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Abstract
We propose an analytic torsion for the Rumin complex associated with generic rank
two distributions on closed 5-manifolds. This torsion behaves as expected with respect
to Poincaré duality and finite coverings. We establish anomaly formulas, expressing
the dependence on the sub-Riemannian metric and the 2-plane bundle in terms of
integrals over local quantities. For certain nilmanifolds, we are able to show that this
torsion coincides with the Ray–Singer analytic torsion, up to a constant.
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1 Introduction

The Ray–Singer analytic torsion [77] of a closed smoothmanifold is a zeta regularized
graded determinant of its de Rham complex and computes the Reidemeister torsion
[6, 32, 33, 72]. Rumin and Seshadri [85] have recently introduced an analytic torsion
for the Rumin complex of contact manifolds [79, 80, 82] and showed that it coincides
with the Ray–Singer torsion for 3-dimensional CR Seifert manifolds equipped with a
unitary representation [85, Theorem 4.2]. In this paper we propose an analytic torsion
of the Rumin complex associated with another filtered geometry [81, 83, 84] known
as generic rank two distributions in dimension five [29].

A generic rank two distribution on a 5-manifold M is a smooth rank two subbundle
D in the tangent bundle T M such that Lie brackets of sections of D span a rank three
subbundle [D,D] in T M and triple brackets span all of the tangent bundle. In other
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words,D is a bracket generating distribution with growth vector (2, 3, 5). Clearly, this
is a C2-open condition on the 2-plane bundle D, whence the name generic.

IfD is a generic rank two distribution, then the Lie bracket of vector fields induces
an algebraic (Levi) bracket on the associated graded bundle

tM = t−3M ⊕ t−2M ⊕ t−1M,

where t−1M = D, t−2M = [D,D]/D and t−3M = T M/[D,D]. This turns tM into
a bundle of graded nilpotent Lie algebras called the bundle of osculating algebras. Its
fibers are all isomorphic to the graded nilpotent Lie algebra g = g−3 ⊕ g−2 ⊕ g−1
with graded basis X1, X2 ∈ g−1, X3 ∈ g−2, X4, X5 ∈ g−3 and brackets

[X1, X2] = X3, [X1, X3] = X4, [X2, X3] = X5.

A basic example of a generic rank two distribution is obtained by equipping the
simply connected Lie groupG corresponding to the Lie algebra gwith theG-invariant
2-plane bundle obtained by translating g−1.

The study of generic rank two distributions reaches back to Cartan’s “five variables
paper” [29] from 1910 where Cartan constructs a canonical connection and derives a
non-trivial local invariant, the harmonic curvature tensor which is a section of S4D∗.
A generic rank two distribution is locally diffeomorphic to the invariant rank two
distribution on the nilpotent Lie group G if and only if Cartan’s curvature tensor
vanishes.

Inmodern terminology, generic rank twodistributions can equivalently be described
as regular normal parabolic geometries [27] of type (G2, P), where P is a particular
parabolic subgroup in the split real form of the exceptional Lie group G2, see also
[88]. Their geometry has many intriguing features. The most symmetric example, the
flat model, is the homogeneous space G2/P which is locally diffeomorphic to the
nilpotent Lie group G and has an underlying manifold diffeomorphic to S2 × S3, see
[87]. In general, the symmetry group of a generic rank two distribution is a Lie group of
dimension at most 14 and is subject to further restrictions [23, Theorem 7]. Nurowski
[73] constructed a conformal metric of signature (2, 3) with conformal holonomy G2
which is naturally associated with a generic rank two distribution, see also [24, 54, 88–
90]. Bryant and Hsu have shown that generic rank two distributions admit many rigid
curves [18], i.e., curves which are isolated in the path space of curves tangent toDwith
fixed endpoints. In the same paper Bryant and Hsu also discuss the mechanical system
of a surface rolling without slipping and twisting on another surface. This gives rise to
a 5-dimensional configuration space equipped with a rank two distribution encoding
the no slipping and twisting condition, which is generic iff the Gaussian curvatures
are disjoint [18, Sect. 4.4]. If both surfaces are round spheres and the ratio of their
radii is 3:1 then the universal covering of the configuration space is diffeomorphic to
G2/P , see [8, 29]. Let us also mention the following recent studies of generic rank
two distributions [2, 9, 50, 55, 64].

By virtue of Gromov’s h-principle for open manifolds [51, Sect. 2.2.2], it is well
understood [37, Theorem 2] which open 5-manifolds admit globally defined generic
rank two distributions. For closed manifolds the situation appears to be more subtle
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but the underlying topological problem has been settled, see [37, Theorem 1(b)]. The
question to what extent generic rank two distributions abide by an h-principle [45, 51]
has served as a motivation for us to study the analytic torsion of the associated Rumin
complex, cf. [10, 30, 31, 41, 44, 48, 97].

The Rumin complex [81, 83, 84] associated with a generic rank two distribution on
a 5-manifold M is a natural complex of higher order differential operators,

�∞(E0)
D0−→ �∞(E1)

D1−→ �∞(E2)
D2−→ �∞(E3)

D3−→ �∞(E4)
D4−→ �∞(E5)

where Eq = Hq(tM) denotes the vector bundle obtained by taking the fiberwise Lie
algebra cohomology of the bundle of osculating algebras tM . The ranks of the bundles
Eq are 1, 2, 3, 3, 2, 1 and the Heisenberg orders of the operators Dq are 1, 3, 2, 3, 1,
see [19, Sect. 5] or [39, Example 4.24]. There exist injective differential operators
Lq : �∞(Eq) → �q(M), embedding the Rumin complex as a subcomplex in the
de Rham complex, whose image can be characterized using differential operators.
The operators Lq intertwine the Rumin differential with the de Rham differential,
dLq = Lq+1Dq , and induce isomorphisms in cohomology. In particular, the Rumin
complex computes the cohomology of M .

Let us emphasize that theRumin differentials Dq are natural, i.e. independent of any
further choices, and so is the map induced on cohomology by Lq , see Lemma 3.2. The
operators Lq , however, depend on the choice of a sub-Riemannian metric g̃ onD and a
splitting of the filtration, S : tM → T M . By the latter we mean a filtration preserving
isomorphism inducing the identity on the associated graded, that is, S|t−1M = id,
S(t−2M) ⊆ [D,D], S|t−2M = id mod D, and S|t−3M = id mod [D,D]. Using
parabolic geometry, one can construct a variant of theRumin complex Dq with splitting
operators Lq which are entirely natural. Indeed, the Rumin complex is isomorphic to
the curvedBGGsequence [25] associatedwith the trivial representation ofG2.Writing
down the BGG operators explicitly, however, requires the determination of (a good
portion of) the canonical regular normal Cartan connection associated with the rank
two distribution [29], a quite involved procedure, see [88]. While this more natural
perspective might prove to be insightful when studying the sub-Riemannian limit, it
does not appear to be helpful for the purpose of this paper, and we will therefore not
adopt it here.

Suppose F is a flat complex vector bundle overM and let DF
q denote the differential

complex obtained by twisting theRumin complexwith F . The definition of the analytic
torsion requires a sub-Riemannian metric [52, 69], i.e., a fiberwise Euclidean inner
product g̃ on D, as well as a fiberwise Hermitian metric h on F . These choices give
rise to fiberwise Hermitian metrics on the vector bundles Eq and permit to define
formal adjoints of the Rumin differentials, denoted by (DF

q )∗. The essential part of
the analytic torsion is a zeta regularized graded determinant which may be expressed
in the form

log sdet
√

(DF )∗DF = −1

2

∂

∂s

∣∣∣
s=0

∑

q

(−1)q tr

((
(DF

q )∗DF
q

)−s
)
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where the complex powers are understood to vanish on the kernels of the operators, see
Remark 2.9. For our rigorous definition, however, we will proceed as in Ray–Singer
[77] or Rumin–Seshadri [85] and rewrite this in terms of zeta functions associated
with hypoelliptic Rumin–Seshadri type operators

�F
q = (DF

q−1(D
F
q−1)

∗)aq−1 + ((DF
q )∗DF

q

)aq ,

seeSect. 2.3. For appropriate choices of the numbersaq , the operators�F
q areRockland

of Heisenberg order 2κ and admit a parametrix in the Heisenberg calculus [39, 66,
96]. The zeta function tr

(
(�F

q )−s
)
converges for �(s) > 10/2κ and extends to a

meromorphic function on the entire complex plane which is holomorphic at zero, see
[38, Theorem 2]. Correspondingly, as t → 0, the heat kernel admits an asymptotic
expansion [38, Theorem 1] of the form

e−t�F
q (x, x) ∼

∞∑

j=0

t ( j−10)/2κ pFq, j (x) (1)

where pFq, j ∈ �∞(end(Hq(tM) ⊗ F) ⊗ |�|) are locally computable, and pFq, j = 0
for all odd j . Here |�| denotes the line bundle of 1-densities over M .

Following [6] we incorporate the zero eigenspaces and consider the analytic torsion
as a norm ‖ − ‖sdet(H∗(M;F))

D,g̃,h on the graded determinant line [62]

sdet(H∗(M; F)) :=
⊗

q

(
det Hq(M; F)

)(−1)q
,

where Hq(M; F) denotes the de Rham cohomology of M with coefficients in the flat
bundle F . This analytic torsion behaves as expected with respect to finite coverings
and Poincaré duality, see Theorem 3.8. Moreover, this definition leads to a simple
and local anomaly formula, describing the metric dependence, which is analogous
to the corresponding formulas for the Ray–Singer torsion [6, Theorem 0.1] and the
Rumin–Seshadri torsion [85, Corollary 3.7].

To state this formula, note that restriction provides natural isomorphisms

Aut(tM) = Aut(D) and der(tM) = end(D),

where Aut(tM) denotes the bundle of fiberwise graded Lie algebra automorphisms
and der(tM) denotes the bundle of fiberwise derivations of degree zero. Hence, each
A ∈ �∞(Aut(D)) induces Hq(A) ∈ �∞(Aut(Hq(tM))) and correspondingly, each
Ȧ ∈ �∞(end(D)) induces Hq( Ȧ) ∈ �∞(end(Hq(tM))).

Theorem 1.1 Suppose g̃u is a family of sub-Riemannianmetrics onD and hu is a family
of fiberwise Hermitian metrics on F, both depending smoothly on a real parameter u.
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Then

∂
∂u log ‖ − ‖sdet(H∗(M;F))

D,g̃u ,hu
= 1

2

∑

q

(−1)q
∫

M
tr
((
Hq(ġu) + 5

2 tr(ġu) + ḣu
)
pFq,u,10

)

where ġu := g̃−1
u

∂
∂u g̃u ∈ �∞(end(D)), ḣu := h−1

u
∂
∂u hu ∈ �∞(end(F)), and

pFq,u,10 ∈ �∞(end(Hq(tM) ⊗ F) ⊗ |�|) denotes the constant term in the heat kernel

expansion associated with the Rumin–Seshadri operator �F
u,q , cf. (1).

Of course, theRay–Singer torsion of a 5-manifold is independent of theRiemannian
metric and the Hermitian metric on F , for there are no constant terms in the small time
asymptotic expansion of the heat trace of the Hodge Laplacians in odd dimensions.
The relevant analogue in the heat trace asymptotics for Rockland operators on filtered
manifolds is the homogeneous dimension, which happens to be even (ten) for generic
rank two distributions in dimension five. Hence, there is no apparent analytical reason,
why the corresponding analytic torsion should be independent of g̃ and h. The situation
is similar for the Rumin–Seshadri analytic torsion of contact manifolds which have
even homogeneous dimension too. On contact 3-manifolds, by adding (potentially
vanishing) local correction terms, Rumin and Seshadri were able to turn their torsion
into aCR-invariant [85, Corollary 3.8(3)] which coincideswith theRay–Singer torsion
according to [1]. We will not compute the local quantities appearing in the anomaly
formula in Theorem 1.1 more explicitly in this paper.

In view of Gray’s stability theorem [49, Theorem 2.2.2], a smooth deformation of
a contact structure can always be absorbed by adjusting the sub-Riemannian metric.
Hence, the infinitesimal change of theRumin–Seshadri analytic torsion under a smooth
deformation of the contact structure can be expressed as an integral over a local
quantity. For generic rank two distributions the situation is fundamentally different due
to the local invariant provided by Cartan’s curvature tensor. Even a small perturbation
of the 2-plane bundle will in general result in a distribution which is not even locally
diffeomorphic to the original one.Nevertheless, the torsion changes by a local quantity.
More precisely, we have

Theorem 1.2 Suppose �u ∈ �∞(Aut(T M)) depends smoothly on a real parameter
u such that �0 = idT M. Consider the 2-plane bundleDu = �u(D) equipped with the
sub-Riemannian metric g̃u = (�u)∗g̃. Then, provided u is sufficiently small, Du is a
generic rank two distribution and we have

∂
∂u

∣∣
u=0 log ‖ − ‖sdet(H∗(M;F))

Du ,g̃u ,h
= 1

2

∫

M
α

where the density α is locally computable. More precisely, α(x) can be computed from
the germ of (M,D, g̃, F, h, �̇|D) at x, where �̇ = ∂

∂u

∣∣
u=0�u ∈ �∞(end(T M)).

A more explicit formula for the density α will be provided in the proof presented
in Sect. 4.1, see (149), (150), and (151).

We will compute the torsion for generic rank two distributions on some nilmani-
folds, up to a constant. To formulate this result, let G denote the simply connected Lie
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group with Lie algebra g and let D denote a right invariant generic rank two distri-
bution on G. We equip D with a right invariant sub-Riemannian metric g̃. Since the
structure constants of g are rational, the group G admits lattices, i.e., discrete cocom-
pact subgroups, [76, Theorem 2.12]. If � is a lattice in G, then D and g̃ descend to
the nilmanifold G/�. The induced structures on G/� will be denoted byD� and g̃� ,
respectively. We have the following comparison with the Ray–Singer torsion [6, 77]
which will be denoted by ‖ − ‖sdet(H∗(G/�;F))

RS .

Theorem 1.3 There exists a constant c > 0 such that

‖ − ‖sdet(H∗(G/�;F))

D�,g̃�,h = c · ‖ − ‖sdet(H∗(G/�;F))
RS

for every right invariant generic rank two distribution D on G, every lattice � in
G which is generated by two elements, and every flat line bundle F over G/� with
parallel fiberwise Hermitian metric h.

Actually, we will establish a slightly stronger result in Theorem 4.7 below.
Since the nilmanifold G/� admits a free circle action, its Ray–Singer torsion can

be read off the corresponding Gysin sequence, see [65, Corollary 0.9].
To prove Theorem 1.3, we will consider the lattice �0 in G generated by two

elements exp(X1) and exp(X2) where X1, X2 is a basis of g−1. The group of graded
automorphisms Aut(g) ∼= GL(2, R) acts on G by diffeomorphisms preserving D0,
the right invariant rank two distribution obtained by translating g−1. The subgroup
preserving the lattice, Aut(g, log�0), is a subgroup of finite index in GL(2, Z) which
acts on the nilmanifold G/�0 by filtration preserving diffeomorphisms. Moreover,
the space of unitary characters of �0, that is, the space of flat line bundles over G/�0
which admit a parallel Hermitianmetric, can be covered by finitelymany orbit closures
of Aut(g, log�0). Exploiting this fact, and using several other results established here,
including Theorems 1.1 and 1.2, we are able to give a proof of Theorem 1.3.

We expect that the statement in Theorem 1.3 remains true with c = 1 for arbitrary
lattices � and all flat bundles F of arbitrary rank with parallel Hermitian metric h.
This expectation is motivated by a recent result of Albin and Quan [1, Corollary 3],
asserting that the quotient of the Rumin–Seshadri torsion and the Ray–Singer torsion
can be expressed in terms of an integral over a local quantity. If their analysis of
the sub-Riemannian limit can be generalized to generic rank two distributions, the
aforementioned strengthening of Theorem 1.3 would follow at once.

The remaining part of this paper is organized as follows. In Sect. 2 we define
an analytic torsion for Rockland differential complexes over general closed filtered
manifolds.We establish ametric anomaly formula for this torsion in Theorem 2.11 and
describe the variation of the torsion through a deformation of the underlying filtration
in Theorem 2.17. Some basic properties including compatibility with finite coverings
and duality are collected in Sect. 2.6.

In Sect. 3 we apply this general framework to the Rumin complex associated with
certain filtered manifolds. The resulting anomaly formulas are contained in Theo-
rems 3.11 and 3.15, compatibility with Poincaré duality is formulated in Theorem 3.8.
In order for the Rumin complex to be Rockland, it is necessary to assume that the
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osculating algebras have pure cohomology. This apparently very restrictive assump-
tion will be discussed in Sect. 3.7. We only know of three types of filtered manifolds
with this property: trivially filtered manifolds giving rise to the Ray–Singer torsion,
contact manifolds giving rise to the Rumin–Seshadri torsion, and generic rank two
distributions in dimension five giving rise to the torsion proposed in this paper.

In Sect. 4 we specialize to generic rank two distributions in dimension five and
prove the results stated in the introduction.

2 Analytic Torsion of Rockland Complexes

To every Rockland complex of differential operators over a closed filtered manifold
one can associate an analytic torsion. For the de Rham complex this specializes to the
classical Ray–Singer torsion [6, 77]. For the Rumin complex of a contact manifold it
specializes to the Rumin–Seshadri analytic torsion [85].

The purpose of this section is to provide a rigorous definition of the analytic torsion
of general Rockland complexes and to discuss some basic properties.Wewill show that
this torsion is compatible with duality and finite coverings, see Sect. 2.6. Moreover,
we will establish an anomaly formula which shows that the dependence on the metric
is given by an integral over a local quantity, see Theorem 2.11. We will also study
the variation of the torsion during a deformation of the underlying filtration, and
show that in certain situations, this can be expressed in terms of local quantities also,
cf. Theorem 2.17.

In Sects. 3 and 4 we will apply these results to Rumin complexes associated with
certain filtered manifolds.

2.1 Differential Operators on FilteredManifolds

Recall that a filtered manifold is a smooth manifold M together with a filtration of the
tangent bundle T M by smooth subbundles,

T M = T−r M ⊇ · · · ⊇ T−2M ⊇ T−1M ⊇ T 0M = 0,

which is compatible with the Lie bracket of vector fields in the following sense: If X
is a smooth section of T pM and Y is a smooth sections of T qM then the Lie bracket
[X ,Y ] is a section of T p+qM . Putting tpM := T pM/T p+1M , the Lie bracket induces
a vector bundle homomorphism tpM ⊗ tqM → tp+qM referred to as (generalized)
Levi bracket [27, Definition 3.1.7]. This turns the associated graded vector bundle
tM := ⊕

p t
pM into a bundle of graded nilpotent Lie algebras called the bundle of

osculating algebras. The Lie algebra structure on the fiber tx M = ⊕
p t

p
x M depends

smoothly on the base point x ∈ M , but will in general not be locally trivial. In
particular, the Lie algebras tx M might be non-isomorphic for different x ∈ M . The
simply connected nilpotent Lie group with Lie algebra tx M is called osculating group
at x and will be denoted by Tx M .
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Using negative degrees, we are following a convention common in parabolic
geometry, see [27, 70, 71] for instance. The other convention, where everything is
concentrated in positive degrees, is the one that has been adopted in [95, 96].

The filtration on M gives rise to a Heisenberg filtration on differential operators
which is compatible with composition and transposition. The basic idea is to consider
differentiation along a vector field tangent to T−kM as an operator of Heisenberg order
at most k. Suppose E and F are two vector bundles over M . A differential operator
A : �∞(E) → �∞(F) of Heisenberg order at most k has a Heisenberg principal
(co)symbol, encoding the highest order derivatives in the Heisenberg sense at x ∈ M ,

σ k
x (A) ∈ U−k(tx M) ⊗ hom(Ex , Fx )

whereU−k(tx M) denotes the degree−k part of the universal enveloping algebra of the
graded nilpotent Lie algebra tx M =⊕p t

p
x M . Equivalently, the Heisenberg principal

symbol may be regarded as a left invariant differential operator

σ k
x (A) : C∞(Tx M, Ex ) → C∞(Tx M, Fx )

on the osculating group Tx M which is homogeneous of degree k with respect to the
grading automorphism. The Heisenberg principal symbol is compatible with compo-
sition and transposition of differential operators.

