ C (B × �), and assume that

|h(r , x)| <
C

2
,

∣
∣h′(r , x)

∣
∣ <

1

2
.

Definition 2.1 Let θ ∈ [0, 2π). Then, the set of curves

eiθ · {x + ih(r , x) : r ∈ B, x ∈ �}

is referred to as being θ -directed, and subordinate to R,C . A family of curves is said
to be θ -directed if it is θ -directed subordinate to R,C for sufficiently large R,C .

123



Families of Proper Holomorphic Embeddings Page 3 of 19 75

With the notation in the previous section, set ψ(z) := 1
z + 1, λr , j := ψ(lr , j ),

c j (r) := ψ(a j (r)). Then, r := {λr ,1, . . . , λr ,n} is a set of disjoint slits in P1, where
λr ,1 is the negative real axis andλr , j are circular slits (or possibly straight line segments
along the real axis) for j = 2, . . . , n. We set eiθr , j := ψ ′(a j (r))/|ψ ′(a j (r))|, i.e., we
have that eiθr , j is a unit tangent to the circle r , j on which λr , j lies at the point c j (r).
Setting αr , j (z) := e−iθr , j (z − c j (r)) we have that αr , j (r , j ) is a circle which is
tangent to the real axis at the origin, and we let κr , j denote the signed curvature of
this circle; positive if the circle is in the upper half plane, negative if the circle is in
the lower half plane, and zero if the circle is the real axis.

Proposition 2.1 Fix j ∈ {2, . . . , n} and suppose that gr , j ∈ O(	δ(c j (r))) is a con-
tinuous family of functions, for r ∈ B. Let θ ∈ [0, 2π), and set

ϕ j (r , z) := eiθ

αr , j (z)
+ gr , j (z).

Then, the family � j of curves ϕ(r , λr , j ) is (θ − π)-directed.

Proof It suffices to prove this for θ = 0. Then αr , j (r , j ) is parametrized near the
origin by

ηr , j (x) = x + i
κr , j

2
x2 + O(x4).

Set g̃r , j (z) = gr , j (α
−1
r , j (z)) We have that

ϕ j (r , x) = 1

x + i
κr , j
2 x2 + O(x4)

+ g̃r , j (ηr , j (x))

= x − i
κr , j
2 x2 + O(x4)

x2 + O(x4)
+ g̃r , j (ηr , j (x))

=
(
1

x
− i

κr , j

2
+ O(x2)

)

(1 + O(x2)) + g̃r , j (ηr , j (x))

= 1

x
− i

κr , j

2
+ O(x) + g̃r , j (ηr , j (x)).

Since gr , j (z) is close to a constant when z is close to c j (r), the uniform bound in the
definition of (−π)-directed holds. Now

ϕ′
j (r , x) = −1

x2
+ vr , j (x),

where vr , j (x) is bounded and scaling it to have almost unit length we see

x2ϕ′
j (r , x) = −1 + x2vr , j (x).


�
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Proposition 2.2 Fix θ2, . . . , θn ∈ (0, 2π). Define φr : C \ {c2(r), . . . , cn(r)} → C
2

by

φr (z) :=
⎛

⎝z,
n∑

j=2

eiθ j

αr , j (z)

⎞

⎠ .

Choose δ > 0 small, and let a, b ∈ 	δ(1/
√
2), and set Aa,b(z, w) := (az+bw,−bz+

aw). Write a = raeiϑa , b = rbeiϑb . Then, the family �1 defined by �1 = {π1 ◦ Aa,b ◦
φr (λr ,1) : r ∈ B} is (ϑa − π)-directed, and each family � j , j = 2, . . . , n, defined by
� j = {π1 ◦ Aa,b ◦ φr (λr , j ) : r ∈ B} is (ϑb + θ j − π)-directed.

Proof For j = 2, . . . , n this is just Proposition 2.1 since for any fixed j we have that
π1 ◦ Aa,b ◦ φr (λr , j ) is parametrized by

rbei(ϑb+θ j )

αr , j (z)
+

∑

k �= j

(
rbei(ϑb+θk )

αr ,k(z)

)

+ rae
iϑa z.

For j = 1 this is because π1 ◦ Aa,b ◦ φr (λr , j ) is parametrized by raeiϑa z + gr (z)
where gr (z) is uniformly comparable to 1

z . 
�

3 Carleman Approximation with Parameters

We will start by introducing some notation. Afterward, we present Theorem 3.1, a
Carleman-type theorem (see e.g., [5]), which is the main result of the present section:
families of smooth functions holomorphic on a disc can be approximated by entire
functions on a smaller disc and on the union of several Lipschitz curves. The proof
is obtained applying inductively Corollary 3.1, which in turn easily follows from
Proposition 3.1, a tool that allows to approximate smooth functions on compact pieces
of a Lipschitz curve; Corollary 3.1 extends the result to several curves. Proposition
3.1 relies on three technical lemmata that will be presented in Sect. 3.3.

