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Abstract
For analytic functions g on the unit disk with non-negative Maclaurin coefficients,
we describe the boundedness and compactness of the integral operator Tg( f )(z) =∫ z
0 f (ζ )g′(ζ ) dζ from a space X of analytic functions in the unit disk to H∞, in
terms of neat and useful conditions on the Maclaurin coefficients of g. The choices
of X that will be considered contain the Hardy and the Hardy–Littlewood spaces, the
Dirichlet-type spaces Dp

p−1, as well as the classical Bloch and BMOA spaces.

Keywords Bloch space · Bounded mean oscillation · Dirichlet-type Space · Duality ·
Hardy space · Hardy–Littlewood space · Integral operator

Mathematics Subject Classification 30H10 · 45P05

1 Introduction andMain Results

LetH(D) denote the space of analytic functions in the unit diskD = {z ∈ C : |z| < 1}.
Each g ∈ H(D) induces the integral operator defined by
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Tg( f )(z) =
∫ z

0
f (ζ )g′(ζ ) dζ, z ∈ D.

The question of when this operator is either bounded or compact has been extensively
studied in a large variety of spaces of analytic functions since the appearance of
the seminal works, related to the Hardy and Bergman spaces, due to Aleman, Cima,
Pommerenke and Siskakis [1, 2, 25]. Getting neat conditions on the symbol g which
describe the bounded and compact operators Tg acting fromaBanach space X ⊂ H(D)

to theHardy space H∞ is known to be a tough problem [3, 4, 26]. However, recently an
abstract approach to the study of this question was given in [4]. One of the basic results
there is the reproducing kernel dual testing condition provided in [4,Theorem 2.2]. It
states that, if X� � Y via the H(β)-pairing

〈 f , g〉H(β) = lim
r→1−

∞∑

n=0

f̂ (n)ĝ(n)βnr
n, f (z) =

∞∑

n=0

f̂ (n)zn, g(z) =
∞∑

n=0

ĝ(n)zn,

where limn→∞ n
√

βn = 1, then Tg : X → H∞ is bounded if and only if

supz∈D
∥
∥
∥G

H(β)
g,z

∥
∥
∥
Y

< ∞, where

GH(β)
g,z (w) =

∫ z

0
g′(ζ )K H(β)

ζ (w) dζ = T ∗
g (K H(β)

z )(w), z ∈ D, w ∈ D,

and K H(β)
ζ are the reproducing kernels of the Hilbert space H(β).

Theoretically, the above relatively simple result offers a characterization of the
boundedness in the case of most of the natural spaces one can think of. However, if
one tries to apply this in praxis one observes that it looks like a reformulation rather
than a solution of the problem. This is due to the fact that treating the function GH(β)

g,z
in the dual space of X is often laborious if not even frustrating. Because of these
reasons, in this study, we restrict ourselves to the case in which the symbol g has non-
negative Maclaurin coefficients, and search for neat and useful conditions in terms
of the Maclaurin coefficients of g that can be used to test if Tg is either bounded or
compact from X to H∞. The starting point is the characterization [4,Theorem 2.2]
given above, and the choices for X that will be considered in the sequel contain the
Hardy and the Hardy–Littlewood spaces, and certain Dirichlet-type spaces, as well as
the classical Bloch space and BMOA. Next, the main findings of this study along with
necessary definitions are stated.

For 0 < p ≤ ∞, the Hardy space H p consists of f ∈ H(D) for which

‖ f ‖H p = sup
0<r<1

Mp(r , f ) < ∞,

where

Mp(r , f ) =
(

1

2π

∫ 2π

0
| f (reiθ )|p dθ

) 1
p

, 0 < p < ∞,
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and

M∞(r , f ) = max
0≤θ≤2π

| f (reiθ )|.

Further, f ∈ H(D) belongs to the Dirichlet-type space Dp
p−1 if

‖ f ‖p
Dp

p−1
=

∫

D

| f ′(z)|p(1 − |z|)p−1 d A(z) + | f (0)|p < ∞,

where d A(z) = dx dy
π

is the normalized area measure on D. The closely related
Hardy–Littlewood space HLp contains those f ∈ H(D)whoseMaclaurin coefficients
{ f̂ (n)}∞n=0 satisfy

‖ f ‖p
HLp

=
∞∑

n=0

| f̂ (n)|p(n + 1)p−2 < ∞.

These spaces satisfy the well-known inclusions

Dp
p−1 ⊂ H p ⊂ HLp, 0 < p ≤ 2, (1.1)

and

HLp ⊂ H p ⊂ Dp
p−1, 2 ≤ p < ∞, (1.2)

by [5, 6, 11]. Each of these inclusions is strict unless p = 2, in which case all the
spaces are the same by direct calculations or straightforward applications of Parseval’s
formula and Green’s theorem.

Our first main result reveals that Tg does not distinguish H p, HLp and Dp
p−1 when

it acts boundedly or compactly from one of these spaces to H∞, provided 1 < p < ∞
and the symbol g has non-negativeMaclaurin coefficients.Here, as usual, the conjugate
index of 1 < p < ∞ is the number p′ such that 1

p + 1
p′ = 1.

Theorem 1 Let 1 < p < ∞ and g ∈ H∞ such that ĝ(n) ≥ 0 for all n ∈ N ∪ {0}.
Further, let X p ∈ {H p, Dp

p−1,HLp}. Then Tg : X p → H∞ is bounded (equivalently
compact) if and only if

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′

< ∞. (1.3)

Moreover,

‖Tg‖p′
X p→H∞ �

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′

. (1.4)
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On the way to Theorem 1, we show in Theorem 10 below that for each g ∈ H(D)

we have

‖Tg‖p′
X p→H∞ �

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)|̂g(n + 1)|
n + k + 1

)p′

(1.5)

for each X p ∈ {H p, Dp
p−1HLp}. This observation offers a relatively easy way to see

if a given general symbol g induces a bounded operator on the Hardy space H p with
1 < p < ∞.

The proof of Theorem 1 relies on [4,Theorem 2.2], and duality relations for H p,
Dp

p−1 and HLp with 1 < p < ∞. The dual of H p is of course isomorphic to H p′

via the H2-pairing (the Cauchy-pairing), and certainly many experts working on the

field now that (Dp
p−1)

� � Dp′
p′−1 and (HLp)

� � HLp′ via the same pairing. Since we
do not know exact references for the last-mentioned two dualities, we give proofs in
Sect. 2 where also other less obvious duality relations are treated. Another tool that
we will employ in the proof of Theorem 1 is of technical nature, and concerns smooth
universal Cesáro basis of polynomials [17,Section 5.2]. The proof of Theorem 1 is
presented in Sect. 3.

If 0 < p < 1, then Tg : H p → H∞ is bounded if and only if g is a constant by
[4,Theorem 2.5(vi)]. Further, by [4,Theorem 4.2(ii)], Tg : H1 → H∞ is compact if
and only if g is a constant. Therefore, the same conclusions are valid for Tg acting on
HLp by (1.1). The following result clarifies the situation with regard to the Dirichlet-
type spaces Dp

p−1. Here and from now on T (X , H∞) (resp. Tc(X , H∞)) denotes the
set of g ∈ H(D) such that Tg : X → H∞ is bounded (resp. compact).

Theorem 2 Let g ∈ H∞ and X p ∈ {H p, Dp
p−1,HLp}. Then the following assertions

hold:

(i) If

sup
k∈N∪{0}

(

(k + 1)
∞∑

n=0

(n + 1)|̂g(n + 1)|
n + k + 1

)

< ∞,

then g ∈ T (X1, H∞). In particular, T (X1, H∞) contains all g ∈ H(D) such
that

∑∞
n=0(n + 1)|̂g(n + 1)| < ∞;

(ii) T (X p, H∞) consists of constant functions only if 0 < p < 1;
(iii) Tc(X1, H∞) consists of constant functions only.

In the proof of Theorem 2, we use identifications of the duals of HL1 and Dp
p−1

with 0 < p ≤ 1. Since many dual spaces X� can be described, via the H2-pairing, as
the space of coefficient multipliers from X to the disk algebra [15,Proposition 1.3], a
natural characterization of the dual of HL1 is easy to find by using the relation (�1)� �
�∞. We do this in Sect. 2 when we prove Lemma 8 which states that (HL1)

� � HL∞
via the H2-pairing with equivalence of norms. The space HL∞ consists of f ∈ H(D)
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such that its Maclaurin coefficients { f̂ (n)}∞n=0 satisfy

‖ f ‖HL∞ = sup
n∈N∪{0}

(| f̂ (n)|(n + 1)
)

< ∞.