A differential operator A : �∞(E) → �∞(F) of Heisenberg order at most k is said
to satisfy the Rockland condition [78] if

π(σ k
x (A)) : Hx,∞ ⊗ Ex → Hx,∞ ⊗ Fx

is injective for every x ∈ M and every non-trivial irreducible unitary Hilbert space
representation π of the osculating group Tx M , where Hx,∞ denotes the subspace
of smooth vectors, cf. [61]. The Rockland theorem asserts that in this situation the
operator admits a left parametrix which is of order −k in an appropriate Heisenberg
calculus of pseudodifferential operators adapted to the filtration. In particular, Rock-
land operators are hypoelliptic.

This result has a long history. For trivially filtered manifolds, that is if T M =
T−1M , it reduces to the classical, elliptic case. In this situation all irreducible unitary
representations of the (abelian) osculating group are one dimensional, and the Rock-
land condition at x ∈ M becomes the familiar condition that the principal symbol of
the operator is invertible at every 0 = ξ ∈ T ∗

x M , provided rk(E) = rk(F). Helffer–
Nourrigat [56–58] proved maximal hypoellipticity for left invariant scalar Rockland
differential operators on graded nilpotent Lie groups, thus confirming a conjecture
due to Rockland [78]. For contact and (more generally) Heisenberg manifolds, a pseu-
dodifferential calculus has been developed independently by Beals–Greiner [3] and
Taylor [93], see also [74]. Rockland theorems for Heisenberg manifolds can be found
in [3, Theorem 8.4] or [74, Theorem 5.4.1]. These investigations can be traced back
to the work of Kohn [63], Boutet de Monvel [11], and Folland–Stein [47] on CR
manifolds, cf. the introduction of [3] for further historical comments. A pseudodif-
ferential calculus for general filtered manifolds was first described by Melin [66]. In
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his unpublished manuscript Melin shows [66, Theorem 7.2] that a scalar Rockland
differential operator admits a parametrix in his calculus. More recent constructions of
pseudodifferential calculi on filtered manifolds are based on the Heisenberg tangent
groupoid [34, 53, 68, 95, 96] and the idea of essential homogeneity introduced in [40].
In [35, Theorem 2.5(d)] one finds a scalar Rockland theorem for graded nilpotent Lie
groups which suffices to study the flat models in parabolic geometry as well as topo-
logically stable [75] structures like contact and Engel manifolds. For general systems
of (pseudo)differential operators on arbitrary filtered manifolds the Rockland theorem
may be found in [39, Theorem A].

Using the parametrix of the heat operator and the Heisenberg pseudodifferential
calculus, one can extend the results on the structure of complex powers [4, 67, 74, 91]
to (formally) selfadjoint positive Rockland differential operators over general filtered
manifolds, see [37, Corollary 2]. In particular, the zeta function of such an operator
admits a meromorphic extension to the entire complex plane which is holomorphic at
zero. Hence, its derivative at zero may be used to define regularized determinants for
these operators.

2.2 Rockland Complexes

Consider a finite complex of differential operators over a closed filtered manifold M ,

· · · → �∞(Eq−1)
Dq−1−−−→ �∞(Eq)

Dq−→ �∞(Eq+1) → · · · (2)

which are ofHeisenberg order kq ≥ 1, respectively.Here Eq are smooth vector bundles
over M , only finitely many of these vector bundles are non-zero, and DqDq−1 = 0 for
all q. We assume the sequence is Rockland [39, Definition 2.14], i.e., the Heisenberg
principal symbol sequence

· · · → C∞(Tx M, Eq−1
x )

σ
kq−1
x (Dq−1)−−−−−−−−→ C∞(Tx M, Eq

x )
σ
kq
x (Dq )−−−−−→ C∞(Tx M, Eq−1

x ) → · · ·

becomes exact in every non-trivial irreducible unitary representation of Tx M .
Fix a volume density μ on M and fiber wise Hermitian inner products hq on the

bundles Eq , and consider the associated L2 inner product on �∞(Eq),

〈〈φ,ψ〉〉Eq :=
∫

M
hq(φ,ψ)μ, φ,ψ ∈ �∞(Eq). (3)

Let D∗
q : �∞(Eq+1) → �∞(Eq) denote the formal adjoint of Dq , that is

〈〈D∗
qφ,ψ〉〉Eq = 〈〈φ, Dqψ〉〉Eq+1 (4)

for all φ ∈ �∞(Eq+1) and ψ ∈ �∞(Eq). Clearly, D∗
q−1D

∗
q = 0.
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Fix natural numbers aq ∈ N such that

kq−1aq−1 = kqaq (5)

for all q, and put

κ := kqaq . (6)

Then the Rumin–Seshadri operators,

�q : �∞(Eq) → �∞(Eq), �q := (Dq−1D
∗
q−1)

aq−1 + (D∗
q Dq)

aq (7)

are all of Heisenberg order 2κ . These operators generalize the classical Hodge Lapla-
cians as well as the Laplacians associated with the Rumin complex in [85, Sect. 2.3]
which are of Heisenberg order two or four.

It will be convenient to consider the operators � := ⊕
q �q , D = ⊕

q Dq and
D∗ =⊕q D∗

q acting on sections of the graded vector bundle E :=⊕q Eq .

Lemma 2.1 The Rumin–Seshadri operator � is formally selfadjoint and commutes
with D and D∗, i.e., we have the graded commutator relations

[D,�] = 0 = [�, D∗]. (8)

Moreover, defining σq : �∞(Eq) → �∞(Eq−1) by

σq := (D∗
q−1Dq−1)

aq−1−1D∗
q−1 = D∗

q−1(Dq−1D
∗
q−1)

aq−1−1 (9)

and sq : �∞(Eq) → �∞(Eq+1) by

sq := σ ∗
q+1 = (DqD

∗
q)

aq−1Dq = Dq(D
∗
q Dq)

aq−1, (10)

we have the graded commutator relations

� = [D, σ ] = [s, D∗]. (11)

Proof Clearly, �∗
q = �q . Using DqDq−1 = 0, we obtain Dq�q = �q+1Dq and

then �q D∗
q = D∗

q�q+1 by passing to the formal adjoint, whence (8). Moreover,
�q = Dq−1σq + σq+1Dq and thus �q = sq−1D∗

q−1 + D∗
qsq , whence (11).

Lemma 2.2 ([39, Lemma 2.18]) The Rumin–Seshadri operator � is Rockland of
Heisenberg order 2κ .

Lemma 2.3 ([38, Lemma 1]) The Rumin–Seshadri operator � is essentially self-
adjoint with compact resolvent on L2(E). Moreover, � ≥ 0.
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Using the spectral theorem [60, Sect. VI§5.3] we obtain a strongly differentiable
semi-group e−t� for t ≥ 0. Let

n := −
∑

p

p · rk(tpM) (12)

denote the homogeneous dimension of M . Note that n ≥ 0 since with our convention
the grading of tM =⊕p t

pM is concentrated in negative degrees. We will denote the
line bundle of 1-densities on M by |�|.
Lemma 2.4 ([38, Theorem 1]) In this situation e−t� is a smoothing operator for each
t > 0, and the corresponding heat kernel kt ∈ �∞(E�(E∗⊗|�|)) depends smoothly
on t > 0. Furthermore, as t → 0, we have an asymptotic expansion

kt (x, x) ∼
∞∑

j=0

t ( j−n)/2κ p j (x) (13)

where p j ∈ �∞(end(E) ⊗ |�|). Moreover, p j (x) = 0 for all odd j .

For A ∈ �∞(end(E)) we thus obtain an asymptotic expansion as t → 0,

str
(
Ae−t�) ∼

∞∑

j=0

t ( j−n)/2κ
∫

M
str
(
Ap j

)
,

where str denotes the graded trace. In particular,

LIMt→0 str
(
Ae−t�) =

∫

M
str(Apn) (14)

where LIM denotes the constant term in the asymptotic expansion.

Lemma 2.5 The graded heat trace str
(
e−t�

)
is constant in t and

χ(E, D) = LIMt→0 str
(
e−t�) =

∫

M
str(pn). (15)

Here χ(E, D) denotes the Euler characteristics of the complex in (2).

Proof We adapt the classical argument. Combining the graded commutator relation
� = [D, σ ] from Lemma 2.1 with [D, e−t�] = 0 and the fact that the graded trace
vanishes on graded commutators, we see that the graded heat trace is constant in t :

∂
∂t str

(
e−t�) = − str

(
�e−t�)

= − str
([D, σ ]e−t�) = − str

([D, σe−t�]) = 0. (16)
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Moreover, with respect to the trace norm we have [38, Lemma 5]

lim
t→∞ e−t� = P (17)

where P denotes the spectral (orthogonal) projection onto the kernel of �. In view of
Lemma 2.3, this kernel is finite dimensional. By Hodge theory [39, Corollary 2.20],
the inclusion img(P) ⊆ �∞(E) induces an isomorphism in cohomology. Hence,

lim
t→∞ str

(
e−t�) = str(P) = χ

(
img(P), D

) = χ(E, D). (18)

Putting A = id in (14) and combining the resulting equation with (16) and (18) we
obtain (15).

2.3 Analytic Torsion

For λ ≥ 0, let Pλ denote the spectral projection of � corresponding to the eigenvalues
at most λ, and let Qλ := id−Pλ denote the complementary projection. Fix numbers
Nq such that

Nq+1 − Nq = kq (19)

for all q. We let N ∈ �(end(E)) denote the operator given by multiplication with Nq

on Eq . For λ ≥ 0 and �(s) > n/2κ , we put

ζλ(s) := str
(
NQλ�

−s) = 1

�(s)

∫ ∞

0
t s−1 str

(
NQλe

−t�)dt . (20)

According to [38,Corollary 2] this zeta function admits ameromorphic continuation
to the entire complex plane which is holomorphic at s = 0. Moreover,

ζλ(0) = LIMt→0 str
(
NQλe

−t�) = LIMt→0 str
(
Ne−t�)− χ ′

λ (21)

where LIM denotes the constant term in the asymptotic expansion, and

χ ′
λ := str(N Pλ) =

∑

q

(−1)q Nq rk(Pλ,q).

Putting A = N in (14) and using (21) we obtain

ζλ(0) = −χ ′
λ +

∫

M
str(Npn). (22)

Recall that img(Pλ) is a finite dimensional subcomplex of (�∞(E), D). Moreover,
the inclusion induces a canonical isomorphism in cohomology,

H∗(img(Pλ), D
) = H∗(E, D).
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The torsion of finite dimensional complexes, see [7, Sect. a] or [6, Sect. Ia], provides
a canonical isomorphism of graded determinant lines [62]

sdet(img(Pλ)) = sdet
(
H∗(img(Pλ), D

))
.

Recall here that the graded determinant line of a finite dimensional graded vector space
V = ⊕

q Vq is the line sdet(V ) := ⊗
q(det Vq)

(−1)q where detW := �dimWW and
the exponent −1 is used to denote the dual line. Combining the latter two identifica-
tions, we obtain a canonical isomorphism

sdet(img(Pλ)) = sdet(H∗(E, D)). (23)

The L2 inner product on �∞(E) restricts to a graded inner product on img(Pλ) and
induces an inner product on the graded determinant line sdet(img(Pλ)). Via (23)
this corresponds to an inner product on the line sdet(H∗(E, D)). We will denote the
corresponding norm by ‖ − ‖sdet(H∗(E,D))

[0,λ],h,μ . Following [6, 7], we define the analytic
torsion of the Rockland complex (E, D) to be the norm

‖ − ‖sdet(H∗(E,D))
h,μ := exp

(− 1
2κ ζ ′

λ(0)
) · ‖ − ‖sdet(H∗(E,D))

[0,λ],h,μ (24)

on the graded determinant line

sdet(H∗(E, D)) =
⊗

q

(
det Hq(E, D)

)(−1)q
.

A priori, the analytic torsion of a Rockland complex (E, D) depends on the graded
fiber wise Hermitian inner product h on E , the volume density μ on M , the choice of
numbers aq satisfying (5), the choice of numbers Nq satisfying (19), and the choice
of a spectral cutoff λ ≥ 0. It is fairly easy to see that the analytic torsion is actually
independent of aq , Nq and λ, see Lemmas 2.6, 2.7 and 2.8 below. The dependence on
hq and μ will be discussed in Sect. 2.4, see Theorem 2.11 below.

Lemma 2.6 The analytic torsion of a Rockland complex, see (24), does not depend on
the choice of the spectral cutoff λ ≥ 0.

Proof Suppose 0 ≤ λ1 ≤ λ2 and consider the finite rank spectral projection
P(λ1,λ2] := Pλ2 − Pλ1 . Clearly, C := img(P(λ1,λ2]) is a finite dimensional graded
vector space invariant under D, D∗, and �. Moreover, ker

(
D|Cq

) = img(D|Cq−1
)

and ker
(
D∗|Cq

) = img(D∗|Cq+1
)
. From the decomposition of complexes

img(Pλ2) = img(Pλ1) ⊕ C

we obtain

‖ − ‖sdet(H∗(E,D))
[0,λ2],h,μ

‖ − ‖sdet(H∗(E,D))
[0,λ1],h,μ

= T (C, D) (25)
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248 Page 14 of 66 S. Haller

where the right hand side denotes the torsion of the finite dimensional acyclic complex
(C, D), see [6, Proposition 1.5].

Consider the decomposition of graded vector spaces

C = K ⊕ L

where Kq := img
(
P(λ1,λ2]Dq−1

)
and Lq := img

(
P(λ1,λ2]D∗

q

)
. A well known expres-

sion for the torsion of an acyclic complex, see [85, Proposition 2.7], gives

T (C, D) = sdet
(
D∗D|L

)−1/2
. (26)

Clearly, det
(
DD∗|Kq

) = det
(
D∗D|Lq−1

)
and thus

det
(
�|Cq

) = det
(
DD∗|Kq

)aq−1 det
(
D∗D|Lq

)aq

= det
(
D∗D|Lq−1

)aq−1 det
(
D∗D|Lq

)aq .

Using (19) and (6) this gives

det
(
�|Cq

)Nq = det
(
D∗D|Lq−1

)κ det
(
D∗D|Lq−1

)Nq−1aq−1 det
(
D∗D|Lq

)Nqaq .

A telescoping argument yields

∏

q

det
(
�|Cq

)(−1)q Nq = sdet
(
D∗D|L

)−κ
. (27)

Using Qλ2 − Qλ1 = −P(λ1,λ2] we obtain, see (20),

ζλ2(s) − ζλ1(s) = − str
(
N P(λ1,λ2]�−s).

Hence,

ζ ′
λ2

(s) − ζ ′
λ1

(s) = str
(
N P(λ1,λ2]�−s log�

)

and

ζ ′
λ2

(0) − ζ ′
λ1

(0) = str
(
N P(λ1,λ2] log�

) =
∑

q

(−1)q Nq log det
(
�|Cq

)
.

Consequently,

exp
(− 1

2κ ζ ′
λ2

(0)
)

exp
(− 1

2κ ζ ′
λ1

(0)
) =

(
∏

q

det
(
�|Cq

)(−1)q Nq

)−1/2κ

. (28)

123



Analytic Torsion of Generic Rank Two Distributions in Dimension Five Page 15 of 66 248

Combining (25), (26), (27), and (28) we obtain

exp
(− 1

2κ ζ ′
λ2

(0)
) · ‖ − ‖sdet(H∗(E,D))

[0,λ2],h,μ

exp
(− 1

2κ ζ ′
λ1

(0)
) · ‖ − ‖sdet(H∗(E,D))

[0,λ1],h,μ

= 1,

whence the lemma.

Lemma 2.7 The analytic torsion of a Rockland complex, see (24), does not depend on
the choice of numbers Nq , see (19).

Proof If Ñq is another choice such that Ñq+1 − Ñq = kq , then there exists a constant
c such that Ñq − Nq = c for all q. Recall that the graded commutator relations
� = [D, σ ], see (11), and [D, e−t�] = 0 = [Qλ, D] yield

∂
∂t str

(
Qλe

−t�) = − str
(
Qλ�e−t�)

= − str
(
Qλ[D, σ ]e−t�) = − str

([D, Qλσe
−t�]) = 0.

Since limt→∞ tr
(
Qλ,qe−t�q

) = 0, see (17), we conclude str
(
Qλe−t�

) = 0 for all
t > 0 and all λ ≥ 0. Hence, for �(s) > n/2κ we obtain

str
(
Ñ Qλ�

−s)− str
(
NQλ�

−s) = c

�(s)

∫ ∞

0
t s−1 str

(
Qλe

−t�)dt = 0.

By analytic continuation, this remains true for all s, whence the lemma.

Lemma 2.8 The analytic torsion of a Rockland complex, see (24), does not depend on
the choice of numbers aq , see (5).

Proof Suppose ãq ∈ N is another choice of positive integers satisfying (5), that is,
kq−1ãq−1 = kq ãq for all q. Then there exist positive integers r , r̃ ∈ N such that
raq = r̃ ãq for all q. Indeed, we may use r := ãq0 and r̃ := aq0 for some fixed q0.
W.l.o.g. we may assume r̃ = 1 and thus

ãq = raq

for all q. Writing κ̃ := kq ãq we find, see (6),

κ̃ = rκ. (29)

Denoting the corresponding Laplacian by �̃q := (Dq−1D∗
q−1)

ãq−1 + (D∗
q Dq)

ãq , see

(4), and using (D∗)2 = 0 = D2, we find

�̃q = �r
q . (30)

Using the spectral cutoff

λ̃ := λr
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and denoting the spectral projections of �̃ by Q̃, we have

Q̃λ̃ = Qλ. (31)

Using (�r )−s = �−rs , (30) and (31) we find, see (20),

ζ̃λ̃(s) = ζλ(rs)

for all s. Differentiating and using (29) we find

1
κ̃
ζ̃ ′
λ̃
(0) = 1

κ
ζ ′
λ(0). (32)

In view of (31) we have img(P̃λ̃) = img(Pλ) and thus

‖̃ − ‖sdet(H
∗(E,D))

[0,λ̃],h,μ = ‖ − ‖sdet(H∗(E,D))
[0,λ],h,μ . (33)

Combining (32) with (33) and Lemma 2.6 we see that the analytic torsion with the
choices aq and ãq coincide, cf. (24).

Remark 2.9 The analytic torsion in (24) may be expressed in a way which does not
require the choice of numbers aq as in (5) and Nq as in (19). More precisely, for λ ≥ 0
we have

1
2κ ζ ′

λ(0) = − 1
2

∂
∂s

∣∣
s=0 strλ

(
(D∗D)−s) =: log sdetλ

√
D∗D. (34)

Here strλ
(
(D∗D)−s

)
denotes the graded trace, disregarding all eigenvalues ≤ λ, in

particular, disregarding the eigenvalue zero which will have infinite multiplicity in
general. To see this, note that D2 = 0 gives, see (7)

tr(Qλ�
−s
q ) = trλ

(
(D∗

q Dq)
−aqs

)+ trλ
(
(Dq−1D

∗
q−1)

−aq−1s
)
, �(s) > n/2κ.

Moreover, since Dq−1D∗
q−1 and D∗

q−1Dq−1 have the same spectrum

trλ
(
(Dq−1D

∗
q−1)

−aq−1s
) = trλ

(
(D∗

q−1Dq−1)
−aq−1s

)
, �(s) > n/2κ.

Using the latter two displayed equations, and proceeding by induction on q, one
readily concludes, from the corresponding fact for tr(Qλ�

−s
q ), that the functions

trλ
(
(D∗

q Dq)
−aqs

)
and trλ

(
(Dq−1D∗

q−1)
−aqs

)
admit meromorphic extensions which

are holomorphic at s = 0. Using (19) we obtain

− str(NQλ�
−s) =

∑

q

(−1)q trλ
(
kq(D

∗
q Dq)

−aqs
)
.

123



Analytic Torsion of Generic Rank Two Distributions in Dimension Five Page 17 of 66 248

Using (20) and (6) this gives

1
κ
ζ ′
λ(s) =

∑

q

(−1)q trλ
(
(D∗

q Dq)
−aqs log D∗

q Dq
)
.

Similarly,

− ∂
∂s strλ

(
(D∗D)−s) =

∑

q

(−1)q trλ
(
(D∗

q Dq)
−s log D∗

q Dq
)
.