3.1 The Setup

Recall that R > 1, � is the half line � := {x ∈ R ⊂ C : x ≥ R − 1}, B ⊂ R
m is a

compact and (r , x) are the coordinates on B×�. For k = 1, . . . , n let hk, h′
k = ∂hk

∂x ∈
C (B × �) be such that

|hk(r , x)| <
C

2
,

∣
∣h′

k(r , x)
∣
∣ <

1

2
(1)

for some C > 0, for every (r , x) ∈ B × �, and every k = 1, . . . , n. Then, setting
l = 1/2, we have that

|hk(r , x1) − hk(r , x2)| ≤ l|x1 − x2|, ∀x1, x2 ∈ �, r ∈ B, (2)
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so hk is l-Lipschitz and in this way we also call its graph. Let 0 = θ1 < θ2 < · · · <

θn < 2π and define the Lipschitz curves

�k,r := eiθk · {x + ihk(r , x) : x ∈ �}

and their union

�r :=
n⋃

k=1

�k,r .

If D ⊆ � ⊆ C are domains, a useful notation is given by setting

P(B,�, D) := { f ∈ C (B × �) : f (r , ·) ∈ O(D) ∀r ∈ B}

and

P(B,�) := P(B,�,�).

Theorem 3.1 (Carleman-type Theorem with parameters) Assume that f ∈ P
(B,C,	

ρ+3+ 3C
2

) for some ρ > R. Then, for any ε ∈ C (C), ε > 0, there exists

g ∈ P(B,C) such that

|g(r , z) − f (r , z)| < ε(z)

for all z ∈ 	ρ ∪ �r , r ∈ B.

3.2 Proof of Theorem 3.1

Fix j ∈ N, j ≥ R and let b be some real number such that

j + 3 + 3C

2
< b.

For ρ ≥ C set

ψ(ρ) := arcsin
C

ρ

and define

Sρ := {seiθ : 0 < s < ∞, |θ | < ψ(ρ)} and Aρ,b := 	b \ Sρ.

Then, Sρ is the wedge in the right half plane bounded by the straight lines passing
through the origin and the intersection between ∂	ρ and the lines y = ±C . Up to
consider a larger R, we assume eiθ j Sρ ∩ eiθk Sρ = ∅ for all j �= k for ρ ≥ R. We
define further the following sets

123



75 Page 6 of 19 G. D. Di Salvo et al.

ω1 := {z = x + iy : j + 1 < x, |z| < b, |y| < C}
ω2 := {z = x + iy : 0 < x < j + 2, |y| < C} ∪ A j,b

� := ω1 ∪ ω2

Given δ > 0, we will denote the open δ-neighborhood of D as

D(δ) := {z ∈ C : d(z, D) < δ}.

The followingproposition, or rather its corollary below, is themain technical ingredient
in the proof of the Carleman Theorem 3.1. The proposition follows from Lemmas 3.1,
3.2, and finally Lemma 3.3.

Proposition 3.1 Assume that n = 1. Let α : ⋃
r∈B{r} × �r → C be continuous such

that α(r , ·) ∈ Cc(�r ) for every r ∈ B, with

suppα(r , ·) ⊂ {z = x + iy ∈ �r : j + 3 + 3C

2
< x, |z| < b, |y| < C/2} ∀r ∈ B.

Then, for every ε > 0 there exists {Qt }t>0 ⊂ P(B,C) such that

‖α(r , ·) − Qt (r , ·)‖�r∩	b
< ε (3)

for every r ∈ B, 0 < t < t0, and

Qt → 0 as t → 0 (4)

uniformly on B × ω2(δ), for some δ > 0.

Corollary 3.1 Let α : ⋃
r∈B{r} × �r → C be continuous such that α(r , ·) ∈ Cc(�r )

for every r ∈ B, with

suppα(r , ·) ⊂ {z ∈ �r : j + 3 + 3C

2
< |z| < b}, ∀r ∈ B.

Then, for every ε > 0 there exists {Qt }t>0 ⊂ P(B,C) such that

‖α(r , ·) − Qt (r , ·)‖�r∩	b
< ε (5)

for every r ∈ B, 0 < t < t0, and

Qt → 0 as t → 0 (6)

uniformly on B × 	 j (δ), for some δ > 0.

Proof On e−iθk�k,r define αk(r , z) := α(r , eiθk z). Using the proposition, we obtain
approximations Qt,k(r , z). Then setting
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Qt (r , z) :=
n∑

k=1

Qt,k(r , e
−iθk z)

will yield the result for sufficiently small t . 
�
Proof of Theorem 3.1: The proof is by induction on k ≥ 0, and the induction hypothesis
is the following. For every j = 0, . . . , k there exist:

(i) g j ∈ P(B,C,	
ρ+ j+3+ 3C

2
) ,

(ii) |g j (r , z) − f (r , z)| < ε(z)/2 for all z ∈ 	ρ ∪ �r , r ∈ B, and
(iii) ‖g j − g j−1‖B×	ρ+ j−1

< 2− j for j ≥ 1.

