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Abstract
We discuss interrelations between H∞-convex domains and H∞-domains of holo-
morphy for various classes of domains in C

n .
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1 Introduction

For a domain D ⊂ C
n we denote by O(D), respectively H∞(D), the space of all

holomorphic, respectively all bounded holomorphic functions on D. It is well known
that a domain D ⊂ C

n is holomorphically convex iff it is a domain of holomorphy
(Cartan–Thullen theorem).

(1) There are similar notions of convexity with respect to H∞(D), namely D is
H∞-convex or D is anH∞-domain of holomorphy. In dimension n = 1 both notions
are the same (see [1]); but in higher dimensions these are, in general, two different
properties as we will see later.

(2) To have an idea how largeH∞(D) is the Carathéodory pseudodistance cD may
be used as a tool (for details see [9]). Recall that
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cD(z1, z2) = sup
{
tanh−1

∣∣∣ f (z1) − f (z2)

1 − f (z1) f (z2)

∣∣∣ : f ∈ O(D), | f | < 1
}
, z1, z2 ∈ D.

Obviously, cD is ametric iffH∞(D) separates the points of D (e.g. if D is bounded).
Then D is said to be c-hyperbolic.

(a) Note that for a c-hyperbolic domain D in dimension n = 1 the standard topology
of D coincideswith the topology inducedby themetric cD ; a factwhichdoes not remain
true in higher dimensions.

(b) Moreover, there are two notions of completeness: D is cD-Cauchy complete
or D is cD-finitely compact. D cD-finitely compact means that it is c-hyperbolic and
all c-balls with center in D and finite radius are relatively compact subsets in D.
Obviously, cD-finitely compact always implies cD-Cauchy complete. In dimension
n = 1 both notions even coincide ([14–16]). In higher dimensions equality is still
an open problem. Moreover, switching to complex spaces, there is an example of a
complex space X which is cX -Cauchy complete but not cX finitely compact.

The main aim of this note is to discuss the topics (1) and (2) from above in higher
dimensions.

2 H∞-Convexity vsH∞-Domain of Holomorphy

Let F ⊂ O(D). Then D is said to be F-convex if for any compact set K ⊂ D the so
called F-convex hull K̂ (F) := {z ∈ D : | f (z)| ≤ ‖ f ‖K for all f ∈ F} is relatively
compact in D. Moreover, D is said to be an F-domain of holomorphy, if there does
not exist a pair of open setsU , V with ∅ �= U ⊂ D∩V , V �⊂ D connected, such that
for every f ∈ F there exists a function f̂ ∈ O(V ) with f̂ |U = f |U . Therefore, any
H∞-domain of holomorphy is automatically a domain of holomorphy. Observe that
more is true, namely: D is an H∞-domain of holomorphy iff there exists a function
f ∈ H∞(D) such that for any pair (U , V ) as above f |U is never the restriction of a
holomorphic function on V

Note that the property to be an H∞-domain of holomorphy is not invariant under
biholomorphic mappings; e.g. the Hartogs triangle is an H∞-domain of holomorphy
but its biholomorphic image D∗ × D is not (D stands for the unit disc, D∗ := D \ {0}).

Observe that the punctured disc is neither H∞-convex nor it is an H∞-domain of
holomorphy (use the Riemann theorem on removable singularities). On the other hand
any bounded fat plane domain D (i.e. int D = D) is an H∞-domain of holomorphy
and therefore alsoH∞-convex. But in higher dimensions, as we will see later, Sibony
[16] constructed a fat domain of holomorphy D ⊂ D

2, D �= D
2, such that every

f ∈ H∞(D) is the restriction of an f̂ ∈ O(D2), i.e. D is not an H∞-domain of
holomorphy.

