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Abstract
Anisotropic generalized Orlicz spaces have been investigated in many recent papers,
but the basic assumptions are not as well understood as in the isotropic case. We study
the greatest convex minorant of anisotropic �-functions and prove the equivalence of
two widely used conditions in the theory of generalized Orlicz spaces, usually called
(A1) and (M). This provides amore natural and easily verifiable condition for use in the
theory of anisotropic generalized Orlicz spaces for results such as Jensen’s inequality
which we obtain as a corollary.

Keywords Generalized Orlicz space · Musielak–Orlicz spaces · Anisotropic ·
Nonstandard growth · Jensen’s inequality
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1 Introduction

This paper deals with generalized Orlicz spaces, also known as Musielak–Orlicz
spaces. This is a very active field recently [2, 5, 6, 14, 16, 19, 29, 31, 32], boosted by
work on the double phase problem by Baroni, Colombo and Mingione, e.g. [4, 13].
The generalized Orlicz case unifies the study of the double phase problem and the
variable exponent growth, widely researched over the last 20 years [15]. Many studies
deal with isotropic energies of the type

ˆ
�

ϕ(x, |∇u|) dx

but recently also the anisotropic case
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ˆ
�

�(x,∇u) dx

has been considered e.g. in [1, 7–9, 24, 27]. As an example of an anisotropic energy
with non-standard growth we could take a double-phase functional where the q-phase
is directional:

ˆ
�

|∇u|p + a(x)|∂x1u|q dx ;

here only variation in the x1-directionmakes a contribution to the energy in the q-phase
{a > 0}.

Counter examples (see, e.g., [3, 15]) show that more advanced results such as
the boundedness of averaging operators or density of smooth functions require con-
necting �(x, ξ) for different values of x . To this end, we developed in the isotropic
case the (A1) condition [18, 22] (see also [28]), which is essentially optimal for the
boundedness of the maximal operator. In the anisotropic case Chlebicka, Gwiazda,
Zatorska-Goldstein and co-authors [1, 7–12, 17] have developed a theory based on
their (M) condition. To state and compare these conditions, let us define

�−
B (ξ) := ess inf

x∈B∩�
�(x, ξ) and �+

B (ξ) := ess sup
x∈B∩�

�(x, ξ). (1.1)

In essence, the (A1) conditions says that �+
B can be bounded by �−

B in small balls
B ⊂ R

n in a quantitative way, whereas (M) say that it can be similarly bounded by
the least convex minorant (�−

B )conv of �−
B (see Definition 3.2). Obviously, the latter

is a stronger condition, and it is also more difficult to verify, since the relationship
between (�−

B )conv and �−
B may be complicated in the anisotropic case.

In the isotropic case �−
B � (�−

B )conv so (M) and (A1) are equivalent. In the
anisotropic case this inequality does not hold (see Example 4.1), but we are nev-
ertheless able to prove the equivalence of the conditions by a more careful analysis.

Theorem 1.2 Let � : � × R
m → [0,∞] be a strong �-function. Then (A1) and (M)

are equivalent.

This result and the techniques introduced in this paper will allow for the devel-
opment of a theory of anisotropic generalized Orlicz spaces with more natural
assumptions. As an example we prove the following Jensen-type inequality.

Corollary 1.3 (Jensen-type inequality) Let � satisfy (A1) and f ∈ L�
μ(�;Rm). Then

there exists β > 0 such that

�+
B

(
β

 
B
f dμ

)
≤
 
B

�(x, f ) dμ + 1

when ��( f ) ≤ 1 and μ(B) ≤ 1.
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Although the extra assumption ��( f ) ≤ 1 in the corollary may seem strange, it
follows naturally for instance when dealing with local regularity and it is known that
the anisotropic Jensen-inequality does not hold without restrictions.

Let us next define precisely the concepts we are using and characterize functions
� for which the equivalence �conv 	 � holds (Corollary 2.4). In Sect. 3, we define
the conditions (A1) and (M) and give preliminary remarks regarding the definitions.
Finally, in Sect. 4 we prove the main results mentioned above.