We start by setting g0 := f ; then in the case k = 0, we see that (i), (ii) hold, and (iii)
is void. Assume now that the induction hypothesis holds for some k ≥ 0. Fix η > 0
such that

gk(r , ·) ∈ O(	
η+ρ+k+3+ 3C

2
),

and choose a cutoff function χ ∈ C∞(C) such that 0 ≤ χ ≤ 1, such that χ = 0 near
	

ρ+k+3+ 3C
2
, and χ = 1 outside 	

η+ρ+k+3+ 3C
2
. Now gk may be approximated on

	
η+ρ+k+3+ 3C

2
to arbitrary precision by hk ∈ C (B)[z] using Taylor series expansion,

and so

hk + χ · (gk − hk) =: hk + αk

approximates gk to arbitrary precision. Hence it suffices to approximate αk to arbitrary
precision by a suitable function. Multiplying αk by a suitable cutoff function so that
Corollary 3.1 applies, we have that αk may be approximated to arbitrary precision on

⋃

r

�r ∩ 	
ρ+k+2+3+ 3C

2

by a function Qk ∈ P(B,C) which is arbitrarily small on 	ρ+k . Setting then gk+1 :=
hk + Qk + χ̃ · (αk − Qk) where χ̃ is a third cutoff function such that χ̃ = 0 near
	

ρ+k+1+3+ 3C
2
and χ̃ = 1 near C \ 	

ρ+k+2+3+ 3C
2
completes the induction step. We

may finish the proof of Theorem 3.1 by setting g := lim j→∞ g j , which exists by (iii),
and the approximation holds by (ii). 
�

3.3 Lemmata: Mergelyan-Type and Runge’s Theorems with Parameters

The three lemmata we present and prove in this section are fundamental ingredients to
formulate a Mergelyan-type Theorem (see e.g., [5]). The first one of them generalizes
a theorem proved by Manne in his Ph.D. thesis [11] and is about the holomorphic
(entire) approximation of a family of smooth functions, each of which is defined on a
Lipschitz curve in the complex plane.
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Lemma 3.1 Assume that n = 1, and let α be as in Proposition 3.1. Then, for every
ε > 0 there exists {Ht }t>0 ⊂ P(B,C) such that

‖α(r , ·) − Ht (r , ·)‖�r < ε (7)

for every r ∈ B, 0 < t < t0, for some t0 > 0, and

Ht → 0 as t → 0 (8)

uniformly on B × (ω1 ∩ ω2)(δ), for some δ > 0.

Proof Extend h1 to a function h on thewhole real line by setting h(r , x) := h1(r , x) for
x ≥ R−1 and h(r , x) := h1(r , 2R−2−x) for x < R−1. Define Sr := {s+ih(r , s) :
s ∈ R}. Denote by z = x + ih(r , x) a point in �r and let ζ = ζ(r , s) = s + ih(r , s)
be a parametrization of Sr . Further, ζ ′(r , s) = ∂ζ

∂s (r , s), extend α(r , ·) to Sr \�r to be
0 for all r ∈ B and define

Ht (r , z) :=
∫

Sr
α(r , ζ )Kt (ζ, z) dζ

=
∫

R

α(r , ζ(r , s))Kt (ζ(r , s), z)ζ ′(r , s) ds

for t > 0, r ∈ B, z ∈ C, where

Kt (ζ, z) := 1

t
√

π
e
− (ζ−z)2

t2

is the Gaussian kernel.
We start by proving (8). Let z = x + iy ∈ (ω1 ∩ ω2)(δ). We have that

|Ht (r , z)| ≤ 1

t
√

π

∫

R

|α(r , ζ(r , s))|e− (s−x)2−(h(r ,s)−y)2

t2
∣
∣ζ ′(r , s)

∣
∣ ds

= 1

t
√

π

∫

j+3+ 3
2C<s<b

|α(r , ζ(r , s))|e− (s−x)2−(h(r ,s)−y)2

t2
∣
∣ζ ′(r , s)

∣
∣ ds,

and (s − x)2 − (h(r , s) − y)2 ≥ (1 + 3C
2 − δ)2 − ( 3C2 )2, therefore (8) follows.

For any fixed η > 0, we split Sr as

S(1)
r := {ζ ∈ Sr : |�(ζ − z)| ≤ η} = {ζ(r , s) : |s − x | ≤ η}
S(2)
r := {ζ ∈ Sr : |�(ζ − z)| > η} = {ζ(r , s) : |s − x | > η}.

Since by (2), we have

|Kt (ζ, z)| ≤ 1

t
√

π
e
− (s−x)2(1−l2)

t2 ,
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we immediately get the following upper bound:

∫

S(1)
r

|Kt (ζ, z)| d|ζ | ≤ 1

t
√

π

∫ x+η

x−η

e
− (s−x)2(1−l2)

t2 ds

= 1
√

π(1 − l2)

∫

|u|≤
√

1−l2
t η

e−u2 du

≤ 1√
1 − l2

, (9)

which holds for every z ∈ �r , r ∈ B, and t > 0. Similarly, one sees that for all
ε > 0, η > 0 there exists t0 > 0 such that

∫

S(2)
r

|Kt (ζ, z)| d|ζ | ≤ 1
√

π(1 − l2)

