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Abstract
The aimof this paper is to prove that a large class of quaternionic slice regular functions
result to be (ramified) covering maps. By means of the topological implications of this
fact and by providing further topological structures, we are able to give suitable natural
conditions for the existence of k-th �-roots of a slice regular function. Moreover, we
are also able to compute all the solutions which, quite surprisingly, in the most general
case, are in number of k2. The last part is devoted to compute the monodromy and to
present a technique to compute all the k2 roots starting from one of them.
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1 Introduction

The present work aims at studying slice regular functions of a quaternionic variable as
covering maps and the existence and nature of global k-th �-roots of slice functions.

Geometric function theory is the study of geometric and topological properties
of analytic function of a complex variable; one could very well say that one of the
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fundamental (although rather simple) results that originate and motivate such a study
is the local nature of branched coverings of holomorphic functions of one variable.

This characteristic is evenmore strikingwhenwemove fromopenplanar domains to
Riemann surfaces: holomorphic maps between Riemann surfaces are locally branched
coverings. In other terms,we can always find local coordinates such that a holomorphic
map between Riemann surfaces is locally written as z �→ zk , with k ∈ N.

The global counterpart of these statements is obtained, for instance, in the casewhen
the function has some finiteness properties: as an example, polynomial functions are
branched coverings of C over C, whose branching set is related to the zeros of their
derivative. The monodromy around branching points can be quite complicated and
it is related to the Galois group of the corresponding extension of rings of rational
functions, as opposed to the rather simple behaviour of the local model z �→ zk .
However, if we are interested in the problem of lifting holomorphic functions via such
coverings, even the local model presents interesting phenomena: if p is a holomorphic
polynomial, the Riemann surfacewk = p(z) possesses a number of geometric features
that are relevant in the general study of Riemann surfaces.

This geometric description of the local behaviour of holomorphic maps in one
dimension brings together several ingredients: Rouché theorem, winding numbers,
logarithmic indicator, local invertibility, conformality and nature of zeroes.

In the setting of slice regular functions of a quaternionic variable, all these results
are, to some degree, true; however, the difficulties which are inherent in the quater-
nionic theory prevent us frommerging them in a comprehensive geometric description
of slice regular functions as mappings from H to H.

We are referring to the absence of the usual (quaternionic) product and composition
operations, which do not leave the set of slice regular functions invariant.

The case of the product is quite representative of the challenges posed by the
quaternionic setting: given two slice regular functions f , g : H → H their product
q �→ f (q)g(q) (where, on the right,we consider the product operation in the algebra of
the quaternions) is not a slice regular function; this problem is overcomeby considering
a suitable product, called �-product (see Definition 2.3). However, the value of f �g
at a quaternion q is not, apart from some particular cases, the product of the values of
f and g at q, nor can be obtained from these two values alone.
This results in a cumbersome way of dealing with powers and exponentials.
Quite recently, a number of papers addressed the problem of finding the analogues

of a logarithm or a k-th root for slice regular functions, see [3, 6, 9, 10].
Our purpose, in the present work, is to study the existence and nature of th k-th �-

roots of a slice regular function, i.e. the solutions of g�k = f , from the point of view of
covering maps, thus obtaining global results and allowing a study of the monodromy
of the solution of the functional equation g�k = f .

Clearly, many results on k-th �-roots could be derived out of those obtained for the
�-log. For instance, using natural ideas, it should be possible to prove many results
on the existence of a �-root of a function, starting from the possible existence of its
�-logarithm. However, the main difference with other previous attempts at this task
lays in the techniques we employ, which stem from merging our two different, but
related, interpretations of slice regularity, developed in our respective previous works
in the field.
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On the one hand, any slice regular function can be interpreted, via a suitable complex
analytic representation, as a holomorphic curve in C

4 ≡ C ⊗ H, so we can apply all
the techniques of classical complex analysis and relate geometric properties of such
a curve to characteristic of the slice regular function (see [18, 19]). In this setting, the
�-product emerges naturally as the operation induced on such curves by the algebra
product of C ⊗ H.

On the other hand, the space of slice regular functions can be given the structure
of a rank 4 module over the set of multiplicative commutators, i.e. the set of slice
preserving functions SR (see [4, 5]); this construction depends on the choice of a basis
(1, I , J , K ) ofH as a real vector space, so that, given f0, f1, f2, f3 slice preserving,
the map

( f0, f1, f2, f3) �→ f0 + f1 I + f2 J + f3K

is a bijection. In this case, the �-product is recovered by observing that the slice
preserving functions are such that f �g = g� f = f g = g f and this gives us a way to
extend the product in H to (SR)4.

As different in spirit as they seem, these two viewpoints are, in fact, two sides of the
same coin; while the complex analytic approach is useful in giving clear and general
proofs based on known techniques in complex analysis and geometry, the algebraic
approach closely relates the peculiar characteristics of quaternions to the properties
of slice regular functions, particularly when the operations of the algebra structure
are involved, making it easier to understand the computational side and allowing to
produce several explicit examples.

They are therefore both useful in separating those behaviours which come seam-
lessly out of the theory of one complex variable from the phenomena that are properly
caused by the unique properties of H, thus revealing the true rôle of the quaternions.

We believe that the combination of these two approaches could be useful in dealing
with other similar problems and, particularly, in exploring the geometric implications
of such results, venturing in the scarcely explored realm of quaternionic Riemann
surfaces.

The content is organized as follows.
Section 2 contains a review of the basic material needed for our purposes, following

the notations and strategies introduced inn [14, 19]. In particular, we introduce the
formalism of stem functions and of slice preserving functions and their relations with
the �-product.

In the last part of the section, namely in Sect. 2.1, we recall the general ideas lead-
ing the authors to develop the two aforementioned interpretations of slice regularity,
emphasizing how these are linked to each other and showing part of their potential.

In Sect. 3, we show that, under suitable natural hypotheses, a slice regular function
that is also a finite map is, in fact, a covering map (see Theorem 3.4).

To obtain this result, we present a couple of technical lemmas characterizing geo-
metrically, in terms of tangent vectors, the non-invertibility of the real differential of
a slice regular function (see Lemmas 3.1 and 3.2). Of course, part of the content of
these results was already known in the literature (maybe with different notations), but
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the proofs we present here are new (especially in giving geometric insights on the
involved objects), and the techniques will be exploited in the mentioned main result.

As a consequence, we obtain a new proof (based on covering properties of slice
regular functions), of the fact that an injective slice regular function has real differential
that is invertible in the whole domain (see [2, 11, 15]). To offer the right perspective
on Theorem 3.4, we underline that from the content of [15], it can be already inferred
that slice regular functions are locally covering maps, while our new techniques give
a global result.

The rest of the paper is devoted to study k-th �-roots.
We begin, in Sect. 4, with the more abstract case arising from the complex analytic

interpretation of slice regularity. In particular, having transferred the notion of �-
product to curves in C

4, we coherently define the analog of the k-th �-power, denote
by σk . In Lemma 4.1, we give an explicit expression of the differential of σk , with a
complete description of its zero set.

This is related to a result given in the last section of [4], where the authors give
algebraic conditions in order to have that the k-th �-power of a slice regular function
is slice preserving.

Passing to a more abstract interpretation, we are then able to prove that, under
suitable hypotheses, σk is generically k2-to-1 and it is in fact a covering map (see
Proposition 4.3 and Theorem 4.4). In the last part of this section, we show how the
hypotheses of the previouslymentioned results are read in the language of slice regular
functions.

Section 5 contains the main outcomes of this paper as mentioned in the abstract.
On the basis of the results of the previous section, we are able to prove that, under
suitable natural hypotheses, any slice regular function defined on a domain without
real points admits k2 k-th �-roots (see Theorem 5.3).

This result was quite unexpected but is not so surprising once one realizes that the
space of quaternionsminus the real lineH\R is biholomorphic to a half complex plane
times theRiemann sphereC+×CP

1. In a certain sense, these twobasic complex spaces
produces two independent monodromies, each one counting k sheets. If we impose
the condition for the domain to intersect the real axis, then many of these solutions are
not anymore well defined and the amount of survivors is the more expected number k
(see Theorem 5.4).

In the last part of this section, we provide two explicit examples showing, in a
heuristic way, the different behaviours between the case k odd and k even. In both
examples, a key role is played by the so-called slice polynomial functions introduced
in [7].

The last section is devoted to compute the monodromy in detail, explaining, in
particular, the k2 factor discussed before. We find that, for a fixed k, it is possible to
define two different actions of the set of k-th roots of unity in C on the set of k-th
�-roots of a given slice regular function. In terms of the algebraic representation of
slice regular functions, these two actions are related to two different representations
of complex numbers (as a field extension of R and as a subset of 2× 2 real matrices).

We explore in detail these two actions, highlighting their different nature in the two
cases, k odd and k even; this allows us to obtain a general existence result for k-th
roots of slice functions (see Theorems 6.9 and 6.11).
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We notice that this double monodromy, producing the k2 factor, is coherent with
the results obtained for the logarithm, where, under consistent natural hypotheses, a
given slice regular function has ∞2 �-logarithms (see [6, Theorem 1.2]).

We warmly thank the anonymous referees for their useful comments which helped
to improve the presentation of our results.

2 Preliminaries on Quaternionic Slice Regular Functions

We refer to [12] for a general introduction to the slice regularity.
Let H be the algebra of quaternions and (1, i, j, k) its standard basis satisfying

usual multiplicative rules. Then, any quaternion q ∈ H can be written as q = q0 +
q1i + q2 j + q3k, with q0, q1, q2, q3 ∈ R. We endow H with the standard involution
H � q = q0 + q1i + q2 j + q3k �→ qc = q0 − (q1i + q2 j + q3k) ∈ H. The euclidean
norm of q can therefore be computed as ||q|| = √

qqc. Moreover, thanks to such a
conjugation, it is possible to define the scalar and vector part of any q ∈ H as

q0 = q + qc

2
, qv = q − qc

2
,

respectively. Therefore, any q ∈ H can be also written as q = q0 + qv . Then, we
will identify R ⊂ H with the set {q ∈ H : qv = 0} and R

3 with the set of purely
imaginary quaternions {q ∈ H : q0 = 0}. With this representation, the product of
two quaternions q = q0 + qv and p = p0 + pv can be written as

qp = q0 p0 − 〈qv, pv〉 + q0 pv + p0qv + qv ∧ pv ,

where 〈·, ··〉 and ∧ denote the standard euclidean and cross product in R3.
The set of imaginary units in H is diffeomorphic to a 2-sphere S2 and will be

denoted as follows

S = {I ∈ H : I 2 = −1} = {q ∈ H : q0 = 0, ||qv|| = 1} .