2 Almost Convexity and the Greatest ConvexMinorant

I refer to the monographs [9, 18] for background on isotropic and anisotropic gener-
alized Orlicz spaces, respectively. We consider functions � : � ×R

m → [0,∞]; the
capital letter � is used to highlight the distinction from the isotropic case Lϕ in [18]
where ϕ : � × [0,∞) → [0,∞]. The idea is to define

��(v) :=
ˆ

�

�(x, v) dμ and ‖v‖� := inf{λ > 0 | ��

(
v
λ

) ≤ 1}

for a vector field v ∈ L1
μ(�;Rm). The space L�

μ(�;Rm) is defined by the requirement
‖v‖� < ∞. We use the equivalence relation � 	 
 which means that there exists
β > 0 such that

�(βξ) ≤ 
(ξ) ≤ �
(

ξ
β

)
.

Here and in the rest of the paper β denotes a parameter which is given by by one or
more conditions; if the conditions holdwith differentβk , thenwe can useβ := mink βk

for all the conditions so that wemay just as well use only the one common β. Since the
parameter λ is inside � in the definition of ‖v‖�, this is the natural way to compare
functions� (cf. Example 2.2). To ensure that the integral in �� makes sense and ‖·‖�

is a norm we require some conditions.

Definition 2.1 Let � ⊂ R
n be an open set. We say that � : � × R

m → [0,∞] is a
strong �-f unction, and write � ∈ �s(�), if the following four conditions hold:

(1) x �→ �(x, ξ) is measurable for every ξ ∈ R
m .

(2) �(x, 0) = lim
ξ→0

�(x, ξ) = 0 and lim
ξ→∞ �(x, ξ) = ∞ for a.e. x ∈ �.

(3) ξ �→ �(x, ξ) is continuous in the topology of [0,∞] for a.e. x ∈ �.
(4) � is convex for a.e. x ∈ �:

�(x, αξ + α′ξ ′) ≤ α�(x, ξ) + α′�(x, ξ ′), α, α′ ≥ 0, α + α′ = 1.

With these conditions, ‖ · ‖� is a norm. Note that continuity in ξ follows from
convexity if � is real-valued and (3) is only needed to ensure that � does not jump to
∞. Note also that this class of strong�-functions is broader than that studied [9] since
we do not require that upper and lower bounds in terms of N -functions independent
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of x . For instance, this definition allows for L1- and L∞-type growth. In [18] in the
isotropic case we relaxed (3) and (4) further, and so used “strong” for this class, even
though it is still less restrictive than N -functions.

For the study of �-functions depending on the space-variable x , we use local
approximations with the functions �+

B and �−
B from (1.1) [18, 22]. However, �−

B
need not be convex even if each �(x, ·) is (just think of min{t, t2}). In the isotropic
case, ϕ−

B nevertheless satisfies the following weaker variant of (4) above:

(W4) � is almost convex if there exists β > 0 such that

�
(
x, β(αξ + α′ξ ′)

) ≤ α�(x, ξ) + α′�(x, ξ ′),

for a.e. x ∈ � and α, α′ ≥ 0 with α + α′ = 1.

Unfortunately, even this does not hold for�−
B in the anisotropic case (seeExample 4.1).

The constant β in the almost convexity condition (W4) should be inside the function
since we do not assume doubling, or even finite, functions, as the following example
illustrates. A constant outside is possible, but too restrictive.

Example 2.2 Let ϕ∞(t) := ∞χ(1,∞)(t) be the function generating the space L∞(�).
Define�(ξ) := ϕ∞(‖ξ‖1/2) = ϕ∞(|ξ1|+2

√|ξ1ξ2|+|ξ2|) inR2. Consider α = 1
2 and

the basis vectors ξ = e1 and ξ ′ = e2 in (W4). Then ‖ e1+e2
2 ‖1/2 = 2 so�( e1+e2

2 ) = ∞
and the inequality

�
( e1+e2

2

) ≤ L
2 [�(e1) + �(e2)]

does not hold for any L < ∞. However, the almost convexity inequality (W4)

�
(
β e1+e2

2

) ≤ 1
2 [�(e1) + �(e2)] = 0.

holds for β ≤ 1
2 since in this case �

(
β e1+e2

2

) = 0.