To find a suitable dual of Dp
p−1 with 0 < p ≤ 1 is not that straightforward. Lemma 6

in Sect. 2 states that (Dp
p−1)

� � B2 via the A2
1
p −1

-pairing. Here A2
β refers to the

Bergman Hilbert space induced by the standard weight (β + 1)(1 − |z|2)β . Further,
for 0 < α < ∞ and f ∈ H(D), the α-Bloch space Bα consists of f ∈ H(D) such
that

‖ f ‖Bα = sup
z∈D

| f ′(z)|(1 − |z|2)α + | f (0)| < ∞.

The proof of the duality relation (Dp
p−1)

� � B2 is lengthy, and apart from standard
tools, such asGreen’s theoremand continuous embeddings between differentweighted
Bergman spaces, it also relies on a use of smooth universalCesáro basis of polynomials.
The last-mentioned creatures are used to show that a certain function, dependent of p,
is a coefficient multiplier of B2.

The next result is the counterpart of Theorem 1 in the case p = 1. It also proves
that the statement in Theorem 2(i) is sharp. Observe that (1.6) is the limit case p′ = ∞
of (1.4), and that the supremum there is in fact the limit as k → ∞ since the quantity
over which the supremum is taken is increasing in k.

Theorem 3 Let g ∈ H∞ such that ĝ(n) ≥ 0 for all n ∈ N ∪ {0}, and X1 ∈
{H1, D1

0,HL1}. Then Tg : X1 → H∞ is bounded if and only if

sup
k∈N∪{0}

(

(k + 1)
∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)

< ∞. (1.6)

Moreover,

‖Tg‖X1→H∞ � sup
k∈N∪{0}

(

(k + 1)
∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)

. (1.7)

Theorem 3 is relatively straightforward to establish once the tools needed for The-
orem 2 are on the table. Both of these theorems are proved in Sect. 4.

Our last result concerns the case when Tg acts from the Bloch space or BMOA
to H∞. Recall that the classical Bloch space B is just the space B1 defined before
Theorem 3. Further, let

‖ f ‖H∞
log

= sup
z∈D

| f (z)|
(

log
e

1 − |z|
)−1

,
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and recall that BMOA consists of the functions in the Hardy space H1 that have
bounded mean oscillation on the boundary T. The space BMOA can be equipped with
several different norms [8]. We will use the one given by

‖g‖2BMOA = sup
a∈D

∫
S(a)

|g′(z)|2(1 − |z|2) d A(z)

1 − |a| + |g(0)|2,

where S(a) = {ζ : 1 − |a| < |ζ | < 1, | arg ζ − arg a| < (1 − |a|)/2} is the Carleson
square induced by a ∈ D \ {0} and S(0) = D. It is well known that

‖ f ‖H∞
log

� ‖ f ‖B � ‖ f ‖BMOA � ‖ f ‖H∞ , f ∈ H(D). (1.8)

Our last main result says that Tg does not distinguish BMOA, B and H∞
log when it

acts boundedly or compactly from one of these spaces to H∞, if the symbol g has
non-negative Maclaurin coefficients.

Theorem 4 Let X ⊂ H(D) be a Banach space such that BMOA ⊂ X ⊂ H∞
log and

let g ∈ H∞ with ĝ(n) ≥ 0 for all n ∈ N ∪ {0}. Then the following statements are
equivalent:

(i) Tg : H∞
log → H∞ is bounded (equivalently compact);

(ii) Tg : X → H∞ is bounded (equivalently compact);
(iii) Tg : BMOA → H∞ is bounded (equivalently compact);
(iv)

∑∞
n=0 ĝ(n + 1) log(n + 2) < ∞;

(v)
∫ 1
0 M∞(r , g′) log e

1−r dr < ∞.

Moreover,

‖Tg‖BMOA→H∞ � ‖Tg‖X→H∞ � ‖Tg‖H∞
log→H∞ �

∫ 1

0
M∞(r , g′) log e

1 − r
dr

�
∞∑

n=0

ĝ(n + 1) log(n + 2).
(1.9)

The proof of Theorem 4, given in Sect. 5, reveals that

‖Tg‖H∞
log→H∞ �

∫ 1

0
M∞(r , g′) log e

1 − r
dr �

∞∑

n=0

|̂g(n + 1)| log(n + 2)

for each g ∈ H(D). The hypothesis on the coefficients is only used when the right
most quantity above is dominated by the operator norm.

Probably the most obvious election for the space X in the statement of Theorem 4
is the classical Bloch space B. However, there are other choices for X which arise
naturally in the theory of integral operators, see Sect. 5 for further details.

The hypothesis g ∈ H∞ in Theorems 1-4 is not a restriction, because it is an
obvious necessary condition for Tg : X → H∞ to be bounded.
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It is worth mentioning that the smallest space X that we work with regarding
bounded and compact operators Tg : X → H∞ is BMOA which is in a sense
much larger than H∞. It does not seem straightforward to deal with the case X =
H∞ even in the case when the symbol g has non-negative Taylor coefficients. The
approach that we use here to prove Theorems 1-4 is based on the abstract solution to
characterize T (X , H∞) given in [4]. In the case X = H∞, it takes us to calculate

supz∈D
∥
∥
∥GH2

g,z

∥
∥
∥K < ∞, where K is the space of Cauchy transforms. The space K is

endowed the total variation norm which seems pretty untreatable for our auxiliary
function GH2

g,z .
To this end, couple of words about the notation used in this paper. The letter C =

C(·)will denote an absolute constant whose value depends on the parameters indicated
in the parenthesis, and may change from one occurrence to another. If there exists a
constant C = C(·) > 0 such that a ≤ Cb, then we write either a � b or b � a.
In particular, if a � b and a � b, then we denote a � b and say that a and b are
comparable.

2 Dualities

In this section we will discuss the duality relations employed to prove the main results
of the paper. Apart from the well-known relation (H p)� � H p′

, 1 < p < ∞, we will
need to know the dual spaces, with respect to appropriate pairings, of Dp

p−1 and HLp

for 0 < p ≤ 1 and 1 < p < ∞, respectively.
The following lemma describes the dual of the Dirichlet-type space Dp

p−1 when
1 < p < ∞, and it will be needed in the proof of Theorem 1. We believe that the
result itself must be known at least by experts working on the field, but since we do
not know an exact reference, we include a proof here.

Lemma 5 Let 1 < p < ∞. Then (Dp
p−1)

� � Dp′
p′−1 via the H2-pairing with equiva-

lence of norms.

Proof Let us first show that each g ∈ Dp′
p′−1 induces a bounded linear functional on

Dp
p−1. Green’s theorem implies

〈 f , g〉H2 = 2
∫

D

f ′(ζ )g′(ζ ) log
1

|ζ | d A(ζ ) + f (0)g(0), (2.1)

from which Hölder’s inequality yields

|〈 f , g〉H2 | �
∫

D

| f ′(ζ )||g′(ζ )|(1 − |ζ |) d A(ζ ) + | f (0)||g(0)| � ‖ f ‖Dp
p−1

‖g‖
Dp′
p′−1

, f , g ∈ H(D),

where the first step is an easy consequence of the inequality − log t ≤ 1
t (1− t), valid

for all 0 < t ≤ 1, and the monotonicity of Mp(r , h) for each 0 < p < ∞ and

h ∈ H(D). Thus each g ∈ Dp′
p′−1 induces a bounded linear functional on Dp

p−1 via

the H2-pairing.
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Let now L be a bounded linear functional on Dp
p−1. Consider the weights ω(z) =

−2 log |z| and ν(z) = (−2 log |z|) 1
p−1 , defined in the punctured unit disk. The proof of

[21,Theorem 3] now shows that the Bergman projection Pω, induced by ω, is bounded

from L p′
ν into itself because the weight

(
ω
ν

)p
ν = ωp−1 is sufficiently smooth. It then

follows from the proof of [21,Theorem 6] and standard arguments that (Ap
p−1)

� �
Ap′
p′−1 under the pairing

〈 f , g〉A2
ω

= 2
∫

D

f (z)g(z) log
1

|z| d A(z).