With this notation, any q = q0 + qv ∈ H \ R can be written as q = α + Iβ,
where α = q0, β = ||qv|| and I = qv/||qv|| ∈ S and hence H = ∪I∈SCI , where
CI = SpanR(1, I ). Clearly, for any α, β ∈ R and any I ∈ S, α + Iβ is a well-defined
quaternion. Therefore, we can define the map π : C × S → H by

π(z, I ) = Re(z) + I Im(z) . (1)

We will denote the imaginary unit in C by ı . Notice that, for any α + ıβ ∈ C,
π({z} × S) = {α + Iβ : I ∈ S} � S2.

In view of the introduction of slice regularity, we now set up some material on the
real tensor productC⊗H. The imaginary unit of this complexification will be denoted
by

√−1. We will write the elements in C ⊗ H both as z ⊗ q, with z ∈ C and q ∈ H,
or as v0 + √−1v1, with v0, v1 ∈ H. We extend the previously defined quaternionic
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conjugation in the following way: if v0 + √−1v1 ∈ C ⊗ H, then (v0 + √−1v1)c :=
vc0 + √−1vc1. Given v = v0 + √−1v1, w = w0 + √−1w1 ∈ C ⊗ H their product is
defined as

vw = v0w0 − v1w1 + √−1(v0w1 + v1w0) .

Themap defined in Formula (1) induces a newmap (denotedwith the same symbol)
π : C ⊗ H × S → H by requiring the linearity in the first component and that

π(z ⊗ q, I ) = π(z, I )q . (2)

In other words, if w = w0 + √−1w1 ∈ C ⊗ H, with w1, w2 ∈ H, and I ∈ S, then

π(w, I ) = w0 + Iw1 .

We recall that the complex structure defined by left multiplication by
√−1 gives a

structure of complex affine space to C⊗H for which it results to be biholomorphic to
C
4. Having chosen the standard basis (1, i, j, k), if p = p0 + p1i + p2 j + p3k, q =

q0 +q1i +q2 j +q3k ∈ H, then such a biholomorphism φ : C⊗H → C
4 easily reads

as follows

φ(p + √−1q) �→ (p0 + ıq0, p1 + ıq1, p2 + ıq2, p3 + ıq3) . (3)

The complex conjugation extends to a linear map, still denoted in the same way,
such that z ⊗ q = z ⊗ q, or, if w = w0 + √−1w1, then w = w0 − √−1w1. For any
w ∈ C ⊗ H, we have that (w)c = (wc).

We have now all the tools needed to introduce slice regularity with the approach of
Ghiloni and Perotti [14].

Definition 2.1 Let U ⊂ C be an open domain such that U = U and U = π(U × S).
A function F : U → C ⊗ H such that F(z) = F(z) is said to be a stem function. A
function f : U → H is called slice if there exists a stem function F : U → C ⊗ H

such that f (π(z, I )) = π(F(z), I ). We will write f = I(F). Moreover, if F is a
holomorphic function, then f is said to be slice regular.

For the convenience of what follows, we pose here the following assumption setting
up some notation.

Assumption 2.2 In what follows U ⊂ C will be an open domain and U = π(U × S).
Moreover, we will fix a slice function f = I(F) : U → H and we will write
F = 1 ⊗ F0 + √−1 ⊗ F1 where F0, F1 : U → H. In other words if α + ıβ ∈ U ,
F = F0 + √−1F1 and f = I(F), then f (α + Iβ) = F0(α + ıβ) + I F1(α + ıβ).

As the pointwise product of two slice functions does not preserve sliceness, a
different, yet natural, product may be introduced.

Definition 2.3 Let f = I(F), g = I(G) be two slice functions defined on U . We
define their slice product or �-product as

f �g := I(FG) : U → H .
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Hence if F = F0 +√−1F1 and G = G0 +√−1G1, then f �g is the slice function
induced by F0G0 − F1G1 + √−1(F0G1 + F1G0).

A special subset of slice regular functions is given in the following definition.

Definition 2.4 A slice function f = I(F) : U → H is said to be slice preserving if,
for any I ∈ S, f (U ∩ CI ) ⊂ CI . Equivalently, this happens if and only if F takes
values in C ⊗ R ⊂ C ⊗ H.

A slice preserving function f = I(F0 + √−1F1) is therefore a slice function
such that F0 and F1 are real valued. However, this does not imply that f is real
valued. Notice that if f is a slice preserving function and g is any slice function, then
f �g = g� f = f g.
We conclude this section by defining the slice conjugate and symmetrized of a slice

function.

Definition 2.5 Let f = I(F0 + √−1F1) : U → H be a slice function. We define
its slice conjugate as the slice function f c := I(Fc) : U → H and its symmetrized
function or symmetrization as f s = f � f c = I(FFc).

The symmetrized function of any slice function is a slice preserving function.
Moreover, if f is slice preserving, then f c = f and so f s = f �2 = f 2.

From the general theory [12, 14], we know that if f (q) = 0, then f s(q) = 0. In
particular, if q = α + Iβ ∈ H \ R, then f s(α + Jβ) = 0, for any J ∈ S. Moreover,
if f s(α + Iβ) = 0, then there exists J ∈ S, such that f (α + Jβ) = 0.

2.1 Two Slightly Different Approaches

The introduction of slice regularity by means ofC⊗H and all the structures presented
above allows us to exploit complex analysis and geometry in order to obtain our results.

First of all the identification between C ⊗ H and C
4 was already noticed in [14,

Remark 3(2)] and used in [1, Theorem 3.4] to prove a result about a particular family
of slice regular functions. Later, this approach was widely exploited in [18, 19] to
produce alternative proofs of known and new results on slice regularity, highlighting
their holomorphic nature.

On the other hand, such an approach is an underlying element of a series of paper
by the first author and de Fabritiis [3–6]. In these papers many algebraic properties of
slice regular functions are proved as well as existence and uniqueness results for the
quaternionic exponential and logarithm are given. The basic result and idea behind
these researches is a result due to Colombo, Gonzalez-Cervantes and Sabadini [8,
Proposition 3.12] and Ghiloni et al. [13, Lemma 6.11] stating that any slice regular
function f : U → H can be uniquely written as a sum

f = f0 + f1i + f2 j + f3k,

where f0, f1, f2, f3 are slice preserving regular functions defined on the same domain.
Thanks to this equality, it is possible to define the “real” and “vector” part of f =
f0 + fv as
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f0 = f + f c

2
, fv = f − f c

2
,

and, with these observation, it is possible to represent the �-product of two slice regular
functions f = f0 + fv, g = g0 + gv as

f �g = f0g0 − 〈 fv, gv〉� + f0gv + g0 fv + fv ∧� gv ,

where 〈·, ··〉� and ∧� are algebraic operators acting, formally, as the usual euclidean
and cross product (see [4]). In particular, given f = f0 + f1i + f2 j + f3k, we have
that f c = f0 − ( f1i + f2 j + f3k) = f0 − fv , and f s = f 20 + f 21 + f 22 + f 23 .

It is clear that this interpretation of slice regular functions is suggested and under-
lined by the previously described complex one. However, if the complex approach will
be effective to produce general proofs, the second one will be exploited to produce
and describe explicit examples.

3 Differential and Covering Properties of Slice Regular Functions

In this section, we recover some known fact about the real differential of slice regular
function by looking it at the level of C ⊗ H. This approach is not only interesting by
itself but will be exploited later in this section when we will discuss about covering
properties.

With a slightly different language and notation, in [19] the second author defined,
for q ∈ H, the sets

Zq = {w ∈ C ⊗ H : π(w, I ) = q for some I ∈ S} ,

Zq = {(w, I ) ∈ C ⊗ H × S : π(w, I ) = q} ,

where π is the map defined in Formula (2).

Remark 3.1 We note that, if w = w0 + √−1w1 ∈ C ⊗ H is a real point in the
complexification of H, i.e. if w1 = 0, then w ∈ Zq if and only if w = q.

As in [18], we also consider the mapF : U ×S → C⊗H×S given byF (z, I ) =
(F(z), I ), obtaining the following equality f ◦π = π ◦F and commutative diagram.

U × S C ⊗ H × S

U H

........................................................................................................................... ............F
...............................................................................................
...
.........
...

π

............................................................................................................................................................................. ............

f

...............................................................................................
...
.........
...

π

Moreover, for any (w, I ) ∈ C⊗H× S, we have that ker Dπ(w,I ) = TF (z,I )Z f (q).
It is known [19] that Zq is a complex quadratic cone inC⊗H, with one singular point
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(the vertex), which is the only point with real coordinates, and that Zq is a complex
submanifold of C⊗H× S, once S is given the appropriate complex structure (which
is actually the natural one onCP1). As q varies inH, the manifolds Zq give a foliation
of C ⊗ H × S.

Remark 3.2 Notice that the definition of slice regularity can be interpreted in terms
of pseudoholomorphic curves as follows. Let f : U → H be a slice regular function
and p = α + Iβ ∈ U \ R. Locally, the tangent space TpU can be split into a sum
TpU = Tα+ıβC ⊕ TIS. Hence, if v ∈ Tα+ıβC, then d f (ıv) = L I (d f (v)), where L I

denotes the left multiplication by I ∈ S.

In the following lemma, we give a geometric interpretation for the differential of a
slice regular function to be singular.

Lemma 3.1 Suppose that q = π(z, I ) ∈ U is such that Im(z) �= 0, F1(z) �= 0 and
that the (real) differential D fq is singular. Then F(U) is tangent to Z f (q) in F(z).

Proof If we set U+ = {z ∈ U : Im(z) > 0}, then the restriction of π to U+ × S is
a diffeomorphism between the latter and U \ R. Hence, Dfq is singular if and only
if D(π ◦ F )(z,I ) is singular, i.e. Dfq [v] = 0 for some v ∈ TqU if and only if there
exists v′ ∈ T(z,I )(U × S) such that

DπF (z,I ) ◦ DF(z,I )[v′] = 0 .

This happens if and only if DF(z,I )[v′] ∈ ker DπF (z,I ), i.e. by definition if and only
if DF(z,I )[v′] ∈ TF (z,I )Z f (q).