∫

|u|>
√

1−l2
t η

e−u2 du < ε (10)

for every z ∈ �r , r ∈ B, 0 < t < t0. We need one last property of the kernel, that is

∫

Sr
Kt (ζ, z) dζ = 1 (11)

for all z ∈ �r , r ∈ B, and t > 0. Let us consider the function

F(z) :=
∫

Sr
Kt (ζ, z) dζ = 1

t
√

π

∫

Sr
e
− (ζ−z)2

t2 dζ

which is holomorphic entire. Let z = x ∈ R and define for T > 0

A(T ) :={u + i0 : −T ≤ u ≤ T },
Sr (T ) :={ζ ∈ Sr : −T ≤ s ≤ T },

and let ρ±
r (T ) be the straight line segment between ±T and ±T + ih(r ,±T ). Set

γr (T ) := A(T ) + ρ+
r (T ) − Sr (T ) − ρ−

r (T )

which is a piecewise C 1-smooth closed curve which is nullhomotopic, hence we get

1

t
√

π

∫

γr (T )

e−(
ζ−x
t )2 dζ = 0

for every t > 0, r ∈ B, x ∈ R and T > 0. On the other hand,

1

t
√

π

∫

γr (T )

e−(
ζ−x
t )2 dζ = 1

t
√

π

(∫

A(T )

e−( u−x
t )2 du +

∫

ρ+
r (T )

e−(
ζ−x
t )2 dζ

−
∫

Sr (T )

e−(
ζ−x
t )2 dζ −

∫

ρ−
r (T )

e−(
ζ−x
t )2 dζ

)

.
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Passing to the limit as T → +∞, the vertical contributions vanish (as h is bounded),
while

1

t
√

π

∫

A(T )

e−( u−x
t )2 du −→ 1

t
√

π

∫

R

e−( u−x
t )2 du = 1

and

1

t
√

π

∫

Sr (T )

e−(
ζ−x
t )2 dζ −→ 1

t
√

π

∫

Sr
e−(

ζ−x
t )2 dζ = F(x)

for every t > 0, r ∈ B, and x ∈ R. This implies that the entire function F is identically
1 on the real line for every t > 0 and r ∈ B, so by the identity principle it is constantly
1 on the whole C; in particular (11) holds true.

We gathered all the ingredients to prove (7). Let ε > 0, let η > 0 such that
|α(r , ζ ) − α(r , z)| < ε for all z ∈ �r , ζ ∈ S(1)

r , for all r ∈ B. Then,

|Ht (r , z) − α(r , z)| =
∣
∣
∣
∣

∫

S(1)
r

α(r , ζ )Kt (ζ, z) dζ +
∫

S(2)
r

α(r , ζ )Kt (ζ, z) dζ − α(r , z)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

S(1)
r

α(r , ζ )Kt (ζ, z) dζ

+
∫

S(2)
r

α(r , ζ )Kt (ζ, z) dζ − α(r , z)
∫

Sr
Kt (ζ, z) dζ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

S(1)
r

(α(r , ζ ) − α(r , z))Kt (ζ, z) dζ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

S(2)
r

(α(r , ζ ) − α(r , z))Kt (ζ, z) dζ

∣
∣
∣
∣

≤ε

∫

S(1)
r

|Kt (ζ, z)| d|ζ |

+
(
‖α(r , ·)‖

S(2)
r

+ |α(r , z)|
) ∫

S(2)
r

|Kt (ζ, z)| d|ζ |

≤ ε√
1 − l2

+ 2ε‖α(r , ·)‖Sr ,

where the second equality follows from (11) and the last inequality follows from (9)
and (10). So we can conclude, since this last quantity can be taken arbitrarily small
for ε small, uniformly in z ∈ �r and r ∈ B, for all 0 < t < t0, where t0 comes from
(10). 
�

The following Lemma shows how to modify the approximation constructed in
Lemma 3.1, so that, besides approximating the given smooth function, it becomes arbi-
trarily small on a suitable region. The price to pay is that the approximation obtained
this way is no more entire; we will get "entireness" back with Lemma 3.3, that is a
parametric version of Runge’s Theorem (see e.g., [5]).
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Lemma 3.2 Assume n = 1, and let α be as in Proposition 3.1. Then for every ε > 0
there exists {ξt }t>0 ⊂ P(B,�(δ)) such that

‖α(r , ·) − ξt (r , ·)‖�r∩	b
< ε (12)

for every r ∈ B, 0 < t < t0, and

ξt → 0 as t → 0 (13)

uniformly on B × ω2(δ), for some δ > 0.

