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Abstract
In this paper, we establish the nondegeneracy of positive solutions to the fractional
Kirchhoff problem

(
a + b

∫

RN
|(−�)

s
2 u|2dx

)
(−�)su + u = u p, in RN ,

where a, b > 0, 0 < s < 1, 1 < p < N+2s
N−2s and (−�)s is the fractional Laplacian.

In particular, we prove that uniqueness breaks down for dimensions N > 4s, i.e.,
we show that there exist two non-degenerate positive solutions which seem to be
completely different from the result of the fractional Schrödinger equation or the
low dimensional fractional Kirchhoff equation. As one application, combining this
nondegeneracy result and Lyapunov-Schmidt reduction method, we can derive the
existence of solutions to the singularly perturbation problems.

Keywords Fractional Kirchhoff equations · Nondegeneracy · Lyapunov–Schmidt
reduction
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1 Introduction andMain Results

In this paper, we are concerned with the following fractional Kirchhoff problem

(
a + b

∫

RN
|(−�)

s
2 u|2dx

)
(−�)su + u = u p, in RN , (1.1)
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where a, b > 0, (−�)s is the pseudo-differential operator defined by

F((−�)su)(ξ) = |ξ |2sF(u)(ξ), ξ ∈ R
N ,

where F denotes the Fourier transform, and p satisfies

1 < p < 2∗
s − 1 =

{
N+2s
N−2s , 0 < s < N

2 ,

+∞, s ≥ N
2 ,

where 2∗
s is the standard fractional Sobolev critical exponent. Recently, Rǎdulescu and

Yang [41] established uniqueness and nondegeneracy for positive solutions to (1.1)
for N

4 < s < 1. Then in this paper, we will consider the high dimensional cases,
i.e. N ≥ 4s. We also refer to [26, 40, 44, 45] for critical cases and single/multi-peak
solutions in this direction.

If s = 1, Eq. (1.1) reduces to the well known Kirchhoff type problem, which
and their variants have been studied extensively in the literature. The equation that
goes under the name of Kirchhoff equation was proposed in [28] as a model for the
transverse oscillation of a stretched string in the form

ρh∂2t t u −
(
p0 + Eh

2L

∫ L

0
|∂xu|2 dx

)
∂2xxu = 0, (1.2)

for t ≥ 0 and 0 < x < L , where u = u(t, x) is the lateral displacement at time t and
at position x, E is the Young modulus, ρ is the mass density, h is the cross section
area, L the length of the string, p0 is the initial stress tension. Problem (1.2) and its
variants have been studied extensively in the literature. Bernstein obtains the global
stability result in [10], which has been generalized to arbitrary dimension N ≥ 1 by
Pohožaev in [37]. We also point out that such problems may describe a process of
some biological systems dependent on the average of itself, such as the density of
population (see e.g. [9]). Many interesting work on Kirchhoff equations can be found
in [15, 27, 33, 43] and the references therein. We also refer to [38] for a recent survey
of the results connected to this model.

On the other hand, the interest in generalizing the model introduced by Kirchhoff to
the fractional case does not arise only for mathematical purposes. In fact, following the
ideas of [11] and the concept of fractional perimeter, Fiscella and Valdinoci proposed
in [20] an equation describing the behaviour of a string constrained at the extrema
in which appears the fractional length of the rope. Recently, problem similar to (1.1)
has been extensively investigated by many authors using different techniques and
producing several relevant results (see, e.g. [1–4, 6, 8, 23–25, 34–36, 42]).

Besides, if b = 0 in (1.1), then we are led immediately to the following fractional
Schrödinger equation

a(−�)su + u = u p, in R
N . (1.3)
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This equation is related to the standing wave solutions of the time-independent frac-
tional Schrödinger equation

ih
∂ψ

∂t
= h2s(−�)sψ + V (x)ψ − f (x, |ψ |), in RN × R, (1.4)

where h is the Plank constant and V (x) is a potential function. Eq. (1.4) was introduced
by Laskin [29, 30] as a fundamental equation of fractional quantum mechanics in the
study of particles on stochastic fields modelled by Lévy process. For 0 < s < 1, the
fractional Sobolev space Hs(RN ) is defined by

Hs(RN ) =
{
u ∈ L2(RN ) : u(x) − u(y)

|x − y| N2 +s
∈ L2(RN × R

N )

}
,

endowed with the natural norm

‖u‖2 =
∫

RN
|u|2dx +

∫ ∫

RN×RN

|u(x) − u(y)|2
|x − y|N+2s dxdy.