We note that this duality relation of the weighted Bergman spaces is essentially con-
tained in [12,Theorem 2.1] as a special case, but with respect to a slightly different
pairing. The method there would certainly work also in our setting and therefore
offers an alternative way to deduce this duality. Getting back to the proof of the
lemma, we observe that, for each f ∈ Dp

p−1, there exists F = Ff ∈ Ap
p−1 such that

I(F) = f − f (0), where I(F)(z) = ∫ z
0 F(ζ ) dζ . Further, I is an isometric mapping

from Ap
p−1 to Dp

p−1, in particular, it is bounded. Therefore the composition L ◦ I is a

bounded linear functional on Ap
p−1, and hence there exists a unique G ∈ Ap′

p′−1 such
that ‖G‖

Ap′
p′−1

� ‖L ◦ I‖ � ‖L‖ and

L( f ) = L( f − f (0) + f (0)) = (L ◦ I)(F) + f (0)L(1)

= 2
∫

D

F(z)G(z) log
1

|z|d A(z) + f (0)L(1)

= 2
∫

D

f ′(z)G(z) log
1

|z|d A(z) + f (0)L(1).

Further, since G ∈ Ap′
p′−1, there exists a unique g ∈ Dp′

p′−1 such that g′ = G and

g(0) = L(1). Consequently, there exists a unique g ∈ Dp′
p′−1 such that

L( f ) = 2
∫

D

f ′(z)g′(z) log 1

|z|d A(z) + f (0)g(0) = 〈 f , g〉H2 ,

where the last identity follows from (2.1). Moreover, ‖g‖p′

Dp′
p′−1

= ‖G‖p′

Ap′
p′−1

+
|L(1)|p′ � ‖L‖p′

, and the assertion is proved. ��
To prove Theorems 2 and 3, we need to know the dual of Dp

p−1 with 0 < p ≤ 1.
In order to do that, some more notation is needed. For 0 < α < ∞, the space H∞

α

consists of f ∈ H(D) such that

‖ f ‖H∞
α

= sup
z∈D

| f (z)|(1 − |z|2)α < ∞.
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It is well known that

‖ f ‖H∞
α

� ‖ f ‖Bα+1 , f ∈ H(D), (2.2)

for each 0 < α < ∞.
We will also need background on certain smooth polynomials defined in terms of

Hadamard products. Recall that the Hadamard product of f ∈ H(D) and g ∈ H(D)

is formally defined as

( f ∗ g)(z) =
∞∑

k=0

f̂ (k)ĝ(k)zk, z ∈ D.

A direct calculation shows that

( f ∗ g)(r2eit ) = 1

2π

∫ π

−π

f (rei(t+θ))g(re−iθ ) dθ. (2.3)

If W (z) = ∑
k∈J bkz

k is a polynomial and f ∈ H(D), then the Hadamard product

(W ∗ f )(z) =
∑

k∈J

bk f̂ (k)z
k

is well defined. Further, if � : R → C is a C∞-function with compact support
supp(�) in (0,∞), set

A�,m = max
s∈R |�(s)| + max

s∈R |�(m)(s)|,

and consider the polynomials

W�
n (z) =

∑

k∈Z
�

(
k

n

)

zk, n ∈ N. (2.4)

With this notationwe can state the next auxiliary result that follows by [17,p. 111–113].

Theorem A Let � : R → C be a C∞-function such that supp(�) ⊂ (0,∞) is
compact. Then for each p ∈ (0,∞) and m ∈ N with mp > 1, there exists a constant
C = C(p) > 0 such that

‖W�
N ∗ f ‖H p ≤ CA�,m‖ f ‖H p

for all f ∈ H p and N ∈ N.

Theorem A shows that the polynomials {W�
n }n∈N can be seen as a universal Césaro

basis for H p for any 0 < p < ∞. A particular case of the previous construction is
useful for our purposes. By following [9,Section 2], let � : R → R be a C∞-function
such that

123
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(1) � ≡ 1 on (−∞, 1],
(2) � ≡ 0 on [2,∞),
(3) � is decreasing and positive on (1, 2),

and set ψ(t) = �
( t
2

) − �(t) for all t ∈ R. Let V0(z) = 1 + z and

Vn(z) = Wψ

2n−1(z) =
∞∑

k=0

ψ

(
k

2n−1

)

zk =
2n+1−1∑

k=2n−1

ψ

(
k

2n−1

)

zk, n ∈ N. (2.5)

These polynomials have the following properties with regard to smooth partial sums,
see [9,p. 175–177] or [16,p. 143–144] for details:

f (z) =
∞∑

n=0

(Vn ∗ f )(z), f ∈ H(D),

‖Vn ∗ f ‖H p ≤ C‖ f ‖H p , f ∈ H p, 0 < p < ∞,

‖Vn‖H p � 2n(1−1/p), 0 < p < ∞.

(2.6)

With these preparations, we can describe the dual of Dp
p−1 with 0 < p ≤ 1.

Lemma 6 Let 0 < p ≤ 1. Then (Dp
p−1)

� � B2 via the A2
1
p −1

-pairingwith equivalence

of norms.

Proof Let f , g ∈ H(D). Then Green’s formula and Fubini’s theorem yield

|〈 f , g〉A21
p −1

| =
∣
∣
∣
∣

∫

D

f (z)g(z)(1 − |z|2) 1
p −1

d A(z)

∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ 1

0

(

2
∫

D

f ′(r z)rg′(r z)r log 1

|z| d A(z) + f (0)g(0)

)

(1 − r2)
1
p −1

r dr

∣
∣
∣
∣
∣

≤ 2
∫

D

| f ′(ζ )|g′(ζ )|
(∫ 1

|ζ |
log

r

|ζ | (1 − r2)
1
p −1

r dr

)

d A(ζ ) + | f (0)||g(0)|.

The inequality − log t ≤ 1
t (1 − t), valid for all 0 < t ≤ 1, now gives

∫ 1

|ζ |
log

r

|ζ | (1 − r2)
1
p −1r dr ≤ 2

1
p log

1

|ζ |
∫ 1

|ζ |
(1 − r)

1
p−1 dr

≤ p2
1
p
(1 − |ζ |)1+ 1

p

|ζ | , ζ ∈ D \ {0}.
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By using this and the continuous embedding Ap
p−1 ⊂ A1

1
p −1

, valid for 0 < p ≤ 1 by

[13,Theorem 1], we deduce

|〈 f , g〉A2
1
p −1

| ≤ p2
1
p

∫

D

| f ′(ζ )||g′(ζ )| (1 − |ζ |)1+ 1
p

|ζ | d A(ζ ) + | f (0)||g(0)|

� ‖g‖B2

∫

D

| f ′(ζ )|(1 − |ζ |) 1
p −1 d A(ζ ) + | f (0)||g(0)| � ‖g‖B2‖ f ‖Dp

p−1
,

and hence each g ∈ B2 induces a bounded linear functional on Dp
p−1 via the A2

1
p −1

-

pairing.
Let L ∈ (Dp

p−1)
�, and recall that I(F)(z) = ∫ z

0 F(ζ ) dζ . Then |(L ◦ I)(F)| �
‖I(F)‖Dp

p−1
= ‖F‖Ap

p−1
for all F ∈ Ap

p−1. Therefore L◦I ∈ (Ap
p−1)

�. Since (Ap
p−1)

�

is isomorphic to the Bloch space via the A2
1
p −1

-pairing by [29,TheoremA], there exists

a unique G ∈ B such that ‖G‖B � ‖L ◦ I‖ � ‖L‖ and (L ◦ I)(F) = 〈F,G〉A2
1
p
−1

for all F ∈ Ap
p−1. For each f ∈ Dp

p−1, there exists F = Ff ∈ Ap
p−1 such that

I(F) = f − f (0). Therefore

L( f ) = L( f − f (0) + f (0)) = L( f − f (0)) + f (0)L(1)

= L(I(F)) + f (0)L(1) = 〈F,G〉A2
1
p −1

+ f (0)L(1)

= 〈 f ′,G〉A2
1
p −1

+ f (0)L(1), f ∈ Dp
p−1.

By denoting

wn,p =
∫ 1

0
r2n+1(1 − r2)

1
p−1 dr , n ∈ N ∪ {0},

we deduce

〈 f ′,G〉A21
p −1

= lim
r→1−

∫

D

r f ′(r z)G(z)(1 − |z|2) 1
p −1

d A(z)

= lim
r→1−

∫

D

( ∞∑

n=0

f̂ (n + 1)(n + 1)r(r z)n
)⎛

⎝
∞∑

k=0

Ĝ(k)zk

⎞

⎠ (1 − |z|2) 1
p −1

d A(z)

= lim
r→1− 2π

∞∑

n=0

f̂ (n + 1)rn+1
(

wn,p

wn+1,p
(n + 1)Ĝ(n)

)

wn+1,p

= lim
r→1−

∫

D

∞∑

n=0

f̂ (n + 1)(r z)n+1
∞∑

k=0

(
wk,p

wk+1,p
(k + 1)Ĝ(k)

)

zk+1(1 − |z|2) 1
p −1

d A(z)

= 〈 f − f (0), Kp〉A21
p −1

,
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where

Kp(z) =
∞∑

k=0

wk,p

wk+1,p
(k + 1)Ĝ(k)zk+1, z ∈ D.