We now show that the former analysis implies that F(U) is tangent to Z f (q). Con-
sider the projectionmap p1 : C⊗H×S → C⊗H, so that p1◦F (z, I ) = F(z), and let
Z∗

f (q) ⊂ C⊗H denote the set Z f (q) minus its real points, i.e. Z∗
f (q) = Z f (q) \ { f (q)}

(see Remark 3.1). The map p1 induces a biholomorphism between Z∗
f (q) and Z

∗
f (q) =

p−1
1 (Z∗

f (q)) (see the proof of [19, Theorem 3.3]). Therefore, as F1(z) �= 0,

0 �= Dp1(DF(z,I )[v′]) ∈ Tp1(F (z,I ))Z f (q) = TF(z)Z f (q)

so, as p1◦F (z, I ) = F(z), D(p1◦F )(z,I )[v′] = DFz[v′′], where v′′ is the component
of v′ along TzC; therefore F(U) is tangent to Z f (q) in F(z). ��
Remark 3.3 We consider the case when F(U) ⊆ Z f (q) as a tangency case.

From this point of view, we obtain another proof of a known result (see [11, Propo-
sition 3.3] and [15]) regarding the invertibility of the real differential of a slice regular
function. Before state it, we set up the following couple of notations. For I ∈ S, we
identify TIS ⊂ TIH ∼= H with

AI = {p ∈ H : I p + pI = 0}

(see [18, Lemma 3.1]). Moreover, given w ∈ C ⊗ H, w = 1 ⊗ a + √−1 ⊗ b, we
identify Tw(C ⊗ H) with TaH ⊕ TbH.
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Lemma 3.2 Suppose that q = π(z, I )with Im(z) �= 0. The differential D fq is singular
if and only if one of the following three cases occurs:

(1) F1(z) = 0;
(2) DFz = 0;
(3) π(DFz, I )F1(z)−1 ∈ AI .

Remark 3.4 Before performing the proof, notice that the three cases of the previous
Lemma, correspond to (1) the spherical derivative of f being zero (see [12, Definition
1.18]); (2) the slice derivative being zero (see again [12, Definition 1.7]); (3) the
product of the slice derivative with the inverse of the spherical derivative belonging to
the orthogonal complement of Span(1, q) (see [2, Proposition 29]). Indeed, for this
last claim, notice that Span(1, q)⊥ = {p ∈ H : qp + pq = 0}, and if q = α + Iβ,
the equality qp + pq = 0 is equivalent to I p + pI = 0, which defines AI .

Proof Consider DF(z,I ) : TzC ⊕ TIS → TaH ⊕ TbH ⊕ TIS, where a = F0(z),
b = F1(z); we have

DF =
⎛
⎝
DF0 0
DF1 0
0 idI

⎞
⎠

where DF0 : TzC → TaH, DF1 : TzC → TbH are the real differentials of F0 and F1
and idI is the identity map on TIS.

Likewise, the differential Dπ(w,I ) : TaH ⊕ TbH ⊕ TIS → Tπ(w,I )H is given by

Dπ(w,I ) = (
ida L I R′

b

)

where ida is the identity map on TaH, L I : H → H is the left multiplication by I ,
i.e. L I (q) = I q, and R′

b : As → H is the right multiplication by b, restricted to the
subspace AI , i.e. R′

b(h) = hb.
Given v′ ∈ TzC ⊕ TIS, we write it v′ = v′

1 + v′
2, with v′

1 ∈ TzC and v′
2 ∈ TIS,

then

D(π ◦ F )z,I [v′] = (DF0 + L I DF1)z[v′
1] + R′

F1(z)[v′
2] .

Therefore, the rank of Df drops in the following three cases:

(1) there exists v′
2 �= 0 such that v′

2 ∈ ker R′
F1(z)

,
(2) there exists v′

1 �= 0 such that v′
1 ∈ ker(DF0 + L I DF1)z ,

(3) there exist v′
1, v

′
2 �= 0 such that (DF0 + L I F1)z[v′

1] = R′
F1(z)

[v′
2].

In the first case, as the map Rb is always invertible, unless b = 0, we conclude
that F1(z) = 0. By Remark 3.2, we have that (DF0 + L I DF1)[ıv′

1] = L I (DF0 +
L I DF1)[v′

1] = 0, so DFz = 0.
In the third case, we are saying that there exists v′

1 such that

R−1
F1(z)

(DF0 + L I DF1)z[v′
1] ∈ AI .
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We note that, as the right multiplication operator commutes with the left one, we have
that

R−1
F1(z)

(DF0 + L I DF1)z[ıv′
1] = R−1

F1(z)
L I (DF0 + L I DF1)z[v′

1]
= L I R

−1
F1(z)

(DF0 + L I DF1)z[v′
1]

and the subspace AI is stable under L I , therefore, as both the spaces have real dimen-
sion 2, the third case happens if and only if R−1

F1(z)
(DF0 + L I DF1) is an isomorphism

between TzC and AI = TIS.
By the definition of AI , this happens if and only if

L I R
−1
F1(z)

(DF0 + L I DF1) + RI R
−1
F1(z)

(DF0 + L I DF1) = 0 ,

i.e. if and only if π(DFz, I )F1(z)−1 ∈ AI . ��
We remark that cases (2) and (3) are both contained in the geometric statement of

Lemma 3.1, i.e. in both cases F(z) is a point of tangency between F(U) and Z f (q)

(and a regular point for the latter).
Let us now consider the holomorphic function �q : C ⊗ H → C, where q =

q0 + q1i + q2 j + q3k is a quaternion, given by

�q(z0 + z1i + z2 j + z3k) =
3∑

h=0

(zh − qh)
2 ,

where z0 + z1i + z2 j + z3k = φ−1(z0, z1, z2, z3). The function �q is such that its
zero set equals Zq when embedded in C

4 (see [19, Corollary 3.4]). Notice that, if
F : U → C ⊗ H is a map inducing a slice function f = f0 + f1i + f2 j + f3k, and
z = α + ıβ ∈ U , then �q(F(z)) = 0 if and only if (F(z) − q)(Fc(z) − qc) = 0, if
and only if ( f − q)s = ( f0 − q0)2 + ( f1 − q1)2 + ( f2 − q2)2 + ( f3 − q3)2 = 0.

As we will see in the next corollary, properties of �q relate with the rank of slice
regular functions.

Corollary 3.3 Given q = π(z, I ) ∈ H, the real differential D fq is singular if and only
if z is a zero of multiplicity greater than 1 for the holomorphic function � f (q) ◦ F :
U → C.

Proof Since Z f (q) = �−1
f (q)(0) (see [19, Corollary 3.4]), as long as F1(z) �= 0 the tan-

gent space to Z f (q) at F(z) is given by the equation D(� f (q))F(z)[v′] = 0; therefore,

0 = (� f (q) ◦ F)′(z)[v′] = D(� f (q))F(z)DFz[v′]

if and only if DFz[v′
1] is contained in TF(z)Z f (q) for all v′

1 ∈ TzC, i.e if and only if
F(U) is tangent to Z f (q) at F(z).

If F1(z) = 0, then F(z) has all real components, hence it is the vertex of the cone
Z f (q), which is the only singular point of � f (q), which is a zero of multiplicity 2, so
the conclusion is trivial in this case. ��
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Remark 3.5 This last corollary is a complex analytic interpretation of a result obtained
independently in the quaternionic setting stating, essentially, that a slice regular func-
tion f is singular at a point q0 if and only if, f (q) = f (q0) + (q − q0)�(q − q̃0)g(q)

for some q̃0 ∈ Sq0 and some slice regular function g (see [11, Proposition 3.6] and
[2, Theorem 30].

We conclude this section by showing that a large class of slice regular functions
are global covering maps outside their (real) singular locus. The fact that slice regular
functions are local coverings can be excerpt already from the content of [2, 11, 15].
Before stating the theorem, let us define the following sets related to singular points
and values of a slice regular function. We denote by C0( f ) the set of critical points of
f , i.e.

C0( f ) = {p ∈ U : Dfq is singular} ;

we consider its image under f , i.e. the set of critical values

C( f ) = f (C0( f )) ,

and its saturation under f , i.e. the singular locus of f ,

S( f ) = f −1(C( f )) .

Theorem 3.4 Suppose f is a slice regular finite map. Then, the restriction

f |U\S( f ) : U \ S( f ) → f (U \ S( f )) ⊆ H \ C( f )

is a covering map.

Proof Take a point p ∈ f (U \ S( f )) and a relatively compact neighbourhood V of
p in f (U \ S( f )) such that V � H \ C( f ). We consider the family of holomorphic
maps

{�p′ ◦ F : U → C}p′∈V

If p′ → p, then �p′ ◦ F converges uniformly on compact sets to �p ◦ F .
Suppose that f −1(p) = {q1, . . . , qn} and write qm = π(zm, Im). As q1, . . . , qn ∈

U \ S( f ), the differential of f is non singular around such points, so f is locally
injective and, by Corollary 3.3, �p ◦ F has a zero of multiplicity 1 in each of these
points.

Therefore, byHurwitz’s theorem,�p′ ◦F has n zeroes (counted withmultiplicities)
for p′ ∈ V (up to shrinking V , if necessary). However, again by Corollary 3.3, as long
as p′ ∈ H \C( f ), the zeroes of �p′ ◦ F have multiplicity 1, so each point p′ ∈ V has
exactly n preimages.

This shows that f −1(V ) is the disjoint union of n open sets V1, . . . , Vn . The differ-
ential of f is non singular on every Vm and f |Vm is injective, so f is a diffeomorphism
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between Vm and V , for m = 1, . . . , n. This implies that f is a covering map from
U \ S( f ) to f (U \ S( f )) ⊆ H \ C( f ). ��

Along the same lines of the proof, we obtain the following result, which already
appeared, proved with different methods, in [2, 12, 15]. The proof we are going to
present differs from those in the cited papers for being more topological, rather than
analytical, shedding new light on the geometry hidden in the background of the tech-
niques we used in the previous results. Even if we will not be needing this corollary
in the rest of the paper, we think some readers might find the proof helpful in under-
standing and contextualizing the machinery we introduced in this section.

Corollary 3.5 If f : U → H is slice regular and injective, its real differential is
invertible at all points.

Proof Suppose that the differential is not invertible at q = π(z0, I ), then either
F1(z0) = 0 and then f is constant on the sphere π({z0} × S), or � f (q) ◦ F has a
zero of multiplicity greater than 1 in z0.

If � f (q) ◦ F vanishes identically, then the function f is constant on some 2-
dimensional surface inU (see [19, Remark 3.4] and [15, Proposition 5.2]). If� f (q)◦F
does not vanish identically, by Hurwitz’s theorem, �q ′ ◦ F has more than one zero
(counting multiplicities) for all q ′ close enough to f (q). However, suppose that there
exists a neighbourhood V of f (q) such that �q ′ ◦ F has a zero of multiplicity greater
than one: this means thatF (U × S) is tangent to Zq ′ for all q ′ ∈ V .