Proof Let Ht be the map defined in Lemma 3.1 and φi : �(δ) → [0, 1] be smooth,
such that

(i) suppφi ⊂ ωi (δ), and
(ii) φ1 + φ2 ≡ 1 on �(δ)

for some δ > 0. Define

gt,1(r , z) := −Ht (r , z)φ2(z), gt,2(r , z) := Ht (r , z)φ1(z)

on B × �(δ); then gt,i (r , ·) is a smooth function on �(δ) and

gt,2 − gt,1 = Ht (14)

holds true on B×�(δ), therefore ∂gt,1
∂z (r , z) and ∂gt,2

∂z (r , z) are the same function; call

it vt and consider vt (r , ·) smoothly extended on �(δ). Hence, defining

ut (r , z) := 1

2π i

∫∫

�(δ)

vt (r , ζ )

ζ − z
dζ ∧ dζ ,

we can assume without loss of generality to have smoothed the corners of ωi so that
�(δ) is smoothly bounded, hence we are allowed to apply Theorem 2.2 in [3], which
ensures that ut (r , ·) is smooth on �(δ) for every r ∈ B and solves ∂ut

∂z = vt on

B × �(δ), hence

�t,i := gt,i − ut ∈ P(B,�(δ)), i = 1, 2. (15)

Then, (8) and (i) imply

• gt,i → 0 uniformly on P × ωi (δ) as t → 0,
• ∂gt,1

∂z (r , z) = −Ht (r , z)
φ2
∂z (z) → 0 uniformly on B × ω1(δ) as t → 0, and

• ∂gt,2
∂z (r , z) = Ht (r , z)

φ1
∂z (z) → 0 uniformly on B × ω2(δ) as t → 0.

The last two imply ut → 0 uniformly on B × �(δ), hence

�t,i → 0 (16)
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uniformly on P × ωi (δ) as t → 0. Since �t,2 − �t,1 = Ht on B × �(δ), it follows
from (7), (15), and (16) that

ξt :=
{
Ht + �t,1 B × ω1(δ)

�t,2 B × ω2(δ)

satisfies the stated properties. 
�
Lemma 3.3 (Runge-type Theorem with parameters)With the notation of the previous
lemma, for all ε > 0, there is Qt ∈ C (B)[z] (polynomial with coefficients in C (B);
in particular {Qt }t≥0 ⊂ P(B,C)) such that

‖ξt − Qt‖B×� < ε

for all t > 0, r ∈ B.

Proof Observe that � is compact polynomially convex. Let γ = ∂�( δ
2 ). We have

that

(r , ζ, z) �→ ξt (r , ζ )

ζ − z

is uniformly continuous on B × γ × �, hence for every ε > 0 there exists η > 0,
such that, dividing γ into N pieces γ1, . . . , γN whose length L(γ j ) is less than η and
fixing a point ζ j ∈ γ j for every j ,

∣
∣
∣
∣
ξt (r , ζ )

ζ − z
− ξt (r , ζ j )

ζ j − z

∣
∣
∣
∣ <

1

N

2π

L(γ j )
ε

holds ∀(r , ζ, z) ∈ B × γ j × �. Calling γ j (1), γ j (0) the final and initial points of γ j ,
for every (r , z) ∈ B × �, one has

ξt (r , z) −

=:βt (r ,z)
︷ ︸︸ ︷
N∑

j=1

γ j (1) − γ j (0)

2π i

ξt (r , ζ j )

ζ j − z

= 1

2π i

∫

γ

ξt (r , ζ )

ζ − z
dζ −

N∑

j=1

1

2π i

∫

γ j

ξt (r , ζ j )

ζ j − z
dζ

= 1

2π i

N∑

j=1

∫

γ j

(
ξt (r , ζ )

ζ − z
− ξt (r , ζ j )

ζ j − z

)

dζ

thus

‖ξt − βt‖B×� < ε (17)
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for every t > 0. The result now follows since each rational function z �→ 1
ζ j−z may

be approximated arbitrarily well on � by polynomials. 
�

4 Andersén–Lempert Theory

We will now apply Andersén–Lempert Theory in B ×C
2. We have that B ⊂ R

N , and
when talking about analytic properties of sets and functions on B ×C

2, we will think
of B ×C

2 ⊂ C
N ×C

2, CN = R
N + iRN . For instance, by saying that K ⊂ B ×C

2

is polynomially convex compact we mean polynomially convex in C
N × C

2; this is,
in fact, equivalent to Kr being polynomially convex in {r} × C

2 for each r ∈ B.
With the setup introduced in Sect. 2, we now set sr , j := φr (λr , j ) and we set

Sr :=
n⋃

j=1

sr , j .

In the product space B × C
2, we define S := {(r , (z, w)) : (z, w) ∈ Sr , r ∈ B}.

Proposition 4.1 Let K ⊂ (B ×C
2) \ S be a compact set such that K is polynomially

convex. Let T > 0, and let ε > 0. Then there exists a continuousmap g : B×C
2 → C

2

such that the following hold for all r ∈ B.

(i) g(r , ·) ∈ AutC2,
(ii) ‖g(r , ·) − Id ‖Kr < ε, and
(iii) g(r , Sr ) ⊂ C

2 \ TB2.