If we choose ξ ′ = 0 in the almost convexity condition (W4), thenwe obtain (aInc)1:

�(x, βαξ) ≤ α�(x, ξ) for any α ∈ [0, 1]. (aInc)1

In the special case β = 1, i.e. for a convex function, we have (Inc)1:

�(x, αξ) ≤ α�(x, ξ) for any α ∈ [0, 1]. (Inc)1

These inequalities mean that the function t �→ �(x,tξ)
t is almost increasing or increas-

ing, hence the notation (aInc)1 and (Inc)1. In [18] we showed that these inequalities
are useful substitutes for convexity in the isotropic case. In particular, it is easy to
see that �+

B and �−
B satisfy (aInc)1 or (Inc)1 if � does. For the anisotropic case the

almost convexity is more appropriate since it also carries information about non-radial
behavior.
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Let us denote by �conv the greatest convex minorant of �. This function is often
denoted by�∗∗, since it can be obtained by applying the conjugation operation ∗ twice
[9, Corollary 2.1.42], but we will not use this fact here. We next show a connection
between the greatest convex minorant and the almost convexity condition. The fol-
lowing is a version of Carathéodory’s Theorem from convex analysis. Probably it is
known, but a proof is included for completeness, since I could not find a reference.

Lemma 2.3 Let � : Rm → [0,∞]. Then

�conv(ξ) = min

{ m+1∑
k=1

αk�(ξk)

∣∣∣∣
m+1∑
k=1

αkξk = ξ,

m+1∑
k=1

αk = 1, αk ≥ 0

}
.

Proof Consider the epigraph of �,

E := {(ξ, t) ∈ R
m × R | �(ξ) ≤ t} ⊂ R

m+1.

By Carathéodory’s Theorem (see, e.g., [30, Theorem 2.1.3]), every point in the convex
hull of E can be represented as a convex combination of at most m + 2 points ξk from
E . Furthermore, we observe that if any of the points ξk are from the interior of E , then
the convex combination is also in the interior of the convex hull. Thus the points of
the boundary, i.e. the graph of �conv, are given as a convex combination of points in
the boundary of E , i.e. on the graph of �. Hence

�conv(ξ) =
m+2∑
k=1

αk�(ξk) for some
m+2∑
k=1

αkξk = ξ,

m+2∑
k=1

αk = 1, αk ≥ 0.

This is the claim, except with one extra point ξm+2.
However, ξ lies in the convex hull of ξ1, . . . , ξm+2 ∈ R

m . Thus by Carathéodory’s
Theorem in R

m , ξ can be expressed as the convex combination of at most m + 1 of
the points ξ1, …, ξm+2. By re-labeling if necessary, we obtain

m+1∑
k=1

α′
kξk = ξ,

m+1∑
k=1

α′
k = 1, α′

k ≥ 0.

Since
(
ξk,�(ξk)

)m+2
k=1 , all lie on the same hyper-plane for a boundary point, we also

have

�conv(ξ) =
m+1∑
k=1

α′
k�(ξk).

��
We can now show that � 	 �conv for almost convex functions.
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Corollary 2.4 The function � : Rm → [0,∞] is almost convex if and only if � 	
�conv.

Proof Clearly, �conv ≤ � since �conv is defined as a minorant of �. Let 2i ≥ m + 1
and set αk := 0 and ξk := 0 for k > m + 1. By the almost convexity condition,

�

(
β i

2i∑
k=1

αkξk

)
≤ αi,1�

(
β i−1

2i−1∑
k=1

αk

αi,1
ξk

)
+ αi,2�

(
β i−1

2i∑
k=2i−1

αk

αi,2
ξk

)

where

αi,1 :=
2i−1∑
k=1

αk and αi,2 :=
2i∑

k=2i−1+1

αk .

Iterating this i times, we obtain that

�

(
β i

2i∑
k=1

αkξk

)
≤

2i∑
k=1

αk�(ξk)

By Lemma 2.3 and this inequality,

�conv(ξ) ≥ min

{ 2i∑
k=1

αk�(ξk)

∣∣∣∣
2i∑
k=1

αkξk = ξ,

2i∑
k=1

αk = 1, αk ≥ 0

}
≥ �(β iξ).