Without loss of generality, we can suppose that the tangency points are such that
F1(z) �= 0. OnC⊗H×S, we consider the smooth subbundle E of the tangent bundle
given by

C ⊗ H × S � p �→ Ep = TpZπ(p) ⊆ Tp(C ⊗ H × S) .

The integral manifolds of this subbundle are obviously the manifolds Zπ(p); on the
other hand, V ′ = F−1(π−1(V )) is an open set in U × S and, for every (z, I ) ∈ V ′,
TF (z,I )F (V ′) ⊆ EF (z,I ). Therefore F (V ′) is contained in an integral manifold
of the distribution p �→ Ep, so in Z f (q). This implies that f is not injective, as
f|π(V ′) ≡ f (q).

U × SV ′ ⊂ C ⊗ H × S

U H ⊃ V

E ⊂ T (C ⊗ H × S)

C × S........................................................................................................................... .........
...F

...............................................................................................
...
.........
...

π

............................................................................................................................................................................. ............

f

...............................................................................................
...
.........
...

π

........

........

........

........

........

........

........

........

........

........

..................

............

........................................................................................................................... ............
(�·, id)

��

123



  207 Page 14 of 37 A. Altavilla, S. Mongodi

4 Powers inC ⊗ H as CoveringMaps

Having proved Theorem 3.4 it is natural to study the case of k-th �-powers, aiming
to a result giving necessary and sufficient conditions in order to have the existence of
global k-th �-roots of a given slice function. Notice, however, that the k-th �-power
corresponds to the pointwise k-th power only on slice preserving functions. Therefore,
to better analyse its features it is more convenient to move our attention to its stem
function, living in C ⊗ H, where such operator corresponds to the pointwise k-th
power.

Let, hence,σk : C⊗H → C⊗H be the function that raises an element ofC⊗H to its
k-th power. We recall the identification given in Formula (3). In particular, we denote
by em ,m = 0, 1, 2, 3, the elements of the standard basis (1⊗ 1, 1⊗ i, 1⊗ j, 1⊗ k),
respectively. The corresponding coordinates will be denoted as z0, z1, z2, z3. From
now on, whenever working on C

4, we will keep in mind such an identification.
We therefore denote with the same symbol σk the corresponding map defined on

C
4 with values on C

4. We have

σk(z0, z1, z2, z3) = (pk0(z0, z
2), z1 p

k−1
1 (z0, z

2), z2 p
k−1
1 (z0, z

2), z3 p
k−1
1 (z0, z

2))

where z = z1e1 + z2e2 + z3e3, z2 = z21 + z22 + z23 and pk0, p
k−1
1 are such that

(x + I y)k = pk0(x, y
2) + I ypk−1

1 (x, y2) .

Remark 4.1 Let f = I(F) : U → H be a slice regular function such that f =
f0 + fv = f0 + f1i + f2 j + f3k, with f0, f1, f2, f3 slice preserving functions
defined on U . With this representation, the function σk(F) corresponds to the k-th
�-power

f �k = pk0( f0, f sv ) + pk−1
1 ( f0, f sv )( f1i + f2 j + f3k) = pk0( f0, f sv ) + pk−1

1 ( f0, f sv ) fv .

This representation was used in [4, Section 7] to study algebraic properties of the k-th
�-power of a slice regular function.

For the convenience of what follows, let us define the following function

N (z) := (z20 + z21 + z22 + z23)
1
2 .

Then, we have the following equalities:

pk0(z0, z
2) = N (z)kTk(t) , pk−1

1 (z0, z
2) = N (z)k−1Uk−1(t) , (4)

where t = z0/N (z) and Tk and Uk−1 denote the Chebyshev polynomials of first kind
and degree k and of second kind and degree k − 1, respectively.

We recall now some well-known formulæ (see [17, Chapters 1 and 2]). First of all
the Pell equation states that, for any n ∈ N,

T 2
n (x) + (1 − x2)U 2

n−1(x) = 1 .
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Moreover, the derivation rules of the Chebyshev polynomials read as follows:

dTn(x)

dx
= nUn−1(x),

dUn

dx
= xUn(x) − (n + 1)Tn+1(x)

1 − x2
.

Furthermore, recalling that t = z0/N (z), we have that

∂t

∂z0
= 1

N (z)
(1 − t2),

∂t

∂zn
= −t

zn
N (z)2

,

for n = 1, 2, 3.
We now give an explicit formula for the differential of σk .

Lemma 4.1 det Dσk(z) is a function of z20 and z2. More precisely,

det Dσk(z) = k2(z20 + z2)[pk−1
1 (z0, z

2)]2,

where pk−1
1 (z0, z2) = (z20 + z2)k−1Uk−1

(
z0

(z20+z2)1/2

)
, and Uk−1 denotes the Cheby-

shev polynomial of second kind and of degree k − 1.

Proof Assume first that N (z) �= 0. We start by recalling that

σk(z0, z1, z2, z3) = (pk0(z0, z
2), z1 p

k−1
1 (z0, z

2), z2 p
k−1
1 (z0, z

2), z3 p
k−1
1 (z0, z

2))

and recalling the equalities in Formula (4), we have

∂ pk0(z0, z
2)

∂z0
= ∂

(
N (z)kTk(t)

)
∂z0

= kN (z)k−1[tTk(t) + (1 − t2)Uk−1(t)] =: A ,

for n = 1, 2, 3,

∂ pk0(z0, z
2)

∂zn
= ∂

(
N (z)kTk(t)

)
∂zn

= kN (z)k−2[Tk(t) − tUk−1(t)]zn =: Bzn .

Passing now to the other components, for n,m = 1, 2, 3, we get

∂zm pk−1
1 (z0, z2)

∂z0
= ∂

(
zmN (z)k−1Uk−1(t)

)
∂z0

= kN (z)k−2[tUk−1(t) − Tk(t)]zm =: −Bzm ,

and

∂zm pk−1
1 (z0, z2)

∂zn
= ∂

(
zmN (z)k−1Uk−1(t)

)

∂zn
= δnmN (z)k−1Uk−1(t) + N (z)k−3
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[
(k − 1)Uk−1(t) + t

1 − t2
(kTk(t) − tUk−1(t))

]
znzm

=: δnmH + Cznzm ,

where δnm denotes the Kronecker delta.
Thanks to these computations the Jacobian of σk is equal to

det Dσk(z) = det

⎛
⎜⎜⎝

A Bz1 Bz2 Bz3
−Bz1 H + Cz21 Cz1z2 Cz1z3
−Bz2 Cz1z2 H + Cz22 Cz2z3
−Bz3 Cz1z3 Cz2z3 H + Cz23

⎞
⎟⎟⎠

= H2[AH + (AC + B2)(z21 + z22 + z23)]
= H2[AH + (AC + B2)N (z)2(1 − t2)] .

We now analyse the term (AC + B2)N (z)2(1− t2). This can be written as follows

(AC + B2)N (z)2(1 − t2)

= N (z)2(1 − t2){kN (z)k−1[tTk(t) + (1 − t2)Uk−1(t)]
× N (z)k−3

[
(k − 1)Uk−1(t) + t

1 − t2
(kTk(t) − tUk−1(t))

]

+ [kN (z)k−2[Tk(t) − tUk−1(t)]]2

= kN (z)2(k−1)(1 − t2)

{
Tk(t)Uk−1(t)

[
t(k − 1) − t

t2

1 − t2
+ tk − 2tk

]

+T 2
k (t)

[
k

t2

1 − t2
+ k

]
+U 2

k−1(t[(1 − t2)(k − 1) − t2 + kt2])
}

= kN (z)2(k−1){kT 2
k (t) + (1 − t2)(k − 1)U 2

k−1(t) − tTk(t)Uk−1(t)} .

Therefore, we have

det Dσk(z) = H2[AH + (AC + B2)N (z)2(1 − t2)]
= [N (z)k−1Uk−1(t)]2{kN (z)k−1[tTk(t) + (1 − t2)Uk−1(t)]

× N (z)k−1Uk−1(t)

+ kN (z)2(k−1){kT 2
k (t) + (1 − t2)(k − 1)U 2

k−1(t) − tTk(t)Uk−1(t)}}
= k2N (z)2(k−1)[N (z)k−1Uk−1(t)]2
= k2(z20 + z21 + z22 + z23)[pk−1

1 (z0, z
2)]2 ,

where in the third equality we have used the Pell equation. Hence, we have proved the
equality whenever N (z) �= 0. Now, as the resulting polynomial is of the right degree,
then this equality extends also to the set of points where N (z) = 0. ��
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We now want to analyse the zero set of Dσk . We set

Qk(t) =
[k/2]∑
h=0

(−1)h
(

k

2h + 1

)
tk−1−2h = Im((t + ı)k)

and we notice that Qk(t) = pk−1
1 (t, 1) = (t2 +1)k−1Uk−1(

t
1+t2

). Therefore Qk(t) =
0 if and only if Uk−1(t) = 0. Now, the zeroes of the Chebyshev polynomials are well
known (in particular,Uk−1(t) = 0 if and only if t = cos( nk π) with n = 1, . . . , k − 1),
however, to be self-contained, we present here a proof of the fact that such roots are
all simple. We will later make use of techniques involved in the proof.

Lemma 4.2 Qk(t) has all real and simple roots.

Proof By definition, for t ∈ R

Qk(t) = (t + ı)k − (t − ı)k

2ı

so, Qk(t) = 0 if and only if

(
t − ı

t + ı

)k

= 1

i.e. if and only if (t − ı)/(t + ı) is a k-th root of unity. Now, the map

C(ζ ) = ζ − ı

ζ + ı
(5)

is the Cayley transform which is a biholomorphism between the upper half-plane and
the unit disc; in particular, it maps the real line bijectively on the unit circle minus
the point {1}, which contains k − 1 of the k-th roots of unity. For k odd, Qk(t) is a
polynomial in t2, for k even, Qk(t)/t is a polynomial in t2; therefore, for k odd, Qk(t)
has (k − 1)/2 positive roots and (k − 1)/2 negative roots, for k even, Qk(t) has a zero
root, (k − 2)/2 positive roots and (k − 2)/2 negative roots.

Therefore, Qk(t) has k−1 = deg Qk(t) real roots, which are then all simple roots,
and [(k − 1)/2] of them are positive roots. ��

We now pass to prove that, under suitable hypotheses on the domain and range,
σk is a covering map. In order to obtain such a result, we need to prepare convenient
notations.

Let us consider the set of imaginary units in C ⊗ H

S = {s = (0, z) ∈ C
4 : z2 = 1} � {p + √−1q ∈ C ⊗ H : (p + √−1q)2 = −1}.