In the case p = 1, we have

K1(z) =
∞∑

k=0

(k + 2)Ĝ(k)zk+1 = d

dz

(
z2G(z)

)
, z ∈ D,

and hence K1 ∈ B2 by (2.2). To obtain the same conclusion for each 0 < p < 1,
we first observe that J (z) = ∑∞

k=0(k + 1)Ĝ(k)zk+1 = d
dz (zG(z)), and thus J ∈ B2.

Therefore it suffices to show that λp(z) = ∑∞
n=0

wn,p
wn+1,p

zn+1 is a coefficient multiplier

of B2 for each 0 < p ≤ 1.
To see this, for each β ∈ N, denote Dβ f (z) = ∑∞

n=0(n + 1)β f̂ (n)zn for all
f ∈ H(D), and for simplicity write Df instead of D1 f . We claim that

M1(r , Dλp) � 1

1 − r
, 0 ≤ r < 1, (2.7)

the proof of which is postponed for a moment. Direct calculations show that

‖ f ‖B2 � sup
z∈D

|Df (z)|(1 − |z|)2 � sup
z∈D

|D2 f (z)|(1 − |z|)3, f ∈ H(D),

and hence (2.7) yields

|D2( f ∗ λp)(r
2eit )| = |(Df ∗ Dλp)(r

2eit )| =
∣
∣
∣
∣
1

2π

∫ 2π

0
Df (rei(t+θ))Dλp(re

−iθ ) dθ

∣
∣
∣
∣

≤ M∞(r , Df )M1(r , Dλp) � M1(r , Dλp)

(1 − r)2
� 1

(1 − r)3
, f ∈ B2.

It follows that f ∗ λp ∈ B2 for all f ∈ B2 and 0 < p ≤ 1. Thus Kp ∈ B2 for each

0 < p ≤ 1. By choosing Hp = Kp + L(1)
ω0,p

∈ B2, we deduce L( f ) = 〈 f , Hp〉A2
1
p −1

for all f ∈ Dp
p−1.

To complete the proof, it remains to establish (2.7). To do this, we will use the
families of polynomials defined by (2.4) and (2.5). It follows from (2.6) that

M1(r , Dλp) = ‖(Dλp)r‖H1 ≤ C(p) +
∞∑

n=2

‖Vn ∗ (Dλp)r‖H1 , (2.8)
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where (Dλp)r (z) = ∑∞
n=1 n

wn−1,p
wn,p

rnzn . Next, for each n ∈ N \ {1} and r ∈ [ 1
2 , 1

)
,

consider

Fn(x) = x
wx−1,p

wx,p
r xχ[2n−1,2n+1](x), x ∈ R.

Since for each radial weight ν, there exists a constant C = C(ν) > 0 such that

∫ 1

0
sx

(

log
1

s

)n

ν(s) ds ≤ C
∫ 1

0
sxν(s) ds, n ∈ {1, 2}, x ≥ 2,

it follows by a direct calculation that

|F ′′
n (x)| ≤ C |Fn(x)|, n ∈ N \ {1}, r ∈

[
1

2
, 1

)

, x ≥ 2,

for some constant C = C(ω) > 0. Therefore,

AFn ,2 = max
x∈[2n−1,2n+1]

|Fn(x)| + max
x∈[2n−1,2n+1]

|F ′′
n (x)| � max

x∈[2n−1,2n+1]
|Fn(x)|

� max
x∈[2n−1,2n+1]

(x + 1)r x+1 � 2nr2
n−1

, n ∈ N \ {1}.

For each n ∈ N \ {1}, choose a C∞-function �n with compact support contained in
[2n−2, 2n+2] such that �n = Fn on [2n−1, 2n+1] and

A�n ,2 = max
x∈R |�n(x)| + max

x∈R |�′′
n(x)| � 2nr2

n−1
, n ∈ N \ {1}. (2.9)

Since

W�n
1 (z) =

∑

k∈Z
�n (k) zk =

∑

k∈Z∩[2n−2,2n+2]
�n (k) zk,

the identity (2.5) yields

(
Vn ∗ (Dλp)r

)
(z) =

2n+1−1∑

k=2n−1

ψ

(
k

2n−1

)

k
wk−1,p

wk,p
rkzk =

2n+1−1∑

k=2n−1

ψ

(
k

2n−1

)

�n(k)z
k

=
(
W�n

1 ∗ Vn
)

(z), n ∈ N \ {1}.

This together with Theorem A, (2.9) and (2.6) implies

‖Vn ∗ (Dλ)r‖H1 = ‖W�n
1 ∗ Vn‖H1 � A�n ,2‖Vn‖H1 � 2nr2

n−1‖Vn‖H1

� 2nr2
n−1

, r ∈
[
1

2
, 1

)

, n ∈ N \ {1},
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which combined with (2.8) gives

M1(r , Dλp) �
∞∑

n=2

2nr2
n−1 � 1

(1 − r)
, r ∈

[
1

2
, 1

)

. (2.10)

This implies (2.7), and finishes the proof. ��
In the proof of Theorem 1, we need to know the dual space of the Banach space

HLp, with 1 < p < ∞, with respect to the H2-pairing. It is given in the next lemma,
the proof of which is standard.

Lemma 7 Let 1 < p < ∞. Then (HLp)
� � HLp′ via the H2-pairingwith equivalence

of norms.

Recall that the space HL∞ consists of f ∈ H(D) such that

‖ f ‖HL∞ = sup
n∈N∪{0}

(| f̂ (n)|(n + 1)
)

< ∞.

The last lemma of the section describes (HL1)
�. It will be used in the proof of Theo-

rem 2. The proof of this lemma is also standard and is therefore omitted.

Lemma 8 (HL1)
� � HL∞ via the H2-pairing with equivalence of norms.

3 Hardy, Hardy–Littlewood and Dirichlet-Type Spaces with 1 < p < ∞
The main aim of this section is to prove Theorem 1. To do that some notation and
auxiliary results are needed. For each g ∈ H(D), with Maclaurin series expansion
g(z) = ∑∞

k=0 ĝ(k)z
k , consider the dyadic polynomials defined by�0g(z) = g(0) and

�ng(z) = ∑2n+1−1
k=2n ĝ(k)zk for all n ∈ N and z ∈ D. Then, obviously, g = ∑∞

n=0 �ng.

Further, write �0 = 1 and �n(z) = ∑2n+1−1
k=2n zk for all n ∈ N and z ∈ D. Then

[4,Lemma 2.7] shows that

‖�n‖H p � 2
n
p′ , 1 < p < ∞, n ∈ N ∪ {0}. (3.1)

For a ∈ D, denote fa(z) = f (az) for all z ∈ D. With these preparations we can state
the first auxiliary result.

Proposition 9 Let 1 < q < ∞ and g ∈ H(D) such that
∑∞

k=0 |̂g(k)| < ∞. Then
there exists a constant C = C(q) > 0 such that

∥
∥
∥� j f ∗ GH2

g,z

∥
∥
∥
Hq

=
∥
∥
∥
∥
∥
∥

2 j+1−1∑

k=2 j

f̂ (k)
∞∑

n=0

(n + 1)ĝ(n + 1)zn+k+1

n + k + 1
ζ k

∥
∥
∥
∥
∥
∥
Hq

≤ C
∥
∥� j fz

∥
∥
Hq

∞∑

n=0

(n + 1)|̂g(n + 1)||z|n+1

n + 2 j−1 + 1
, z ∈ D,

(3.2)
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for all f ∈ H(D) and j ∈ N.

Proof For each j ∈ N and z ∈ D, let us consider the C∞-function

�2 j ,z(s) =
∞∑

n=0

(n + 1)ĝ(n + 1)zn+1

n + 1 + 2 j s
, s > 0.

Then

|�2 j ,z(s)| ≤
∞∑

n=0

(n + 1)|̂g(n + 1)zn+1|
n + 1 + 2 j−1 , s ≥ 1

2
. (3.3)

Further,

(�2 j ,z)
′(s) = −2 j

∞∑

n=0

(n + 1)ĝ(n + 1)z̄n+1

(n + 1 + 2 j s)2
, s > 0,

and hence

|(�2 j ,z)
′(s)| ≤ 2 j

∞∑

n=0

(n + 1)|̂g(n + 1)zn+1|
(n + 1 + 2 j−1)2

≤ 2
∞∑

n=0

(n + 1)|̂g(n + 1)zn+1|
n + 1 + 2 j−1 , s ≥ 1

2
.