Thus the almost convexity implies that � 	 �conv.
If, on the other hand, � 	 �conv with constant β, then we directly obtain

�
(
β(αξ + α′ξ ′)

) ≤�conv(αξ + α′ξ ′)≤ α�conv(ξ)+ α′�conv(ξ ′)≤ α�(ξ)+ α′�(ξ ′).

��
For almost convex functions we easily obtain a Jensen inequality with an extra

constant.

Corollary 2.5 (Jensen’s inequality) Let E ⊂ R
m have positive, finite measure μ(E).

If � ∈ C(E; [0,∞]) is almost convex, then there exists β such that

�

(
β

 
E
f dμ

)
≤
 
E

�( f ) dμ

for every f ∈ L�
μ(E;Rm).
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Proof By Corollary 2.4 and Jensen’s inequality for the convex function �conv,

�

(
β

 
E
f dμ

)
≤ �conv

( 
E
f dμ

)
≤
 
E

�conv( f ) dμ ≤
 
E

�( f ) dμ.

��

3 Definition of and Remarks on Conditions

The (aInc)1 and almost convexity (W4) conditions connect�(x, ξ) for different values
of ξ with x fixed. However, more advanced results such as the density of smooth
functions in Sobolev spaces require connecting �(x, ξ) for different values of x , cf.
[6]. This is the purpose of the conditions (A1-
) and (M-
), which generalize (A1)
and (M).

However, let us first start with the more elementary condition (A0): there exists
β > 0 such that

�(x, βξ) ≤ 1 ≤ �
(
x, 1

β
ξ
)

for all ξ ∈ R
m with |ξ | = 1 and all x ∈ �. Note that (A0) is implicit in the assumption

m1(|ξ |) ≤ �(x, ξ) ≤ m2(|ξ |) for N -functions m1 and m2 used in [1, 7–11, 17]. This
property is inherited by other versions of �:

Lemma 3.1 If � ∈ �s(�) satisfies (A0), then so do �+
B , �

−
B and (�−

B )conv.

Proof Taking the supremum or infimum over x ∈ � in (A0) of � gives (A0) for �+
B

and �−
B . Since (�−

B )conv ≤ �−
B , the left inequality of (A0) follows for (�−

B )conv. If
|ξ | ≥ 1

β
, then by (Inc)1 and (A0) we conclude that

�(x, ξ) ≥ β |ξ | �
(
x, 1

β
ξ
|ξ |

)
≥ β |ξ |.

Hence, for all ξ ∈ R
m ,�(x, ξ) ≥ (β |ξ |−1)+ (since (β |ξ |−1)+ = 0 when |ξ | ≤ 1

β
)

and so �−
B (ξ) ≥ (β |ξ | − 1)+. But the right-hand side is a convex function, so it

follows that (�−
B )conv(ξ) ≥ (β |ξ | − 1)+ since (�−

B )conv is defined as the greatest
convex minorant. Consequently,

(�−
B )conv

(
2
β
ξ
)

≥
(
β 2

β
− 1

)
+ = 1,

when ξ ∈ R
m with |ξ | = 1, so (�−

B )conv satisfies (A0) with constant β
2 . ��

The condition (A1) was introduced in [22] (see also [18, 28]) and is essentially
optimal for the boundedness of the maximal operator in isotropic generalized Orlicz
spaces. It also implies the Hölder continuity of solutions and (quasi)minimizers [5,
20, 21]. For higher regularity, we introduced in [23] a vanishing-(A1) condition along
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the same lines. These previous studies apply to the isotropic case, i.e. m = 1. In
[24, 25] we generalized the (A1)-conditions to the anisotropic case, although only the
quasi-isotropic case was considered in the main results.

Chlebicka, Gwiazda, Zatorska-Goldstein and co-authors [1, 7–12, 17] considered
the assumption (M) in the anisotropic case; in the next definition their condition is refor-
mulated to make it easier to compare with the (A1) condition (see also Lemma 3.4);
also note that someof the earlierworks included additional restrictions in the condition.