123



  207 Page 18 of 37 A. Altavilla, S. Mongodi

Remark 4.2 Toclarify the definition ofS, if p = p1i+p2 j+p3k, q = q1+q2 j+q3k ∈
H, then (p+√−1q)2 = p2−q2+√−1(pq+qp) = −||p||2+||q||2+2

√−1〈p, q〉.
Therefore, p + √−1q ∈ S if and only if

{
−||p||2 + ||q||2 = 1

〈p, q〉 = 0.

Notice that, if Im(z) = 0 and p ∈ S (which corresponds to q = 0), then z⊗ p ∈ S,
while if z ⊗ p ∈ S, then p ∈ S does not hold in general. In fact, the element

i + j + √−1( 13 i − 1
3 j +

√
7
3 k) belongs to S, but in general π(i + j + √−1( 13 i −

1
3 j +

√
7
3 k), I ) /∈ S: if I = i , then (i + j + i( 13 i − 1

3 j +
√
7
3 k))2 �= −1.

In analogy with the map π : C × S → H, we define

ρ : C2 × S → C
4 (6)

given by

ρ((u0, u1), s) = u0e0 + u1s .

The restriction of ρ to W ′ = (C2 \ {u1 = 0}) × S is a 2-to-1 cover of its image
′ = ρ(W ′), given by

′ = {(z0, z) ∈ C
4 : z2 �= 0} .

Given (z0, z) ∈ ′, we have that

ρ−1(z0, z) =
⎧⎨
⎩

⎛
⎝
(
z0,

√
z2
)

,
z√
z2

⎞
⎠ ,

⎛
⎝
(
z0,−

√
z2
)

,− z√
z2

⎞
⎠
⎫⎬
⎭ .

Moreover, if (z0, z) ∈ C
4 and (w0, w) = σk((z0, z)), then

{
w0 = pk0(z0, z

2)

w = pk−1
1 (z0, z2)z

(7)

therefore, if we put

′
k = {(z0, z) ∈ C

4 : z2 �= 0, pk−1
1 (z0, z

2) �= 0}

we have that σk(′
k) ⊆ ′.

We consider W ′
k = ρ−1(′

k) ⊂ C
2 × S and the map sk : W ′

k → W ′ such that
ρ ◦ sk = σk ◦ ρ given by
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sk((u0, u1), s) = ((pk0(u0, u
2
1), u1 p

k
1(u0, u

2
1)), s) .

W ′
k W ′

′
k ′

............................................................................................................................................................................. ............
sk

...............................................................................................
...
.........
...

ρ

............................................................................................................................................................................. ............

σk

...............................................................................................
...
.........
...

ρ

Finally, let

 = {(z0, z) ∈ ′ : z20 + z2 �= 0, z0 �= 0}

and set k = ′
k ∩ .

Remark 4.3 Notice that the problem of finding a solution (z0, v) ∈ C
4 for the system

in Formula (7), can be thought as finding a slice regular function f such that f �k = g,
for a given g slice regular. What follows describes, in our geometric language, the
natural procedure that one would exploit in a purely algebraic setting. In particular,
if one assume that Ig = gv/

√
gsv and I f = fv/

√
f sv are well defined, then we can

write f = f0 + f1I f , g = g0 + g1Ig , with f0, f1, g0, g1 slice preserving, and
f �k = pk0( f0, f 21 ) + f1 p

k−1
1 ( f0, f 21 )I f = g0 + g1Ig . Starting from these formal

computation, it is possible to find a number of suggestions on how to proceed and
what is needed to be proved. As one of the aim of this paper is to show how some of
our geometric infrastructure works, we will not follow this approach, but it will help
the reader keeping it in mind when we treat explicit examples.

Remark 4.4 Let f : U → H be a slice regular function, then with the notation intro-
duced in [4], we have that, for any I ∈ S,

• F(z) ∈ ′ if and only if f sv (π(z, I )) �= 0;
• F(z) ∈ ′

k if and only if f
s
v (π(z, I )) �= 0 and pk−1

1 ( f0(π(z, I )), f sv (π(z, I ))) �= 0
(see [4, Section 7]);

• F(z) ∈  if and only if f s(π(z, I )) �= 0 and f0(π(z, I )) �= 0.

Proposition 4.3 σk is k2-to-1 from k to .

Proof We consider W = ρ−1() and Wk = ρ−1(k); if we show that the map sk is
k2-to-1 from Wk to W , the thesis will follow, as sk acts as the identity on S, so the
preimages of a point through sk are sent to different values by ρ.

Given ((v0, v1), s′) ∈ W , the equation sk((u0, u1), s) = ((v0, v1), s′) is satisfied if
and only if s = s′ and

v0 = pk0(u0, u
2
1) v1 = u1 p

k−1
1 (u0, u

2
1) .

These two are polynomial equations in the variables (u0, u1) of (total) degree k, so,
by the affine Bezout theorem, the system they form has at most k2 solutions.
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We set t = u0/u1, as in Wk we have that u1 �= 0, then

pk0(t, 1) = (t + ı)k + (t − ı)k

2
, pk−1

1 (t, 1) = (t + ı)k − (t − ı)k

2ı

so, as v1 = u1 p
k−1
1 (u0, u1) = uk1 p

k−1
1 (t, 1) �= 0 in Wk ,

λ = v0

v1
= ı

(t + ı)k + (t − ı)k

(t + ı)k − (t − ı)k
= ı

1 + Ck(t)

1 − Ck(t)

where C is the Cayley transform introduced in Formula (5), which is an automorphism
of the Riemann sphere, sending ∞ to 1. We have

Ck(t) = λ − ı

λ + ı
= C(λ) (8)

and we note that C(λ) = 0,∞ if and only if λ = ±ı if and only if v0 = ±ıv1 if and
only if v20 + v2 = 0 which does not happen in W .

Therefore, for ((v0, v1), s) ∈ W , we have k distinct solutions t1, . . . , tk to equation
(8). If we fix m ∈ {1, . . . , k}, then u0 = tmu1 and

v1 = uk1 p
k−1
1 (tm, 1) .

Hence, we obtain

uk1 = v1

pk−1
1 (tm, 1)

which has k different solutions ωm,1, . . . , ωm,k for each m ∈ {1, . . . , k}. This gives a
total of k2 solutions of the form (tmωm,n, ωm,n) for m, n ∈ {1, . . . , k}. ��

We are now able to state our result.

Theorem 4.4 The function σk : k →  is a covering map of degree k2.

Proof By Lemma 4.1, σk is a local biholomorphism from k to  and by Proposi-
tion 4.3 it has a constant number of preimages. Therefore it is a covering map. ��

In the last part of this section, we give a brief description of the action of σk outside
k . We define Xk = C

4 \ k and X = C
4 \ . For α ∈ C, we set

Vα = {(z0, z) ∈ C
4 : z20 = αz2}

and

V∞ = {(z0, z) ∈ C
4 : z2 = 0} .
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Notice that if a slice function f = I(F) is such that F takes values in V−1, then
f s ≡ 0, i.e. f is identically zero or a zero divisor with respect to the �-product (see [5,
Section 2.4]).

Collecting everything, if Rk denotes the set of non-negative roots of Qk(t), then

Xk = V−1 ∪ V0 ∪ V∞ ∪
⋃
r∈Rk

Vr2 and X = V−1 ∪ V0 ∪ V∞ .

We now describe the action of σk where it is not a cover.

Proposition 4.5 Let (z0, z) ∈ C
4. We have the following relations:

(1) if (z0, z) ∈ V−1, then σk(z0, z) ∈ V−1;
(2) if (z0, z) ∈ V0 and k is odd, then σk(z0, z) ∈ V0;
(3) if (z0, z) ∈ V0 and k is even, then σk(z0, z) ∈ V∞;
(4) if (z0, z) ∈ V∞, then σk(z0, z) ∈ V∞;
(5) if (z0, z) ∈ Vr2 , with r ∈ Rk, then σk(z0, z) = 0 and hence σk(z0, z) ∈ V∞.

Proof For point (1), it sufficient to notice that if z20 + z2 = 0, then σ2(z0, z) =
(z20 − z2, 2z0z) and (z20 − z2)2 + 4z20z

2 = (z20 + z2)2 = 0.
For points (2) and (3), it is sufficient to recall symmetry properties for Chebyshev

polynomials:

Tn(−x) = (−1)nTn(x) , Un(−x) = (−1)nUn(x) .

We pass now to point (4): in this case, as z2 = 0, then

σk(z0, z) = (zk0Tk(1), zz
k−1Uk−1(1)) = (zk0, zz

k−1Uk−1(1)) ,

and hence σk(z0, z)2 = 0.

The last point (5) is trivial as Rk is the set of non-negative roots of Qk(t) =
(t2 + 1)k−1Uk−1(

t
1+t2

). ��
Remark 4.5 Notice that, if (z0, z) ∈ V−1, then

pk0(z0, z
2) = zk0 pk−1

1 (z0, z
2) = zk−1

0 .

Therefore, σk(z0, z) = zk−1
0 (z0, z) is a k-to-1 covering of V−1 on itself. The same

happens with V∞.

In the next corollary, we interpret Proposition 4.5 in terms of slice regular functions.

Corollary 4.6 Let f = f0 + f1i + f2 j + f3k = f0 + fv : U → H be a slice function.
Then we have the following relations:

(1) if f s ≡ 0, then ( f �k)s ≡ 0;
(2) if f0 ≡ 0 and k is odd, then ( f �k)0 ≡ 0;
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(3) if f0 ≡ 0 and k is even, then ( f �k)sv ≡ 0;
(4) if f sv ≡ 0, then ( f �k)sv ≡ 0;
(5) if f 20 = r2 f sv , with r ∈ Rk, then ( f �k)v ≡ 0 and hence ( f �k)sv ≡ 0.

The proof of this last corollary is a direct application of Proposition 4.5 taking
into account Remark 4.1, but indeed many of statements can be easily deduced from
Proposition 4.5. However, notice that point (5) confirms [4, Proposition 7.4].

5 Global �-Roots of a Slice Function

In this section, we apply the results obtained at the end of the last section for the k-th
power in C⊗H, to obtain results for the k-th �-root of a slice function and at the end,
we also provide a couple of explicit examples. We recall Assumption 2.2 and we add
the following.

Assumption 5.1 From now on, the set U ⊂ Cwill always be a simply connected open
domain such that U = U or the union of two simply connected open domains that are
symmetric with respect to the real line.

This last assumption is consistent with the one adopted in [6] and in [9] where the
authors call the resulting setU basic domain. Notice, in particular, that the hypothesis
of simply connectedness is unavoidable, due to standard theory of lifting maps to a
covering space (see e.g. [16])

Let f : U → H be a slice function. We denote by F : U → C ⊗ H its stem
function. As in the previous sections, with a small abuse of notation, we will identify
C ⊗ H with C

4. So, we will denote with the same symbol the function F when its
range is C4 instead of C ⊗ H (we recall that this identification is explicitly given in
Formula (3)).