For the following lemma, we extend the mapψ defined in Sect. 2 to a mapψ : P1×
C → P

1 × C by setting ψ(z, w) := (1/z + 1, w), and we extend the map φr (z) to a
rational map on C

2 by setting

φr (z, w) :=
⎛

⎝z, w +
n∑

j=2

eiθ j

αr , j (z)

⎞

⎠ . (18)

Moreover, for T ′ < T ′′, we set Sr (T ′, T ′′) := {(z, w) ∈ Sr : T ′ ≤ |(z, w)| ≤ T ′′},
and we let S(T ′, T ′′) := ⋃

r {r} × Sr (T ′, T ′′) which is the union over r in the product
space B × C

2. Finally, define S(T ′, T ′′)(δ) := ⋃
r {r} × Sr (T ′, T ′′)(δ) for δ > 0.

Lemma 4.1 There exist T ′′ > T ′ >> T arbitrarily large, δ > 0, such that for any
ε > 0 there exists an open set U ⊂ B×C

2 containing S∪ S(T ′, T ′′)(δ) and a smooth
fiber preserving mapψ : [0, 1]×U → B×C

2 such that, for each r ∈ B, the following
hold:

(i) ψr ,t (·) is an isotopy of holomorphic embeddings, and ψr ,0(·) = Id,
(ii) ψr ,t (Sr ) ⊂ Sr for every t ∈ [0, 1],
(iii) ‖ψr ,t − Id ‖C 2(Sr (T ′,T ′′)(δ)) < ε for every t ∈ [0, 1], and
(iv) ψr ,1(Sr ) ⊂ C

2 \ TB2.

123



75 Page 14 of 19 G. D. Di Salvo et al.

Proof Set γr , j (z, w) := (b j (r) · z+a j (r), w) such that γr , j [−1, 0] parametrizes lr , j .
Setting Fr , j := φr ◦ ψ ◦ γr , j we have that Fr , j [−1, 0] parametrizes sr , j . Fix T > 0
and choose −1 < s < 0 such that

⋃

r∈B

m⋃

j=1

F−1
r , j ((T + 1)B2 ∩ sr , j ) ⊂ [−1, s].

Choose any pair T ′, T ′′ such that F−1
r , j (sr , j (T

′, T ′′)) ⊂ (s, 0) for all r , j .
For N ∈ N define

ηN ,t (z, w) :=
(
z − t(1 + s)e−N (z−s) + t(1 + s)e−N (−s)

1 − t(1 + s)e−N (−s)
, w

)

.

Then ηN ,t is an isotopy of injective holomorphic maps near the real line in the z-plane,
and leaves the real line invariant, fixing 0. We see that

ηN ,1(x, 0) =
(
x − (1 + s)e−N (x−s) + (1 + s)e−N (−s)

1 − (1 + s)e−N (−s)
, 0

)

from which ηN ,1(s, 0) = (−1, 0) and limx→+∞ ηN ,1(x, 0) = (+∞, 0), so the inter-
val [s,∞) is stretched to the interval [−1,∞) when t = 1. Note that for any s′ > s,
we have that limN→∞ ηN ,t = Id uniformly on {Re(z) ≥ s′}.

Now let σN ,t be the inverse isotopy to ηN ,t , i.e., σN ,t = ηN ,1−t ◦ η−1
N ,1; it is injec-

tive holomorphic near the real line in the z-plane, and by choosing N large, may be
extended, arbitrarily close to the identity, to any set {Re(z) ≥ s′} for s′ > s.

We may now define ψr ,t (·) on sr , j by

ψr ,t := Fr , j ◦ σN ,t ◦ F−1
r , j .

The claims of the lemma are satisfied by choosing N large, and δ sufficiently small. 
�
Remark 4.1 If δ is sufficiently small and ε further sufficiently small we get that

K ∪ ψt (S ∪ S(T ′, T ′′)(δ))

is polynomially convex. Observe first that Kr ∪ Sr (T ′, T ′′) is polynomially convex,
since Kr is, and Sr (T ′, T ′′) is a collection of disjoint arcs. For a sufficiently small δ′,
it is known that the tube Sr (T ′, T ′′)(δ′) is polynomially convex, and for sufficiently
small δ′, we have that Kr ∪ Sr (T ′, T ′′)(δ′) is polynomially convex. Then if δ < δ′ and
we consider ψt,r as in the lemma with δ′ instead of δ, if ε is small enough we get our
claim, since the δ, δ′ may be chosen independently of r .

Proof of Proposition 4.1 Fix 0 < δ << 1. For each η ∈ δB2, we set vη = (0, 1) + η,
and we let πη denote the orthogonal projection onto the orthogonal complement of
vη. After applying the linear transformation
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A(z, w) = ((1/
√
2)z + (1/

√
2)w,−(1/

√
2)z + (1/

√
2)w)

it follows from Proposition 2.2 that the family πη(sr ,1) is (ϑ1,η −π)-directed and that
the families πη(sr , j ) are (ϑ2,η + θ j −π)-directed, where the ϑ j,η’s vary continuously
with η. From now on, we will assume that have applied the transformation A without
changing the notation for all sets considered above.

By increasing T > 0, we may assume that Kr ⊂ TB2 for all r , and we fix
R as in Theorem 3.1 such that πη(TB2) ⊂ 	R , and choose T ′ < T ′′ such that
πη(Sr (T ′, T ′′)) ⊂ C \ 	R+3+ 3

2C
for all r and all η.