(3.4)

Therefore, by using (3.3) and (3.4), we can find a C∞-function �2 j ,z and an absolute
constant C > 0 such that supp�2 j ,z ⊂ ( 1

2 , 4
)
, �2 j ,z(s) = �2 j ,z(s) for all s ∈ [1, 2]

and

A�2 j ,z ,1
= max

s∈R |�2 j ,s(s)| + max
s∈R |�′

2 j ,z(s)| ≤ C
∞∑

n=0

(n + 1)|̂g(n + 1)zn+1|
n + 1 + 2 j−1 .

Hence

� j f ∗ GH2

g,z(ζ ) =
2 j+1−1∑

k=2 j

f̂ (k)zk
∞∑

n=0

(n + 1)ĝ(n + 1)z̄n+1

n + k + 1
ζ k

=
2 j+1−1∑

k=2 j

f̂ (k)zk�2 j ,z

(
k

2 j

)

ζ k =
(

� j fz ∗ W
�2 j ,z

2 j

)

(ζ ), j ∈ N.
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Using now Theorem A, we find a constant C = C(q) > 0 such that

∥
∥
∥� j f ∗ GH2

g,z(ζ )

∥
∥
∥
Hq

=
∥
∥
∥
∥� j fz̄ ∗ W

�2 j ,z

2 j

∥
∥
∥
∥
Hq

≤ CA�2 j ,z ,1
∥
∥� j fz

∥
∥
Hq

≤ C
∥
∥� j fz

∥
∥
Hq

∞∑

n=0

(n + 1)|̂g(n + 1)zn+1|
n + 1 + 2 j−1 .

This finishes the proof. ��

The next result gives a sufficient condition for Tg : H p → H∞ to be bounded and
establishes the operator norm estimate (1.5) announced in the introduction.

Theorem 10 Let 1 < p < ∞ and g ∈ H(D) such that

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)|̂g(n + 1)|
n + k + 1

)p′

< ∞.

If X p ∈ {H p, Dp
p−1,HLp}, then Tg : X p → H∞ is bounded and

‖Tg‖p′
X p→H∞ �

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)|̂g(n + 1)|
n + k + 1

)p′

.

Proof We begin with the case X p = Dp
p−1. By Lemma 5 and [4,Theorem 2.2],

Tg : Dp
p−1 → H∞ is bounded if and only if supz∈D ‖GH2

g,z‖Dp′
p′−1

< ∞, andmoreover,

‖Tg‖p′
Dp

p−1→H∞ � sup
z∈D

‖GH2

g,z‖p′

Dp′
p′−1

. (3.5)

Further, for each 1 < q < ∞, [14,Theorem 2.1] yields

‖F‖q
Dq
q−1

�
∞∑

j=0

‖� j ∗ F‖qHq , F ∈ H(D). (3.6)
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Therefore, by combining (3.5), (3.6), Proposition 9 and (3.1), we deduce

‖Tg‖p′
Dp

p−1→H∞ � sup
z∈D

‖GH2

g,z‖p′

Dp′
p′−1

� sup
z∈D

∞∑

j=0

‖� j ∗ GH2

g,z‖p′
H p′

� sup
z∈D

∞∑

j=0

‖� j‖p′
H p′

( ∞∑

n=0

(n + 1)|̂g(n + 1)||z|n+1

n + 2 j−1 + 1

)p′

�
∞∑

j=0

2 j(p′−1)

( ∞∑

n=0

(n + 1)|̂g(n + 1)|
n + 2 j−1 + 1

)p′

�
∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)|̂g(n + 1)|
n + k + 1

)p′

.

(3.7)

Thus the assertion is proved for X p = Dp
p−1.

Next we deal with the case X p = HLp. By Lemma 7 and [4,Theorem 1.1], Tg :
HLp → H∞ is bounded if and only if supz∈D ‖GH2

g,z‖HLp′ < ∞, and moreover,

‖Tg‖p′
HLp→H∞ � sup

z∈D
‖GH2

g,z‖p′
HLp′ . (3.8)

But

‖GH2

g,z‖p′
HLp′ =

∞∑

k=0

(k + 1)p
′−2

∣
∣
∣
∣
∣

∞∑

n=0

(n + 1)ĝ(n + 1)z̄n+k+1

n + k + 1

∣
∣
∣
∣
∣

p′

≤
∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)|̂g(n + 1)|
n + k + 1

)p′

,

and thus Tg : HLp → H∞ is bounded and

‖Tg‖p′
HLp→H∞ ≤

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)|̂g(n + 1)|
n + k + 1

)p′

.

Bearing in mind (1.1) and (1.2), the remaining case X p = H p follows from
[4,Theorem 1.1], the well-known identification (H p)� � H p′

via the H2-pairing
and the two cases already proven. ��

Despite the inclusions in (1.1) and (1.2) are strict unless p = 2, if one restricts to
the class of power series with non-negative decreasing coefficients, then the following
statements hold by [10], [18] and [30,Chapter XII, Lemma 6.6].
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Lemma B Let 1 ≤ p < ∞, then there exist constants C1 = C1(p) > 0, C2 =
C2(p) > 0 and C3 = C3(p) > 0 such that

‖ f ‖p
H p ≤ C1‖ f ‖p

Dp
p−1

≤ C2‖ f ‖p
HLp

≤ C3‖ f ‖p
H p ,

for all f ∈ H(D) such that its Maclaurin coefficients { f̂ (n)}∞n=0 form a sequence of
non-negative numbers decreasing to zero. In particular,

f ∈ H p ⇐⇒ f ∈ Dp
p−1 ⇐⇒ f ∈ HLp

for every such f .

We are now ready to prove Theorem 1.

Proof of Theorem 1 Assume first that Tg : X p → H∞ is bounded. Then g ∈ H∞,
and hence

∞∑

n=0

|̂g(n)| =
∞∑

n=0

ĝ(n) < ∞. (3.9)

Lemmas 5 and 7 together with the well-known identification of (H p)� as H p′
via the

H2-pairing imply (X p)
� � X p′ . Therefore [4,Theorem 1.1] yields

‖Tg‖p′
X p→H∞ � sup

z∈D
‖GH2

g,z‖p′
X p′ � sup

x∈(0,1)
‖GH2

g,x‖p′
X p′ . (3.10)

Since GH2

g,x (ζ ) = ∑∞
k=0

(∑∞
n=0

(n+1)ĝ(n+1)xn+k+1

n+k+1

)
ζ k , for each x ∈ (0, 1), the

Maclaurin coefficients

̂GH2
g,x (k) =

∞∑

n=0

(n + 1)ĝ(n + 1)xn+k+1

n + k + 1
, k ∈ N ∪ {0},

form a sequence of non-negative and decreasing numbers. Therefore (3.10), Lemma B
and (3.9) imply

‖Tg‖p′
X p→H∞ � sup

x∈(0,1)
‖GH2

g,x‖p′
HLp′ � sup

x∈(0,1)

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1
xn+k+1

)p′

�
∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′

.

Thus (1.3) holds.
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Conversely, if (1.3) is satisfied, then Tg : X p → H∞ is bounded and

‖Tg‖p′
X p→H∞ �

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′

by Theorem 10. The norm estimate (1.4) follows from the above inequalities.
To complete the proof we still need to show that Tg : X p → H∞ is in fact

compact if (1.3) is satisfied. To see this, let first X p = HLp. Further, let { fn} such that
supn ‖ fn‖HLp < ∞ and fn → 0 uniformly on compact subsets of D as n → ∞. For
each ε > 0 there exists k0 = k0(ε) ∈ N such that

∞∑

k=k0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′

< ε p′
.

Moreover, by the uniform convergence we may pick up an n0 = n0(ε) ∈ N such that

sup
n≥n0

k0−1∑

k=0

(k + 1)p−2| f̂n(k)|p < ε p.

Then, Hölder’s inequality yields

‖Tg( fn)‖H∞ = sup
z∈D

|〈 fn ,GH2
g,z 〉H2 | ≤

∞∑

k=0

| f̂n(k)|
( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)

=
k0−1∑

k=0

| f̂n(k)|
( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)

+
∞∑

k=k0

| f̂n(k)|
( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)

≤
⎛

⎝
k0−1∑

k=0

(k + 1)p−2| f̂n(k)|p
⎞

⎠

1
p

⎛

⎝
k0−1∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′⎞

⎠

1
p′

+
⎛

⎝
∞∑

k=k0

(k + 1)p−2| f̂n(k)|p
⎞

⎠

1
p

⎛

⎝
∞∑

k=k0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′⎞

⎠

1
p′

≤ ε

⎛

⎜
⎝

⎛

⎝
∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′⎞

⎠

1/p′

+ sup
n

‖ fn‖HLp

⎞

⎟
⎠

� ε, n ≥ n0,

and hence limn→∞ ‖Tg( fn)‖H∞ = 0. Therefore Tg : HLp → H∞ is compact by
[27,Lemma 3.6].