Proposition 5.2 If F(U) ⊆ , then there exist k2 functions F1, . . . , Fk2 : U → C⊗H

such that σk ◦ Fm = F for m = 1, . . . , k2 .

Proof This is a direct consequence of Theorem 4.4 and the lifting property of covering
maps. ��

We notice that, by the very definition of σk , if F and G are stem functions defining
two slice functions f and g, respectively, then

F = σk ◦ G ⇔ f = (g)�k .

Remark 5.1 As F is a stem function, then F(z) = F(z). Moreover, by the definition
of σ , we have σk(z) = σk(z). It follows that, if σk ◦ G = F , then

σk(G(z)) = σk(G(z)) = σk(G(z)) .

Therefore, if G is a solution of the equation σk(G) = F on the domain U , then the
function Ĝ(z) = G(z̄) is another solution on the same domain.
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Thanks to the previous remark, we are able to prove the following unexpected result.

Theorem 5.3 If F(U) ⊂  and U ∩ R = ∅, then there exist k2 slice functions fm :
U → H, m = 1, . . . , k2, such that

( fm)�k = f .

Proof From Proposition 5.2 we know that there are k2 functions G1, . . . ,Gk2 : U →
C ⊗ H such that σk ◦ Gm = F . Now, from Remark 5.1 for any m = 1, . . . , k2, there
exists n = 1, . . . , k2, such that Ĝm(z) = Gn(z), for all z ∈ U . Moreover, such n is
unique from Theorem 4.4. Therefore, we can define a function τ : {1, . . . , k2} →
{1, . . . , k2} as τ(m) = n, where n is such that Ĝm(z) = Gn(z) for all z ∈ U . Hence,
we are able to define the following stem functions Fμ : U → C ⊗ H as

Fμ(z) =
{
Gμ(z), if z ∈ U+ ,

Gτ(μ)(z), if z ∈ U−.

Notice that all these stem functions are well defined as U ∩R = ∅. Then, the induced
stem functions f1, . . . , fk2 are such that ( fμ)�k = f for any μ = 1, . . . , k2. ��

The case in which the domain of f has real points follows the general expectation.
However, imposing such a condition on the domain implies greater effort in the proof:
the stem function of any k-th root of f has to be real on U ∩ R.

Remark 5.2 Let R4 denote the set of real points in C
4, corresponding to the set {p +√−1 · 0 : p ∈ H} ⊂ C⊗H, then, on it the projection π : C⊗H× S → H restricts

to the map h : R4 → H given by h(x0, x1, x2, x3) = x0 + x1i + x2 j + x3k. We notice
that σk(R4) ⊆ R

4 for all k and

h ◦ (σk |R4) = hk , (9)

where in the right-hand side we mean the k-th power in the algebra H.

In viewof these considerations, ifG and F are two stem functions such thatσk◦G =
F , then, given x ∈ U ∩ R, F(x) ∈ R

4 and G(x) ∈ R
4 are such that h(G(x))k =

h(F(x)) (the power is understood as an operation inH). As we already know, if F(x)
is outside a critical set, the equation qk = h(F(x)) has exactly k solutions inH, which
correspond to k points in R

4 via h.

Theorem 5.4 If F(U) ⊆  and U ∩ R �= ∅, then there exist k slice functions fm :
U → H, m = 1, . . . , k, such that

( fm)�k = f .

Proof As we know from Theorem 3.4, the map g(q) = qk is a covering map from
H \ S(g) to H \ C(g). An easy computation shows that H \ C(g) = h(R4 ∩ ) and
H \ S(g) = h(R4 ∩ k), where  and k are the sets defined in the previous section.
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Let now x0 be a point in U ∩R, then F(x0) ∈ R
4. Consider q0 = h(F(x0)). Then,

by hypothesis, q0 ∈ H \ C(g), so there exist k preimages of q0 via g in H \ S(g).
Denoting them by q1, . . . , qk , by (9), we have σk(h−1(qm)) = F(x0).

We consider the lift Fm of F via σk such that Fm(x0) = h−1(qm). We will show
that Fm is a stem function.

Consider G(z) = Fm(z̄). As σk(z̄) = σk(z), we have

σk(G(z)) = σk(Fm(z̄)) = σk(Fm(z̄)) .

Now,

σk(Fm(z̄)) = F(z̄) = F(z)

because F is a stem function; so

σk(G(z)) = F(z)

hence G(z) is one of the k2 lifts of F via σk . However, G(x0) = h−1(qm), so G must
coincide with Fm . So

Fm(x̄) = Fm(z)

which means that Fm is a stem function. Let fm be the corresponding slice function,
then, by construction ( fm)�k = f . ��

As an obvious corollary, we get the corresponding statement for slice regular func-
tions, as the map σk is holomorphic.

Corollary 5.5 A slice regular function f satisfying the hypothesis of the previous the-
orem has k slice regular �-kth roots.

In the hypothesis of the previous theorem, given Fm as above and given ξ ∈ C a
primitive k-th root of unity, then Fm,a = ξa Fm is again a lift of F :σk is k-homogeneous,
so

σk(ξ
a Fm(z)) = ξakσk(Fm(z)) = σk(Fm(z)) = F(z) .

If Fm,a(z) = Fn,b(z), then

ξa Fm(z) = ξbFn(z)

again, for z = x0, we obtain that Fm(x0), Fn(x0) ∈ R
4, therefore ξa−b ∈ R. This

is possible if a = b or if 2(a − b) = k (and k is even); in the first case, it follows
that also n = m. So, for k odd, the k2 lifts given by Proposition 5.2 are precisely the
functions Fm,a , with Fm the lift of F via σk such that Fm(x0) = h−1(qm).

Moreover,

Fm,a(z) = ξa Fm(z) = ξ−a Fm(z) = ξ−a Fm(z) = ξ−2a Fm,a(z) .
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Again, if k is odd, the only possibility is a = 0, so that we have k families of k
functions each such that G(z̄) = ξ cG(z) and each family has a different value of
c ∈ {0, . . . , k − 1}.

We now want to show a couple of explicit examples suggesting the general form of
such k-th �-roots. For the convenience of what follows we need to introduce a special
slice regular function.All the previous considerationswill be deepen in the next section
where some algebraic tool will be developed in order to treat the monodromy of the �-
roots. At this stage, we only add a couple of examples showing the different behaviours
of the odd and even cases. Let us begin with the following definition.

Definition 5.6 Let U ⊂ H be an open domain such that U ∩ R = ∅. We define the
slice regular function J : U → H as J (q) = qv

||qv || .

The function J is slice preserving and it is induced by the function

J (z) =
{√−1, z ∈ U+,

−√−1, z ∈ U−,

corresponding to the locally constant complex curve

z �→
{

(ı, 0, 0, 0), z ∈ U+,

(−ı, 0, 0, 0), z ∈ U−.

From the function J it is possible to construct idempotent functions and zero
divisors for the �-product. The prototypes of which are the functions �+, �− : U → H

defined as

�+(q) = 1 − J (q)i

2
, �−(q) = 1 + J (q)i

2
.

These two functions are such that �+��+ = �+ and �+��− ≡ 0.
Thanks to the so-called Peirce decomposition, any slice regular function f defined

on a domain without real points U can be written as f = f+��+ + f−��−, where
f+, f− : U → H are slice regular functions and not zero divisors. The case in
which both f+ and f− are regular polynomials is studied in some details in [7] and
corresponds to the family of slice polynomial functions.

Remark 5.3 Let α + iβ ∈ C, be a k-th root of 1, then, clearly, for any I ∈ S, we have
that (α + Iβ)�k = (α + Iβ)k = 1. Analogously, for any q ∈ H \ R we have the
following equality

(α + J (q)β)�k = (α + J (q)β)k ≡ 1 .

Example 5.1 Let U be a simply connected domain in C and consider the regular poly-
nomial function f : U → H defined as f (q) = q3 + 3q2i − 3q − i = (q + i)�3.
This function preserves the slice Ci , meaning that f (U ∩ Ci ) ⊂ Ci . It corresponds
to the complex curve F : U → C

4 given by F(z) = (z3 − 3z, 3z2 − 1, 0, 0). A
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trivial 3-rd �-root of f is given by g : U → H defined as g0(q) = q + i cor-
responding to the complex curve G0 : U → H defined as G0(z) = (z, 1, 0, 0).

Moreover, if η1 = − 1
2 +

√
3
2 i, η2 = − 1

2 −
√
3
2 i are the two non-trivial cubic root

of the unity in Ci , then g1 = g0η1 and g2 = g0η2 are other cubic �-roots of f ,
corresponding to the complex curves G1(z) = (−z/2 − √

3/2, q
√
3/2 − 1/2, 0, 0)

and G2(z) = (−z/2 + √
3/2,−q

√
3/2 − 1/2, 0, 0), respectively. If U ∩ R = ∅ it is

possible to compute the remaining roots as follows

g0,1(q) =
(

−1

2
+ J (q)

√
3

2

)
g0(q) , g0,2(q) =

(
−1

2
− J (q)

√
3

2

)
g0(q) ,

g1,1(q) =
(

−1

2
+ J (q)

√
3

2

)
g1(q) , g1,2(q) =

(
−1

2
− J (q)

√
3

2

)
g1(q) ,

g2,1(q) =
(

−1

2
+ J (q)

√
3

2

)
g2(q) , g2,2(q) =

(
−1

2
− J (q)

√
3

2

)
g2(q) ,

corresponding to the complex curves

G0,1(z) =
{

η1G0(z) z ∈ U+

η2G0(z) z ∈ U− , G0,2(z) =
{

η2G0(z) z ∈ U+

η1G0(z) z ∈ U− ,

G1,1(z) =
{

η1G1(z) z ∈ U+

η2G1(z) z ∈ U− , G1,2(z) =
{

η2G1(z) z ∈ U+

η1G1(z) z ∈ U− ,

G2,1(z) =
{

η1G2(z) z ∈ U+

η2G2(z) z ∈ U− , G2,2(z) =
{

η2G2(z) z ∈ U+

η1G2(z) z ∈ U− ,

respectively. Notice that all these functions are slice polynomial functions. For
instance, we can write the first one as

g0,1(q) = g0(q)η1��+ + g0(q)η2��− .

The case k even is more involved. For the moment, we only give an example of
what happens for k = 2. In the next section, we will try to explain this phenomenon
from an algebraic point of view.