2.1 Hartogs Domains

In 1972, Sibony (see [15], Séminaire Pierre Lelong 1972–1973, and also [16]) started
to investigate which kind of Hartogs’ domains are H∞-domains of holomorphy. His
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starting point was a fat pseudoconvex Hartogs domain which is H∞-convex, but not
an H∞-domain of holomorphy.

Example 2.1 [16] This domain is given as follows:

D := {(z1, z2) ∈ D × C : |z2| < e−u(z1)},

where u := exp(̃u), ũ(ζ ) := ∑∞
j=1 α j log | ζ−a j

2 | (ζ ∈ C), (a j ) j ⊂ D such that each
b ∈ T (T := ∂D) is the non-tangential limit of a certain subsequence of (a j ) j , and
(α j ) j ⊂ (0,∞) is such that ũ �= −∞.

Note that ũ is a negative subharmonic function on D with ũ(a j ) = −∞ and u
is continuous and subharmonic; in particular, D is fat and a domain of holomorphy.
Moreover, every bounded holomorphic function on D extends to an holomorphic
function on D

2, thus D is not an H∞ domain of holomorphy.
Indeed, let f ∈ H∞(D). We may assume that | f | ≤ 1. Then f (z, w) =∑∞
j=0 g j (z)w j with g j ∈ O(D) (the Hartogs series of f ) and |g j | ≤ exp( ju) (use

Cauchy inequalities). Thus, g j is bounded and |g j (ak)| ≤ 1 for all k ∈ N. Using
the Fatou theorem it follows |gk | ≤ 1. Therefore the series representing f is locally
uniformly convergent on D

2, i.e. it gives a holomorphic extension of f to D
2.

To see that D isH∞-convex it suffices tomention that any f ∈ O(D) can be locally
uniformly approximated by polynomials (use the representation of f by its Hartogs
series as above).

In [13] it is shown that using different sequences (a j ) j and (α j ) j as above there is
an infinite family of such Sibony domains pairwise not biholomorphically equivalent.

To conclude the discussion of the above example wemention, using Fatou theorem,
that

û := sup{ 1j log | f | : j ∈ N, f ∈ O(D) with log | f | ≤ ju} = 0,

while exp(−û) � exp(−u). Soon it will be clear why this expression plays an impor-
tant role to describe H∞-domains of holomorphy.

Thus there is a need to characterize such Hartogs domains that are H∞-domains
of holomorphy. Before discussing such properties repeat the following definition of a
special class of Hartogs domains. LetΩ ⊂ C

n be a domain and H : Ω ×C
m −→ R+

upper semicontinuous satisfying H(z, λw) = |λ|H(z, w), z ∈ Ω , w ∈ C
m , and

λ ∈ C. Then the following domain

D := D(Ω, H) := {(z, w) ∈ Ω × C
m : H(z, w) < 1}

is called a Hartogs domain with balanced m-dimensional fibers over the basis Ω .
Note that with H(z, w) := |w| exp(u(z)) the D discussed before is a Hartogs domain
with 1-dimensional balanced fibers over the base D.

Recall that D is a domain of holomorphy iff Ω is a domain of holomorphy and
log H is plurisubharmonic on Ω × C

m ([10], Proposition 2.2.31).
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To formulate the main result in this context the following to H associated function
is needed. Let H be as above. Put

Ĥ(z, w) := sup{|Q(z, w)|1/ j :
j ∈ N, Q(ζ, ω) =

∑
|α|= j

aα(ζ )ωα, (ζ, ω) ∈ Ω × C
m, aα ∈ O(Ω), |Q|1/ j ≤ H}.

Note that (log Ĥ)∗ is plurisubharmonic onΩ ×C
m (recall that f ∗ denotes as usual the

upper semicontinuous regularization of f ). Therefore, ifΩ is a domain of holomorphy,
then D∗ := {(z, w) ∈ Ω × C

m : Ĥ∗(z, w) < 1} is a domain of holomorphy.
Using Hartogs series it is easy to see that any bounded holomorphic function on

D extends holomorphically to D∗ := {(z, w) ∈ Ω × C
m : Ĥ∗(z, w) < 1}. Thus, if

D(Ω, H) is anH∞-domain of holomorphy, then H = Ĥ∗. Conversely, the following
is true (cf. [10], Theorem 4.1.70).