Combining the latter two equations with the obvious equality

trλ
(
(D∗

q Dq)
−aqs log D∗

q Dq
)∣∣∣
s=0

= trλ
(
(D∗

q Dq)
−s log D∗

q Dq
)∣∣∣
s=0

,

obtained via analytic continuation, we arrive at the formula in (34).

Remark 2.10 The analytic torsion of a Rockland complex remains unchanged if the
differentials Dq are replaced with cq Dq where cq ∈ C and |cq | = 1.

2.4 Dependence on theMetric

Suppose the volume density μu on M and the graded Hermitian inner product hu on
E depend smoothly on a real parameter u. Let D∗

u and �u denote the corresponding
family of operators. For real u and v, we let Gv,u ∈ �∞(Aut(E)),

Gv,u := h−1
v hu

μu

μv

(35)

denote the unique vector bundle automorphism such that, cf. (3),

〈〈φ,ψ〉〉u = 〈〈Gv,uφ,ψ〉〉v = 〈〈φ,Gv,uψ〉〉v (36)

for all φ,ψ ∈ �∞(E). Clearly,Gv,u preserves the decomposition E =⊕q Eq . Using
(4) we immediately see that D∗

u varies by conjugation, i.e.,

D∗
u = G−1

v,u D
∗
vGv,u . (37)

The aim of this section is to establish the following variational formula generalizing
well known results for the Ray–Singer torsion [6, 77] and the Rumin–Seshadri torsion,
see [85, Corollary 3.7].

Theorem 2.11 In this situation we have

∂
∂u log ‖ − ‖sdet(H∗(E,D))

hu ,μu
= 1

2

∫

M
str
(
(ḣu + μ̇u)pu,n

)
.
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where ḣu := h−1
u

∂
∂u hu, μ̇u := μ−1

u
∂
∂uμu, and pu,n ∈ �∞(end(E) ⊗ |�|) denotes

the constant term in the heat kernel expansion associated with the Rumin–Seshadri
operator �u, see (13).

Remark 2.12 If the homogeneous dimension n is odd, then Theorem 2.11 implies that
the analytic torsion of a Rockland complex does not depend on the choice of μ and h,
for in this case pu,n = 0 according to Lemma 2.4. In the classical case this has already
been observed by Ray and Singer [77].

Let Ġu ∈ �∞(end(E)) be defined by

Ġu := G−1
v,u

∂
∂u Gv,u = ∂

∂w

∣∣
w=uGu,w = ḣu + μ̇u, (38)

where the middle equality is a consequence of the cocycle relationGw,vGv,u = Gw,u ,
and the last equality follows by differentiating (35).

The following can be traced back to the original work of Ray–Singer [77, Theo-
rem 2.1], see also [6, Theorem 5.6] or [85, Sect. 3.2].

Lemma 2.13 In this situation we have

∂
∂u str

(
Ne−t�u

) = κt ∂
∂t str

(
Ġue

−t�u
)
. (39)

Proof Let us define σu,q : �∞(Eq) → �∞(Eq−1) by

σu,q := (D∗
u,q−1Dq−1)

aq−1−1D∗
u,q−1 = D∗

u,q−1(Dq−1D
∗
u,q−1)

aq−1−1 (40)

and su,q : �∞(Eq) → �∞(Eq+1) by

su,q := (DqD
∗
u,q)

aq−1Dq = Dq(D
∗
u,q Dq)

aq−1. (41)

Hence, from Lemma 2.1 we have graded commutator relations

�u = [D, σu] = [su, D∗
u ]. (42)

Using Duhamel’s formula one shows

∂
∂u tr

(
e−t�u,q

) = −t tr
(
�̇u,qe

−t�u,q
)

(43)

where �̇u := ∂
∂u�u , see [85, Lemma 3.5] or [5, Corollary 2.50]. Consequently,

∂
∂u str

(
Ne−t�u

) = −t str
(
N�̇ue

−t�u
)
. (44)

Put σ̇u := ∂
∂u σu and let k denote the operator given by multiplication with kq on

�∞(Eq). Then we have graded commutator relations �̇u = [D, σ̇u] and [N , D] =
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Dk, see (42) and (19), respectively. Combining this with [D, e−t�u ] = 0 and the fact
that the graded trace vanishes on graded commutators we obtain

str
(
N�̇ue

−t�u
) = str

(
Dkσ̇ue

−t�u
)
. (45)

Put Ḋ∗
u := ∂

∂u D
∗
u . From (40) we get

σ̇u,q =
aq−1−1∑

r=0

(D∗
u,q−1Dq−1)

r Ḋ∗
u,q−1(Dq−1D

∗
u,q−1)

aq−1−1−r .

Since [Dq−1D∗
u,q−1, e

−t�u,q ] = 0 and the trace vanishes on commutators this yields

tr
(
Dq−1kq−1σ̇u,qe

−t�u,q
) = κ tr

(
su,q−1 Ḋ

∗
u,q−1e

−t�u,q
)
,

see also (6) and (41). Consequently,

str
(
Dkσ̇ue

−t�u
) = κ str

(
su Ḋ

∗
ue

−t�u
)
. (46)

Differentiating (37) and using (38), we obtain Ḋ∗
u = [D∗

u , Ġu]. Combining this with
[D∗

u , e
−t�u ] = 0 and [su, D∗

u ] = �u , see (42), and using the fact that the graded trace
vanishes on graded commutators we obtain

str
(
su Ḋ

∗
ue

−t�u
) = str

(
Ġu�ue

−t�u
)
. (47)

Clearly,

∂
∂t str

(
Ġue

−t�u
) = − str

(
Ġu�ue

−t�u
)
. (48)

Combining equations (44), (45), (46), (47) and (48), we obtain (39).

The following generalizes [85, Theorem 3.4].

Lemma 2.14 For λ ≥ 0 not in the spectrum of �u and �(s) > n/2κ we have

∂
∂u

1
κ
ζu,λ(s) = − s

�(s)

∫ ∞

0
t s−1 str

(
ĠuQu,λe

−t�u
)
dt . (49)

Moreover,

∂
∂u

1
κ
ζu,λ(0) = 0 (50)

and

∂
∂u

1
κ
ζ ′
u,λ(0) = str

(
Ġu Pu,λ

)−
∫

M
str
(
Ġu pu,n

)
. (51)
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Proof As λ is not in the spectrum of �u,q , the spectral projector Qu,λ,q is smooth in
u. Since �u,q commutes with Qu,λ,q , Duhamel’s formula gives

∂
∂u tr

(
Qu,λ,qe

−t�u,q
) = tr

(
Q̇u,λ,qe

−t�u,q
)− t tr

(
Qu,λ,q�̇u,qe

−t�u,q
)
, (52)

where Q̇u,λ,q := ∂
∂u Qu,λ,q . Differentiating Qu,λ,q = Q2

u,λ,q , we get Q̇u,λ,q =
Q̇u,λ,q Qu,λ,q + Qu,λ,q Q̇u,λ,q and then Qu,λ,q Q̇u,λ,q Qu,λ,q = 0. Hence, Q̇u,λ,q =
Qu,λ,q Q̇u,λ,q Pu,λ,q + Pu,λ,q Q̇u,λ,q Qu,λ,q and thus

tr
(
Q̇u,λ,qe

−t�u,q
) = 0.

Combining this with (52), we obtain the following analogue of (43)

∂
∂u tr

(
Qu,λ,qe

−t�u,q
) = −t tr

(
Qu,λ,q�̇u,qe

−t�u,q
)
. (53)

Proceeding exactly as in the proof of Lemma 2.13 and using the fact that Qu,λ

commutes with �u , D and D∗
u , one obtains

∂
∂u str

(
NQu,λe

−t�u
) = κt ∂

∂t str
(
ĠuQu,λe

−t�u
)
. (54)

Using (20) and (54) it is straight forward to derive (49). Using the fact that

1

�(s)

∫ ∞

0
t s−1 str

(
ĠuQu,λe

−t�u
)
dt

is holomorphic at s = 0, the equation (50) follows at once. Furthermore, we get

∂
∂u

1
κ ζ ′

u,λ(0) = −LIMt→0 str
(
Ġu Qu,λe

−t�u
) = str

(
Ġu Pu,λ

)− LIMt→0 str
(
Ġue

−t�u
)
.

Combining this with (14) we obtain (51).

The following can be proved as in the classical case, see for instance [20, p 56].

Lemma 2.15 If λ ≥ 0 is not contained in the spectrum of �u, then

∂
∂u log ‖ − ‖sdet(H∗(E,D))

[0,λ],hu ,μu
= 1

2 str(Ġu Pu,λ).

Combining Lemma 2.15 with Eqs. (51) and (38), we obtain Theorem 2.11, see (24).

Remark 2.16 Twisting a Rockland complex as in (2) with a flat vector bundle F we
obtain a new Rockland complex:

· · · → �∞(Eq−1 ⊗ F)
DF
q−1−−−→ �∞(Eq ⊗ F)

DF
q−−→ �∞(Eq+1 ⊗ F) → · · · .
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Suppose hF is a parallel fiber wise Hermitian inner product on F and equip Eq ⊗ F
with theHermitianmetric hq⊗hF . Locally, the flat bundle F and the parallelHermitian
metric hF can be trivialized simultaneously. Hence, locally, we have

DF = D ⊕ · · · ⊕ D, (DF )∗ = D∗ ⊕ · · · ⊕ D∗, �F = � ⊕ · · · ⊕ �.

Using locality of the heat kernel expansion, we conclude

pFj = p j ⊗ idF

for all j ∈ N0, where pFj ∈ �∞(end(E ⊗ F) ⊗ |�|) and p j ∈ �∞(end(E) ⊗
|�|) denote the local quantities in the heat kernel expansions of the Rumin–Seshadri
operators �F and �, respectively, see (13).

2.5 Deformation of the Filtration

In this section we consider a family of closed filtered manifolds Mu smoothly depend-
ing on a real parameter u ∈ R. More explicitly, we assume the underlying manifold
M remains fixed, and the filtration subbundles T pMu ⊆ T M depend smoothly on
u. Suppose we have a smooth family of differential complexes Du acting between
sections of vector bundles Eq

u which depend smoothly on u,

· · · → �∞(Eq−1
u )

Dq−1,u−−−−→ �∞(Eq
u )

Dq,u−−→ �∞(Eq+1
u ) → · · ·

We assume that each Du is a Rockland complexwith respect to the filtration onMu and
that theHeisenberg order kq of Dq,u is independent ofu.We consider gradedHermitian
metrics hu on Eu = ⊕

q Eq
u and volume densities μu on M depending smoothly on

u, and aim at describing the dependence of the torsion ‖ − ‖sdet(H∗(Eu ,Du))
hu ,μu

on the
parameter u, cf. (24).

Wewill add the subscript u to the notation used in the preceding sections to indicate
the dependence on this parameter. In particular,�u denotes the Rumin–Seshadri oper-
ator associated with Eu, Du, hu, μu , see (7), and kt,u(x, y) will denote the (smooth)
kernel of e−t�u . We take the numbers aq satisfying (5) and the numbers Nq as in (19)
to be constant in u.

Suppose we have differential operators Aq,v,u : �∞(Eq
u ) → �∞(Eq

v ) which
depend smoothly on real parameters u and v such that

Av,u Du = DvAv,u . (55)

We assume that Av,u induces an isomorphism in cohomology,

H(Av,u) : H∗(Eu, Du) → H∗(Ev, Dv), (56)

and that Au,u = id. In this situation we have
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Theorem 2.17 With respect to the isomorphism of determinant lines

sdet(H(Av,u)) : sdet(H∗(Eu, Du)) → sdet(H∗(Ev, Dv))

induced by (56), we have

∂
∂v

∣∣
v=u log

(
(sdet(H(Av,u)))

∗‖ − ‖sdet(H∗(Ev,Dv))
hv,μv

)
= 1

2

∫

M
str( p̃n,u) (57)

where p̃n,u ∈ �∞(end(Eu) ⊗ |�|) is the constant term in the asymptotic expansion

(
( Ȧu + Ȧ∗

u + ḣu + μ̇u)kt,u
)
(x, x) ∼

∞∑

j=−ru

t ( j−n)/2κ p̃ j,u(x). (58)

Here μ̇u = μ−1
u

∂
∂uμu, ḣu = h−1

u ∇ ∂
∂u
hu, and Ȧu = ∇ ∂

∂v
|v=u Av,u with respect to an

auxiliary linear connection on the bundle
⊔

u Eu and ru denotes the Heisenberg order
of Ȧu with respect to the filtration on Mu. In particular, p̃n,u is locally computable.
More precisely, p̃n,u(x) can be computed from ( Ȧu, ḣu, μ̇u) at x and the germ of
(Mu, Eu, Du, hu, μu) at x. Furthermore, p̃n,u = 0 if the homogeneous dimension n
is odd.

In the remaining part of this section we will give a proof of this theorem. We begin
by addressing the existence of the asymptotic expansion in (58).

Lemma 2.18 Suppose B is a differential operator, acting on sections of Eu, which is of
Heisenberg order at most ru with respect to the filtration on Mu, and let (Bkt,u)(x, y)
denote the (smooth) kernel of Be−t�u . Then we have an asymptotic expansion, as
t → 0,

(Bkt,u
)
(x, x) ∼

∞∑

j=−ru

t ( j−n)/2κ p̃Bj,u(x) (59)

where p̃Bj,u ∈ �∞(end(Eu) ⊗ |�|) are locally computable. More precisely, p̃Bj,u(x)
can be computed from the coefficients of B at x and the germ of (Mu, Eu, Du, hu, μu)

at x. Furthermore, p̃Bj,u(x) = 0 for all odd j .

Proof According to [38, Sect. 4], the heat operator �u + ∂
∂t admits a parametrix Q in

the Heisenberg calculus on M × R whose kernel kQ satisfies

kQ(x, s; y, s − t) =
{
kt,u(x, y) for t > 0, and

0 for t < 0.

Here M × R is considered as a filtered manifold such that the vector field ∂
∂t has

Heisenberg order 2κ . Hence, BQ is a pseudodifferential operator of Heisenberg order
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ru − 2κ in the Heisenberg calculus on M × R. For its kernel kBQ we find

kBQ(x, s; y, s − t) =
{

(Bkt,u)(x, y) for t > 0, and

0 for t < 0.

Since BQ is in theHeisenberg calculus, its kernel kBQ admits an asymptotic expansion
along the diagonal. Proceeding exactly as in [38, Sect. 4], this leads to the asymptotic
expansion in (59).

Using parallel transport with respect to the auxiliary connection to identify the
bundles Eu with a single vector bundle, we may w.l.o.g. assume Eu = E for all u.
Then ḣu = h−1

u
∂
∂u hu and Ȧu = ∂

∂v
|v=u Av,u . Differentiating (55), we obtain

Ḋu = Ȧu Du − Du Ȧu . (60)

where Ḋu := ∂
∂u Du . By the chain rule,

∂
∂v

∣∣
v=u log

(
(sdet(H(Av,u)))

∗‖ − ‖sdet(H∗(E,Dv))
hv,μv

)

= ∂
∂v

∣∣
v=u log

(
(sdet(H(Av,u)))

∗‖ − ‖sdet(H∗(E,Dv))
hu ,μu

)

+ ∂
∂v

∣∣
v=u log ‖ − ‖sdet(H∗(E,Du))

hv,μv
.

In view of Theorem 2.11 we may thus assume w.l.o.g. that the Hermitian metrics and
the volume densities are independent of u, that is, hu = h and μu = μ.

Lemma 2.19 If λ ≥ 0 is not in the spectrum of �u then

∂
∂u str

(
NQλ,ue

−t�u
) = κt ∂

∂t str
(
( Ȧu + Ȧ∗

u)Qλ,ue
−t�u

)
. (61)

Proof From Lemma 2.1 we have the graded commutator relation

�u = [Du, σu]. (62)

Using Duhamel’s formula one shows as in (53)

∂
∂u tr

(
Qλ,u,qe

−t�u,q
) = −t tr

(
Qλ,u,q�̇u,qe

−t�u,q
)

where �̇u := ∂
∂u�u . Consequently,

∂
∂u str

(
NQλ,ue

−t�u
) = −t str

(
NQλ,u�̇ue

−t�u
)
. (63)

Put σ̇u := ∂
∂u σu and let k denote the operator given by multiplication with kq on

�∞(Eq). Then we have graded commutator relations �̇u = [Ḋu, σu] + [Du, σ̇u],
[N , Du] = Duk and [N , σu] = −kσu , see (62), (19) and (9), respectively. Combining
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this with [Du, e−t�u ] = 0 = [σu, e−t�u ] and [Du, Qλ,u] = 0 = [σu, Qλ,u] and the
fact that the graded trace vanishes on graded commutators, we obtain

− str
(
NQλ,u�̇ue

−t�u
) = str

(
kQλ,u(σu Ḋu + σ̇u Du)e

−t�u
)

= str
(
kQλ,u

∂
∂u (σu Du)e

−t�u
)
. (64)

Clearly,

∂
∂u (σu,q+1Du,q) = ∂

∂u (D∗
u,q Du,q)

aq

=
aq−1∑

r=0

(D∗
u,q Du,q)

r (Ḋ∗
u,q Du,q + D∗

u,q Ḋu,q
)
(D∗

u,q Du,q)
aq−r−1.

As [D∗
u,q Du,q , e−t�u,q ] = 0 = [D∗

u,q Du,q , Qλ,u,q ], this yields

tr
(
kq Qλ,u,q

∂
∂u (σu,q+1Du,q )e−t�u,q

) = κ tr
(
Qλ,u,q (Ḋ∗

u,qσ∗
u,q+1 + σu,q+1 Ḋu,q )e−t�u,q

)
,

see also (6). Consequently,

str
(
kQλ,u

∂
∂u (σu Du)e

−t�u
) = κ str

(
Qλ,u(Ḋ

∗
uσ

∗
u + σu Ḋu)e

−t�u
)
. (65)

Using (60), [Du, e−t�u ] = 0 = [Du, Qλ,u], [σu, Du] = �u and the fact that the
graded trace vanishes on graded commutators, we obtain str(Qλ,uσu Ḋue−t�u ) =
− str( Ȧu Qλ,u�ue−t�u ). Similarly, str(Qλ,u Ḋ∗

uσ
∗
u e

−t�u ) = − str( Ȧ∗
uQλ,u�ue−t�u )

and thus

str
(
Qλ,u(Ḋ

∗
uσ

∗
u + σu Ḋu)e

−t�u
) = − str

(
( Ȧu + Ȧ∗

u)Qλ,u�ue
−t�u

)
. (66)

Clearly,

∂
∂t str

(
( Ȧu + Ȧ∗

u)Qλ,ue
−t�u

) = − str
(
( Ȧu + Ȧ∗

u)Qλ,u�ue
−t�u

)
. (67)

Combining equations (63), (64), (65), (66) and (67), we obtain (61).

Lemma 2.20 For λ ≥ 0 not in the spectrum of �u and �(s) > (n + ru)/2κ we have

∂
∂u

1
κ
ζλ,u(s) = − s

�(s)

∫ ∞

0
t s−1 str

(
( Ȧu + Ȧ∗

u)Qλ,ue
−t�u

)
dt . (68)

Moreover,

∂
∂u

1
κ
ζλ,u(0) = 0 (69)

and

∂
∂u

1
κ
ζ ′
λ,u(0) = str

(
( Ȧu + Ȧ∗

u)Pu,λ

)−
∫

M
str( p̃n,u) (70)
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where p̃n,u is the constant term in the asymptotic expansion (58).

Proof Integrating (58), we obtain the asymptotic expansion

str
(
( Ȧu + Ȧ∗

u)e
−t�u

) ∼
∞∑

j=−ru

t ( j−n)/2κ
∫

M
str( p̃ j,u), (71)

as t → 0. Using Eq. (61) and proceeding exactly as in the second half of the proof of
Lemma 2.14, we obtain the lemma.

Lemma 2.21 If λ ≥ 0 is not contained in the spectrum of �u, then

∂
∂v

∣∣
v=u log

(
(sdet(H(Av,u)))

∗‖ − ‖sdet(H∗(E,Dv))
[0,λ],h,μ

)
= 1

2 str
(
( Ȧu + Ȧ∗

u)Pλ,u
)
.

Proof We consider the linear map

αv,u : img Pλ,u → img Pλ,v, αv,u := Pλ,vAv,u .