Let ψt be the isotopy from Lemma 4.1, extended to be the identity on some neigh-
borhood of K which we regard as being included in U . On ψt0(U ), we define the
vector field Xt0(ζ ) = d

dt t=t0
ψt (ψ

−1
t0 (ζ )) (here ζ = (r , x) = (r , z, w)). The goal is to

follow the standard Andersén–Lempert procedure parametrically for approximating
the flow of the time-dependent vector field Xt by compositions of flows of complete
fields, but to modify these so that they do not move S \ S(0, T ′′). The proof is the same
as the corresponding proof in [10] where this was done without parameters, but we
include here a sketch and some additional details. The reader is assumed to be familiar
with the Andersén–Lempert–Forstnerič–Rosay construction.

Step 1 We will find flows σr , j (t, x), j = 1, . . . ,m, such that the composition

σr ,m ◦ · · · ◦ σr ,1(t, x)

approximates ψt . The flows are of two forms:

σr , j (t, x) = x + tar , j (π j (x))v j (19)

or

σr , j (t, x) = x + (etar , j (π j (x)) − 1)〈x, v j 〉v j . (20)

We write σr , j (t, x) = x + br , j (t, x)v j .
Step 2 The plan is then roughly to find a family of cutoff functions χ j ∈

C∞(C2), 0 ≤ χ j ≤ 1, such that χ j ≡ 1 near T ′
B2 and χ j ≡ 0 near C2 \ T ′′

B
2, and

define

σ̃r , j (t, x) := x + χ j (x)br , j (t, x)v j ,

in such a way that all compositions

σ̃ ( j)r := σ̃r , j ◦ · · · ◦ σ̃r ,1

are as close to the identity as we like inC 1-norm on Sr (T ′, T ′′)(δ/2). Note that σ̃r , j =
σr , j on T ′

B2 and σ̃r , j = Id outside T ′′
B
2. In particular, the familiesπ j (σ̃ ( j)r (Sr )) are

as close as we like to the original families π j (Sr ) and identical outside some compact
set.

123



75 Page 16 of 19 G. D. Di Salvo et al.

Step 3 For each j , we may rewrite σ̃r , j on σ̃ ( j − 1)r (Sr ) as

σ̃r , j (t, x) = x + cr , j (t, π j (x))v j or σ̃r , j (t, x) = x + (ecr , j (t,π j (x)) − 1)〈x, v j 〉v j .

where the cr , j ’s extend to be holomorphic near 	R+3+ 3
2C

and zero on π j (σ̃ ( j −
1)r (Sr (T ′′,∞))).

Step 4 Approximate the coefficients cr , j in the sense of Carleman using Theorem
3.1.

We now include some estimates explaining why the above scheme works (see also
[10] where the construction is done without dependence of parameters).

Choose χ ∈ C∞(C2) nonnegative such that χ ≡ 1 near T ′
B2 and χ ≡ 0 near

C
2 \ T ′′

B
2.

We may assume that the vector fields Xr ,t satisfy ‖Xr ,t‖ < α on S(T ′, T ′′)(δ) for
any small α > 0. Thus, freezing the vector field at time i/N to obtain a vector field
Xi with a flow γ i

r ,t , we have that ‖γ i
r (t/N , x) − x‖ ≤ (t/N )α on Sr (T ′, T ′′)(2δ/3).

Thus, we may assume that the compositions

γ i
r ,t/N ◦ · · · ◦ γ 1

r ,t/N

exist and remain arbitrarily close to the identity on Sr (T ′, T ′′)(δ/2) for i < N .
By Remark 4.1, we may approximate each vector field Xi

r to arbitrary precision
by a polynomial vector field, which we will still denote by Xi

r . By the parametric
Andersén–Lempert observation, see Lemma 4.9.9 in [6] and the proof of Theorem 2.3
in [9], the family of vector fields Xi

r may be written as a sum of shear and over-shear
vector fields Xi

r = ∑m
j=1 Y

i
r , j with Y i

r , j (x) = gir , j (x)v j with v j = vη j , with flows

σ i
r , j (t, x) = x + bir , j (t, x)v j .

Write

�i
r ,t (x) := σ i

r ,m(t, x) ◦ · · · ◦ σ i
r ,1(t, x) =: x + f ir (t, x).

It is known that the composition

(�N
r ,t/nN )n ◦ · · · ◦ (�1

r ,t/nN )n (21)

converges to the flow of Xr ,t on Kr ∪Sr as N and then n tends to infinity. Our first goal
is to replace the maps σ i

r , j (t, x) by maps x + χ j (x)bir , j (t, x)v j with χ j (x) = 1 for
|x | ≤ T ′ and χ j (x) = 0 for |x | ≥ T ′′ in the composition (21) or partial compositions
of it, and show that we still get maps that are close to the identity on Sr (T ′, T ′′)(δ/2).
The compositions thus obtained will remain the same on {|x | < T ′} and be the identity
map outside {|x | ≤ T ′′}.