Theorem 2.2 Let D = D(Ω, H) be as above. Assume that the basis Ω is an H∞-
domain of holomorphy or that H(z, w) −→

Ω�w→∂Ω
∞ for all w with ‖w‖ = 1.

If H = Ĥ∗, then D is anH∞-domain of holomorphy.

Remark 2.3 Denote by B(0, r) := {z ∈ C
2 : ‖z‖ < r} the two-dimensional ball with

center at zero and radius r and B := B(0, 1). Put Ω := B \ B(0, 1/2). Then the
following domain

D := {(z, w) ∈ Ω × C : |w| < 1}

is a Hartogs domain with H(z, w) = |w| whose basis is not an H∞-domain of holo-
morphy. Moreover, also the second assumption in the above theorem is not fulfilled.
Obviously, H = Ĥ but D is not anH∞-domain of holomorphy. Thus, at least one of
the above two assumptions is needed for the correctness of the theorem.

Let now D = D(Ω, u) := {(z, w) ∈ Ω × C : |w| < exp(−u(z))}, where Ω ⊂ C
n

is a domain and u : Ω −→ R is upper semicontinuous on Ω; i.e. D is a Hartogs
domain with 1-dimensional balanced fibers over Ω . Then (cf. [10], Corollary 4.1.71):

Corollary 2.4 Let D as before and assume that Ω is an H∞-domain of holomorphy
or that limΩ�z→∂Ω u(z) = ∞.

Then the following properties are equivalent:

(i) D is an H∞-domain of holomorphy;

(ii) u =
(
sup{1/ j log | f (z)| : j ∈ N, log | f | ≤ ju}

)∗
.

Define û := sup{1/ j log | f (z)| : j ∈ N, log | f | ≤ ju}. Note that if H(z, w) :=
|w|e− log u , then Ĥ∗(z, w) = |w|e− log û∗

on Ω × C.
Compare the above conditionwith the example given at the beginningof this section.
Note that the usual Hartogs triangle

D = {(z, w) ∈ D∗ × C : |w| < |z| < 1}
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is a Hartogs domain with balanced 1-dimensional fibers over D∗; i.e. D =
D(D∗, log |z|). Note that its base is not aH∞-domain of holomorphy and limD∗�z→∂D

u(z) = ∞ is not fulfilled. Nevertheless, D is anH∞-domain of holomorphy and both
properties (i) and (ii) are true. Moreover, it is notH∞-convex.Note that it seems not to
be known which weaker assumptions could also give the correctness of the corollary.

Remark 2.5 It is important to mention that in [16] a somehow weaker result is pre-
sented. For example, take the following Hartogs domain with one dimensional fibers
over C:

D := {(z, w) ∈ C × C : |w| < exp(−√
2 log |z|)}.

Then any bounded holomorphic function on D is constant, i.e. it extends holomor-
phically to the domain C × C (use power series expansion or show û = −∞), while
using the results in [16] one gets no holomorphic extension.

This kind of phenomenon does not occur if the function u in the definition of a
Hartogs domain with one-dimensional fibers is everywhere positive.

2.2 Reinhardt Domains

Let X ⊂ R
n be a non empty convex domain. Then E(X) denotes the vector subspace

of R
n satisfying X + E(X) = X such that every vector subspace F ⊂ R

n with
X+F = X satisfies dim F ≤ dimE(X). Note thatE(X) is well defined. For example,
if X is bounded, then E(X) = {0}. A vector subspace F is called to be of rational
type, if F is generated by F ∩ Q

n . And X is called of rational type if E(X) is of this
type.