This is a map of finite dimensional complexes inducing (56) on cohomology. Since
αu,u = id, the map αv,u is an isomorphism of complexes, for v sufficiently close to u.
Hence, for these v, we have

(sdet(H(Av,u)))
∗‖ − ‖sdet(H∗(E,Dv))

[0,λ],h,μ

‖ − ‖sdet(H∗(E,Du))
[0,λ],h,μ

= sdet1/2(α∗
v,uαv,u).

Differentiating and using Pλ,u Ṗλ,u Pλ,u = 0, we obtain the lemma.

Combining Lemma 2.21 with Eq. (70), we obtain Theorem 2.17, cf. (24).

2.6 Elementary Properties of the Analytic Torsion

In this sectionwe collect a fewproperties of the analytic torsion ofRockland complexes
generalizing well known facts about the Ray–Singer and the Rumin–Seshadri analytic
torsion.

Throughout this sectionM denotes a closed filteredmanifold, (E, D) is a Rockland
complex over M , μ is a volume density on M and h is a graded fiberwise Hermitian
inner product on E .

Proposition 2.22 Let (Ẽ, D̃) denote the Rockland complex obtained by shifting the
grading by one. More explicitly, Ẽq = Eq+1, D̃q = Dq+1, and h̃q = hq+1. Then, up
to the canonical identification of determinant lines

sdet(H∗(Ẽ, D̃)) = sdet(H∗(E, D))∗ (72)
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induced by the canonical isomorphisms Hq(Ẽ, D̃) = Hq+1(E, D), we have

‖ − ‖sdet(H∗(Ẽ,D̃))

h̃,μ
=
(
‖ − ‖sdet(H∗(E,D))

h,μ

)−1
,

where the right hand side denotes the induced norm on the dual (inverse) line.

Proof Denoting the zeta function associated with the Rockland complex (Ẽ, D̃) by
ζ̃λ, see (20), we clearly have ζ̃λ(s) = −ζλ(s), for any λ ≥ 0. Moreover, up to the
canonical identification in (72) we have

‖ − ‖sdet(H∗(Ẽ,D̃))

[0,λ],h̃,μ
=
(
‖ − ‖sdet(H∗(E,D))

[0,λ],h,μ

)−1
,

see [94, Remark 1.4(4)] for the acyclic case. Combining these facts, the proposition
follows at once, cf. (24).

For the torsion of a sum of two Rockland complexes we have:

Proposition 2.23 Suppose (E, D) and (Ẽ, D̃) are two Rockland complexes over M
such that the Heisenberg orders of Dq and D̃q coincide for all q. Moreover, let h and
h̃ be graded, fiber wise Hermitian inner products on E and Ẽ, respectively. Then, up
to the canonical identification of determinant lines

sdet
(
H∗(E ⊕ Ẽ, D ⊕ D̃)

) = sdet(H∗(E, D)) ⊗ sdet(H∗(Ẽ, D̃)) (73)

induced by the canonical isomorphisms Hq(E ⊕ Ẽ, D ⊕ D̃) = Hq(E, D) ⊕
Hq(Ẽ, D̃), we have

‖ − ‖sdet(H∗(E⊕Ẽ,D⊕D̃))

h⊕h̃,μ
= ‖ − ‖sdet(H∗(E,D))

h,μ ⊗ ‖ − ‖sdet(H∗(Ẽ,D̃))

h̃,μ
.

Proof Since the Heisenberg orders of Dq and D̃q coincide, D ⊕ D̃ is a Rockland
complex and we may use the same numbers aq and Nq to compute the analytic torsion
of all three complexes. With theses choices, we clearly have

�
(E⊕Ẽ,D⊕D̃)

h⊕h̃,μ
= �

(E,D)
h,μ ⊕ �

(Ẽ,D̃)

h̃,μ
.

In particular,

Q(E⊕Ẽ,D⊕D̃)

λ,h⊕h̃,μ
= Q(E,D)

λ,h,μ ⊕ Q(Ẽ,D̃)

λ,h̃,μ
(74)

for each λ ≥ 0, and we obtain

ζ
(E⊕Ẽ,D⊕D̃)

λ,h⊕h̃,μ
(s) = ζ

(E,D)
λ,h,μ (s) + ζ

(Ẽ,D̃)

λ,h̃,μ
(s). (75)
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From (74) we get a canonical isomorphism of finite dimensional complexes,

(
img
(
P(E⊕Ẽ,D⊕D̃)

λ,h⊕h̃,μ

)
, D ⊕ D̃

)
=
(
img
(
P(E,D)

λ,h,μ

)
, D
)

⊕
(
img
(
P(Ẽ,D̃)

λ,h̃,μ

)
, D̃
)

.

It is well known that up to the canonical identification in (73) we have

‖ − ‖sdet(H∗(E⊕Ẽ,D⊕D̃))

[0,λ],h⊕h̃,μ
= ‖ − ‖sdet(H∗(E,D))

[0,λ],h,μ ⊗ ‖ − ‖sdet(H∗(Ẽ,D̃))

[0,λ],h̃,μ
,

see [94, Theorem 1.5] for the acyclic case. Combining this with (75), the proposition
follows at once, cf. (24).

Recall that the transposed of a differential operator A : �∞(E) → �∞(F) is the
differential operator At : �∞(F ′) → �∞(E ′) characterized by

(Atφ,ψ)E = (φ, Aψ)F , φ ∈ �∞
c (F ′), ψ ∈ �∞(E),

where the parentheses (−,−)E denote the canonical pairing between sections of E
and E ′ := E∗ ⊗ |�|. The following observation will be useful in the discussion of
Poincaré duality in Sect. 3.3 below.

Proposition 2.24 Let (E ′, Dt ) denote the transposed complex, i.e., (E ′)q = (E−q)∗⊗
|�| and (Dt )q = (D−q−1)

t . Equip (E ′)q with the induced fiberwise Hermitian inner
product, h′

q = (h−q)
−1 ⊗ μ−2. Then, up to the canonical identification

sdet(H∗(E ′, Dt )) = sdet(H∗(E, D))∗ (76)

induced by the canonical isomorphism Hq(E ′, Dt ) = H−q(E, D)∗, we have

‖ − ‖sdet(H∗(E ′,Dt ))

h′,μ =
(
‖ − ‖sdet(H∗(E,D))

h,μ

)−1
,

where the right hand side denotes the induced norm on the dual (inverse) line.

Proof Since (Dt )q = (D−q−1)
t we have

(Dt )q = (h−q−1 ⊗ μ)D∗−q−1(h−q ⊗ μ)−1.

Dualizing, we obtain

(Dt )∗q = (h−q ⊗ μ)D−q−1(h−q−1 ⊗ μ)−1.

Note here that the vector bundle isomorphism h−q ⊗ μ : Ē−q → (E−q)∗ ⊗ |�| =
(E ′)q intertwines the Hermitian metric h̄ on Ē with the Hermitian metric h′ on E ′,
and thus, with respect to these Hermitian metrics, we have

(h−q ⊗ μ)∗ = (h−q ⊗ μ)−1.
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We obtain

(Dt )∗q(Dt )q = (h−q ⊗ μ)D−q−1D
∗−q−1(h−q ⊗ μ)−1,

(Dt )q−1(D
t )∗q−1 = (h−q ⊗ μ)D∗−q D−q(h−q ⊗ μ)−1.

Denoting the Heisenberg order of (Dt )q by k′
q , we have

k′
q = k−q−1. (77)

Hence, we may use the numbers a′
q = a−q−1 to compute the analytic torsion of

(E ′, Dt ), cf. (5) and Lemma 2.8. With this choice, we find

�
(E ′,Dt )

q,h′,μ = (h−q ⊗ μ)�
(Ē,D)

−q,h̄,μ
(h−q ⊗ μ)−1. (78)

In particular,

Q(E ′,Dt )

q,λ,h′,μ = (h−q ⊗ μ)Q(Ē,D)

−q,λ,h̄,μ
(h−q ⊗ μ)−1. (79)

In view of (77), the numbers N ′
q := −N−q also satisfy the relation (19), that is,

N ′
q+1 − N ′

q = k′
q . Clearly,

N ′
q = −(h−q ⊗ μ)N−q(h−q ⊗ μ)−1. (80)

Combining (78), (79) and (80), we obtain

ζ
(E ′,Dt )

λ,h′,μ (s) = str

(
N ′Q(E ′,Dt )

λ,h′,μ

(
�

(E ′,Dt )

h′,μ

)−s
)

= − str

(
NQ(Ē,D)

λ,h̄,μ

(
�

(Ē,D)

h̄,μ

)−s
)

= −ζ
(Ē,D)

λ,h̄,μ
(s). (81)

Recall here that according to Lemma 2.7, we may use any sequence of numbers
satisfying (19) to compute this zeta function.

Clearly, the adjoints of Dwith respect to h and h̄ coincide.Hence,�(Ē,D)

h̄,μ
= �

(E,D)
h,μ

and Q(Ē,D)

λ,h̄,μ
= Q(E,D)

λ,h,μ . Since the spectrum of �
(E,D)
h,μ is real, we thus get

ζ
(Ē,D)

λ,h̄,μ
(s) = ζ

(E,D)
λ,h,μ (s). (82)

Note that from (78) and (79) we also obtain

�
(E ′,Dt )

q,h′,μ =
(
�

(E,D)
−q,h,μ

)t
and Q(E ′,Dt )

q,λ,h′,μ =
(
Q(E,D)

−q,λ,h,μ

)t
.
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Hence, the canonical weakly non-degenerate pairing �∞((E ′)q) × �∞(E−q) → C

restricts to a (weakly) non-degenerate pairing

img
(
P(E ′,Dt )

λ,q

)
⊗ img

(
P(E,D)

λ,−q

)
→ C.

The latter pairing induces an isomorphism between finite dimensional complexes,

(
img
(
P(E ′,Dt )

λ

)
, Dt

)
=
(
img
(
P(E,D)

λ

)
, D
)∗

,

where the right hand side denotes the dual of the complex
(
img
(
P(E,D)

λ

)
, D
)
with the

grading reversed. Via this isomorphism, the inner product on the left hand side induced
by the L2 inner product on �(E ′) coincides with the inner product on the right hand
side induced by the L2 inner product on �(E). Moreover, by the universal coefficient
theorem, this identification induces isomorphisms in cohomology, Hq(E ′, Dt ) =
H−q(E, D)∗, which in turn induce the canonical identification (76). Hence, via (76),
we have

‖ − ‖sdet(H∗(E ′,Dt ))

[0,λ],h′,μ =
(
‖ − ‖sdet(H∗(E,D))

[0,λ],h,μ

)−1

see [94, Theorem 1.9] for the acyclic case. Combining this with (81) and (82), the
proposition follows at once, see (24).

With respect to finite coverings we have:

Proposition 2.25 Suppose π : M̃ → M is a finite covering of filtered manifolds,
let (Ẽ, D̃) be a Rockland complex over M̃, and consider the Rockland complex
(π∗ Ẽ, π∗ D̃) over M, where π∗ Ẽ denotes the vector bundle over M with fibers
(π∗ Ẽ)x = �(Ẽ |π−1(x)) = ⊕

x̃∈π−1(x) Ẽx̃ and π∗ D̃ denotes the induced differen-

tial operator. Moreover, suppose h̃ is a graded Hermitian inner product on Ẽ and let
(π∗h̃)x = ⊕

x̃∈π−1(x) hx̃ denote the induced Hermitian inner product on π∗ Ẽ . Then,
up to the canonical identification of determinant lines

sdet
(
H∗(π∗ Ẽ, π∗ D̃)

) = sdet(H∗(Ẽ, D̃))

induced by the canonical isomorphisms Hq(π∗ Ẽ, π∗ D̃) = Hq(Ẽ, D̃), we have

‖ − ‖sdet(H∗(π∗ Ẽ,π∗ D̃))

π∗h̃,μ
= ‖ − ‖sdet(H∗(Ẽ,D̃))

h̃,π∗μ .

Proof Restricting a section φ of Ẽ to fibers of π : M̃ → M , we obtain a section π∗φ
of π∗ Ẽ , (π∗φ)(x) = φ|π−1(x), x ∈ M . This provides a canonical isomorphism

�∞(π∗ Ẽ) = �∞(Ẽ), π∗φ ↔ φ,
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which intertwinesπ∗ D̃with D̃ and induces the canonical identification in cohomology.
Moreover, this isomorphism intertwines the L2 inner product induced byπ∗h̃ andμ on
�∞(π∗ Ẽ)with the L2 inner product induced by h̃ andπ∗μ on�∞(Ẽ). The proposition
follows at once.

Proposition 2.26 Suppose π : M̃ → M is a finite covering of filtered manifolds and
consider the pulled back Rockland complex (π∗E, π∗D) over M̃. Let V denote the
flat vector bundle over M with fibers

Vx = H0(π
−1(x); C) = C[π−1(x)], x ∈ M,

and let hV denote the canonical parallel fiber wise Hermitian inner product on V .
Then, up to the canonical identification of determinant lines

sdet
(
H∗(π∗E, π∗D)

) = sdet
(
H∗(E ⊗ V, DV )

)

induced by the canonical isomorphisms Hq(π∗E, π∗D) = Hq(E⊗V, DV ), we have

‖ − ‖sdet(H∗(π∗E,π∗D))
π∗h,π∗μ = ‖ − ‖sdet(H∗(E⊗V,DV ))

h⊗hV ,μ
,

cf. Remark 2.16.

Proof This follows from Proposition 2.25. Indeed, via the canonical isomorphism of
vector bundles π∗π∗E = E ⊗ V we have π∗π∗D = DV and π∗π∗h = h ⊗ hV .

3 Analytic Torsion of Rumin Complexes

The Rumin complex [81, 83, 84] associated with a filtered manifold is a complex of
higher order differential operators which is conjugate to a subcomplex of the de Rham
complex and computes the cohomology of the underlying manifold. Rumin has shown
that these are Rockland complexes in a graded sense. Assuming that the cohomology
of the osculating algebras is pure, we obtain a Rockland complex in the sense of
Sect. 2. The aim of this section is to establish basic properties of the analytic torsion
associated with these complexes. In particular, we will address Poincaré duality in
Theorem 3.8, metric dependence in Theorem 3.11, and the dependence on the filtration
in Theorem 3.15.

For trivially filtered manifolds the Rumin complex coincides with the de Rham
complex and gives rise to the classical Ray–Singer torsion [6, 77]. For contact man-
ifolds the Rumin complex [79, 80, 82] has been used by Rumin and Seshadri [85] to
define an analytic torsion. Although these two classical torsions appear as special cases
of our general construction, we will say nothing new about them. Cartan’s (2, 3, 5)
geometries [29] constitute another class of 5-dimensional filtered manifolds whose
osculating algebras have pure cohomology. Their analytic torsion will be discussed in
Sect. 4 below.
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Our assumption that the osculating algebras have pure cohomology appears to be
very restrictive. The three cases mentioned previously are the only types of filtered
manifolds we know of which have this property. In Sect. 3.7 we present a necessary
condition which restricts the dimensions of such Lie algebras tremendously.

3.1 Rumin Complexes

We continue to consider a closed filtered manifold M . Recall that tM denotes the
bundle of osculating algebras and let ∂q : �q t∗M → �q+1t∗M denote the fiberwise
Chevalley–Eilenberg codifferential. We assume that the dimension of the Lie algebra
cohomology Hq(tx M) = ker ∂q,x/ img ∂q,x is locally constant in x ∈ M , cf. [83,
Definition 2.4]. Hence, Hq(tM) is a smooth vector bundle over M , for each q. The
filtration on T M induces a filtration on �∗T ∗M . More explicitly, α ∈ �qT ∗

x M is
contained in filtration degree p iff α(X1, . . . , Xq) = 0 for all Xi ∈ T pi

x M with
−p <

∑
i pi , see [27, Sect. 3.1.1]. Since the filtration on M is compatible with Lie

brackets, the de Rham differential d on �∗(M) is filtration preserving and induces
gr(d) = ∂ on the associated graded, gr(�∗T ∗M) = �∗t∗M .

Let g̃ be a graded fiberwise Euclidean inner product on tM = ⊕
p t

pM . We

will denote the induced fiberwise Euclidean inner product on �q t∗M by g̃−1. Let
∂∗
q : �q+1t∗M → �q t∗M denote the corresponding fiberwise adjoint of ∂q . Fiber-
wise finite dimensional Hodge theory provides an orthogonal decomposition of vector
bundles

�q t∗M = img ∂q−1 ⊕ Hq(tM) ⊕ img ∂∗
q , (83)

where Hq(tM) = ker ∂q/ img ∂q−1 = ker ∂q ∩ ker ∂∗
q−1 = ker ∂∗

q−1/ img ∂∗
q .

We fix a splitting of the filtration S : tM → T M , i.e., a filtration preserving
vector bundle isomorphism inducing the identity on the associated graded. Then
(St )−1 : t∗M → T ∗M is a splitting for the dual filtration which will be denoted
by S too. We extend it to a splitting S : �∗t∗M → �∗T ∗M characterized by

S(α ∧ β) = Sα ∧ Sβ (84)

for α, β ∈ �∗t∗x M . Hence δq : �qT ∗M → �q−1T ∗M ,

δq := S ◦ ∂∗
q−1 ◦ S−1 (85)

is a filtration preserving vector bundle homomorphism inducing gr(δ) = ∂∗ on the
associated graded. Actually, δ is a Kostant type codifferential [39, Definition 4.8 and
Remark 4.14] for the de Rham complex �∗(M).

Kostant’s box operator � = δd + dδ is filtration preserving and induces gr(�) =
�̃ := ∂∗∂ + ∂∂∗ on the associated graded. If 0 = z ∈ C is sufficiently close to zero,
then the vector bundle map z− �̃ is invertible. This implies that z−� is invertible too
and its inverse is again a filtration preserving differential operator. Indeed, the inverse
can be expressed using a finite geometric series, cf. [81, Lemma 1], [83, Lemma 2.5],
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[25], [22, Theorem 5.2], or [39, Lemma 4.3]. Hence, for sufficiently small ε > 0,

� := 1

2π i

∮

|z|=ε

(z − �)−1dz (86)

is a filtration preserving differential projector, �2 = �, inducing gr(�) = �̃ on
the associated graded, where �̃ denotes the orthogonal projection onto the subbundle
ker �̃ = ker ∂∗ ∩ ker ∂ of �∗t∗M . Since � commutes with d and δ, the same is true
for�, that is, d� = �d, δ� = �δ. The operator� coincides with Rumin’s projector
�E in [81, Theorem 1] and [83, Theorem 2.6]. For more details on the construction
presented here we refer to [39, Lemma 4.4(b)].

The differential operator L : �∞(�∗t∗M) → �∗(M),

L = �S�̃ + (1 − �)S(1 − �̃)

is filtration preserving and induces the identity on the associated graded, gr(L) = id.
Hence, L is invertible and its inverse is a filtration preserving differential operator.
Since �L = L�̃ and �d = d�, the differential operator L−1dL commutes with �̃.
Hence, L−1dL decouples into a sum of two differential operators,

L−1dL = D ⊕ B (87)

with respect to the decomposition �∗t∗M = img(�̃) ⊕ ker(�̃), where

D : �∞(img �̃) → �∞(img �̃), D := L−1dL|�∞(img �̃)

B : �∞(ker �̃) → �∞(ker �̃), B := L−1dL|�∞(ker �̃).

From d2 = 0 we obtain D2 = 0 and B2 = 0. The complex D is Rumin’s complex
denoted (E0, dc) in [81, Theorem 1] and [83, Theorem 2.6]. The complex B is acyclic
and the restriction of L induces an isomorphism between the cohomology of D and
the de Rham cohomology [81, 83]. Indeed, ∂∗B + B∂∗ is invertible for it is filtration
preserving and the induced homomorphismon the associated graded, gr(∂∗B+B∂∗) =
∂∗∂ + ∂∂∗, is invertible on ker �̃. One can show that the complex B is actually
conjugate, via an invertible filtration preserving differential operator, to the acyclic
tensorial complex ∂|�∞(ker �̃), see [39, Proposition 4.5(c)].