Let now X p = Dp
p−1. We first show that

lim
R→1− sup

z∈D

∫

D\D(0,R)

|(GH2

g,z)
′(w)|p′

(1 − |w|)p′−1 d A(w) = 0, (3.11)
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and then we use this fact to prove the compactness of Tg : Dp
p−1 → H∞.

If 2 < p′ < ∞, then (1.2) and Fubini’s theorem yield

lim
R→1− sup

z∈D

∫

D\D(0,R)

|(GH2

g,z )
′(w)|p′

(1 − |w|)p′−1d A(w)

= lim
R→1− sup

z∈D

∫ 1

R

∫ 2π

0

∣
∣
∣
∣
∣

∞∑

k=0

(k + 1)
∞∑

n=0

(n + 1)ĝ(n + 1)zn+k+2

n + k + 2
rkeikθ

∣
∣
∣
∣
∣

p′

dθ(1 − r)p
′−1r dr

= 2π lim
R→1− sup

z∈D

∫ 1

R
‖(GH2

g,z )
′
r‖p′

H p′ (1 − r)p
′−1r dr

� lim
R→1−

∫ 1

R

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′

(k + 1)p
′
rkp

′+1(1 − r)p
′−1dr

= lim
R→1−

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′

(k + 1)p
′
∫ 1

R
rkp

′+1(1 − r)p
′−1dr ,

where

(k + 1)p
′
∫ 1

R
rkp

′+1(1 − r)p
′−1dr ≤ (k + 1)p

′
∫ 1

0
rkp

′+1(1 − r)p
′−1dr � 1, k ∈ N ∪ {0}.

The dominated convergence theorem now implies (3.11).
If 1 < p′ ≤ 2, then Proposition 9 and an argument similar to that used in the proof

of (3.7) allows us to find a constant C = C(p) > 0 such that

‖(GH2

g,z )
′
r‖p′

Dp′
p′−1

≤ C
∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′

(k + 1)p
′
rkp

′
, 0 ≤ r < 1.

This together with (1.1) implies

lim
R→1− sup

z∈D

∫

D\D(0,R)
|(GH2

g,z )
′(w)|p′

(1 − |w|)p′−1d A(w)

= 2π lim
R→1− sup

z∈D

∫ 1

R
‖(GH2

g,z )
′
r‖p

′
H p′ (1 − r)p

′−1r dr

� lim
R→1− sup

z∈D

∫ 1

R
‖(GH2

g,z )
′
r‖p

′

Dp′
p′−1

(1 − r)p
′−1r dr

� lim
R→1−

∫ 1

R

∞∑

k=0

(k + 1)p
′−2

( ∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)p′

(k + 1)p
′
rkp

′+1(1 − r)p
′−1dr = 0.

Consequently, (3.11) holds for each 1 < p < ∞.
Let now { fn} such that supn ‖ fn‖Dp

p−1
< ∞ and fn → 0 uniformly on compact

subsets of D. By (3.11), for each ε > 0, there exists R = R(ε) ∈ (0, 1) such that

sup
z∈D

∫

D\D(0,R)

|(GH2

g,z)
′(w)|p′

(1 − |w|)p′−1d A(w) < ε p′
.
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Further, by the uniform convergence we may choose N = N (ε, R) ∈ N such that
max{| fn(0)|, | f ′

n(ξ)|} < ε for all n ≥ N and ξ ∈ D(0, R). Therefore [4,(2.4) and
(4.4)] and Hölder’s inequality yield

‖Tg( fn)‖H∞ = sup
z∈D

|〈 fn,GH2

g,z 〉H2 |

� sup
z∈D

∣
∣
∣
∣

∫

D

f ′
n(w)(GH2

g,z )
′(w) log

1

|w| d A(w)

∣
∣
∣
∣ + | fn(0)|‖g‖H∞

� sup
z∈D

((∫

D(0,R)

+
∫

D\D(0,R)

)

| f ′
n(w)||(GH2

g,z )
′(w)|(1 − |w|)1− 1

p +1− 1
p′ d A(w)

)

+ | fn(0)|‖g‖H∞

� ε

(

‖GH2

g,z )‖p′

Dp′
p′−1

+ sup
n

‖ fn‖Dp
p−1

)

� ε, n ≥ N .

Therefore Tg : Dp
p−1 → H∞ is compact by [27,Lemma 3.6].

Finally, let X p = H p. If 1 < p < 2, then we may use the fact already proven
that Tg : HLp → H∞ is compact, and (1.1) to deduce the compactness of Tg :
H p → H∞. In the case 2 < p < ∞, the same conclusion follows from (1.2) and the
compactness of Tg : Dp

p−1 → H∞. This finishes the proof of the theorem. ��

4 Hardy, Hardy–Littlewood and Dirichlet-Type Spaces with 0 < p ≤ 1

In this section, we prove Theorems 2 and 3 in the said order. Since all the necessary
auxiliary results are already stated in the previous sections, we can directly embark
on the proofs.

Proof of Theorem 2 (i). By Lemma 8 and [4,Theorem 2.2], we know that

‖Tg‖HL1→H∞ � sup
z∈D

‖GH2

g,z‖HL∞ .

Since

GH2
g,z(w) =

∫ z

0

g′(ζ )

1 − wζ
dζ =

∞∑

k=0

( ∞∑

n=0

(n + 1)ĝ(n + 1)
zn+k+1

n + k + 1

)

wk,

it is easy to show that

sup
z∈D

‖GH2

g,z‖HL∞ � sup
k∈N∪{0}

(

(k + 1)
∞∑

n=0

(n + 1)|̂g(n + 1)|
n + k + 1

)

, (4.1)

which in particular implies that any g ∈ H(D) such that
∑∞

n=0(n+1)|̂g(n+1)| <

∞ belongs to T (X1, H∞).
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(ii). Let 0 < p < 1. Observe that

1

(1 − wζ)
1+ 1

p

=
∞∑

k=0

cp(k)(wζ )k,

where cp(k) � (k + 1)
1
p for all k ∈ N ∪ {0}. Hence

∫ z

0

g′(ζ )

(1 − wζ)
1+ 1

p

dζ =
∞∑

n=0

∞∑

k=0

(n + 1)ĝ(n + 1)cp(k)

n + k + 1
wk zn+k+1.

If g is not a constant, then Lemma 6, [4,Theorem 2.2], which can be applied to
quasi-Banach spaces, (2.2) and (1.1) yield

‖Tg‖X p→H∞ � ‖Tg‖Dp
p−1→H∞ � sup

z∈D

⎛

⎝

⎛

⎝ sup
w∈D

∣
∣
∣
∣
∣
∣

∫ z

0

g′(ζ )ζ

(1 − wζ)
2+ 1

p

dζ

∣
∣
∣
∣
∣
∣
(1 − |w|)2

⎞

⎠

+|g(z) − g(0)|)

� sup
z∈D

⎛

⎝ sup
w∈D

∣
∣
∣
∣
∣
∣

∫ z

0

g′(ζ )

(1 − wζ)
1+ 1

p

dζ

∣
∣
∣
∣
∣
∣
(1 − |w|)

⎞

⎠

� sup
z∈D

∣
∣
∣
∣
∣
∣

∫ z

0

g′(ζ )

(1 − zζ )
1+ 1

p

dζ

∣
∣
∣
∣
∣
∣
(1 − |z|)

= sup
z∈D

∣
∣
∣
∣
∣
∣

∞∑

n=0

∞∑

k=0

(n + 1)ĝ(n + 1)cp(k)

n + k + 1
|z|2k zn+1

∣
∣
∣
∣
∣
∣
(1 − |z|)

≥ sup
0<r<1

1

2π

∫ 2π

0

∣
∣
∣
∣
∣
∣

∞∑

n=0

⎛

⎝
∞∑

k=0

cp(k)

n + k + 1
r2k+n+1

⎞

⎠

(n + 1)ĝ(n + 1)eiθ(n+1) dθ

∣
∣
∣ (1 − r)

� sup
0<r<1

∞∑

n=0

∑∞
k=0

cp(k)
n+k+1 r

2k+n+1(n + 1)|̂g(n + 1)|
n + 1

(1 − r)

� lim sup
r→1−

∞∑

k=0

cp(k)

k + 1
r2k (1 − r) � lim

r→1−
1

(1 − r)
1
p −1

= ∞

because 0 < p < 1. Therefore Tg : X p → H∞ is bounded if and only if g is a
constant.