Example 2.6 Let X := {(x1, x2) ∈ R
2 : μx1 < x2 < 2 + μx1}, μ ∈ R. Obviously, X

is convex. Then E(X) = R(1, μ). Hence, X is of rational type iff μ ∈ Q.

Recall that a Reinhardt domain D of holomorphy has the property that log D is a
convex domain. Thus one use the former notation and say that D is of rational type if
log D is of rational type.

Theorem 2.7 Let D ⊂ C
n be a Reinhardt domain of holomorphy. Then: D is an

H∞-domain of holomorphy iff D is fat and of rational type (cf. [8]).
In particular, any fat bounded Reinhardt domain of holomorphy is anH∞-domain

of holomorphy.

For example, the so-called Hartogs triangle D := {z ∈ C
2 : |z2| < |z1| < 1} is

an H∞-domain of holomorphy. Note that this D is not H∞-convex in contrast to the
plane situation. But surprisingly, the following converse result is true.

Theorem 2.8 AnyH∞-convex Reinhardt domain D ⊂ C
n is anH∞-domain of holo-

morphy.
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Proof 1 By assumption, D is a domain of holomorphy. Therefore, D = int D \⋃
j :Vj∩D=∅

Vj , where Vk := {z ∈ C
n : zk = 0}, k = 1, . . . , n.

Suppose now that D is not an H∞-domain of holomorphy.
Case 1. D is not fat: Then there exists a Vj with Vj ∩ D = ∅ and Vj ∩ int D �= ∅.

W.l.o.g. let j = n. Then there is a point b = (b1, . . . , bn−1, 0) ∈ int D. Thus, for a
small positive r , P(b, r) ⊂ int D, where P(b, r) := {z ∈ C

n : |z j − b j | < r , j =
1, . . . , n}. Then one finds a point a = (a1, . . . , an−1, 0) with a1 · · · an−1 �= 0 such
that P(a, r ′) ⊂ int D. In particular, {a1} × · · · × {an−1} × D∗(0, r ′) ⊂ D. Using
Riemann’s theorem we see that the H∞-hull of the compact set K := {a1} × · · · ×
{an−1} × ∂D∗(0, r ′/2) ⊂ D is not relatively compact in D; a contradiction.

Case 2. D is not of rational type, but fat: Let X := log D, X̂ := log D̂, r :=
n−dim E(X̂). Obviously, 1 ≤ r ≤ n−1. By [8] there exists a basis α1, . . . , αr ∈ Z

n

of E(X̂)⊥ and a n-circled domain Ω ⊂ C
r , Φ(D \ V0) ⊂ Ω , such that any bounded

holomorphic function f ∈ H∞(D) can be written as f (z) = F ◦ Φ(z), z ∈ D \ V0,
where F ∈ H∞(Ω).

Let K := {a}, where a ∈ D∩R
n
>0. It suffices to prove that theH∞(D)-hull of K is

not relatively compact in D. Thus, it suffices to show that the set Q := {z ∈ D \ V0 :
Φ(z) = Φ(a)} is not relatively compact in D.

Suppose that Q ⊂ D. Then E(X) ⊃ {x ∈ R
n : 〈α j , x〉 = 0, j = 1, . . . , r} =

E(X̂) ⊃ E(X) and consequently, E(X) = E(X̂). In particular, D is of the rational
type contradicting the assumption.

Now, let b ∈ Q \ D, b /∈ V0. Since X is convex there exists a point c ∈ Q ∩ ∂D
such that {a1−t ct ∈ D : 0 ≤ t < 1}, which finishes the proof. ��

For Reinhardt domains D of holomorphy which are not H∞-domains of holo-
morphy, there is even a way to calculate their H∞-envelope of holomorphy, i.e. the
H∞-domain of holomorphy D̂, D ⊂ D̂, such that every bounded holomorphic func-
tion f on D is the restriction of an f̂ ∈ H∞(D̂). Therefore, any Reinhardt domain of
holomorphy allows a univalent (schlicht)H∞envelope of holomorphy (see [8]).