We use the decomposition in (83) to identify H(tM) = ker ∂/ img ∂ with
img �̃ = ker ∂∗ ∩ ker ∂ . More precisely, we let ι : H(tM) → img �̃ ⊆ ker ∂ denote
the corresponding isomorphism of vector bundles, splitting the canonical projection
ker ∂ → ker ∂/ img ∂ = H(tM). Putting D := ι−1Dι, we obtain a complex of differ-
ential operators we will refer to as Rumin complex:

· · · → �∞(Hq−1(tM))
Dq−1−−−→ �∞(Hq(tM))

Dq−→ �∞(Hq+1(tM)) → · · · (88)
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Moreover, L : �∞(H(tM)
)→ �(M), L := Lι is a chain map,

dL = LD (89)

inducing an isomorphism in cohomology. The inverse is induced by the differen-
tial operator ι−1�̃L−1 : �(M) → �∞(H(tM)

)
which satisfies (ι−1�̃L−1)L = id,

L(ι−1�̃L−1) = �, and

D(ι−1�̃L−1) = (ι−1�̃L−1)d. (90)

The latter three equations follow from L = Lι, L�̃ = �L, (87), and D = ι−1Dι. The
construction of the Rumin complex presented here is motivated by the construction of
natural differential operators [22, 25, 28, 39] in parabolic geometry.

Remark 3.1 The operator L can be characterized as the unique differential operator
L : �∞(H(tM)) → �(M) for which

δL = 0, δdL = 0 and πL = id, (91)

where π : ker δ → H(tM) denotes the composition of S−1 : ker δ → ker ∂∗ with the
projection ker ∂∗ → ker ∂∗/ img ∂∗ = ker ∂∗ ∩ ker ∂ = H(tM). This follows readily
from

�∞(ker δ) = img(�) ⊕ �∞(img δ)

and

img(�) = ker(�) = ker(δ) ∩ ker(δd)

see [81, 83] or [39, Lemma 4.9]. Moreover, we have D = πdL and, cf. (90),

ι−1�̃L−1 = π� = ι−1�̃S−1�. (92)

Rumin has shown that the sequence (88) becomes exact in every non-trivial unitary
representation of the osculating group, see [81, Theorem 3] or [83, Theorem 5.2].
Hence, the operators in (88) form a graded Rockland complex which has graded
Heisenberg order zero, see also [39, Corollary 4.20(b)]. In the flat case, where M is
locally diffeomorphic to a graded nilpotent Lie group, Rumin [81, 83] proved that this
complex is C-C elliptic.

To obtain a Rockland complex, we assume from now on that the osculating algebras
have pure cohomology [81, 83], that is, Hq(tx M) = ⊕

p Hq(tx M)p is concentrated
in a single degree for each q. In other words, we assume that the grading automorphism
φt given by multiplication with t p on tpM , t > 0, acts as a scalar in each cohomology
group. Hence, there exist numbers pq such that

φt = t pq on Hq(tM), t > 0. (93)

123



248 Page 34 of 66 S. Haller

It follows from Lemma 3.21 below thatHq(tM) = 0 for all 0 ≤ q ≤ dim M and that
the numbers pq are mutually different. In fact, the Betti numbers of any nilpotent Lie
algebra are all nonzero [43, Théorème 2]. Clearly, p0 = 0. The Rumin differential Dq

has Heisenberg order

kq = pq+1 − pq . (94)

We expect pq+1 > pq , but are unable to prove this in general. If this inequality failed,
then Dq would have to vanish. Subsequently, we will assume pq+1 > pq .

Lemma 3.2 If the osculating algebras have pure cohomology, then the Rumin complex
(88) does not depend on the choice of a graded fiberwise Euclidean inner product g̃
on tM or the choice of a splitting S : tM → T M. Moreover, the isomorphism in
cohomology induced by L is independent of these choices too.

Proof Suppose the Euclidean inner product g̃u and the splitting Su depend on a (dis-
crete) parameter u. Let �̃u , Lu , Lu , ιu , and Du denote the associated operators.
Combining (89) and (90), we obtain

(
ι−1
v �̃vL−1

v Lu
)
Du = Dv

(
ι−1
v �̃vL−1

v Lu
)
.

It remains to show that ι−1
v �̃vL−1

v Lu = id, for any two parameters u and v. Note that
each factor is filtration preserving and the composition induces

gr
(
ι−1
v �̃vL−1

v Lu
) = ι−1

v �̃vιu = id

on the associated graded. Indeed, gr(L) = id, ι takes values in ker ∂ , and ι−1�̃|ker ∂
coincides with the canonical projection ker ∂ → ker ∂/ img ∂ = H(tM). Since the
filtration on Hq(tM) was assumed to be trivial, this implies ι−1

v �̃vL−1
v Lu = id on

�∞(Hq(tM)), for each q. Composing with Lv from the left, the latter equation also
yields �vLu = Lv . Hence, as �v induces the identity on cohomology, Lu and Lv

induced the same isomorphism in cohomology.

3.2 Analytic Torsion

We continue to consider a closed filtered manifold M whose osculating algebras have
pure cohomology of locally constant dimension. Twisting the Rumin complex in (88)
with a flat vector bundle F , we obtain a Rockland complex

· · · → �∞(Hq−1(tM) ⊗ F
) DF

q−1−−−−→ �∞(Hq (tM) ⊗ F
) DF

q−−→ �∞(Hq+1(tM) ⊗ F
)→ · · · (95)

computing the cohomology ofM with coefficients in the flat bundle F .More explicitly,
the twisted operator LF : �∞(H(tM) ⊗ F) → �(M; F) provides a chain map,

LF ◦ DF = dF ◦ LF , (96)
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which induces an isomorphism on cohomology,

Hq(H(tM) ⊗ F, DF) = Hq(M; F). (97)

Let g̃ be a graded fiberwise Euclidean inner product on tM and let g̃−1 denote the
induced fiberwise Euclidean inner product on �q t∗M . Via the orthogonal decompo-
sition in (83) we obtain a fiberwise Euclidean inner product on Hq(tM) that will be
denoted by g̃−1 too. If h is a fiberwise Hermitian inner product on F , we obtain a
fiberwise Hermitian inner product onHq(tM)⊗ F we will denote by g̃−1 ⊗ h. Using
the volume density μg̃ on M induced from the Euclidean inner product g̃−1 via the
canonical identification �mt∗M = �mT ∗M where m = dim M , we obtain formal
adjoints (DF )∗ and Rumin–Seshadri operators, see (7), which will be denoted by

�F
g̃,h : �∞(H(tM) ⊗ F

)→ �∞(H(tM) ⊗ F
)
. (98)

These are Rockland operators of Heisenberg order 2κ , see (6), which also depend on
the choice of numbers aq as in (5), but they are independent of the splitting S according
to Lemma 3.2. According to Lemma 2.5, the graded heat trace of �F

g̃,h is constant in
t and

χ(M; F) = str
(
e−t�F

g̃,h
) =

∫

M
str(pFn ),

whereχ(M; F) = χ(M) rk(F) denotes the Euler characteristics ofM and pFn denotes
the constant term in the heat kernel expansion associated with �F

g̃,h .
Using the identification in (97), we obtain an analytic torsion, i.e., a norm

‖ − ‖sdet(H∗(M;F))

F ,g̃,h := ‖ − ‖sdet(H∗(H(tM)⊗F,DF ))

g̃−1⊗h,μg̃
(99)

on the graded determinant line,

sdet(H∗(M; F)) :=
⊗

q

(
det Hq(M; F)

)(−1)q
,

cf. (24). The subscriptF indicates the dependence on the filtration on M . We will refer
to this as the analytic torsion of the filtered manifold M with coefficients in the flat
bundle F . It is defined for closed filtered manifolds whose osculating algebras have
pure cohomology of locally constant dimension.

The analytic torsion defined above is a common generalization of the Ray–Singer
torsion [6, 77] and the Rumin–Seshadri [85] analytic torsion. In Sect. 4 wewill discuss
another instance of this torsion associated with a certain five dimensional geometry.
We are not aware of further filtered manifolds whose osculating algebras have pure
cohomology, cf. Sect. 3.7 below.

Let us spell out the following immediate consequence of Proposition 2.23:
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Proposition 3.3 Suppose F1 and F2 are two flat vector bundles with Hermitian inner
products h1 and h2, respectively. Then, up to the canonical identification of determi-
nant lines

sdet
(
H∗(M; F1 ⊕ F2)

) = sdet(H∗(M; F1)) ⊗ sdet(H∗(M; F2))
induced by the canonical isomorphisms Hq(M; F1 ⊕ F2) = Hq(M; F1) ⊕
Hq(M; F2), we have

‖ − ‖sdet(H∗(M;F1⊕F2))
F ,g̃,h1⊕h2

= ‖ − ‖sdet(H∗(M;F1))
F ,g̃,h1

⊗ ‖ − ‖sdet(H∗(M;F2))
F ,g̃,h2

.

With respect to finite coverings we have

Proposition 3.4 Suppose π : M̃ → M is a finite covering of filtered manifolds, let F̃
be a flat vector bundle over M̃, and let π∗ F̃ denote the flat vector bundle over M with
fibers (π∗ F̃)x = ⊕

x̃∈π−1(x) F̃x̃ . Moreover, let h̃ be a Hermitian inner product on F̃

and let (π∗h̃)x =⊕x̃∈π−1(x) h̃ x̃ denote the induced Hermitian inner product on π∗ F̃ .
Then, up to the canonical identification of determinant lines

sdet
(
H∗(M;π∗ F̃)

) = sdet
(
H∗(M̃; F̃)

)

induced by the canonical isomorphisms Hq(M;π∗ F̃) = Hq(M̃; F̃), we have

‖ − ‖sdet(H∗(M;π∗ F̃))

F ,g̃,π∗h̃
= ‖ − ‖sdet(H∗(M̃;F̃))

π∗F ,π∗ g̃,h̃ .

Proof This follows from Proposition 2.25. Indeed, since the covering map is a local
diffeomorphism of filtered manifolds, we have canonical isomorphisms of vector bun-

dles π∗(Hq(tM̃) ⊗ F̃) = Hq(tM) ⊗ π∗ F̃ intertwining π∗DF̃
q with Dπ∗ F̃

q , cf. (95),

and intertwining the Hermitian inner product π∗(π∗g̃−1⊗ h̃)with the Hermitian inner
product g̃−1 ⊗ π∗h̃. Moreover, π∗μg̃ = μπ∗ g̃ .

Proposition 3.5 Suppose π : M̃ → M is a finite covering of filtered manifolds,
let F be a flat vector bundle over M, and let h be a fiberwise Hermitian inner
product on F. Moreover, let V denote the flat vector bundle over M with fibers
Vx = H0(π

−1(x); C) = C[π−1(x)], x ∈ M, and let hV denote the canonical parallel
Hermitian inner product on V . Then, up to the canonical identification of determinant
lines

sdet
(
H∗(M̃;π∗F)

) = sdet
(
H∗(M; F ⊗ V)

)

induced by the canonical isomorphisms Hq(M̃;π∗F) = Hq(M; F ⊗ V), we have

‖ − ‖sdet(H∗(M̃;π∗F))

π∗F ,π∗ g̃,π∗h = ‖ − ‖sdet(H∗(M;F⊗V))

F ,g̃,h⊗hV .

Proof This follows from Proposition 3.4. Indeed, via the canonical isomorphism of
flat vector bundles π∗π∗F = F ⊗ V we have π∗π∗h = h ⊗ hV .
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3.3 Poincaré Duality

Rumin observed that his complex isHodge � self-dual, see [81, Sect. 2] or [83, Proposi-
tion 2.8]. In this section we recall this duality and discuss implications for the analytic
torsion.

Let us denote the dimension of M by

m := dim M .

Recall that the wedge product provides a fiberwise non-degenerate bilinear pairing

�q t∗M ⊗ �m−q t∗M ∧−−→ �mt∗M . (100)

The corresponding vector bundle isomorphism

∧q : �q t∗M → (
�m−q t∗M

)∗ ⊗ �mt∗M (101)

is an isometry with respect to the Euclidean metric g̃−1 on the left hand side and the
induced Euclidean metric g̃ ⊗ g̃−1 on the right hand side. Hence,

∧∗
q = ∧−1

q . (102)

Since the Chevalley–Eilenberg codifferential ∂ : �∗t∗x M → �∗+1t∗x M is a graded
derivation, the wedge product induces a fiberwise bilinear pairing

Hq(tM) ⊗ Hm−q(tM)
∧−−→ Hm(tM), (103)

where we regard H(tM) = ker ∂/ img ∂ . By Poincaré duality for the nilpotent Lie
algebra tx M , this pairing is fiberwise non-degenerate. In particular, the codifferential
in top degree, ∂ : �m−1t∗M → �mt∗M vanishes. Hence, we have canonical identifi-
cations

Hm(tM) = �mt∗M = �mT ∗M . (104)

Note that the vector bundle map π : ker δ → H(tM) from Remark 3.1 coincides with
the canonical identification (104) in top degree.Moreover, in top degree L is algebraic,
inducing the canonical identification in (104) inverse to π , cf. (91).

Lemma 3.6 We have

∂α ∧ β + (−1)qα ∧ ∂β = 0 (105)

for α ∈ �q t∗x M and β ∈ �m−q−1t∗x M. Moreover,

∂∗α ∧ β + (−1)qα ∧ ∂∗β = 0 (106)
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for α ∈ �q+1t∗x M and β ∈ �m−q t∗x M. Moreover,

δφ ∧ ψ + (−1)qφ ∧ δψ = 0 (107)

for φ ∈ �q+1T ∗
x M and ψ ∈ �m−qT ∗

x M. Moreover,

π(φ ∧ ψ) = πφ ∧ πψ (108)

for φ ∈ ker δq,x and ψ ∈ ker δm−q,x . Moreover,

Lα ∧ Lβ = L(α ∧ β) (109)

for α ∈ �∞(Hq(tM)) and β ∈ �∞(Hm−q(tM)).

Proof Since ∂ is a graded derivation that vanishes in top degree, we have (105). Using
the vector bundle isomorphism in (101), this equation may be written in the form
∧q+1◦∂q = −(−1)q(∂ tm−q−1⊗id)◦∧q . Dualizing,we obtain ∂∗

q ◦∧∗
q+1 = −(−1)q∧∗

q

◦((∂ tm−q−1)
∗ ⊗ id). Using (∂ t )∗ = (∂∗)t and (102), this yields ∧q ◦ ∂∗

q = −(−1)q ◦
((∂∗

m−q−1)
t ⊗ id) ◦ ∧q+1, whence (106). Combining (106) with (85) and (84), we

obtain (107).
Note that (108) is obviously true for φ ∈ Sq(ker ∂∗

q−1,x ∩ ker ∂q,x ) and ψ ∈
Sm−q(ker ∂∗

m−q−1,x ∩ ker ∂m−q,x ), see (84) and (85). The general case follows from
(107) since π induces an isomorphism ker δ/ img δ → ker ∂∗/ img ∂∗ = ker ∂∗ ∩
ker ∂ = H(tM). Combining (108) with the relations δL = 0 and πL = id from (91),
we obtain π(Lα ∧ Lβ) = α ∧ β and then (109).

For every flat vector bundle F , the wedge product in (103) induces a fiberwise
non-degenerate bilinear pairing

(
Hq(tM) ⊗ F∗ ⊗ O

)⊗ (Hm−q(tM) ⊗ F
) ∧−−→ |�|. (110)

Here O denotes the orientation bundle of M and we are using the canonical identifi-
cation of line bundles

Hm(tM) ⊗ O = �mt∗M ⊗ O = �mT ∗M ⊗ O = |�|. (111)

From (109) we obtain

LF∗⊗Oα ∧ LFβ = α ∧ β (112)

for all α ∈ �∞(Hq(tM) ⊗ F∗ ⊗ O
)
and β ∈ �∞(Hm−q(tM) ⊗ F

)
.

Variants of the following statement can be found in [81, Sect. 2], [83, Proposi-
tion 2.8], and [22, Sect. 7].

Lemma 3.7 We have

DF∗⊗Oα ∧ β + (−1)qα ∧ DFβ = d
(
LF∗⊗Oα ∧ LFβ

)
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for α ∈ �∞(Hq(tM) ⊗ F∗ ⊗ O
)
and β ∈ �∞(Hm−q−1(tM) ⊗ F

)
.

Proof By the Leibniz rule for the de Rham differential, (96) and (112) we find:

d
(
LF∗⊗Oα ∧ LFβ

) = dF∗⊗OLF∗⊗Oα ∧ LFβ + (−1)q LF∗⊗Oα ∧ dF LFβ

= LF∗⊗ODF∗⊗Oα ∧ LFβ + (−1)q LF∗⊗Oα ∧ LF DFβ

= DF∗⊗Oα ∧ β + (−1)qα ∧ DFβ

By Lemma 3.7 and Stokes’ theorem, the pairing in (110) induces a pairing

Hq(H(tM) ⊗ F∗ ⊗ O, DF∗⊗O)⊗ Hm−q(H(tM) ⊗ F, DF) ∧−−→ C. (113)

In view of (112), the isomorphisms induced on cohomology by LF∗⊗O and LF , see
(97), intertwine this pairing with the Poincaré duality pairing

Hq(M; F∗ ⊗ O) ⊗ Hm−q(M; F)
∧−−→ C.

In particular, the pairing in (113) is non-degenerate.

Theorem 3.8 Via the canonical isomorphism of determinant lines

sdet
(
H∗(M; F∗ ⊗ O)

) = (sdet(H∗(M; F)
)(−1)m+1

induced by Poincaré duality Hq(M; F∗ ⊗ O) = Hm−q(M; F)∗, we have

‖ − ‖sdet(H∗(M;F∗⊗O))

F ,g̃,h−1 =
(
‖ − ‖sdet(H∗(M;F))

F ,g̃,h

)(−1)m+1

.

Here h−1 denotes the fiberwise Hermitian inner product on F∗ ⊗ O induced by the
fiberwise Hermitian inner product h on F.

Proof From the preceding lemma and Stokes’ theorem we obtain the following com-
mutative diagram:

�∞(Hq (tM) ⊗ F∗ ⊗ O
) −(−1)q DF∗⊗O

q ��

∼=∧
��

�∞(Hq+1(tM) ⊗ F∗ ⊗ O
)

∼=∧
��

�∞((Hm−q (tM) ⊗ F)∗ ⊗ |�|)
(DF

m−q−1)
t

�� �∞((Hm−q−1(tM) ⊗ F)∗ ⊗ |�|)

�∞(((H(tM) ⊗ F)′)q−m) (DF )tq−m �� �∞(((H(tM) ⊗ F)′)q+1−m)
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Here the vertical arrows denote the vector bundle isomorphisms

Hq (tM) ⊗ F∗ ⊗ O ∧−−→ (
Hm−q (tM) ⊗ F

)∗ ⊗ |�| =
((
H(tM) ⊗ F

)′)q−m

corresponding to the pairing in (110). Via the latter vector bundle isomorphism, the
Hermitianmetric g̃−1⊗h−1 onHq(tM)⊗F∗⊗O corresponds to theHermitianmetric
h′ := (g̃−1⊗h)−1⊗μ−2

g̃ on the right hand side, cf. (102). Hence, by Proposition 2.22
and Remark 2.10,

‖ − ‖sdet(H∗(M;F∗⊗O))

F ,g̃,h−1 =
(
‖ − ‖sdet(H∗((H(tM)⊗F)′,(DF )t ))

h′,μg̃

)(−1)m

.

Moreover, from Proposition 2.24 we obtain

‖ − ‖sdet(H∗((H(tM)⊗F)′,(DF )t ))

h′,μg̃
=
(
‖ − ‖sdet(H∗(M;F))

F ,g̃,h

)−1
.

Combining the preceding to equations, we obtain the theorem.

Duality can also be understood in terms of an analogue of theHodge star operator, cf.
[81, Sect. 2] or [83, Proposition 2.8]. To this end, we let � : �q t∗M → �m−q t∗M⊗O
denote the star operator characterized by

α ∧ �β = g̃−1(α, β)μg̃ (114)

for α, β ∈ �q t∗x M where we are using the canonical identification given by the second
and third equality in (111). Recall that the star operator is isometric, i.e.,

�∗ = �−1. (115)

Furthermore, (105) and (114) yield [81, 83]

∂∗α = (−1)q�−1∂O�α

for α ∈ �q t∗x M where ∂O := ∂ ⊗ idO.
The star restricts to vector bundle isomorphisms

� : Hq(tM) → Hm−q(tM) ⊗ O,

cf. (83). From Lemma 3.7 we obtain [81, 83]

(DF
q )∗ = (−1)q+1(� ⊗ h)−1 ◦ DF∗⊗O

m−q−1 ◦ (� ⊗ h).