Example 5.2 Let us consider the function F : C → C
4(� C⊗H) defined by F(z) =

(z2,−z,−z, 1). This function intersects V∞ for z = ±ı/
√
2 (it corresponds to the

slice regular function f (q) = (q − i)�(q − j) = q2 − q(i + j) + k). We have four
solutions of the equation σ2(G) = F around z = ı , namely

G1(z) =
√
2

2
(ı, ı z, ı z,−ı)

G2(z) =
√
2

2
(−ı,−ı z,−ı z, ı)
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and, fixing a determination of the square root of 2z2 + 1 on some open set,

G3(z) =
(√

4z2 + 2

2
,

−z√
4z2 + 2

,
−z√

4z2 + 2
,

1√
4z2 + 2

)

G4(z) =
(

−
√
4z2 + 2

2
,

z√
4z2 + 2

,
z√

4z2 + 2
,− 1√

4z2 + 2

)
.

These lifts “collide” when z approaches ±ı : if we pick the square root such that√−1/2 = ı/
√
2, then G1(ı) = G3(ı) and G2(ı) = G4(ı). Indeed, for z = ±ı/

√
2,

F(±ı/
√
2) /∈ ′, where we do not have 4 square roots, but only 2.

Notice that since Gm(z) = Gm(z), for m = 3, 4, then G3 and G4 correspond to
stem functions but they are not defined on C: we can extend G3 and G4 to any simply
connected open domain V which does not contain±ı/

√
2. If V = π(V), then the slice

regular functions g3 : V → H and g4 : V → H induced by G3 and G4 can be written
as

g3(q) =
√
q2 + 1

2
− q√

4q2 + 2
(i + j) + k√

4q2 + 2
, g4(q) = −g3(q),

respectively, where the existence of the square root of 4q2 + 2 is implicitly implied
by our assumptions.

The phenomenon of reduced solutions (from 4 to 2) is not due to the fact that
some preimages collide when z approaches ±ı/

√
2 (this is what happens at the points

where Dσk is not a local diffeomorphism), but rather to the fact that some preimages
go to infinity, “disappearing”, i.e. the limit of G3 and G4, for z → ±ı

√
2, goes to

infinity. This is an indication of the fact that σk is not proper from C
4 → C

4, but from
C
4 \ k → C

4 \ .
Lastly, as in the previous example, notice that G1(z̄) = G2(z), hence, if V has no

real points, then it is possible to construct the other two square roots of f as explained
in the proof of Theorem 5.3. In particular, the resulting slice regular functions are slice
polynomial functions:

g1(q) = −R(q)��+ + R(q)��− , g2(q) = −g1(q) ,

where R(q) =
√
2
2 [q(1 + k) − i + j].

6 Covering Automorphisms andMonodromy

In this section, we reinterpret the results given in the previous one in terms of covering
automorphisms, obtaining more refined statements and the monodromy of the maps
sk and σk . This will allow us to give a more precise description of what happen in
explicit cases.

123



  207 Page 28 of 37 A. Altavilla, S. Mongodi

Let us begin by considering the following commutative diagram

Wk W

k 

............................................................................................................................................................................. ............
sk

...............................................................................................
...
.........
...

ρ

............................................................................................................................................................................. ............

σk

...............................................................................................
...
.........
...

ρ

where ρ is the map defined in Formula (6) and each arrow is a covering map: more
precisely, ρ is a 2-to-1 covering map and σk , sk are k2-to-1 covering maps.

Given a covering map π : X → Y , we will denote by Autπ the group of automor-
phisms f of X such that π ◦ f = π .

X X

Y

............................................................................................................................................................................. ............
f

.................................................................................................................................. .........
...

π

...............................................................................................................................
...
............

π

Let us now define the following function.

Definition 6.1 Let � : C2 × S → C
2 × S be given by

�((u0, u1), s) = ((u0,−u1),−s).

Remark 6.1 We have that

Autρ = {1, �} ,

where we denoted by 1 the identity automorphism.

We define two actions of C on C
2, as the multiplication by the following two

matrices

z �→ zId z �→ Az

where z ∈ C, Id is the 2 × 2 identity matrix and

Az =
(
Rez −Imz
Imz Rez

)
.

We denote by Uk the group of complex k-th roots of unity. From now onward,
we will only consider maps from C

2 × S to itself of the form ((u0, u1), s) �→
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((g0(u0, u1), g1(u0, u1)), s), so we will consistently omit the component relative to
S.
Remark 6.2 Let f : U → H be a slice regular function. Then if f = f0 + f1i +
f2 j + f3k = f0 + fv , we have that the corresponding complex curve is given by
F(z) = ( f0(z), f1(z), f2(z), f3(z)) = ( f0, fv). Assume that F(U) ⊂ , then its lifts
via ρ are given by

(
( f0,

√
f sv ),

fv√
f sv

)
∈ C

2 × S .

In the next proposition, we compute the monodromy of sk in the case in which k is
odd.

Proposition 6.2 Let k be odd. Then

Autsk = {ξ Aη : ξ, η ∈ Uk} ,

which is isomorphic to the group Zk × Zk .

Proof The map (ξ, η) �→ ξ Aη is a group homomorphism from Uk × Uk to M2,2(C),
indeed,

(ξ Aη)(ξ
′Aη′) = (ξξ ′)Aηη′ .

Now, its kernel is given by the condition ξ Aη = Id, which implies (taking the deter-
minant)

ξ2|η|2 = 1

i.e. ξ2 = 1, i.e. ξ = ±1, but as k is odd, then ξ = 1. Moreover, taking the trace, we
obtain 2Reη = 2, i.e. Reη = 1, which implies η = 1. Hence the kernel is trivial and
the map is injective.

Finally, as sk is k-homogeneous in theC2 component, it is obvious that ξ Id ∈ Autsk
for all ξ ∈ Uk ; on the other hand,

sk((u0, u1), s) = ((pk0(u0, u
2
1), u1 p

k−1
1 (u0, u

2
1)), s)

and by definition (x + √−1y)k = pk0(x, y
2) + √−1ypk−1

1 (x, y2), so, from the fact
that

((Re(η)x − Im(η)y) + √−1(Im(η)x + Re(η)y))k

= ((Re(η) + √−1Im(η))(x + √−1y))k

= ((x + √−1y))k

for η ∈ Uk , it follows that Aη ∈ Autsk .
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Given thatUk ×Uk is generated by (ξ, 1) and (1, η), we obtain that (ξ, η) → ξ Aη

is an injective homomorphism fromUk ×Uk to Autsk . However, the latter has at most
k2 elements (as sk has degree k2), so the map is an isomorphism. ��

We now give an abstract example generalizing Example 5.1. Before providing it,
we recall from [3, Proposition 2.10] that two slice regular functions f = f0 + fv, g =
g0 + gv commute with respect to the �-product if and only if there exist two slice
preserving functions α and β not both identically zero such that α fv + βgv ≡ 0.

Example 6.1 LetU be a simply connected domain such thatU∩R = ∅ and f : U → H

be a slice regular function such that f = f0 + fv . Then clearly f is a cubic �-root of
f �3. By following the procedure of Example 5.1 and the presentation of Autsk given
in Proposition 6.2, we compute the other 8 roots as follows.

f , f �

(
− 1

2 +
√
3
2

fv√
f sv

)
, f �

(
− 1

2 −
√
3
2

fv√
f sv

)
,

(
− 1

2 + J
√
3
2

)
f ,

(
− 1

2 + J
√
3
2

)
f �

(
− 1

2 +
√
3
2

fv√
f sv

)
,
(
− 1

2 + J
√
3
2

)
f �

(
− 1

2 −
√
3
2

fv√
f sv

)
,

(
− 1

2 − J
√
3
2

)
f ,

(
− 1

2 − J
√
3
2

)
f �

(
− 1

2 +
√
3
2

fv√
f sv

)
,
(
− 1

2 − J
√
3
2

)
f �

(
− 1

2 −
√
3
2

fv√
f sv

)
,

where J = J (q) is the slice regular function given in Definition 5.6. Notice that,
thanks to the previous consideration on the commutativity of the �-product, the factors
in all the functions presented above commute. All these functions can be computed
by letting the group Autsk presented in Proposition 6.2 act on the element

(
( f0,

√
f sv ),

fv√
f sv

)
∈ C

2 × S .

In detail, using the notation of Proposition 6.2, the action of ξ corresponds to the
(left) multiplication by a complex number and the action of Aη corresponds to the
right �-multiplication.

Remark 6.3 The previous example shows in practice how to compute all the k-th �-
roots of a slice regular function g, from a given one f , whenever fv√

f sv
is well defined.

In fact, if α + iβ is a complex k-th root of 1, then all the other k-th �-roots of g

can be computed as f ∗
(

α + β
fv√
f sv

)
if the domain intersects the real axis, or as

(α + J β) f ∗
(

α + β
fv√
f sv

)
otherwise.

We now turn our attention to the case when k is even which, as we saw in Exam-
ple 5.2, is more subtle.

Remark 6.4 If k is even, when computing the kernel of (ξ, η) �→ ξ Aη, we obtain

{(1, 1), (−1,−1)}

so the map is not injective and its image is just an index 2 subgroup of Autsk .
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We notice that if λ,μ ∈ U2k are primitive 2k-th roots of 1, then λk = μk = −1,
so

(λAμ)k = λk Aμk = −1(−Id) = Id .

Thanks to this observation, we are able to compute the monodromy of sk when k is
even.

Proposition 6.3 Let k be even and λ,μ ∈ U2k be primitive roots. If we set� = λAμ,
then

Autsk = {ξ Aη�δ : (ξ, η, δ) ∈ Uk ×Uk × {0, 1}} ,

which is isomorphic Zk × Zk .

Proof The image of the map (ξ, η, δ) �→ ξ Aη�δ is clearly contained in Autsk .
This map from Uk × Uk × Z2 to Auts2k is not a group homomorphism; however,

we can factor it through the map from U2k ×U2k → Auts2k , by sending (injectively)
(ξ, η, δ) to (ξλδ, ημδ), so the map (ξ, η, δ) �→ ξ Aη�δ is a 2-to-1 map.

Again, by cardinality, we conclude that

(ξ, η, δ) �→ ξ Aη�δ

is surjective from Uk ×Uk × Z2 onto Autsk .
If now ξ ∈ Uk, μ ∈ U2k are primitive roots of unity (of orders k and 2k, respec-

tively) such that μ2 = ξ , then Autsk is generated by

ξ, Aξ , μAμ .