(iii). By (1.1), it suffices to consider the case of X1 = D1
0, so assume that Tg : D1

0 →
H∞ is compact. Let (H∞)� denote the identification of the dual space of H∞
via the A2-pairing. Then T ∗

g : (H∞)� → B2 is compact by Lemma 6. Let K A2

z

123



Integral Operators Mapping into the Space of Bounded Analytic Functions Page 23 of 29 148

denote the reproducing kernel of the Hilbert space A2, associated to the point
z ∈ D. Then T ∗

g (K A2

z ) = GA2

g,z for all z ∈ D, and

‖K A2

z ‖(H∞)� = sup
‖ f ‖H∞≤1

|〈 f , K A2

z 〉| = sup
‖ f ‖H∞≤1

lim
r→1−

∣
∣
∣
∣
∣

∞∑

n=0

f̂ (n)
zn

n + 1
(n + 1)rn

∣
∣
∣
∣
∣

≤ sup
‖ f ‖H∞≤1

‖ f ‖H∞ ≤ 1, z ∈ D.

Therefore {GA2

g,z : z ∈ D} is relatively compact in B2. Hence, for given ε > 0,

there exist z1, . . . , zN ∈ D such that for each z ∈ D, we have ‖GA2

g,z−GA2

g,z j ‖B2 <

ε for some j = j(z) ∈ {1, . . . , N }. By using this and (2.2) we deduce

sup
a∈D

1

(1 − |a|)2
∫

S(a)\D(0,R)
|GA2

g,z(w)|2(1 − |w|)2 d A(w)

� ‖GA2
g,z − GA2

g,z j ‖2H∞
1

+ sup
a∈D

1

(1 − |a|)2
∫

S(a)\D(0,R)
|GA2

g,z j (w)|2(1 − |w|)2 d A(w)

� ε2 + sup
|a|≥R

1

(1 − |a|)2
∫

S(a)
|GA2

g,z j (w)|2(1 − |w|)2 d A(w).

Since GA2

g,z j ∈ A ⊂ B2
0 for each j ∈ {1, . . . , N }, we obtain

lim
R→1− sup

a,z∈D
1

(1 − |a|)2
∫

S(a)\D(0,R)

|GA2

g,z(w)|2(1 − |w|)2 d A(w) = 0,

which is equivalent to

lim
R→1− sup

a,z∈D

∫

D\D(0,R)

|GA2

g,z(w)|2(1 − |ϕa(w)|2)2 d A(w) = 0 (4.2)

by the reasoning in the proof of [7,Lemma 3.3], see [20,Lemma 5.3] for further
details. However, if g is not a constant, then there exists an N ∈ N ∪ {0} such
that ĝ(N + 1) �= 0. Therefore,

sup
a,z∈D

∫

D\D(0,R)
|GA2

g,z(w)|2(1 − |ϕa(w)|2)2 d A(w)

≥ sup
z∈D

∫

D\D(0,R)
|GA2

g,z(w)|2(1 − |ϕz(w)|2)2 d A(w)

= sup
z∈D

(1 − |z|)2
⎛

⎜
⎝

∫

D\D(0,R)

∣
∣
∣
∣
∣
∣

GA2
g,z(w)

(1 − zw)2

∣
∣
∣
∣
∣
∣

2

(1 − |w|)2 d A2(w)

⎞

⎟
⎠
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� sup
z∈D

⎛

⎝(1 − |z|)2
∫

D\D(0,R)

∣
∣
∣
∣
∣
∣

⎛

⎝
∞∑

k=0

( ∞∑

n=0

(n + 1)ĝ(n + 1)(k + 1)

n + k + 1
zn+k+1

)

wk

⎞

⎠

·
⎛

⎝
∞∑

j=0

( j + 1)ziw j

⎞

⎠

∣
∣
∣
∣
∣
∣

2

(1 − |w|)2 d A(w)

⎞

⎟
⎠

= sup
z∈D

(1 − |z|)2
∫

D\D(0,R)

∣
∣
∣
∣
∣
∣

∞∑

m=0

⎛

⎝
m∑

k=0

( ∞∑

n=0

(n + 1)ĝ(n + 1)(k + 1)

n + k + 1
zn+k+1

)

(m − k + 1)zm−k
)

wm
∣
∣
∣
2

·(1 − |w|)2 d A(w)

� sup
z∈D

(1 − |z|)2
( ∞∑

m=0

∣
∣
∣
∣
∣
∣

m∑

k=0

∞∑

n=0

(n + 1)ĝ(n + 1)(k + 1)(m − k + 1)

n + k + 1
zn+m+1

∣
∣
∣
∣
∣
∣

2

∫ 1

R
s2m+1(1 − s)2 ds

)

� sup
0<r<1

(

(1 − r)2
( ∞∑

m=0

r2m
(∫ 1

R
s2m+1(1 − s)2 ds

)

·
∫ 2π

0

∣
∣
∣
∣
∣
∣

∞∑

n=0

(n + 1)ĝ(n + 1)

⎛

⎝
m∑

k=0

(k + 1)(m − k + 1)

n + k + 1

⎞

⎠ rn+1eiθ(n+1)

∣
∣
∣
∣
∣
∣

2 )

dθ

� sup
0<r<1

|̂g(N + 1)|2(N + 1)2(1 − r)2r2N+2
∞∑

m=0

r2m
(∫ 1

R
s2m+1(1 − s)2 ds

)

⎛

⎝
m∑

k=0

(m − k + 1)

⎞

⎠

2

� R2N+1(1 − R)2
∫ 1

R
(1 − s)2

( ∞∑

m=0

(m + 1)4(Rs)2m+1

)

ds

� R2N+1(1 − R)2
∫ 1

R

(1 − s)2

(1 − Rs)5
ds

� R2N+1, 0 < R < 1.

By letting R → 1− we obtain a contradiction with (4.2). Therefore g must be a
constant if Tg : D1

0 → H∞ is compact. This finishes the proof of the theorem.
��

Proof of Theorem 3 By using the proof of Theorem 2(i) and standard arguments, we
deduce

‖Tg‖D1
0→H∞ � ‖Tg‖H1→H∞ � ‖Tg‖HL1→H∞ � sup

z∈D
‖GH2

g,z‖HL∞

� sup
k∈N∪{0}

(

(k + 1)
∞∑

n=0

(n + 1)ĝ(n + 1)

n + k + 1

)
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because ĝ(n) ≥ 0 for all n ∈ N ∪ {0} by the hypothesis. Thus Tg : X1 → H∞ is
bounded if (1.6) is satisfied.

Conversely, if Tg : X1 → H∞ is bounded, then Tg : D1
0 → H∞ is bounded by

(1.1). Therefore Lemma 6, [4,Theorem 2.2] and (2.2) yield

‖Tg‖D1
0→H∞ � sup

z∈D

((

sup
w∈D

∣
∣
∣
∣
∣

∫ z

0

g′(ζ )ζ

(1 − wζ)3
dζ

∣
∣
∣
∣
∣
(1 − |w|)2

)

+ |g(z) − g(0)|
)

� sup
z∈D

(

sup
w∈D

∣
∣
∣
∣
∣

∫ z

0

g′(ζ )

(1 − wζ)2
dζ

∣
∣
∣
∣
∣
(1 − |w|)

)

.

Now that ĝ(n) ≥ 0 for all n ∈ N ∪ {0} by the hypothesis, standard arguments yield

‖Tg‖D1
0→H∞ � sup

0≤s<1

(( ∞∑

k=0

∞∑

n=0

(n + 1)(k + 1)ĝ(n + 1)

(n + k + 1)
sk

)

(1 − s)

)

. (4.3)

Since the coefficients

∞∑

n=0

(n + 1)(k + 1)ĝ(n + 1)

(n + k + 1)

are positive for all k, and increasing in k, we deduce

‖Tg‖D1
0→H∞ � sup

K∈N∪{0}

(( ∞∑

n=0

(n + 1)(K + 1)ĝ(n + 1)

(n + K + 1)

)

lim sup
s→1−

∞∑

k=K

sk(1 − s)

)

= sup
K∈N∪{0}

(

(K + 1)
∞∑

n=0

(n + 1)ĝ(n + 1)

(n + K + 1)

)

,

and thus (1.6) is satisfied. The norm estimate (1.7) is an immediate consequence of
the proof just established. This finishes the proof. ��

5 BMOA, Bloch Space and H∞
log

This section is devoted to the proof of Theorem 4. Unlike the other main results, its
proof does not requiremuch tools, but can be carried outwith relatively straightforward
arguments.