Definition 3.2 Let�,
 ∈ �s(�). We say that� satisfies (A1-
) or (M-
) if for any
K > 0 there exists β > 0 such that

�+
B (βξ) ≤ �−

B (ξ) + 1 when 
−
B (ξ) ≤ K

μ(B)

or

�+
B (βξ) ≤ (�−

B )conv(ξ) + 1 when (
−
B )conv(ξ) ≤ K

μ(B)

for all balls B ⊂ R
n with μ(B) ≤ 1 and ξ ∈ R

n .
When 
(t) := t s and 
 := � we use the abbreviations (A1-s), (A1), (M-s) and

(M).

The role of
 is to calibrate the almost continuity requirement with the information
on the function we are interested in and was developed from the initial condition
(A1) over the course of several studies [5, 20, 21]. For instance, we showed in [5,
Theorem 3.9] that the weak Harnack inequality holds for non-negative supersolutions

of div
(
ϕ′(|∇u|) ∇u

|∇u|
)

= 0 if the isotropic �-function ϕ satisfies (A1-
) and the

supersolution satisfies u ∈ W 1,ψ (�), where ψ ∈ �w(�) is a potentially different
function. Note that this involves a trade-off, since larger ψ means more restriction on
u and less restriction on ϕ.

As far as I know, Chlebicka, Gwiazda, Zatorska-Goldstein and co-authors con-
sidered (M) only in the case 
(t) := t and 
(t) := t p (i.e. (M-1) and (M-p) in
the notation above). However, the next example illustrates why this does not lead to
optimal results.

Example 3.3 (Variable exponent double phase) Let ϕ(x, t) := t p(x) +a(x)tq(x) where
a ∈ C0,α(�), a ≥ 0 and 1 < p ≤ q. Now the (A1) or (M) conditions reduce to

q(x)

p(x)
≤ 1 + α

n
⇐⇒

( q
p

)+ ≤ 1 + α

n

Let p− := inf x∈� p(x) and p+ := supx∈� p(x). If we only use fixed exponent gauges
such as (A1-p−) or (M-p−), then we instead end up with the condition

q(x)

p− ≤ 1 + α

n
⇐⇒ q+

p− ≤ 1 + α

n
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which is worse, and quite unnatural as the largest value of q is bounded by the smallest
value of p.

As a final remark about the formulation, we note that earlier papers used a form
without the “+1” and instead restricted the range of 
−

B . However, if (A0) holds, then
these formulations are equivalent. We prove it for (M), the same applies to (A1).

Lemma 3.4 Let � ∈ �s(�) satisfy (A0). Then (M) holds if and only if

�+
B (βξ) ≤ (�−

B )conv(ξ) when (�−
B )conv(ξ) ∈

[
1, K

μ(B)

]
.

Proof If the condition of the lemma holds, then (M) needs only to be checked when
(�−

B )conv(ξ) ≤ 1. This inequality and (A0) imply that |ξ | ≤ 1
β
. Thus �+

B (β2ξ) ≤ 1

by (A0), so (M) holds with constant β2.

Assume conversely that (M) holds and (�−
B )conv(ξ) ∈

[
1, K

μ(B)

]
. Then it follows

that

�+
B (βξ) ≤ (�−

B )conv(ξ) + 1 ≤ 2(�−
B )conv(ξ).

Then (Inc)1 implies that �+
B

(
β
2 ξ

)
≤ 1

2�
+
B (βξ) ≤ (�−

B )conv(ξ), so the condition of

the lemma holds with constant β
2 . ��

4 Equivalence of Conditions

In the previous section we introduced and motivated the conditions (A1) and (M) and
their variants. We now move on to the main result, and consider their relation to one
another.

Since (�−
B )conv ≤ �−

B , (M-
) implies (A1-
). Ifϕ is isotropic and satisfies (aInc)1,
then I showed in [22] that ϕ−

B (βt) ≤ (ϕ−
B )conv(t). Hence the two conditions are

equivalent in this case. However, as pointed out in [9, Remarks 2.3.14 and 3.7.6],
this approach is not possible in the anisotropic case. Since I did not understand the
examples implicit in these remarks without consulting the authors, I include here
an explicit example based on ideas of Piotr Nayar communicated to me by Iwona
Chlebicka.