Using (115) this also yields

DF
q = (−1)q+1(� ⊗ h)−1 ◦ (DF∗⊗O

m−q−1

)∗ ◦ (� ⊗ h).
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Hence,

(DF
q )∗DF

q = (� ⊗ h)−1DF∗⊗O
m−q−1

(
DF∗⊗O
m−q−1

)∗
(� ⊗ h),

DF
q−1(D

F
q−1)

∗ = (� ⊗ h)−1(DF∗⊗O
m−q

)∗
DF∗⊗O
m−q (� ⊗ h).

Since

kq = km−q−1 (116)

we have aq = am−q−1, see (6). Hence, we may use the same numbers aq for the
Rumin–Seshadri operator associated with flat bundle F∗ ⊗ O, and obtain (7)

�F
g̃,h = �F̄

g̃,h̄
= (� ⊗ h)−1�F∗⊗O

g̃,h−1 (� ⊗ h). (117)

In particular,

QF
λ,g̃,h = QF̄

λ,g̃,h̄
= (� ⊗ h)−1QF∗⊗O

λ,g̃,h−1(� ⊗ h). (118)

In view of (116), the numbers Ñq := −Nm−q also satisfy the relation (19), that is,
Ñq+1 − Ñq = kq . Clearly,

N = −(� ⊗ h)−1 Ñ (� ⊗ h). (119)

Combining (117), (118) and (119), we obtain

ζ F
λ,g̃,h(s) = ζ F̄

λ,g̃,h̄
(s) = (−1)m+1ζ F∗⊗O

λ,g̃,h−1(s), (120)

cf. (20) and (82). Recall here that according to Lemma 2.7, we may use any sequence
of numbers satisfying (19) to compute this zeta function.

The relation (120) immediately leads to a slightly different proof of Theorem 3.8.
Let us spell out two more consequences.

Proposition 3.9 If M is an orientable manifold of even dimension and h is a parallel
Hermitian metric on F, then ζ F

λ,g̃,h(s) = 0.

Proof Since h is parallel, it provides, together with an orientation of M , an isomor-
phism of flat vector bundles h : F̄ → F∗ ⊗ O which maps the Hermitian metric h̄
on F̄ to the Hermitian metric h−1 on F∗ ⊗ O. Hence, ζ F̄

λ,g̃,h̄
(s) = ζ F∗⊗O

λ,g̃,h−1(s). The

proposition now follows from (120).

From (117) we also obtain

pFq, j = pF̄q, j = (� ⊗ h)−1 pF
∗⊗O

m−q, j (� ⊗ h)
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where pFq, j ∈ �∞(end(Hq(tM) ⊗ F) ⊗ |�|) denote the degree q part of the local
quantities in the heat kernel asymptotics associated with the Rumin–Seshadri operator
�F

g̃,h , cf. (13). Using locality, this gives

tr
(
pFq, j

)
= tr

(
pF̄q, j

)
= tr

(
pF

∗
m−q, j

)
. (121)

Proposition 3.10 If the dimension of M is odd and if h is a parallel Hermitian metric
on F, then str(pFj ) = 0 for all j ∈ N0.

Proof Since h is parallel, it provides an isomorphismof flat vector bundles h : F̄ → F∗
which maps the Hermitian metric h̄ on F̄ to the Hermitian metric h−1 on F∗. Hence,
pF̄q, j = pF

∗
q, j . Combining this with (121), we see that the summands in str(pFj ) cancel

pairwise if the dimension is odd.

3.4 Variation of theMetrics

In this section we apply Theorem 2.11 to determine how the analytic torsion of a
Rumin complex depends on the fiberwise inner products g̃ on tM and h on F .

If A ∈ �∞(Aut(tM)) is a fiberwise automorphism of graded (nilpotent) Lie
algebras, we let H(A) ∈ �∞(Aut(H(tM))) denote the automorphism in fiberwise
cohomology induced by the transpose inverse (A−1)t . Hence, we have covariant func-
torialityH(AB) = H(A)H(B) just like for the dual representation of a group, A, B ∈
�∞(Aut(tM)). If Ȧ ∈ �∞(der(tM)) is a fiberwise derivation of graded (nilpotent)
Lie algebras, we define H( Ȧ) ∈ �∞(end(H(tM))) by H( Ȧ) := ∂

∂t |t=0H(exp(t Ȧ))

so that H([ Ȧ, Ḃ]) = [H( Ȧ),H(Ḃ)] for Ȧ, Ḃ ∈ �∞(der(tM)).
The following generalizes anomaly formulas for the Ray–Singer [77] torsion [6,

Theorem 0.1] and the Rumin–Seshadri analytic torsion, see [85, Corollary 3.7].

Theorem 3.11 Suppose the graded fiberwise Euclidean inner product g̃u on tM and
the fiberwise Hermitian inner product hu on F depend smoothly on a real parameter
u such that g̃−1

v g̃u ∈ �∞(Aut(tM)) is a fiberwise automorphism of graded (nilpotent)
Lie algebras, for all u and v. Then

∂
∂u log ‖ − ‖sdet(H∗(M;F))

F ,g̃u ,hu
= 1

2

∫

M
str
((
H(ġu) + 1

2 tr(ġu) + ḣu
)
pFu,n

)

where ġu := g̃−1
u

∂
∂u g̃u ∈ �∞(der(tM)

)
, ḣu := h−1

u
∂
∂u hu ∈ �∞(end(F)), and pFu,n ∈

�∞(end(H(tM) ⊗ F) ⊗ |�|) denotes the constant term in the heat kernel expansion
associated with the Rumin–Seshadri operator �F

g̃u ,hu
.

Proof Recall that we are using the fiberwise Hermitian inner products g̃−1
u ⊗hu on the

Rumin complexH(tM)⊗F , where g̃−1
u denotes the fiberwise Euclidean inner product

on H(tM) obtained by restriction via the fiberwise Hodge decomposition (83) from
the induced Euclidean inner product on �∗t∗M which is also denoted by g̃−1

u . Put
Av,u = g̃−1

v g̃u ∈ �∞(Aut(tM)) and let At
v,u = g̃u g̃−1

v ∈ �∞(Aut(t∗M)) denote the
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fiberwise dual automorphism. Extend this to an automorphism of the exterior bundle,
At

v,u ∈ �∞(Aut(�∗t∗M)) characterized by

At
v,u(α ∧ β) = At

v,uα ∧ At
v,uβ,

for α, β ∈ �∗t∗x M . Note that the equality

At
v,u = g̃u g̃

−1
v (122)

holds on �∗t∗M for we are using the induced Euclidean inner products on the exte-
rior bundle. Since Av,u is a fiberwise automorphism of Lie algebras, At

v,u commutes
with fiberwise Chevalley–Eilenberg codifferential ∂ , the fiberwise adjoint ∂∗ does not
depend on u, and At

v,u commutes with ∂∗ too. Hence, the decomposition in (83) is
independent of u and invariant under At

v,u . Hence,

At
v,u |−1

H(tM)
= H(Av,u). (123)

Combining (122) and (123), we conclude

(g̃−1
v ⊗ hv)

−1(g̃−1
u ⊗ hu)|H(tM)⊗F = H(g̃−1

v g̃u) ⊗ h−1
v hu .

Differentiating, we find

(g̃−1
u ⊗ hu)

−1 ∂
∂u (g̃−1

u ⊗ hu)|H(tM)⊗F = H(ġu) ⊗ idF + idH(tM) ⊗ḣu .

Furthermore, we clearly have μg̃u = det1/2(g̃−1
v g̃u)μg̃v

and thus

μ−1
g̃u

∂
∂uμg̃u = 1

2 tr(ġu).

The statement thus follows from Theorem 2.11.

Recall that φt denotes the grading automorphism of tx M = ⊕
p t

p
x M given by

multiplication with t p on the summand t
p
x M , t > 0. For a positive smooth function

f on M , we let φ f ∈ �∞(Aut(tM)) denote the fiberwise Lie algebra automorphism
acting by φ f (x) on the fiber tx M .

Corollary 3.12 Suppose f is a real valued smooth function on M and consider a family
of Euclidean inner products of the form g̃u = g̃φexp(u f ) on tM. Then

∂
∂u log ‖ − ‖sdet(H∗(M;F))

F ,g̃u ,h
= 1

2

∫

M
f str

(
(N − N0 − n

2 )pFu,n

)
,

where pFu,n ∈ �∞(end(H(tM) ⊗ F) ⊗ |�|) denotes the constant term in the heat
kernel expansion associated with the Rumin–Seshadri operator �F

g̃u ,h
.
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Proof Since ġu = g̃−1
u

∂
∂u g̃u acts by p f on tpM , we have cf. (12)

tr(ġu) = −n f .

Using (19), (94) and p0 = 0, we find Nq − N0 = pq . Combining this with (93), we
obtain Hq(φexp(u f )) = (eu f )pq = eu(Nq−N0) f . Hence, Hq(ġu) = (Nq − N0) f and

H(ġu) = (N − N0) f .

The statement thus follows from Theorem 3.11.

Remark 3.13 Conformal invariance of the analytic torsion, that is, independence under
scaling of the Euclidean inner product on tM as in Corollary 3.12, thus is equivalent to
the pointwise vanishing of the local quantity str

(
(N −N0 − n

2 )pFn
)
. Using Lemma 2.5

and (22), we find

∫

M
str
(
(N − N0 − n

2 )pFn
) = χ ′(M; F) − (N0 + n

2 )χ(M; F) + ζ F
λ=0(0), (124)

where χ(M; F) = ∑
q(−1)q dim Hq(M; F) = rk(F)χ(M) denotes the Euler char-

acteristics and χ ′(M; F) =∑q(−1)q Nq dim Hq(M; F). In view of (50) the integral
in (124) is independent of g̃ and h, hence this is a smooth invariant of the filtered
manifold M and the flat bundle F . Actually, this invariant only depends on F and the
homotopy class of the underlying filtration, see Remark 3.17 below for a more precise
statement. In the trivially filtered case, this vanishes according to [6, Theorem 7.10].
A discussion of the contact case can be found at the end of Sect. 3.2 in [85]. Whether
(124) vanishes in general is unclear. If m is odd and h is parallel then str(pFn ) = 0
according to Proposition 3.10.

Remark 3.14 If hu are parallel Hermitian inner products on F , then the integrands in
the preceding statements can be simplified somewhat:

str
(
H(ġu)p

F
u,n

) = rk(F) str
(
H(ġu)pu,n

)

str
(
ḣu p

F
u,n

) = tr(ḣu) str(pu,n)

str
(
pFu,n

) = rk(F) str(pu,n)

str
(
NpFu,n

) = rk(F) str
(
Npu,n

)

Here pu,n ∈ �∞(end(H(tM)) ⊗ |�|) denotes the constant term in the heat kernel
expansion for the corresponding Rumin–Seshadri operator associated with the trivial
flat line bundle over M equipped with the canonical Hermitian metric. This follows
from Remark 2.16.

3.5 Deformation of the Filtration

In this section we consider a family of closed filtered manifolds Mu smoothly depend-
ing on a real parameter u. More explicitly, we assume the underlying manifold M
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remains fixed, and the filtration subbundles T pMu ⊆ T M depend smoothly on u.
As before, we assume that the osculating algebras of Mu have pure cohomology of
locally constant dimension. Moreover, suppose g̃u is a smooth family of graded fiber-
wise Euclidean metrics on tMu . For any flat bundle F with Hermitian metric h, we
obtain an analytic torsion ‖−‖sdet(H∗(M;F))

Fu ,g̃u ,h
on the determinant line sdet(H∗(M; F)).

Below, we will describe qualitatively how this torsion depends on the parameter u.
Clearly, the bundle of osculating algebras tMu depends smoothly on u also. For

simplicity, wewill assume that these are isomorphic as bundles of graded Lie algebras.
Hence, there exist isomorphisms of graded vector bundles ψ̃v,u : tMu → tMv which
intertwine the fiberwise Lie algebra structures and depend smoothly on the parameters
u and v. W.l.o.g. we may assume ψ̃w,vψ̃v,u = ψ̃w,u and in particular ψ̃u,u = id. Let
Su : tMu → T Mu be splittings of the filtrationwhich depend smoothly on u and define
ψv,u ∈ �∞(Aut(T M)) by the equation

ψv,u Su = Svψ̃v,u . (125)

Then ψv,u : T Mu → T Mv is a filtration preserving isomorphism, ψv,u(T pMu) =
T pMv , which induces ψ̃v,u : tMu → tMv on the associated graded. Moreover,
ψw,vψv,u = ψw,u and ψu,u = id. Since we have already discussed the dependence
on the metric before, we will consider a family of fiberwise Euclidean metrics g̃u on
tMu such that

ψ̃∗
v,u g̃v = g̃u . (126)

Theorem 3.15 In this situation we have

∂
∂u log ‖ − ‖sdet(H∗(M;F))

Fu ,g̃u ,h
= 1

2

∫

M
str( p̃Fn,u)

where p̃Fn,u ∈ �∞(end(H(tMu) ⊗ F) ⊗ |�|) is the constant term in the asymptotic
expansion, as t → 0,

((
ȦF
u + ( ȦF

u )∗ − tr(ψ̇u)
)
kFt,u
)
(x, x) ∼

∞∑

j=−ru

t ( j−n)/2κ p̃Fj,u(x). (127)

Here ȦF
u is the differential operator given by the expression (139) below, ψ̇u :=

∂
∂v

|v=uψv,u ∈ �∞(end(T M)), and kFt,u denotes the heat kernel of the Rumin–Seshadri
operator �F

g̃u ,h
. In particular, p̃Fn,u is locally computable. More precisely, p̃Fn,u(x) can

be computed from the germ of (M,Fu, g̃u, F, h, Su, ψ̇u) at x. Furthermore, p̃Fn,u = 0
if the homogeneous dimension n is odd.

Proof The differential operators Av,u : �∞(H(tMu)) → �∞(H(tMv))

Av,u := ι−1
v �̃vL−1

v Lu
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satisfy Au,u = id and Av,u Du = DvAv,u , see (89) and (90). Twisting with the flat
bundle F , we get differential operators AF

v,u : �∞(H(tMu)⊗F) → �∞(H(tMv)⊗F)

such that AF
v,u D

F
u = DF

v AF
v,u . Clearly, A

F
v,u induces the identity on H∗(M; F), up

to the canonical identifications in (97). In order to apply Theorem 2.17, we have to
analyze ȦF

u . It will be convenient to rewrite Av,u in the form, see (92),

Av,u = ι−1
v �̃vS

−1
v �vLu . (128)

We let ψv,u : �∗T ∗Mu → �∗T ∗Mv and ψ̃v,u : �∗t∗Mu → �∗t∗Mv also denote
the isomorphisms induced by ψv,u : T Mu → T Mv and ψ̃v,u : tMu → tMv , respec-
tively. Then Eq. (125) remains true on �∗t∗Mu if Su : �∗t∗Mu → �∗T ∗Mu denotes
the splitting induced by Su : tMu → T Mu as in (84). Furthermore, (126) yields

ψ̃∗
v,u g̃

−1
v = g̃−1

u (129)

where g̃−1
u denotes the induced Euclidean metric on �∗t∗Mu as before. We have

ψ̃v,u∂u = ∂vψ̃v,u (130)

since ψ̃v,u is an isomorphism of graded Lie algebra bundles. By (129) this gives

ψ̃v,u∂
∗
u = ∂∗

v ψ̃v,u (131)

and combination with (125) also yields

ψv,uδu = δvψv,u, (132)

see (85). Moreover,

ψ̃v,u�̃u = �̃vψ̃v,u and ψ̃v,u ιu = ιvH(ψ̃v,u) (133)

where H(ψ̃v,u) : H(tMu) → H(tMv) denotes the induced isomorphism, cf. (130).
From (125), (128) and (133) we obtain

H(ψ̃v,u)
−1Av,u = ι−1

u �̃u S
−1
u (ψ−1

v,u�vψv,u)ψ
−1
v,u Lu . (134)

When applying Theorem 2.17 we use an auxiliary linear connection on the bundle
⊔

u H(tMu) ⊗ F such that ȦF
u = (

∂
∂v

|v=uH(ψ̃v,u)
−1Av,u

)F . Differentiating (134)
yields

ȦF
u =

(
ι−1
u �̃u S

−1
u

∂
∂v

|v=u(ψ
−1
v,u�vψv,u)Lu − ι−1

u �̃u S
−1
u �uψ̇u Lu

)F
. (135)

where ψ̇u = ∂
∂v

|v=uψv,u ∈ �∞(der(�∗T ∗M)) denotes the fiberwise graded deriva-
tion given by contraction with ψ̇u ∈ �∞(end(T M)). Since �v = [δv, d] we obtain
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from (132)

ψ−1
v,u�vψv,u = [δu, ψ−1

v,udψv,u] (136)

and thus

∂
∂v

|v=u
(
ψ−1

v,u�vψv,u
) = [δu, [d, ψ̇u]]. (137)

Combining this with (86), we find

∂
∂v

|v=u
(
ψ−1

v,u�vψv,u
) = 1

2π i

∮

|z|=ε

(z − �u)
−1[δu, [d, ψ̇u]](z − �u)

−1dz

(138)

Combining this with [δu,�u] = 0, δu Lu = 0 and �̃u S−1
u δu = 0, we conclude that

the first summand in (135) vanishes. Hence, using (92) we obtain

ȦF
u = −

(
ι−1
u �̃u S

−1
u �uψ̇u Lu

)F = −(πu�uψ̇u Lu
)F

. (139)

In particular, the coefficients of the differential operator ȦF
u at x can be expressed in

terms of the germ of (M,Fu, g̃u, F, h, Su, ψ̇u) at x .
Clearly, μg̃v

= ψv,u(μg̃u ) = detT M (ψ−1
v,u)μg̃u and thus

μ−1
g̃u

∂
∂uμg̃u = − trT M (ψ̇u).

Moreover, (129) and (133) give H(ψ̃v,u)
∗(g̃−1

v |H(tMv)) = g̃−1
u |H(tMu) and therefore

(g̃−1
u ⊗ h)−1 ∂

∂v

∣∣
v=u(H(ψ̃v,u) ⊗ idF )∗

(
(g̃−1

v ⊗ h)
∣∣H(tMv)⊗F

) = 0.

The statement thus follows from Theorem 2.17.

Remark 3.16 Note that ȦF
u , tr(ψ̇u) and p̃Fj,u in Theorem 3.15 remain unchanged if

ψv,u is replaced by any other filtration preserving family ψ ′
v,u : T Mu → T Mv sat-

isfying ψ ′
w,vψ

′
v,u = ψ ′

w,u and inducing the same automorphism tMu → tMv on the

associated graded, that is, gr(ψ ′
v,u) = gr(ψv,u) = ψ̃v,u . Indeed, in this case there

exists a smooth family of filtration preserving automorphism Bv,u of T Mu such that
ψ ′

v,u = ψv,u Bv,u and gr(Bv,u) = id. Differentiating, we obtain ψ̇ ′
u = ψ̇u + Ḃu

where Ḃu := ∂
∂v

|v=u Bv,u is a filtration preserving endomorphism of T Mu inducing
gr(Ḃu) = 0 on tMu . In particular, tr(Ḃu) = 0 and thus tr(ψ̇ ′

u) = tr(ψ̇u). Moreover,
gr(πu�u Ḃu Lu) = gr(πu�u) gr(Ḃu) gr(Lu) = 0 since each factor is filtration pre-
serving. As tMu has pure cohomology, we conclude πu�u Ḃu Lu = 0, cf. the proof of
Lemma 3.2. We obtain πu�uψ̇

′
u Lu = πu�uψ̇u Lu and thus ȦF

u remains unchanged,
see (139). Clearly this implies that p̃Fj,u remains unchanged as well, see (127).
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Remark 3.17 Using (69), we conclude that the quantity in (124) remains unchanged if
the filtration on M is smoothly deformed as above, i.e., in such a way that the bundles
of osculating algebras remain isomorphic. Hence, this quantity only depends on F
and the corresponding homotopy class of the filtration.

3.6 Comparison with the Ray–Singer Torsion

We continue to use the notation set up above. Moreover, we consider a Riemannian
metric g on M . Comparing the torsion of the Rumin complex constructed above, see
(99), with the Ray–Singer torsion [6, 77], we obtain a positive real number

RF,h
g̃;g (M,F) :=

‖ − ‖sdet(H∗(M;F))

F ,g̃,h

‖ − ‖sdet(H∗(M;F))
RS,g,h

. (140)

For trivially filtered manifolds the analytic torsion constructed above coincides, by
definition, with the Ray–Singer torsion. We will add the decoration RS to our notation
if an object is associated to the underlying trivially filtered manifold.