Instead of giving details how to get theH∞-envelope two examples are presented.

Example 2.9 (a) Let

D := {z ∈ C
3 : |z1|α1 · |z2|α2 · |z3|α3 < 1, |z1|1−α1 · |z2|1−α2 · |z3|1−α3 < 1},

where 0 < α j < 1, α1 �= α2, and
α1−α3
α1−α2

/∈ Q. Note D is a fat Reinhardt
domain of holomorphy which is not of rational type. Hence D is not an H∞-
domain of holomorphy. Moreover, its H∞-envelope of holomorphy is given by
D̂ = {z ∈ C

3 : |z1z2z3| < 1}.
(b) Let

D := {z ∈ C
4 : |z2|

√
2|z3| < 1, |z1z2z3z4| < 1, |z1|

√
2|z4| < 1}.

Then D is not an H∞-domain of holomorphy. Its H∞-envelope of holomorphy
is given as D̂ := {z ∈ C

4 : |z1z2|
√
2|z3z4| < 1, |z1z2z3z4| < 1}.

1 Since this result seems to be a new one, we add its proof.
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Remark 2.10 Recall that Reinhardt domains of holomorphy have a univalent H∞-
envelope of holomorphy. In general there are domains in C

n whose H∞-envelope
of holomorphy is infinitely many sheeted (see [2] and [4]); in particular, their H∞-
envelope is not schlicht. The construction of these examples is based on the Sibony
example (see 2.1). It seems there are no criteria known which guaranties for a domain
to have a schlicht H∞-envelope of holomorphy.

2.3 Balanced Domains

A domain D ⊂ C
n is called to be balanced (or equivalently complete circular) if

whenever z ∈ D and λ ∈ D, then λz ∈ D. Such a D may be also described as
D = {z ∈ C

n : h(z) < 1}, where h : C
n −→ [0,∞) is a upper semicontinuous

function satisfying h(λz) = |λ|h(z), λ ∈ C, z ∈ C
n . This function is known as the

Minkowski function for D and it is uniquely determined.
Moreover, it is well known that D is a domain of holomorphy iff its Minkowski

function h is plurisubharmonic iff log h is plurisubharmonic ([10], Proposition 2.2.31).
Note that a complete Reinhardt domain is in particular balanced and its Minkowski

function is even everywhere continuous. Then the following is true:

Theorem 2.11 Let D = {z ∈ C
n : h(z) < 1} is a bounded balanced domain of

holomorphy with its Minkowski function h. Then D is H∞-convex. Even more is
true, namely, D is convex with respect to the family of homogeneous polynomials. In
particular, any bounded balanced H∞-domain of holomorphy is H∞-convex

Note that the following unbounded balanced domain of holomorphy D := {z =
(z1, z2) ∈ C

2 : |z1z2| < 1} is not H∞-convex.

Example 2.12 Let (a j ) j ⊂ T := ∂D be a dense subset in T and let (α j ) j ⊂ (0,∞)

with
∑∞

j=1 α j = 1. Put u(z1, z2) := ∑∞
j=1 α j log |z1 −a j z2| and h(z) := exp u(z)+

max{|z1|, |z2|}. Then h is positive homogeneous and plurisubharmonic; thus D :=
{z ∈ C

2 : h(z) < 1} is a bounded pseudoconvex balanced domain. As above, then
D is H∞-convex. the set of points at which h is not continuous, is of measure zero.
Therefore, D is a fat domain. Nevertheless, D is not an H∞-domain of holomorphy.

Note that also here there is no equivalence between the notions ofH∞-convex and
to be an H∞-domain of holomorphy.

For an arbitrary domain D ⊂ C
n put

D̂ := {z ∈ C
n : |Q(z)| ≤ ‖Q‖D for every homogeneous polynomial Q}.