Example 4.1 Letm = 2 and �k(ξ1e1 + ξ2e2) := ξ2k . Then both �1 and �2 are convex
and �1(e2) = �2(e1) = 0. Denote � := min{�1,�2}. It follows that

�conv(α1e1 + α2e2) ≤ α1�
conv(e1) + α2�

conv(e2) ≤ α1�(e1) + α2�(e2) = 0,

whereα1+α2 = 1 andα1, α2 ≥ 0. Thuswe see that�conv ≡ 0. Since�(β(e1+e2)) =
�1(β(e1 + e2)) = β2 but �conv ≡ 0, the relation � 	 �conv does not hold.

Even though �−
B (βξ) ≤ (�−

B )conv(ξ) does not hold in general, we next construct
an almost convex minorant which is comparable to �−

B when (A1) holds which can
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be used in (M). We prove that (A1) implies (M) in the main case 
 := �, which
corresponds to the natural energy space L� orW 1,�. The implication for (A1-
) and
(M-
) when 
 �= � remains an open problem.

Let � : Rm → [0,∞] be a strong �-function independent of x . Denote Ks :=
{� ≤ s} and observe that it is a convex compact set which includes 0 in its interior.
Define

‖ξ‖Ks := inf{λ > 0 | ξ
λ

∈ Ks} and Ns(ξ) := smax{1, ‖ξ‖Ks }.

Here ‖·‖Ks is theMinkowski functional of the set Ks , first studied byKolmogorov [26].
The Luxemburg norm ‖ · ‖� defined previously is another example of a Minkowski
functional. Note that Ns is a convex function with {Ns ≤ s} = Ks . Since � is convex,
�(λξ) ≤ λ�(ξ) for λ ≤ 1. Thus Ns ≤ � outside Ks , Ns ≥ � in Ks and Ns = � on
the boundary ∂Ks . In other words, we take the s-level set of � and replace � outside
of it by the function Ns which grows linearly.

not be even almost convex. However, in the next proposition we show that
min{�, Ns} is almost convex, since the two functions are somehow compatible. This
will be used to construct a convex minorant of �−

B . The proposition also demonstrates
the utility of the almost convexity condition, as it seems much more difficult to choose
Ns to make the minimum convex while still being a minorant of �−

B .

Proposition 4.2 Let � : R
m → [0,∞] be a strong �-function. Then Ms :=

min{�, Ns} is almost convex.
Proof Note that Ms = �χKs + NsχRm\Ks and let α, α′ > 0 with α + α′ = 1. If
ξ, ξ ′ /∈ Ks , then the convexity of Ns implies that

Ms
(
β(αξ + α′ξ ′)

) ≤ Ns
(
β(αξ + α′ξ ′)

)≤ αNs(ξ)+ α′Ns(ξ
′)= αMs(ξ)+ α′Ms(ξ

′).

If ξ, ξ ′ ∈ Ks , then the inequality follows from the convexity of �, which holds by
assumption. Therefore it suffices to show that

Ms
(
β(αξ + α′ξ ′)

) ≤ α�(ξ) + α′Ns(ξ
′)

when ξ ∈ Ks and ξ ′ /∈ Ks . Define ξ̃ := αξ + α′ξ ′ and ζ̃ := 1
2 ξ̃ . We will show that

Ms(ζ̃ ) ≤ C(α�(ξ) + α′Ns(ξ
′)). 4.3

Observe that Ms satisfies (Inc)1, since Ns and � do. By (Inc)1, (4.3) implies the
previous inequality with constant β := 1

2C and concludes the proof. We consider two
cases to prove (4.3).

Case 1 ζ̃ ∈ Ks . Then Ms(ζ̃ ) ≤ s ≤ Ns(ξ
′) and so (4.3) holds with C = 2 when

α′ > 1
2 . Thus we may assume that α ≥ 1

2 . Now if Ms(ζ̃ ) ≤ 2�(ξ), then (4.3)
holds with C = 4. Hence we further assume that Ms(ζ̃ ) > 2�(ξ).
We may assume that ξ , ξ ′ and 0 are not collinear since in the collinear case
we can choose ξ ′

k → ξ ′ such that ξ , ξ ′
k and 0 are not collinear and use the

123



A Fundamental Condition in Anisotropic Generalized Orlicz Spaces Page 11 of 15 7

Fig. 1 Construction of auxiliary points

continuity of Ms and Ns . Let ζ ′ be the intersection of the segment [0, ξ ′] and
the line through ξ and ζ̃ (see Fig. 1). If ζ ′ ∈ Ks , then ζ̃ = θξ + (1− θ)ζ ′ for
some θ ∈ (0, 1). By the convexity of � and Ms(ζ̃ ) > 2�(ξ) we have

Ms(ζ̃ ) = �(ζ̃ ) ≤ θ�(ξ) + (1 − θ)�(ζ ′) ≤ 1
2Ms(ζ̃ ) + Ms(ζ

′).