We will now modify the flows on Sr (T ′, T ′′)(δ). We have that ‖ f ir (t, x)‖ ≤ 2αt
for t sufficiently small. If we set
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�̃i
r (t, x) = x + χ(x) f ir (t, x)

we see that

‖(�̃i
r ,(t/n))

m − Id ‖ ≤ 2α(m/n)t

for n large.
We decompose in a natural way

σ( j)r (t, x) := σr , j ◦ · · · ◦ σr ,1(t, x) = x + hr ,1(t, x)v1 + · · · + hr , j (t, x)v j ;

then the hr , j (t, ·) go to zero as t → 0. Now for large n define

σ̃r ,1(t/n, x) = x + χ1(x)hr ,1(t/n, x)v1,

and by induction

σ̃r , j+1(t/n, x) = x + χ j+1(σ̃ ( j)−1
r (t/n, x))hr , j+1(σ̃ ( j)−1

r (t/n, x))v j+1.

Then,

σ̃ i
r ,m,t/n ◦ · · · ◦ σ̃ i

r ,1,t/n(x) = �̃i
r (t/n, x),

and we get that

‖(�̃N
r ,t/Nn)

n ◦ · · · ◦ (�̃1
r ,t/Nn)

n − Id ‖ ≤ 2αt,

and corresponding estimates hold for partial compositions. Note that this shows that
Sr (T ′, T ′′)(δ/2) remains in Sr (T ′, T ′′)(2δ/3) where we may assume that the C 1-
norms of the f ir ’s are arbitrarily small, and so by arguments similar to those above we
get that all partial compositions are close to the identity in C 1-norm, which will allow
us to use the implicit function theorem to rewrite as in Step 3 above.

Finally, Step 4 is carried out exactly as in [10]. 
�

5 Proof of Theorem 1.1

Proof of Theorem 1.1 Recall that ψ : P1 → P
1 was originally defined by ψ(z) =

1
z + 1 and ψ(P1 \ Lr ) = P

1 \ r . Then, if 0 < θ2 < θ2 < · · · < θn , φr : C \
{c2(r), . . . , cn(r)} → C

2 was defined by

φr (z) =
⎛

⎝z,
n∑

j=2

eiθ j

αr , j (z)

⎞

⎠ .
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Let Sr and S be the sets defined in Sect. 4 and set Xr := φr ◦ψ(P1 \Lr ) = φr (P
1)\ Sr

which is a 1-dimensional complex manifold with boundary ∂Xr = Sr . Define

Cr
j := P

1 \ Lr (1/ j),

such that {Cr
j }∞j=1 is a normal exhaustion of P1 \ Lr by O(P1 \ Lr )-convex compact

sets. It follows that Kr
j := φr ◦ψ(Cr

j ), j ≥ 1 is a normal exhaustion of Xr byO(Xr )-
convex compact sets. The proof of Proposition 1 in [12] ensures the following two
crucial facts:

(i) Kr
j are polynomially convex, and

(ii) given any K ⊂ C
2 \ Sr compact polynomially convex, the set K ∪ Kr

j is poly-
nomially convex for any j large enough.

We construct now inductively a sequence of continuous mappings, whose continuous
limit

h :
⋃

r∈B
({r} × Xr ) → C

2

will be a fiberwise proper holomorphic embedding that we will compose with suitable
mappings to prove the statement.

Proposition 4.1 provides a continuous g1 : B×C
2 → C

2 such that, for every r ∈ B

• g1(r , ·) ∈ AutC2, and
• g1(r , Sr ) ⊂ C

2 \ 1B2.

Assume that we have constructed Hj : B×C
2 → B×C

2, Hj (r , ·) = (r , h j (r , ·)),
continuous such that for every r ∈ B, we have that

• h j (r , ·) ∈ AutC2, and

• h j (r , Sr ) ⊂ C
2 \ jB2.

It follows from (ii) that

Lr
j := h j (r , K

r
m j

) ∪ jB2 ⊂ C
2 \ h j (r , Sr ).

is polynomially convex for sufficiently large m j . Then for every ε j > 0, Proposition
4.1 gives us g j+1 : B ×C

2 → C
2 continuous, such that for every r ∈ B the following

hold:

• g j+1(r , ·) ∈ AutC2,
• ‖g j+1(r , ·) − Id ‖Lrj < ε j , and

• g j+1(r , h j (r , Sr )) ⊂ C
2 \ ( j + 1)B2.

Define G j+1(r , ·) := (r , g j+1(r , ·)) and consequently Hj+1 := G j+1 ◦ Hj . Then
letting ε j → 0 and m j → +∞ fast enough, the push-out method (see [6]) allows
to conclude that, for every r ∈ B, the sequence {h j (r , ·)} j converges uniformly on
compact subsets of Dr := ⋃

j≥1 h
−1
j (r , Lr

j ) to a biholomorphism hr : Dr → C
2.
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It is straightforward to check that Xr ⊂ Dr ⊂ C
2 \ Sr , from which it follows that

Sr = ∂Xr ⊆ ∂Dr , thus hr : Xr → C
2 is a proper holomorphic embedding for every

r ∈ B. So setting H(r , ·) := hr (·), �(r , ·) := (r , ψ(·)), and �(r , ·) := (r , φr (·)),
the mapping � := H ◦ � ◦ � : � → C

2 proves the claim of the Theorem. 
�
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