If D is a balanced domain, then

D̂ := {z ∈ C
n : |p(z)| ≤ ‖p‖D for every polynomial p};

i.e. D̂ is the polynomial convex hull of D.
The following characterization of a balanced domain to be anH∞-domain of holo-

morphy is due to Siciak ([17]).
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Theorem 2.13 Let D = {z ∈ C
n : h(z) < 1} be a bounded balanced domain of

holomorphy. Then the following properties are equivalent:

(a) D is an H∞-domain of holomorphy;

(b) D = int D̂ (in particular, D is fat).
Moreover, if D is bounded, then (a), resp. (b), is equivalent to:

(c) h is plurisubharmonic and the set {z ∈ C
n : h is not continuous at z} is pluripolar.

The proof of the former theorem is based on two deep results, namely the theorem
of Bedford–Taylor and a modification of Josefson’s theorem due to Siciak.

Remark 2.14 (1) In the case of unbounded balanced domains of holomorphy, (c) does
not necessarily imply (a) of the above theorem; take, for example, the unbounded
Reinhardt domain D0 := {z ∈ C

2 : |z1||z2|
√
2 < 1}. Its Minkowski function

is given as h(z) = (|z1||z2|
√
2)

1
1+√

2 and it is obviously plurisubharmonic and
continuous. But any bounded holomorphic function on D is constant; therefore,
D is not an H∞-domain of holomorphy.

(2) Obviously, if D ⊂ C
n is an arbitrary fat domain satisfying that D is polynomially

convex, then D = int D̂. In particular, every balanced domain D ⊂ C
n which is

fat and whose closure is polynomially convex is anH∞-domain of holomorphy.
The converse remains true for a bounded balanced domain D of holomorphy in

C
2, i.e. D = int D̂ iff D is fat and D is polynomially convex. The proof of this

result (see [18]) is based on the following description of a subharmonic function
u with a + log(1 + |z|) ≤ u(z) ≤ b + log(1 + |z|), z ∈ C:

u∗(z) = sup{|p(z)|1/k : p a polynomial of degree k, such that u ≤ 1
k log |p|},

where u∗ denotes the lower semicontinuous regularization of u.
(3) On the other hand, there is a fat bounded balanced domain D ⊂ C

3 of holomorphy

with D = int D̂, but its closure D is not polynomially convex (see [6]). Let
(a j ) j ⊂ T be dense in T and (α j ) j ⊂ (0,∞). For z ∈ C

3 put

h(z) := exp
( ∞∑

j=1

α j max{log |z1 − α j z2|, log |z3|}
)

+ max{|z1|, |z2|, |z3|}.

Then D := {z ∈ C
3 : h(z) < 1} is a bounded fat H∞-domain of holomorphy

with A := D × D × {0} ⊂ D̂, but A �⊂ D, e.g. (1, 0, 0) /∈ D.

2.4 Smoothly Bounded Domains

This survey is finished with a short discussion on smooth pseudoconvex domains. The
important results here are due to Catlin (see [5]) and Hakim–Sibony (see [7]).

Theorem 2.15 Let D ⊂ C
n be a bounded domain of holomorphy with C∞-smooth

boundary. Then D is anH∞-domain and it isH∞-convex.
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The proof of the first result is based on regularity results due to J.J. Kohn while the
proof of the second assertion uses good plurisubharmonic exhaustion functions and
the Jensen measure.

Remark 2.16 (a) In fact, for such domains even more is true; namely, they are A∞-
domains of holomorphy and A∞-convex. Recall that

A∞ := { f ∈ O(D) : all derivatives of f are continuous on D}.

(b) It seems to be unknown what happens in the case the boundary is only assumed
to be Ck-smooth.

2.5 Miscellanea

In [3], general open sets which are given as sublevel sets of certain plurisubharmonic
functions are discussed. Let

u ∈ L(Cn) := {v ∈ PSH(Cn) : ∃r∈R : v(z) ≤ r + log(1 + ‖z‖), z ∈ C
n}.