Thus Ms(ζ
′) = �(ζ ′) ≥ 1

2Ms(ζ̃ ). If, on the other hand, ζ ′ /∈ Ks , then
Ms(ζ

′) ≥ s ≥ Ms(ζ̃ ). In either case, we have Ms(ζ
′) ≥ 1

2Ms(ζ̃ ).
Consider the parallelogram (0, ξ, ξ̃ , ξ̃ − ξ). Let η′ be the intersection of the
segments [ξ̃ , ξ̃ − ξ ] and [0, ξ ′] (see Fig. 1). From ξ̃ = (1 − α′)ξ + α′ξ ′ we
observe that

α′ = |ξ̃ − ξ |
|ξ − ξ ′| = |η′|

|ξ ′| ≥ |ζ ′|
|ξ ′| =: ν ∈ (0, 1);

the second equality follows since the triangles (ξ ′, ξ̃ , η′) and (ξ ′, ξ, 0) are
similar. Thus, by Ms(ζ

′) ≥ 1
2Ms(ζ̃ ) from the previous paragraph and (Inc)1

of Ms ,

Ns(ξ
′) = Ms(ξ

′) ≥ 1
ν
Ms(νξ ′) = 1

ν
Ms(ζ

′) ≥ 1
2ν Ms(ζ̃ ) ≥ 1

2α′ Ms(ζ̃ ),

where we used the conclusion of the previous paragraph in the penultimate
step. The inequality

Ms
(
ζ̃
) ≤ 2α′Ns(ξ

′)

follows, so (4.3) holds with C = 2.

Case 2 ζ̃ /∈ Ks . Let ν := ‖ζ̃‖−1
Ks

< 1. Since Ks is closed, it follows from the definition

of ‖·‖Ks that�(νζ̃ ) = s and νζ̃ ∈ ∂Ks . Furthermore, Ns(νζ̃ ) = s = Ms(νζ̃ )

and so

Ms(ζ̃ ) = s‖ζ̃‖Ks = 1
ν
s = 1

ν
Ms(νζ̃ ) ≤ 4

ν
(α�(νξ) + α′Ns(νξ ′)) ≤ 4(α�(ξ) + α′Ns(ξ

′)),
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where we used the previous case for νζ̃ ∈ Ks in the first inequality and (Inc)1
for the last step. ��

We are ready to prove the main theorem, i.e. the equivalence of (A1) and (M).

Proof of Theorem 1.2 Since (�−
B )conv ≤ �−

B , it follows from (M) that

�+
B (βξ) ≤ (�−

B )conv(ξ) + 1 ≤ �−
B (ξ) + 1,

when ξ ∈ R
m with �−

B (ξ) ≤ K
μ(B)

, where B ⊂ R
n is a ball, which gives (A1).

Assume now conversely that (A1) holds and let s := K
μ(B)

+ 1 for a ball B ⊂ R
n

with μ(B) ≤ 1. Define Ns as before based on Ks := {ξ ∈ R
m | �+

B (βξ) ≤ s}
and set Ms(ξ) := min{�+

B (βξ), Ns(ξ)}. By Proposition 4.2, Ms is almost convex so
Ms(β

′ξ) ≤ (Ms)
conv(ξ) by Corollary 2.4.

If ξ ∈ Ks , then Ms(ξ) = �+
B (βξ) ≤ s. Now either �−

B (ξ) ≤ K
μ(B)

in which

case (A1) implies that �+
B (βξ) ≤ �−

B (ξ) + 1, or �−
B (ξ) > K

μ(B)
in which case

�+
B (βξ) ≤ s ≤ �−

B (ξ) + 1. Combining the two cases, we find that

�+
B (βξ) ≤ �−

B (ξ) + 1 for all ξ ∈ Ks .