Moreover, ξ k = Ak
ξ = 1, (μAμ)2 = ξ Aξ , so the group Autsk can be presented as

〈a, b, c | ak, bk, c2(ab)−1, [a, b], [a, c], [b, c]〉

which is isomorphic Zk × Zk as in the case k odd. ��
Example 6.2 Going back to Example 5.2, we notice that U2 = Z2 and, in fact, g1 =
−g2; moreover, the primitive roots of 1 of order 4 are ±ι, so that

g3(q) = J (q)g1(q)�J (g1(q))

and, accordingly, g4 = −g3.

From the theory of covering maps, as the group of automorphism of sk acts transi-
tively on the fibres of sk , then we can state the following result.

Corollary 6.4 The covering map sk is normal (or regular, or Galois).
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Knowing the automorphisms of sk , we now pass to analyse σk .
Given w ∈ , the fibre ρ−1(w) consists of two points v and �(v) inW , where � is

the function defined in Remark 6.1; ρ is then a bijection from s−1
k (v) to σ−1

k (w) and
from s−1

k (�(v)) to the same set. As sk is normal, the elements of Autsk are uniquely
defined by their action on s−1

k (v), so that each of them corresponds to a different
element of the group of permutations of (s)−1

k (v) denoted by Perm(s−1
k (v)), which is

isomorphic, via ρ, to Perm(σ−1
k (w)).

Given a neighbourhood U of w in , which is uniformly covered by σk , we can
extend each deck transformation of σ−1

k (w) to an automorphism of σ−1
k (U ) (which

is diffeomorphic to the disjoint union of k2 copies of U ). We can suppose (up to
shrinking) that U is also uniformly covered by ρ and that, in turn, each connected
component of ρ−1(U ) is uniformly covered by sk .

The restriction of the automorphisms in Autsk to the connected components of
s−1
k (ρ−1(U )) correspond, via ρ, to the extension of the deck transformations of

σ−1
k (w) to σ−1

k (U ).

Proposition 6.5 The groupAutσk is isomorphic toZk . In particular,σk is never regular.

Proof By the discussion above, given F ∈ Autσk , there is G ∈ Autsk such that

F ◦ ρ = ρ ◦ G .

Therefore, ρ ◦ G = ρ ◦ G ◦ � and, as G is an automorphism, this happens if and
only if G ◦ � = � ◦ G. Given (u, s) ∈ C

2 × S, there exist ξ, η ∈ Uk such that
G(u, s) = (ξ Aηu, s), so we want that

(ξQAηu,−s) = (ξ AηQu,−s)

for all (u, s), where

Q =
(
1 0
0 −1

)
.

In conclusion, we need that AηQ = QAη. Writing η = a + ıb, we have

(
a −b

−b −a

)
=
(
a b
b −a

)

which holds if and only if b = −b, i.e. b = 0.
For k odd, this implies η = 1, for k even, we obtain η = ±1. In both cases, we

obtain that G is of the form

G(u, s) = G(ξu, s)

so the corresponding F ∈ Autσk is of the form F(z) = ξ z, with z ∈ k ⊂ C
4 and

ξ ∈ Uk , which obviously form, under composition, the group Zk .
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Given that σk is a covering map of degree k2, this implies that it is not a regular
covering. ��
Example 6.3 Comparing with Example 5.1, we notice that for any � = 0, 1, 2, the
orbit g�, its orbit in Autσk is given by {g�, g�,1, g�,2}.

We have already exploited the existence of the automorphisms z �→ ξ z in the
discussion after Theorem 5.4, to obtain, in the odd case, all the roots from the intrinsic
ones. However, if our slice function corresponds to a stem function defined on a
symmetric simply connected open domain (or on a union of two symmetric simply
connected open domain) U ⊆ C, we completely describe all the k2 roots. We recall
here that, as already stated, the hypothesis of simply connectedness is not removable
due to standard covering theory. In the last part of this paper, we provide algebraic
techniques to compute all the k-th �-roots of a given slice functions, starting from one
of them.

6.1 Permutations of k-th Roots

Suppose now that we are given a slice function f : U → H and its stem function
F : U → C

4 � C ⊗ H, with U simply connected and F(U) ⊆ .
By Proposition 5.2, the set

G = {G : U → k : σk ◦ G = F}

contains k2 elements. By the properties of covering automorphisms we have that
Autσk acts on G by (post-)composition, partitioning it in k orbits with k elements each.
Explicitly, given ξ ∈ Uk , the map G �→ ξG is a permutation of G without fixed points
(unless ξ = 1).

Proposition 6.6 Let G ∈ G and fix H : U → Wk such that ρ ◦ H = G. Then for each
τ ∈ Autsk the function

Gτ = ρ ◦ τ ◦ H

belongs to G.
Proof We have that σk ◦ Gτ = σk ◦ ρ ◦ τ ◦ H . We know that σk ◦ ρ = ρ ◦ sk and
sk ◦ τ = sk , so

σk ◦ Gτ = ρ ◦ sk ◦ τ ◦ H = ρ ◦ sk ◦ H = σk ◦ ρ ◦ H = σk ◦ G .

Therefore, Gτ ∈ G. ��
Thanks to Proposition 6.6, we recover all the k2 functions in G from one of them.

We note that the map τ �→ Gτ is not an action of Autsk on G, as the different possible
choices of H such that ρ ◦ H = G result in different definitions for Gτ and there is
not a coherent way to choose such an H for all the G ∈ G. In order to obtain a result
in this direction, we now reinterpret some computation given in the previous section
with the language of cover automorphisms (see Remark 5.1).
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Definition 6.7 Given G : U → C
4, we define TG : U → C

4 as TG(z) = G(z̄).

The previous definition reinterpret in the language of curves in C4 what previously
was defined in the context of C ⊗ H (see Remark 5.1).

Lemma 6.8 We have that

(1) T TG = G;
(2) if ξ ∈ Uk, T (ξG) = ξ̄TG;
(3) if G ∈ G, then TG ∈ G;
(4) the subgroup of PermG generated by Autσk and T is isomorphic to the dihedral

group.

Proof The first and second statements are obvious.
Given G ∈ G, σk(G(z)) = F(z) so T (σk ◦ G) = T F = F (because F is the

stem function of a slice function). Moreover, σk has polynomial components with real
coefficients, so

σkTG(z) = σk(G(z̄)) = σk(G(z̄)) = Tσk ◦ G(z) = F(z) ,

which implies TG ∈ G.
Autσk ∼= Uk ∼= Zk acts on G by scalar multiplication. Given ξ a primitive k-th root

of unity, we have that the group generated by ξ and T has the following presentation

〈ξ, T | ξ k, T 2, ξT ξ = T 〉

(once we notice that ξ̄ = 1/ξ ), which is the standard presentation of the dihedral
group. ��

The last statement of Lemma 6.8 defines an action of the dihedral group on G.
In the next theorem,we show, in the case k odd, how to recover all the stem functions

in G starting from one of them.

Theorem 6.9 If k is odd and F is a fixed point for T (i.e. if it is a stem function), then
there exist k functions G : U → C

4 such that

σk ◦ G = F TG = G .

Example 6.4 In Example 5.1, the functions fixed by T are the stem functions of g0, g1
and g2.

Proof If k is odd, there is always at least one element of G such that TG = G, because
T is an involution. If we consider the elements τ of Autsk induced by the matrices
Aη, with η ∈ Uk , then the corresponding functions Gτ obtained via Proposition 6.6
are all fixed points of T : Gτ = ρ ◦ τ ◦ H and H(z) = (u(z), s(z)), so τ ◦ H(z) =
(Aηu(z), s(z)), which means that

TGτ = ρ(Aηu(z̄), s(z̄)) = ρ(Aηu(z̄), s(z̄))
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because Aη is a real matrix, and, as TG = G, u(z̄) = u(z) and s(z̄) = s(z).
Therefore, k elements of G are fixed points for T . ��

Remark 6.5 Notice that the previous theorem is not a rephrased version ofTheorem5.4.
In fact, in this last result, we are not assuming that the domain intersects the real line and
yet we obtain that, at the level of stem functions, k solutions are Schwarz-symmetric.

As in the previous section, the result for k even needs some additional efforts: let
F ′ : U → C

2 × S be such that ρ ◦ F ′ = F ; define

G′ = {G ′ : U → C
2 × S : sk ◦ G ′ = F ′}

and define TG ′(z) = G ′(z̄), where, if z = ((u0, u1), s), then z = ((u0, u1), s) =
((ū0, ū1), s̄).

If F is a stem function, then T F ′ = F ′.

Lemma 6.10 We have that

(1) T TG ′ = G ′
(2) if G ′ ∈ G′, then TG ′ ∈ G′
(3) for each G ′ ∈ G′, there exists τG ′ ∈ Autsk such that TG ′ = τG ′ ◦ G ′
(4) τG ′ is always of the form (u, s) �→ (ξu, s).

Proof The first and the second statements are analogous to the ones in Lemma 6.8.
The third statement follows from the uniqueness of the lifts through a covering

map.
For the fourth, we note that, if τ(u, s) = (Aηu, s), then T (τ ◦ G ′) = τ ◦ TG ′. By

(1), T TG ′ = G ′, so, if TG ′ = τ ◦ G ′, we have that

T TG ′ = T (τ ◦ G ′) = τ ◦ TG ′ = τ ◦ τ ◦ G ′

i.e. τ ◦τ is the identity, which implies Aη = ±I (so, τ is of the form (u, s) �→ (ξu, s)).
��
Remark 6.6 Given η ∈ Uk , let τη ∈ Autsk be of the form τη(u, s) = (ηu, s), then

T (τη ◦ G ′) = τη̄TG
′ = τη̄ ◦ τG ′ ◦ G ′ = τη̄2 ◦ τG ′ ◦ τη ◦ G ′ .

Therefore, if G ′′ = τη ◦ G ′, then

τG ′′ = τη̄2 ◦ τG ′ .

On the other hand, if τ(u, z) = (Aηu, s) and G ′′ = τ ◦ G ′, then τG ′′ = τG ′ , as shown
in the end of the proof of Lemma 6.10.

Therefore, given G ′ ∈ G′, τG ′(u, s) = (ξu, s) with ξ ∈ Uk , we can always find τ

in Autsk such that τ ◦ τ = τξ , so that, setting G ′′ = τ ◦ G ′, we have

τG ′′ = 1 .
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So, we have found an element of G′ such that TG ′′ = G ′′; we also know that, for
all η ∈ Uk , given τ ∈ Autsk , τ ◦ G ′′ is again a fixed point for T .

By composing with ρ and considering also the previous Theorem, we have proved
the following

Theorem 6.11 If F is a fixed point for T (i.e. if it is a stem function), then there exist
k functions G : U → C

4 such that

σk ◦ G = F TG = G .

Example 6.5 In Example 5.2 the functions fixed by T are the stem functions of g3 and
g4.
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