For contactmanifolds, Albin andQuan [1, Corollary 3] have shown that the quotient
(140) can be expressed as an integral over local quantities. Possibly, their analysis of the
sub-Riemannian limit can be extended to filtered manifolds whose osculating algebras
have pure cohomology. We will not pursue this here though. Returning to the general
case we have.

Proposition 3.18 Suppose Fu is a complex vector bundle over M with a flat connection
that depends smoothly on a real parameter u. Then RFu ,h

g̃;g (M,F) is smooth in u.

Proof Let �u = �
Fu
g̃,h denote the Rumin–Seshadri operator (98) and let �RS,u =

�
Fu
RS,g,h denote the Hodge Laplacian. Given u0, we choose λ > 0 such that all non-

zero eigenvalues of�u0 and all non-zero eigenvalues of �RS,u0 are strictly larger than
λ. By definition, see (24) and (99), we have

RFu ,h
g̃;g (M,F) = exp(− 1

2κ ζ ′
λ,u(0))

exp(− 1
2ζ

′
RS,λ,u(0))

·
‖ − ‖sdet(H∗(M;Fu))

[0,λ],g̃,h
‖ − ‖sdet(H∗(M;Fu))

RS,[0,λ],g,h
. (141)

If u is sufficiently close to u0, then the spectra of �u and �RS,u do not contain λ.
For these u, the spectral projectors Pλ,u and PRS,λ,u depend smoothly on u, and so do
ζ ′
λ,u(0) and ζ ′

RS,λ,u(0), cf. (20). Hence, numerator and denominator of the first factor
in (141) depend smoothly on u, provided u remains sufficiently close to u0. To analyze
the second factor in (141), we consider the chain map, cf. (96),

�u : (img(Pλ,u), D
Fu
)→ (

img(PRS,λ,u), d
Fu
)
, �u := PRS,λ,u ◦ LFu |img(Pλ,u).

Clearly, �u induces the isomorphism (97) in cohomology. By positivity, and since
�u0 vanishes on img(Pλ,u0), the differential DFu0 vanishes on img(Pλ,u0), cf. (7).
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Similarly, dFu0 vanishes on img(PRS,λ,u0). Hence, �u0 is an isomorphism of (trivial)
chain complexes.We conclude that �u is an isomorphism of chain complexes, provided
u is sufficiently close to u0. In this situation, we have the well-known formula

‖ − ‖sdet(H∗(M;Fu))
[0,λ],g̃,h

‖ − ‖sdet(H∗(M;Fu))
RS,[0,λ],g,h

= sdet−1/2(�∗
u�u),

where for these u, the right hand side clearly depends smoothly on u.

From Propositions 3.3, 3.4, 3.5, and Theorem 3.8 we immediately obtain

Proposition 3.19 In this situation we have:

(a) If F1 and F2 are two flat vector bundles with fiberwise Hermitian inner products
h1 and h2, respectively, then

RF1⊕F2,h1⊕h2
g̃;g (M,F) = RF1,h1

g̃;g (M,F) · RF2,h2
g̃;g (M,F).

(b) If π : M̃ → M is a finite covering of filtered manifolds and F̃ is a flat vector
bundle over M̃ with fiberwise Hermitian inner product h̃, then

Rπ∗ F̃,π∗h̃
g̃;g (M,F) = RF̃,h̃

π∗ g̃;π∗g(M̃, π∗F).

(c) If π : M̃ → M is a finite covering of filtered manifolds, then

Rπ∗F,π∗h
π∗ g̃;π∗g (M̃, π∗F) = RF⊗V,h⊗hV

g̃;g (M,F).

(d) With respect to Poincaré duality, we have

RF∗⊗O,h−1

g̃;g (M,F) =
(
RF̄,h̄
g̃;g (M,F)

)(−1)m+1

=
(
RF,h
g̃;g (M,F)

)(−1)m+1

.

(142)

Remark 3.20 For even dimensional orientable M and parallel Hermitian metrics h,
Equation (142) yields RF,h

g̃;g (M,F) = 1, for in this case, h together with an orientation

of M provides an isomorphism of flat bundles F̄ ∼= F∗ ⊗ O that intertwines the
Hermitian metric h̄ with h−1, cf. Proposition 3.9. Hence, in this situation

‖ − ‖sdet(H∗(M;F))

F ,g̃,h = ‖ − ‖sdet(H∗(M;F))
RS,g,h ,

and, in particular, the analytic torsion on the left hand side is independent of the metric
g̃. However, besides the trivially filtered case, we do not know of any even dimensional
filteredmanifold whose osculating algebras have pure cohomology: contact manifolds
are odd dimensional and so are the five dimensional geometries discussed in Sect. 4
below.
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Weexpect that the analytic torsion proposed in this paper can be refined to a complex
bilinear form on the determinant line sdet(H∗(M; F)) such that the comparison with
the refined complex valued Ray–Singer torsion [12–16, 20, 21, 92] analogous to (140)
yields a ratio that depends holomorphically on the flat connection.

3.7 Nilpotent Lie Algebras with Pure Cohomology

The analytic torsion discussed above is only defined for filtered manifolds which have
osculating algebras with pure cohomology. This assumption appears to be very restric-
tive. The only examples we are aware of are: trivially filtered manifolds corresponding
to abelian osculating algebras giving rise to the classical Ray–Singer torsion; contact
manifolds corresponding to Heisenberg algebras giving rise to the Rumin–Seshadri
torsion; and the five dimensional geometries discussed in Sect. 4 below.

The aim of this section is to present a necessary condition which the dimensions of
the grading components of a finite dimensional graded nilpotent Lie algebra

g = g−r ⊕ · · · ⊕ g−2 ⊕ g−1

have to satisfy, if the cohomology of g is pure.
To this end let φt denote the grading automorphism acting by multiplication with

t p on the summand gp and consider the polynomial [42]

P(t) := str
(
φt |H∗(g)

)
.

If g has pure cohomology, then there exist numbers pq ∈ N0 such that φt acts by the
scalar t pq on Hq(g). Hence, in this case the polynomial

P(t) =
d∑

q=0

(−1)q t pq dim Hq(g)

has at most d + 1 non-trivial coefficients, where d := dim g.
Clearly, str(φt |H∗(g)) = str(φt |�∗g∗) =∏p str(φt |�∗g∗

p) and thus

P(t) = (1 − t)n1(1 − t2)n2 · · · (1 − tr )nr

where n p := dim g−p. This is a polynomial of degree n :=∑p pn p. Moreover,

P(t) = (1 − t)d(1 + t)n2
(
1 + t + t2

)n3 · · · (1 + t + t2 + · · · + tr−1)nr

=
n∑

i=0

(−t)i
n−d∑

l=0

(−1)l
(

d

i − l

)
al ,
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where the (positive, integral) coefficients al are defined by

n−d∑

l=0

al t
l := (1 + t)n2

(
1 + t + t2

)n3 · · · (1 + t + t2 + · · · + tr−1)nr

and we are using the convention
(d
m

) = 0 if m < 0 or m > d. Using

(−1)l
(

d

i − l

)
= d!

i !(n − i)!
l−1∏

j=0

( j − i)
n∏

j=d+l+1

( j − i),

which is valid for all integers 0 ≤ i ≤ n and 0 ≤ l ≤ n − d, we obtain

P(t) =
n∑

i=0

(−t)i
d!

i !(n − i)!c(i)

where

c(i) :=
n−d∑

l=0

al Ql(i)

and

Ql(i) :=
l−1∏

j=0

( j − i)
n∏

j=d+l+1

( j − i) =
∏n

j=0( j − i)
∏d+l

j=l ( j − i)

are polynomials of degree n − d in i . Hence, the polynomial P(t) has at least d + 1
non-trivial coefficients. Moreover, we obtain

Lemma 3.21 If g has pure cohomology, then P(t) has precisely d + 1 non-trivial
coefficients and c(i) has n − d mutually different integral zeros located in the range
{0, . . . , n}. More explicitly,

c(i) = 2n23n3 · · · rnr
∏

j∈P ′
( j − i), (143)

where P := {pq : q = 0, . . . , d} and P ′ := {0, . . . , n} \ P .

Example 3.22 If g = g−2 ⊕ g−1 with n2 = 2, then al = 1, 2, 1 and

c(i) = (n − 2i)2 − n

with zeros i = n±√
n

2 . Hence, if g has pure cohomology, then n must be a square
according to Lemma 3.21. The case n = 4 corresponds to n1 = 0 and is realized by an
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abelian Lie algebra concentrated in degree 2. The case n = 9 corresponds to n1 = 5.
It is not hard to see that this cannot be realized by a nilpotent Lie algebra though. We
do no know if larger squares n can be realized by nilpotent Lie algebras.

Example 3.23 If g = g−2 ⊕ g−1 with n2 = 3, then al = 1, 3, 3, 1 and

c(i) = (n − 2i)
(
(n − 2i)2 − (3n − 2)

)

Hence, if g has pure cohomology, then n must be even and 3n − 2 must be a square
according to Lemma 3.21. The case n = 6 corresponds to n1 = 0 and is realized
by an abelian Lie algebra concentrated in degree 2. The general n consistent with
Lemma 3.21 is of the form n = (m2 + 2)/3 where m ≥ 4 is an integer congruent to
2 or 4 mod 6. Which of these can be realized by nilpotent Lie algebras is unclear.

Example 3.24 If g = g−2 ⊕ g−1 with n2 = 4, then al = 1, 4, 6, 4, 1 and

c(i) = ((n − 2i)2 − (3n − 4)
)2 − (6n2 − 18n + 16).

Hence, if g has pure cohomology, then the four roots of c(r),

i = n ±
√
3n − 4 ± √

6n2 − 18n + 16

2
,

must all be integral according to Lemma 3.21. The case n = 8 corresponds to n1 = 0
and is realized by an abelian Lie algebra concentrated in degree 2. We do not know of
any other n for which this happens. Using a computer, we ruled out all 8 < n ≤ 10000.
For some n, e.g. n = 17, n = 66, or n = 1521, two roots are integral, but never all
four, in this range.

Example 3.25 If g = g−2 ⊕ g−1 with n2 = 5, then al = 1, 5, 10, 10, 5, 1 and

c(i) = (n − 2i)
((

(n − 2i)2 − (5n − 10)
)2 − (10n2 − 50n + 76)

)

Hence, if g has pure cohomology, then the root i = n/2 must be integral, hence n
must be even and the other four roots,

i = n ±
√
5n − 10 ± √

10n2 − 50n + 76

2
,

must all be integral according to Lemma 3.21. The case n = 10 corresponds to
n1 = 0 and is realized by an abelian Lie algebra concentrated in degree 2. We do
not know of any other n for which this happens. Using a computer, we ruled out all
10 < n ≤ 10000. For some n, e.g. n = 17, n = 36, or n = 289, two roots are integral,
but never all five. For n = 67 four roots are integral, but this one is odd.

Using computer algebra, we also ruled out Lie algebras of the form g = g−2 ⊕ g−1
in the range 1 ≤ n1 ≤ 1000 and 6 ≤ n2 ≤ 11 — non of these dimensions are
consistent with the condition in Lemma 3.21.
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Example 3.26 If g = g−3 ⊕ g−2 ⊕ g−1 with n2 = n3 = 1, then al = 1, 2, 2, 1 and

c(i) = (n − 2i)
(
3
4 (n − 2i)2 + ( n24 − 3n + 2

))

Hence, if g has pure cohomology, then the root i = n/2 must be integral, hence n
must be even and the other two roots,

i = n ±√−(n2 − 12n + 8)/3

2
,

must be integral according to Lemma 3.21. All n ≥ 12 can be ruled out since in
this case these roots are complex. Hence, n = 10 is the only case consistent with
Lemma 3.21. However, one readily shows that this can not be realized by a nilpotent
Lie algebra.

Example 3.27 If g = g−3 ⊕ g−2 ⊕ g−1 with n2 = 2 and n3 = 1, then we have
al = 1, 3, 4, 3, 1 and

4c(i) = 3(n − 2i)4 + (n2 − 23n + 30)(n − 2i)2 − n(n2 − 14n + 24).

If this polynomial has four real zeros, then it must take a positive value at i = n/2,
hence we must have n2 − 14n + 24 < 0. This rules out any n ≥ 12. The remaining
finitely many n can easily be excluded. Hence, no nilpotent Lie algebra of this form
is consistent with the condition in Lemma 3.21.

Example 3.28 If g = g−3 ⊕ g−2 ⊕ g−1 with n2 = 1 and n3 = 2, then we have
al = 1, 3, 5, 5, 3, 1 and

16c(i) = 9(n − 2i)5 + (6n2 − 132n + 252)(n − 2i)3

+ (n4 − 28n3 + 308n2 − 800n + 384)(n − 2i).

If g has pure cohomology, then the zero i = n/2 must be integral, hence n must be
even. Moreover, in order to obtain five real zeros, the polynomial c(i) must have a
local maximum at i = n/2. Hence we must have 6n2 − 132n + 252 < 0, which rules
out any n ≥ 20. Checking the remaining n by computer, we see that the only case
consistent with Lemma 3.21 is n = 10 corresponding to n1 = 2. The latter can indeed
be realized by a nilpotent Lie algebra, see Sect. 4 below.

Using computer algebra, we also searched g = g−5 ⊕ g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1
in the range 0 ≤ n1 ≤ 100, 0 ≤ n2, n3, n4, n5 ≤ 5. The only cases consistent
with Lemma 3.21 are the ones mentioned above, perhaps with a different grading
(abelian concentrated in any degree, or contact in even degrees). We also searched
g = g−3 ⊕ g−2 ⊕ g−1 in the range 0 ≤ n1 ≤ 200, 0 ≤ n2 ≤ 50, 0 ≤ n3 ≤ 20 and
did not find anything new which is consistent with Lemma 3.21. The algorithm we
used expands the polynomial P(t) = (1− t)n1(1− t2)n2 · · · (1− tr )nr and counts the
number of non-zero coefficients.
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4 Generic Rank Two Distributions in Dimension Five

Recall that a generic rank two distribution on a 5-manifold M is a smooth rank two
subbundleD in the tangent bundle T M such that Lie brackets of sections ofD span a
rank three subbundle [D,D] in T M and triple brackets span all of the tangent bundle.
Hence, putting T−1M := D, T−2M := [D,D] and T−3M := T M , a generic rank
two distribution turns M into a filtered manifold,

T M = T−3M ⊇ T−2M ⊇ T−1M .

We will denote this filtration by FD.
The osculating algebras tx M = t−3

x M ⊕ t−2
x M ⊕ t−1

x M of such a filtration are all
isomorphic, as graded Lie algebras, to the five dimensional graded Lie algebra

g = g−3 ⊕ g−2 ⊕ g−1 (144)

with graded basis X1, X2 ∈ g−1, X3 ∈ g−2, X4, X5 ∈ g−3 and non-trivial brackets

[X1, X2] = X3, [X1, X3] = X4, [X2, X3] = X5, (145)

see [29], [27, Sect. 4.3.2], [86, Example 1], [87, Sect. 4] or [88, Sect. 2.3.1]. Note that
these geometries have even homogeneous dimension

n = 10.

Lemma 4.1 SupposeY1,Y2 ∈ gproject to a basis ofg/[g, g]. Then there exists a unique
(in general ungraded) Lie algebra automorphism ϕ : g → g such that ϕ(X1) = Y1
and ϕ(X2) = Y2.

Proof Define a linear map ϕ : g → g by ϕ(X1) := Y1, ϕ(X2) := Y2, ϕ(X3) :=
[Y1,Y2], ϕ(X4) := [Y1, [Y1,Y2]], ϕ(X5) = [Y2, [Y1,Y2]]. Using the relations in (145)
one readily checks that ϕ is a homomorphism of Lie algebras. With respect to the
decomposition g = g−3⊕g−2⊕g−1 the linear map ϕ has upper triangular block form
with invertible diagonal blocks. Hence, ϕ is invertible.

In particular, this lemma shows that restriction provides an isomorphism

Aut(g) = GL(g−1) ∼= GL2(R) (146)

where the left hand side denotes the group of graded Lie algebra automorphisms.
For the Betti numbers bq := dim Hq(g) we find b0 = b5 = 1, b1 = b4 = 2,

b2 = b3 = 3. Moreover, g has pure cohomology. Indeed, the grading automorphism
acts by multiplication t pq on Hq(g) where p0 = 0, p1 = 1, p2 = 4, p3 = 6, p4 = 9,
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p5 = 10. Hence, the Rumin complex is a Rockland complex of the form

�∞(H0(tM)
) D0−→ �∞(H1(tM)

) D1−→ �∞(H2(tM)
)

D2−→ �∞(H3(tM)
) D3−→ �∞(H4(tM)

) D4−→ �∞(H5(tM)
)

with ranks rkH0(tM)) = rkH5(tM)) = 1, rkH1(tM)) = rkH4(tM)) = 2, and
rkH2(tM)) = rkH3(tM)) = 3. Moreover, the differential operators D0 and D4 have
Heisenberg order 1; the operators D1 and D3 have Heisenberg order 3; and D2 has
Heisenberg order 2, see [19, Sect. 5] or [39, Example 4.24].

To obtain an analytic torsion, it suffices to choose a sub-Riemannian metric g̃ on the
rank two bundleD = T−1M = t−1M . We can use the fiberwise Lie algebra structure
to extend this to a graded Euclidean inner product on tM , which will be denoted by
g̃ too. Indeed, in view of (145), the fiberwise (Levi) bracket on tM induces canonical
isomorphisms of vector bundles

�2t−1M = t−2M and t−1M ⊗ t−2M = t−3M .

More explicitly, using a graded basis as in (145), we extend g̃ such that

g̃(X3, X3) = 4
(
g̃(X1, X1)g̃(X2, X2) − g̃(X1, X2)

2) (147)

g̃([Xi , X3], [X j , X3]) = 3g̃(X3, X3)g̃(Xi , X j ), i, j = 1, 2. (148)

This choice of peculiar constants 4 and 3 is motivated by parabolic geometry, see [27,
Sect. 3.3.1] and [88, Equations (3.21) and (3.39)]. Hence, a sub-Riemannian metric g̃
on the rank two bundle D and a Hermitian metric h on a flat bundle F over M give
rise to an analytic torsion

‖ − ‖sdet(H∗(M;F))

D,g̃,h := ‖ − ‖sdet(H∗(M;F))

FD,g̃,h

i.e. a norm on the graded determinant line, cf. (99),

sdet(H∗(M; F)) :=
⊗

q

(
det Hq(M; F)

)(−1)q
.

For the purpose of this paper, any other pair of positive constants in (147) and (148)
wouldwork equallywell.Wewill not discuss here towhat extent the torsion depends on
the choice of these constants. The following will be crucial though: If g̃u is a family of
sub-Riemannian metrics onD, then their extensions differ by a graded automorphism
of the bundle of osculating algebras tM , that is, g̃−1

v g̃u ∈ �∞(Aut(tM)), see (146).
Moreover, trtM (ġu) = 5 trD(ġu). Hence, Theorem 3.11 is applicable and specializes
Theorem 1.1.
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4.1 Proof of Theorem 1.2

We begin by noting that a sub-Riemannian metric g̃ on a generic rank two distribution
D induces a splitting of the filtration SD,g̃ : tM → T M . Indeed, the sub-Riemannian
metric induces a nowhere vanishing section of the line bundle |�2D∗| that provides a
scale which is closely related to the generalized contact forms considered in [88,
Sect. 3.1]. It induces [27, Corollary 5.1.6] an (exact) Weyl structure [27, Defini-
tion 5.1.7] for the canonical (regular and normal) Cartan connection [29], see also [26].
In particular, it provides a splitting of the filtration such that SD,g̃(x) only depends
on the germ of (M,D, g̃) at x . Using these splittings, the coefficients at x of the dif-
ferential operators L : �∞(H(tM)) → �(M) and π� : �(M) → �∞(H(tM)) only
depend on the germ of (M,D, g̃) at x .