Proof of Theorem 4 The chain of inequalities (1.8) shows that (i)⇒(ii)⇒(iii) and

‖Tg‖BMOA→H∞ � ‖Tg‖X→H∞ � ‖Tg‖H∞
log→H∞ . (5.1)
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If (iii) is satisfied, then, by [4,Theorem 2.5 (v)], we have

‖Tg‖BMOA→H∞ � sup
z∈D

‖GH2

g,z‖H1 = sup
z∈D

∫ 2π

0

∣
∣
∣
∣
∣

∫ z

0

g′(ζ )

1 − ζe−iθ
dζ

∣
∣
∣
∣
∣
dθ

= sup
z∈D

∫ 2π

0

∣
∣
∣
∣
∣

∞∑

k=0

∞∑

n=0

(n + 1)ĝ(n + 1)zn+k+1

n + k + 1
eikθ

∣
∣
∣
∣
∣
dθ.

Since ĝ(n) ≥ 0 for all n ∈ N∪ {0} by the hypothesis, Hardy’s inequality [5,p. 48] and
Fatou’s lemma yield

‖Tg‖BMOA→H∞ � sup
z∈D

∞∑

k=0

∣
∣
∣
∣
∣

∞∑

n=0

(n + 1)ĝ(n + 1)zn+k+1

(n + k + 1)(k + 1)

∣
∣
∣
∣
∣

≥ sup
0≤r<1

∞∑

k=0

∞∑

n=0

(n + 1)ĝ(n + 1)rn+k+1

(n + k + 1)(k + 1)

=
∞∑

n=0

(n + 1)ĝ(n + 1)
∞∑

k=0

1

(k + 1)(n + k + 1)

�
∞∑

n=0

ĝ(n + 1) log(n + 2).

Therefore, (iii) implies (iv), and

‖Tg‖BMOA→H∞ �
∞∑

n=0

ĝ(n + 1) log(n + 2). (5.2)

If (iv) is satisfied, then

∫ 1

0
M∞(t, g′) log e

1 − t
dt =

∫ 1

0

( ∞∑

n=0

(n + 1)ĝ(n + 1)tn
)

log
e

1 − t
dt

=
∞∑

n=0

(n + 1)ĝ(n + 1)
∫ 1

0
tn log

e

1 − t
dt

�
∞∑

n=0

ĝ(n + 1) log(n + 2).

Thus (v) holds and

∞∑

n=0

ĝ(n + 1) log(n + 2) �
∫ 1

0
M∞(t, g′) log e

1 − t
dt . (5.3)
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Finally, assume (v). Then

‖Tg( f )‖H∞ = sup
z∈D

∣
∣
∣
∣

∫ z

0
f (ζ )g′(ζ )dζ

∣
∣
∣
∣ ≤ sup

0≤r<1

∫ r

0
M∞(s, f )M∞(s, g′) ds

≤ ‖ f ‖H∞
log

∫ 1

0
M∞(s, g′) log e

1 − s
ds, f ∈ H(D),

and therefore

‖Tg‖H∞
log→H∞ �

∫ 1

0
M∞(r , g′) log e

1 − r
dr . (5.4)

To complete the proof of the theorem it is now enough to show that Tg : H∞
log → H∞

is compact, that is limn→∞ ‖Tg( fn)‖H∞ = 0 for each sequence { fn} of analytic
functions in D such that supn ‖ fn‖H∞

log
< ∞ and fn → 0 uniformly on compact

subsets of D. Let ε > 0. Fix R = R(ε) ∈ (0, 1) such that

∫ 1

R
M∞(r , g′) log e

1 − r
dr < ε,

and then pick up N = N (ε, R) ∈ N such that | fn(z)| ≤ ε for all z ∈ D(0, R) and
n ≥ N . Then, if n ≥ N , we have

‖Tg( fn)‖H∞ = lim sup
|z|→1−

∣
∣
∣
∣

∫ z

0
fn(ζ )g′(ζ )dζ

∣
∣
∣
∣ ≤ lim sup

r→1−

∫ r

0
M∞(s, fn)M∞(s, g′) ds

=
∫ R

0
M∞(s, fn)M∞(s, g′) ds +

∫ 1

R
M∞(s, fn)M∞(s, g′) ds

≤ ε

∫ R

0
M∞(s, g′) ds + ‖ fn‖H∞

log

∫ 1

R
M∞(s, g′) log e

1 − s
ds � ε.

Thus Tg : H∞
log �→ H∞ is compact. The last thing to do is to observe that (5.1)–(5.4)

imply the norm estimates (1.9). This finishes the proof. ��
Wefinish the section and the paper by discussing briefly other natural choices for the

space X in Theorem 4. For a non-negative functionω ∈ L1([0, 1)), the extension toD,
defined by ω(z) = ω(|z|) for all z ∈ D, is called a radial weight. For 0 < p < ∞ and
such an ω, the Lebesgue space L p

ω consists of complex-valued measurable functions
f on D such that

‖ f ‖p
L p

ω
=

∫

D

| f (z)|pω(z) d A(z) < ∞.

The corresponding weighted Bergman space is Ap
ω = L p

ω ∩H(D). For a radial weight
ω, its associatedweightω� is defined byω�(z) = ∫ 1

|z| s log
s
|z|ω(s) ds for all z ∈ D\{0}.
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It arises naturally when the Hardy–Stein–Spencer formula is applied to the dilatation
fr in order to establish the identity

‖ f ‖p
Ap

ω
= ‖�| f |p‖L1

ω�
+ ω(D)| f (0)|p, f ∈ H(D),

see [20,Theorem 4.2] for details. Because the Laplacian of | f |p contains the factor
| f ′|2, which can be interpreted as the Jacobian of the non-univalent change of variable
w = f (z), this equivalent norm is useful, for example, in the study of composition
operators [23]. But the associated weight comes to the picture also in some other
instances which are more closely related to the topic of the present paper. To explain
this, we say that a radial weight ω belongs to the class D̂ if there exists a constant
C = C(ω) ≥ 1 such that ω̂(r) ≤ Cω̂( 1+r

2 ) for all 0 ≤ r < 1. Moreover, if there exist
K = K (ω) > 1 andC = C(ω) > 1 such that ω̂(r) ≥ Cω̂

(
1 − 1−r

K

)
for all 0 ≤ r < 1,

then we write ω ∈ qD. The intersection D̂ ∩ qD is denoted by D. For ω ∈ D̂, the space
C1(ω�) consists of f ∈ H(D) such that the measure | f ′|2ω� d A is a 1-Carleson
measure for Ap

ω [19,Theorem 6.1]. As usual, we say that a positive Borel measure
μ on D is a p-Carleson measure for X if X is continuously embedded into L p

μ. The
space C1(ω�) arises in the study of integration operators acting on weighted Bergman
spaces. Indeed, it is known that, for each 0 < p < ∞, the operator Tg is bounded
from Ap

ω into itself if and only if g ∈ C1(ω�) [19,Theorem 6.4]. For ω ∈ D, the space
C1(ω�) is nothing else but the Bloch space by the proof of [19,Theorem 6.1(C)], but it
may be a proper subspace ofB by [19,Theorem 6.1(D)], yet it always contains BMOA.
Therefore we may choose X = C1(ω�) in Theorem 4. It is worth observing that while
BMOA and B are conformally invariant, there exists ω ∈ D̂ \ D such that C1(ω�)

is not [20,Proposition 5.6]. Recall that a Banach space X ⊂ H(D), equipped with a
semi-norm ρX , is conformally invariant if there exists a constant C = C(X) > 0 such
that ρX ( f ◦ ϕ) ≤ Cρ( f )X for all f ∈ X and for all automorphisms ϕ of D.
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9. Jevtić, M., Pavlović, M.: On multipliers from H p to lq , 0<q<p<1. Arch. Math. (Basel) 56, 174–180

(1991)
10. Hardy, G.H., Littlewood, J.E.: Notes on the theory of series (XIII): some new properties of Fourier

constants. J. Lond. Math. Soc. 6, 3–9 (1931)
11. Littlewood, J.E., Paley, R.E.A.C.: Theorems on Fourier series and power series (II). Proc. Lond. Math.

Soc. (2) 42, 52–89 (1936)
12. Luecking, D.H.: Representation and duality in weighted spaces of analytic functions. Indiana Univ.

Math. 42, 319–336 (1985)
13. Luecking, D.H.: Forward and reverse Carleson inequalities for functions in Bergman spaces and their

derivatives. Am. J. Math. 107, 85–111 (1985)
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