From [17], we have

‖(−�)
s
2 u‖22 =

∫

RN
|ξ |2s |F(u)|2dξ = 1

2
C(N , s)

∫

RN×RN

|u(x) − u(y)|2
|x − y|N+2s dxdy,

and the fractional Gagliardo–Nirenberg–Sobolve inequality

∫

RN
|u|p+1dx ≤ S

( ∫

RN
|(−�)

s
2 u|2dx

) N (p−1)
4s

( ∫

RN
|u|2dx

) p−1
4s (2s−N )+1

, (1.5)

where S > 0 is the best constant. It follows from (1.5) that

J (u) =
S
( ∫

RN |(−�)
s
2 u|2dx

) N (p−1)
4s

( ∫
RN |u|2dx

) p−1
4s (2s−N )+1

∫
RN |u|p+1dx

> 0. (1.6)

Since the fractional Laplacian (−�)s is a nonlocal operator, one can not apply
directly the usual techniques dealing with the classical Laplacian operator. There-
fore, some ideas are proposed recently. In [12], Caffarelli and Silvestre expressed the
operator (−�)s on R

N as a generalized elliptic BVP with local differential opera-
tors defined on the upper half-space RN+1+ = {(t, x) : t > 0, x ∈ R

N }. By means of
Lyapunov–Schmidt reduction, concentration phenomenon of solutionswas considered
independently in [13, 16]. For more interesting results concerning with the existence,
multiplicity and concentration of solutions for the fractional Laplacian equation, we
refer reader to [5, 17, 18] and the references therein.

Uniqueness of ground states of nonlocal equations similar to Eq. (1.3) is of fun-
damental importance in the stability and blow-up analysis for solitary wave solutions
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of nonlinear dispersive equations, for example, of the generalized Benjamin–Ono
equation. In contrast to the classical limiting case when s = 1, in which standard
ODE techniques are applicable, uniqueness of ground state solutions to Eq. (1.3) is
a really difficult problem. In the case that s = 1

2 and N = 1, Amick and Toland [7],
they obtained the uniqueness result for solitary waves of the Benjamin–Ono equation.
After that, Lenzmann [31] obtained the uniqueness of ground states for the pseudorel-
ativistic Hartree equation in 3-dimension. In [21], Frankand and Lenzmann extends
the results in [7] to the case that s ∈ (0, 1) and N = 1 with completely new methods.
For the high dimensional case, Fall and Valdinoci [19] established the uniqueness and
nondegeneracy of ground state solutions of (1.3) when s ∈ (0, 1) is sufficiently close
to 1 and p is subcritical. In their striking paper [22], Frank, Lenzmann and Silvestre
solved the problem completely, and they showed that the ground state solutions of
(1.3) is unique for arbitrary space dimensions N ≥ 1 and all admissible and subcrit-
ical exponents p > 0. Moreover, they also established the nondegeneracy of ground
state solutions. We summarize their main results as follows.

Proposition 1.1 Let N ≥ 1, 0 < s < 1 and 1 < p < 2∗
s − 1. Then the following

holds.

(i) there exists a minimizer Q ∈ Hs(RN ) for J (u), which can be chose a nonneg-
ative function that solves Eq. (1.3);

(i i) there exist some x0 ∈ R
N such that Q(· − x0) is radial, positive and strictly

decreasing in r = |x − x0|. Moreover, the function Q belongs to C∞(RN ) ∩
H2s+1(RN ) and it satisfies

C1

1 + |x |N+2s ≤ Q(x) ≤ C2

1 + |x |N+2s , ∀ x ∈ R
N ,

with some constants C2 ≥ C1 > 0;
(i i i) Q is a unique solution of (1.3) up to translation.

Proposition 1.2 Let N ≥ 1, 0 < s < 1, 1 < p < 2∗
s − 1 and c be a positive constant.

Suppose that Q ∈ Hs(RN ) is a ground state solution of

c(−�)s Q + Q = |Q|p in R
N (1.7)

and T+ denotes the corresponding linearized operator given by

T+ = c(−�)s + 1 − p|Q|p−1.

Then the following holds.