If ξ /∈ Ks , then ν := ‖ξ‖−1
Ks

< 1. As in Case 2 of the previous proof νξ ∈ ∂Ks and

�+
B (βνξ) = s. If�−

B (νξ) < K
μ(B)

, then (A1) implies that�+
B (βνξ) ≤ �−

B (νξ)+1 <

s, which is a contradiction. Therefore �−
B (νξ) ≥ K

μ(B)
= s − 1 and so

Ms(ξ) = Ns(ξ) = 1
ν
s ≤ 1

ν
s

s−1�
−
B (νξ) ≤ s

s−1�
−
B (ξ),

where we used (Inc)1 of �−
B in the last step. Note that s

s−1 = 1+ μ(B)
K ≤ 1+ 1

K since
we assumed that μ(B) ≤ 1.

In the previous paragraphwehave shown thatMs ≤ (
1 + 1

K

)
�−

B+1. Therefore, the
convexminorant ofMs is also a convexminorant of

(
1 + 1

K

)
�−

B +1, and we conclude
that (Ms)

conv ≤ (
1 + 1

K

)
(�−

B )conv+1 since (�−
B )conv is the greatest convex minorant

of �−
B . We noted above that Ms(β

′ξ) ≤ (Ms)
conv(ξ). Therefore,

Ms(β
′ξ) ≤ (

1 + 1
K

)
(�−

B )conv(ξ) + 1 for all ξ ∈ R
m .

Let us show that (M) holds. Assume that (�−
B )conv(ξ) ≤ K

μ(B)
. By (Inc)1 and the

conclusion of the previous paragraph,

Ms

(
K

K+1β
′ξ

)
≤ K

K+1Ms(β
′ξ) ≤ (�−

B )conv(ξ) + 1 ≤ s.

Therefore K
K+1β

′ξ ∈ Ks and Ms

(
K

K+1β
′ξ

)
= �+

B

(
K

K+1ββ ′ξ
)
. Thus

�+
B

(
K

K+1ββ ′ξ
)

≤ (�−
B )conv(ξ) + 1
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and we have established (M) with constant K
K+1ββ ′. ��

Remark 4.4 From the proof of Proposition 4.2, we see that the almost convexity con-
stant equals 8. From the proof of Corollary 2.4, we see that β ′ = 8−i , where i is the
smallest integer with 2i ≥ m + 1. Thus 2−i > 1

2(m+1) so that β ′ > (2(m + 1))−3.
Then we see from the proof or the previous theorem that the constant in (M) can be
chosen as (2(m + 1))−3 K

K+1β when β is the constant from (A1). In other words, the
constants from the two conditions are comparable up to a constant depending on the
dimension when K ≥ 1.

The assumption �−
B (ξ) ≤ K

μ(B)
from (A1) is somewhat difficult to verify. In the

isotropic case, if we assume that �ϕ( f ) ≤ 1, then we can conclude from Jensen’s
inequality that

ϕ−
B

(
β

 
B
f dμ

)
≤
 
B

ϕ(x, | f |) dμ ≤ 1

μ(B)
. 4.5

Thus we may apply (A1) to conclude that

ϕ+
B

(
β2

 
B
f dμ

)
≤ ϕ−

B

(
β

 
B
f dμ

)
+ 1.

This argument is not possible in the anisotropic case, since (�−
B )conv is not comparable

to �−
B . Fortunately, the condition of (M) is easier to use.

Proof of Corollary 1.3 By Theorem 1.2, � satisfies (M). Since (�−
B )conv is convex, it

follows by Jensen’s inequality that

(�−
B )conv

( 
B
f dμ

)
≤
 
B
(�−

B )conv( f ) dμ ≤
 
B

�(x, f ) dμ ≤ 1

μ(B)
.

Therefore we can use (M) with ξ = ffl
B f dμ and the previous inequality to conclude

that

�+
B

(
β

 
B
f dμ

)
≤ (�−

B )conv
(  

B
f dμ

)
+ 1 ≤

 
B

�(x, f ) dμ + 1.
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