We denote the filtered manifold corresponding to the generic rank two distribution
Du by Mu . Let ψ̃u : tM → tMu denote the unique isomorphism of graded Lie algebra
bundles which restricts to �u |D : D → Du . Clearly, (ψ̃u)∗g̃ = g̃u , cf. (126), where g̃
and g̃u denote the graded Euclidean metrics on tM and tMu which are induced from
the sub-Riemannian metrics on D and Du as indicated in (147) and (148). We use the
splittings discussed above to define ψu ∈ �∞(Aut(T M)) by ψu SD,g̃ = SDu ,g̃u ψ̃u ,
cf. (125). Put ψ̇ = ∂

∂u |u=0ψu and consider the differential operator, cf. (139),

Ȧ = −π�ψ̇L. (149)

We will now show that tr(ψ̇)(x) and the coefficients of Ȧ at x only depend on the
germ of (M,D, g̃, �̇|D) at x . To see this let X ,Y be a local frame of D defined on
an open subset U ⊆ M . Then X ,Y , [X ,Y ], [X , [X ,Y ]], [Y , [X ,Y ]] is a frame of
T M |U and we may define a smooth family of filtration preserving automorphisms
ψ ′
u : T M |U → T Mu |U by:

ψ ′
u(X) := �u(X)

ψ ′
u(Y ) := �u(Y )

ψ ′
u([X ,Y ]) := [�u(X),�u(Y )]

ψ ′
u([X , [X ,Y ]]) := [�u(X), [�u(X),�u(Y )]]

ψ ′
u([Y , [X ,Y ]]) := [�u(Y ), [�u(X),�u(Y )]]

Clearly gr(ψ ′
u) = ψ̃u andψ ′

0 = id. Differentiating, we see that ψ̇ ′(x) = ∂
∂u |u=0ψ

′
u(x)

only depends on the germ of (M,D, �̇|D, X ,Y ) at x . According to Remark 3.16 we
have tr(ψ̇)|U = tr(ψ̇ ′) and Ȧ|U = −π�ψ̇ ′L|U . We conclude that tr(ψ̇)(x) and the
coefficients of Ȧ at x only depend on the germ of (M,D, g̃, �̇|D) at x .

From the preceding paragraph we see that the coefficients at x of the differential
operator ȦF + ( ȦF )∗ − tr(ψ̇) only depend on the germ of (M,D, g̃, F, h, �̇|D) at x .
Hence, in the asymptotic expansion

((
ȦF + ( ȦF )∗ − tr(ψ̇)

)
kFt
)
(x, x) ∼

∞∑

j=−r

t ( j−10)/2κ p̃Fj (x). (150)
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the terms p̃Fj (x) can be computed from the germ of (M,D, g̃, F, h, �̇|D) at x . Hence,
in view of Theorem 3.15, the density

α = str( p̃F10) (151)

has the desired property.

4.2 Computation for Nilmanifolds

Let G denote the simply connected nilpotent Lie group with Lie algebra (144). Since
the structure constants are rational, this group admits lattices, i.e., discrete cocompact
subgroups, [76, Theorem 2.12]. Suppose � ⊆ G is a lattice and let ρ : � → U (k)
be a finite dimensional unitary representation of �. Then Fρ := G ×� C

k is a flat
vector bundle over the nilmanifoldG/� which comeswith a parallel Hermitianmetric
hρ . Let D be a right G-invariant generic rank two distribution on G and let D�

denote the induced generic rank two distribution on G/�. Note that a 2-dimensional
subspace in g gives rise to a right invariant generic rank two distribution on G iff it
intersects [g, g] = g−3 ⊕ g−2 trivially, cf. Lemma 4.1. We consider a right invariant
sub-Riemannian metric g̃ onD and let g̃� denote the induced sub-Riemannian metric
on D� .

Lemma 4.2 The torsion ‖ − ‖sdet H∗(G/�;Fρ)

D�,g̃�,hρ
does not depend on the right invariant

generic rank two distribution D on G nor does it depend on the right invariant sub-
Riemannian metric g̃ on D.

Proof We start by showing independence of g̃. By convexity, any two right invariant
sub-Riemannian metrics on D can be connected by a straight path of right invariant
sub-Riemannianmetrics onD. In viewofTheorem1.1, it therefore suffices to show that
the constant term in the asymptotic expansion of the heat kernel of theRumin–Seshadri

operator�
Fρ

D�,g̃�,hρ
vanishes. Since this asymptotic expansion canbe computed locally,

we may work on the universal covering p : G → G/�. Over G, the flat bundle Fρ

may be (canonically) trivialized and the Hermitian metric hρ becomes constant in this
trivialization. In view of Lemma 4.1 there exists a group isomorphism φ : G → G
such that φ∗D = D0, the right invariant standard distribution obtained by translating
g−1. Moreover, g̃0 := φ∗g̃ is a right invariant sub-Riemannian metric on D0. Hence,
by naturality,

φ∗ p∗�Fρ

D�,g̃�,hρ
= �C

rk(ρ)

D0,g̃0,h0
(152)

where h0 denotes the standard (constant) Hermitian metric on the trivial flat bundle
φ∗ p∗Fρ = G × C

rk(ρ). Note that D0 and g̃0 are also homogeneous with respect to

the grading automorphism ofG. Hence,�C
rk(ρ)

D0,g̃0,h0
is right invariant and homogeneous

of degree 2κ . The same is true for the heat operator ∂t + �C
rk(ρ)

D0,g̃0,h0
on R × G, after

assigning degree 2κ to the time direction R. Consequently, this heat operator admits
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a parametrix which is homogeneous of degree −2κ . Combining this with (152), we
see that all but the leading term in the asymptotic expansion of the heat kernel of

�
Fρ

D�,g̃�,hρ
vanish, cf. the proof of Lemma 2.18 or [46, Theorem 1.1].

To show independence ofD, we proceed analogously using Theorem 1.2. Since the
space of 2-dimensional subspaces in g intersecting g−3 ⊕ g−2 trivially is connected,
any two right invariant generic rank two distributions on G can be connected by a
smooth family of rank two distributions of the same type. According to Theorem 1.2
and the formula in (151) it thus suffices to show that for every differential operator B
of Heisenberg order at most r on G/� we have an asymptotic expansion of the form,
as t → 0,

(
Be

−t�
Fρ

D�,g̃�,hρ
)
(x, x) ∼

0∑

j=−r

t ( j−10)/2κ p̃ j (x)

and, in particular, the constant term p̃10 vanishes. This in turn follows from (152).

Indeed, since �C
rk(ρ)

D0,g̃0,h0
is homogeneous and right invariant, (φ∗ p∗B)e

−�C
rk(ρ)

D0,g̃0,h0 has
an asymptotic expansion of the same form.

Since G/� is odd dimensional, the Ray–Singer torsion ‖ − ‖sdet(H∗(G/�;Fρ))

RS,g,hρ
is

independent of the Riemannian metric g and the fiberwise Hermitian inner product h
on Fρ , see [77] and [6, Theorem 0.1]. Combining this with Lemma 4.2, we see that
the relative torsion in (140),

R�(ρ) := R
Fρ,hρ

g̃�;g (G/�,FD�
) =

‖ − ‖sdet(H∗(G/�;Fρ))

D�,g̃�,hρ

‖ − ‖sdet(H∗(G/�;Fρ))

RS

(153)

only depends on the lattice � in G and the unitary representation ρ : � → U (k).

Lemma 4.3 Let ρ, ρ1 and ρ2 be finite dimensional unitary representations of a lattice
� in G. Moreover, let ρ̃ be a finite dimensional unitary representations of a sublattice
�̃ ⊆ �. Then the following hold true:

(a) R�(ρ1 ⊕ ρ2) = R�(ρ1) · R�(ρ2).
(b) R�(ρ) = R�̃(ρ̃) if ρ = Ind�

�̃
(ρ̃) is the induced representation of �.

(c) R�̃(ρ|�̃) = R�(ρ ⊗ C[�/�̃]).
(d) R�(ρ∗) = R�(ρ̄) = R�(ρ).
(e) Rφ−1(�)(ρφ) = R�(ρ) for every Lie group isomorphism φ : G → G.

Proof With respect to the canonical identification Fρ1⊕ρ2 = Fρ1 ⊕ Fρ2 we have
hρ1⊕ρ2 = hρ1 ⊕ hρ2 . Hence (a) follows from Proposition 3.19(a).

The canonical projectionπ : G/�̃ → G/� is a finite covering of filteredmanifolds,
where we use the generic rank two distributionsD�̃ andD� onG/�̃ andG/�, respec-
tively. If ρ = Ind�

�̃
(ρ̃), then with respect to the canonical identification π∗Fρ̃ = Fρ we

have π∗hρ̃ = hρ . Moreover, π∗g̃� = g̃�̃ . Hence (b) follows from Proposition 3.19(b).
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(c) follows from (b) for we have Ind�

�̃
(ρ|�̃) = ρ ⊗ C[�/�̃].

(d) follows from Proposition 3.19(d).
To see (e), note that D′ := φ−1(D) is a right invariant generic rank two distri-

bution on G and g̃′ := φ∗g̃ is a right invariant sub-Riemannian metric on φ−1(D).
Hence, φ induces a diffeomorphism φ̄ : G/�′ → G/� where we consider the lattice
�′ := φ−1(�). Clearly, φ̄(D′

�′) = D� and φ̄∗g̃� = g̃′
�′ . Moreover, via the canonical

identification φ̄∗Fρ = Fρ′ we have φ̄∗hρ = hρ′ , where we abbreviate ρ′ := ρφ.
Hence, by naturality

‖ − ‖sdet(H
∗(G/�′,Fρ′ ))

D′
�′ ,g̃′

�′ ,hρ′ = φ̄∗‖ − ‖sdet(H∗(G/�,Fρ))

D�,g̃�,hρ

via the identification sdet(H∗(G/�′; Fρ′)) ∼= sdet(H∗(G/�; Fρ)) induced by φ̄.
Combining this with a corresponding identity for the Ray–Singer torsion, we obtain
R�′(ρ′) = R�(ρ), see (153) and Lemma 4.2.

The exponential map provides a diffeomorphism exp : g → G. Using the Baker–
Campbell–Hausdorff formula we find

exp

(
5∑

i=1

xi Xi

)

exp

(
5∑

i=1

yi Xi

)

= exp

(
5∑

i=1

zi Xi

)

where

z = x · y :=

⎛

⎜⎜⎜⎜
⎝

x1 + y1
x2 + y2
x3 + y3 + x1y2−x2y1

2
x4 + y4 + x1y3−x3y1

2 + (x1−y1)(x1y2−x2 y1)
12

x5 + y5 + x2 y3−x3y2
2 + (x2−y2)(x1y2−x2 y1)

12

⎞

⎟⎟⎟⎟
⎠

(154)

We let �0 denote the subgroup generated by γ1 := exp(X1) and γ2 := exp(X2).

Lemma 4.4 �0 is a lattice in G and

log�0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

5∑

i=1

xi Xi

∣∣∣∣∣∣∣∣∣

x1, x2 ∈ Z

x3 − x1x2
2 ∈ Z

x4 − x21 x2
12 − x1+1

2 (x3 − x1x2
2 ) ∈ Z

x5 + x1x22
12 + x2+1

2 (x3 − x1x2
2 ) ∈ Z

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (155)

Moreover, H1(�0) = �0/[�0, �0] ∼= Z
2 is generated by the images of γ1 and γ2. Via

the isomorphism in (146), the group of graded automorphisms preserving the lattice
�0 corresponds to a (congruence) subgroup of finite index in GL(2, Z),

Aut(G, �0) = Aut(g, log�0) ∼=
{(

a b
c d

)
∈ GL(2, Z) : ac ≡ bd ≡ 0 mod 12

}
.
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Proof With z as in (154) we have:

z3 − z1z2
2 = x3 − x1x2

2 + y3 − y1y2
2 − x2y1

z4 − z21z2
12 − z1+1

2 (z3 − z1z2
2 ) = x4 − x21 x2

12 − x1+1
2 (x3 − x1x2

2 )

+ y4 − y21 y2
12 − y1+1

2 (y3 − y1y2
2 )

− y1(x3 − x1x2
2 ) + y1(y1+1)x2

2

z5 + z1z22
12 + z2+1

2 (z3 − z1z2
2 ) = x5 + x1x22

12 + x2+1
2 (x3 − x1x2

2 )

+ y5 + y1y22
12 + y2+1

2 (y3 − y1y2
2 )

+ x2(y3 − y1y2
2 ) − x2(x2+1)y1

2

Using these relations, one readily checks that the right hand side in (155) defines a
lattice in G that contains γ1 and γ2. Using the computations

log(γ k
1 γ l

2) =

⎛

⎜⎜⎜⎜
⎝

k
l

kl/2
k2l/12

−kl2/12

⎞

⎟⎟⎟⎟
⎠

, log[γ1, γ2] =

⎛

⎜⎜⎜⎜
⎝

0
0
1
1/2
1/2

⎞

⎟⎟⎟⎟
⎠

,

log[γ1, [γ1, γ2]] =

⎛

⎜⎜⎜⎜
⎝

0
0
0
1
0

⎞

⎟⎟⎟⎟
⎠

, log[γ2, [γ1, γ2]] =

⎛

⎜⎜⎜⎜
⎝

0
0
0
0
1

⎞

⎟⎟⎟⎟
⎠

,

it is easy to see that this lattice is generated by γ1 and γ2. Here the formula

log[exp x, exp y] =

⎛

⎜⎜⎜⎜
⎝

0
0

x1y2 − x2y1
x1y3 − x3y1 + (x1+y1)(x1y2−x2 y1)

2
x2y3 − x3y2 + (x2+y2)(x1y2−x2 y1)

2

⎞

⎟⎟⎟⎟
⎠

for commutators is helpful. We conclude that H1(�0) = �0/[�0, �0] is generated by
the images of γ1 and γ2. Since �0 maps onto a lattice in G/[G,G] ∼= R

2, see [76,
proof of Theorem2.21], wemust have rk H1(�0) = 2,whence H1(�0) ∼= Z

2. Suppose
ϕ ∈ Aut(g) is a graded automorphism. Using the description in (155), we see that
ϕ(X1) = (a, c, 0, 0, 0)t and ϕ(X2) = (b, d, 0, 0, 0)t are contained in log�0 if and
only if the numbers a, c, ac2 ,

ac
12 (2a+3), ac12 (2c+3) and b, d, bd2 , bd12 (2b+3), bd12 (2d+3)

are all integral. If ϕ−1 has the same property, then a, c are coprime integers, b, d are
coprime integers, and the latter integrality conditions hold if and only if ac ≡ bd ≡ 0
mod 12.
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Lemma 4.5 If � is a lattice in G, then there exists a, not necessarily graded Lie group
automorphism φ : G → G such that φ(�) ⊆ �0.

Proof Every lattice � in G can be generated by five elements ω1, . . . , ω5. These
generators may be chosen such that ω1, ω2 ∈ �, ω3 ∈ � ∩ [G,G] and ω4, ω5 ∈
�∩[G, [G,G]], see [76, Theorem2.21]. According to Lemma4.1 there exists a unique
Lie algebra automorphism ϕ : g → g such that ϕ(X1) = logω1 and ϕ(X2) = logω2.
Then exp ◦ϕ ◦ log : G → G is a Lie group automorphism mapping γ1 to ω1 and γ2
to ω2. W.l.o.g. we may thus assume ω1 = γ1 and ω2 = γ2. Then �0 is a subgroup of
finite index in �. Hence, there exists a positive integer k such that ωk

3, ω
k
4, ω

k
5 are all

contained in �0. Writing

logω3 =

⎛

⎜⎜⎜⎜
⎝

0
0
a
b
c

⎞

⎟⎟⎟⎟
⎠

, logω4 =

⎛

⎜⎜⎜⎜
⎝

0
0
0
d
e

⎞

⎟⎟⎟⎟
⎠

, logω5 =

⎛

⎜⎜⎜⎜
⎝

0
0
0
f
g

⎞

⎟⎟⎟⎟
⎠

,

we see from (155) that the numbers ka, kb − ka
2 , kc + ka

2 , kd, ke, k f , kg must all be
integral. For the action by the grading automorphism we find

logφr (ω3) =

⎛

⎜⎜⎜⎜
⎝

0
0
r2a
r3b
r3c

⎞

⎟⎟⎟⎟
⎠

, logφr (ω4) =

⎛

⎜⎜⎜⎜
⎝

0
0
0

r3d
r3e

⎞

⎟⎟⎟⎟
⎠

, logφr (ω5) =

⎛

⎜⎜⎜⎜
⎝

0
0
0

r3 f
r3g

⎞

⎟⎟⎟⎟
⎠

.

Taking r = 2k, the numbers r , r2a, r3b − r2a
2 , r3c + r2a

2 , r3d, r3e, r3 f , r3g are all
integral. Hence, using (155) again, we obtain φr (ωi ) ∈ �0 for i = 1, . . . , 5. As � is
generated by ω1, . . . , ω5, this implies φr (�) ⊆ �0, whence the lemma.

Lemma 4.6 If ρ0 is a finite dimensional unitary representation of �0, then

R�0(ρ0 ⊗ χ0) = R�0(ρ0)

for all unitary characters χ0 : �0 → U (1).

Proof W.l.o.g. we may assume ρ0 irreducible, see Lemma 4.3(a). According to [59,
Proposition 1] there exists a normal subgroup �1 ⊆ �0 of finite index, a unitary
representation τ0 of �0/�1, and a unitary character σ0 : �0 → U (1) such that

ρ0 = τ0 ⊗ σ0. (156)

We consider the group Aut(G, �0) of graded automorphisms preserving �0. Since
�0 only has finitely many subgroups of given finite index, see [59, Sect. II] or [17,
Lemma 3], the subgroup

A := {φ ∈ Aut(G, �0) : φ(�1) = �1, φ|�0/�1 = 1
}
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has finite index in Aut(G, �0). For φ ∈ A we have τ0φ = τ0 and Lemma 4.3(e) gives

R�0(τ0 ⊗ σφ) = R�0(τ0 ⊗ σ) (157)

for all unitary characters σ : �0 → U (1). As H1(�0) ∼= Z
2, cf. Lemma 4.4, the

dual group hom(�0,U (1)) ∼= hom(Z2,U (1)) = U (1) × U (1) is connected. Recall
that the action of GL(2, Z) on hom(Z2,U (1)) has dense orbits [36]. Since A is a
finite index subgroup of GL(2, Z), see Lemma 4.4, there exist finitely many A-orbits
whose closures cover all ofU (1) ×U (1). By (157) and Proposition 3.18 the function
σ �→ R�0(τ0 ⊗ σ) is constant on each of these orbit closures. As U (1) × U (1) is
connected, R�0(τ0 ⊗ σ) has to be independent of σ . We conclude

R�0(τ0 ⊗ σ0) = R�0(τ0 ⊗ σ0χ0).

Combining this with (156), we obtain the lemma.

Combining these observations we will now show

Theorem 4.7 Suppose � is a lattice in G and let ρ denote a finite dimensional unitary
representation of �. Then

R�(ρ ⊗ χ) = R�(ρ)

for all unitary characters χ : � → U (1) that vanish on Tor H1(�).

Proof In view of Lemmas 4.5 and 4.3(e) we may, w.l.o.g. assume � ⊆ �0. Since χ

vanishes on the torsion part of H1(�), it can be extended to a unitary representation
of G and, thus, extends to a unitary character χ0 : �0 → U (1), see [59, p. 284 above
Proposition 1] for instance. Let ρ0 = Ind�0

� (ρ) denote the induced representation of
�0. Using Lemma 4.3(b) we find

R�(ρ) = R�0(ρ0) and R�(ρ ⊗ χ) = R�0(ρ0 ⊗ χ0).

The theorem thus follows form Lemma 4.6.

Let us finally give a proof of Theorem 1.3 formulated in the introduction. To this
end, recall that every flat line bundle F with parallel Hermitian metric h over G/� is
of the form F = Fρ with h = hρ for some unitary character ρ : � → U (1). Hence,
it suffices to show that R�(ρ) is constant in � and ρ, cf. (153). Since � was assumed
to be generated by two elements, there exists an automorphism φ of G mapping �0
onto �, cf. Lemma 4.1. Using Lemma 4.3(e) and applying Lemma 4.6 with the trivial
character ρ0 = 1 and χ0 = ρφ, we obtain

R�(ρ) = R�0(ρφ) = R�0(1).

Hence, the constant c = R�0(1) has the desired property.
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