Put Du := {z ∈ C
n : u(z) < 0}. Note that balanced domains of holomorphy are

examples of such Du . Then:

Theorem 2.17 Let Du be as above and, in addition, bounded. If the set of points
where u is not continuous is pluripolar, then every connected component of Du is an
H∞-domain of holomorphy.

Remark 2.18 Observe that there is a function u ∈ L(Cn) with

inf{u(z) − log(1 + ‖z‖)} > −∞

whose set of discontinuity is not pluripolar, but nevertheless Du is anH∞-domain of
holomorphy. Note that Du is bounded. Compare Theorem 2.13

3 The CarathéodoryMetric

3.1 The Carathéodory Topology

If H∞(D) separates the points of D, then cD is in fact a distance and (D, cD) is a
metric space. Therefore, cD induces a topology top c on D, the c-topology on D. Using
the formulas for the ball it is easy to see that in case of a bounded domain D ⊂ C

n

this cD-topology is the same as the standard Euclidean topology top of D. Moreover,
(see [16]):

Theorem 3.1 If D ⊂ C is c-hyperbolic, then its c-topology coincides with the standard
Euclidean topology induced on D.

In higher dimensions, this result does not remain to be true (see [11]).
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232 Page 10 of 11 M. Jarnicki, P. Pflug

Theorem 3.2 For any n > 2 there exists a c-hyperbolic domain D ⊂ C
n such that

top c � top D.

The proof relies heavily on the Remmert embedding theorem. For the dimension
n = 2 an example like the one in the former theorem is, so far, not known.

3.2 c-Completeness

Let D ⊂ C
n . D is said to be c-finitely compact if it is c-hyperbolic and all c-balls

with center in D and finite radius are relatively compact subsets in D. Moreover, D is
called to be c-complete if D is c-hyperbolic and any c-Cauchy sequence converges in
the Euclidean norm to a point in D.

Obviously, if D is c-finitely compact, then it is c-complete. Note that for certain
domains (for example an annulus) c is not an inner metric. Therefore the theorem of
Rinow cannot be applied. Nevertheless, in [15, 16] and [14] it has been shown that the
converse is true for plane domains.

Theorem 3.3 Let D ⊂ C be a c-hyperbolic domain. Then D is c-complete iff it is
c-finitely compact.

The proof needs rather difficult one-dimensional results.
So far it is still an open problem whether the above equivalence remains true in

higher dimensions. Nevertheless, for certain classes of domains this equivalence holds
(see [19]).

Theorem 3.4 Let D ⊂ C
n be a c-hyperbolic Reinhardt domain of holomorphy. Then

D is c-finitely compact iff D is c-complete.

Remark 3.5 It should be mentioned that Theorem 3.3, in general, fails to hold for
one-dimensional complex spaces (see [12]).

Finally, the following remarks put the completeness properties of c in relation with
properties of H∞.

Remark 3.6 (a) Let D ⊂ C
n be c-hyperbolic. Then D is c-finitely compact iff for any

point a ∈ D and any sequence (a j ) j∈N ⊂ D without accumulation points in D
there exists f ∈ O(D, D) with f (a) = 0 and sup j | f (a j )| = 1.

(b) Therefore, any c-finitely compact domain is an H∞-domain of holomorphy and
H∞-convex.

(c) Any c-complete domain is an H∞-domain of holomorphy; in particular, it is a
domain of holomorphy.

(d) It should be emphasized that so far it is still unclear, whether c-completeness also
implies H∞-convexity.

(e) Applying the criterium of (a) shows, for example, that strongly pseudoconvex
domains are c-finitely compact. Moreover, any C-convex bounded domain is c-
finitely compact. On the other side it is still open whether a bounded domain of
holomorphy with a C∞-boundary is c-finitely compact.
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