(i) Q is nondegenerate, i.e., ker T+ = span{∂x1Q, ∂x2Q, · · · , ∂xN Q};
(i i) the restriction of T+ on L2

rad(R
N ) is one-to-one and thus it has an inverse T−1+

acting on L2
rad(R

N );

(i i i) T+Q = −(p − 1)Qp and T+R = −2sQ, where R = 2s
p−1Q + x · (−�)

s
2 Q.
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From the viewpoint of calculus of variation, the fractional Kirchhoff problem (1.1)
is much more complex and difficult than the classical fractional Laplacian Eq. (1.3) as
the appearance of the term b

(∫
RN |(−�)

s
2 u|2dx)(−�)su, which is of order four. So

a fundamental task for the study of problem (1.1) is to make clear the effects of this
non-local term. The only one uniqueness and non-degeneracy result which we know
for the solution of problem (1.1) is proved in [41] for the case N

4 < s < 1, and [14,
32] for the case s = 1. As in [41], let U be a ground state positive solution of (1.1)
and set

E0 = a + b‖(−�)
s
2U‖22 and Ũ (x) = U (E

1
2s
0 x).

Then, it is easy to check that Ũ is a positive solution of (1.3) and a minimizer of J (u).
Therefore, from the uniqueness result for positive solutions of problem (1.3), we know
that any solution U (x) of problem (1.1) with a, b > 0 has the following form

U (x) = Q(E− 1
2s

0 x).

Consequently, the solvability of the problem (1.1) is simply equivalent to the solvability
of the following algebraic equation in (0,+∞),

f (E) = E − a − bm
2

p−1+ 2s−N
2s ‖(−�)

s
2 Q‖22E

N−2s
2s = 0, E ∈ (a,+∞).

This observation makes the question of uniqueness and multiplicity for solutions to
problem (1.1) very simple. Therefore, our main focus of the present paper is non-
degeneracy property for positive solutions of problem (1.1). The main results of this
paper are collected in the following results.

Theorem 1.1 Assume that a, b > 0 and 1 < p < 2∗
s −1. Then the following statements

are true:

(i) If 1 < N < 4s, then problem (1.1) has exactly one solution;
(i i) If N = 4s, then problem (1.1) is solvable if and only if b‖(−�)

s
2 Q‖22 < 1, and

in this case problem (1.1) has exactly one solution;
(i i i) If N > 4s, then problem (1.1) is solvable if and only if

b‖(−�)
s
2 Q‖22 ≤ 2sa

4s−N
2s (N − 4s)

N−4s
2s

(N − 2s)
N−2s
2s

.

Furthermore, problem (1.1) has exactly one solution when the equality holds,
and has exactly two solutions for the other case.

Moreover, define the solution by U, then there exist some x0 ∈ R
N such that U (·− x0)

is radial, positive and strictly decreasing in r = |x − x0|. Moreover, the function U
belongs to C∞(RN ) ∩ H2s+1(RN ) and it satisfies
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C1

1 + |x |N+2s ≤ U (x) ≤ C2

1 + |x |N+2s , ∀ x ∈ R
N ,

with some constants C2 ≥ C1 > 0;

Theorem 1.2 Suppose that a, b > 0. Then any positive solutionU (x) of problem (1.1)
is non-degenerate if one of the following conditions holds:

• 1 ≤ N ≤ 4s;

• N > 4s and b‖(−�)
s
2 Q‖22 
= 2sa

4s−N
2s (N−4s)

N−4s
2s

(N−2s)
N−2s
2s

.

By Theorem 1.2, it is now possible that we apply Lyapunov–Schmidt reduction to
study the perturbed fractional Kirchhoff equation.

(
ε2sa + ε4s−Nb

∫

RN
|(−�)

s
2 u|2dx

)
(−�)su + V (x)u = u p, in RN , (1.8)

where V : RN → R is a bounded continuous function.Wewant to look for solutions of
(1.8) in the Sobolev space Hs(RN ) for sufficiently small ε, which named semiclassical
solutions. We also call such derived solutions as concentrating solutions since they
will concentrate at certain point of the potential function V . Moreover, it is expected
that this approach can deal with problem (1.8) for all 1 < p < 2∗

s − 1, in a unified
way. To state our following results, let introduce some notations that will be used
throughout the paper. For ε > 0 and y = (y1, y2, · · · yN ) ∈ R

N , write

Uε,y(x) = U

(
x − y

ε

)
, x ∈ R

N .

Assume that V : RN → R satisfies the following conditions:

(V1) V is a bounded continuous function with inf
x∈RN

V > 0;

(V2) There exist x0 ∈ R
N and r0 > 0 such that

V (x0) < V (x) for 0 < |x − x0| < r0,

and V ∈ Cα
(
B̄r0 (x0)

)
for some 0 < α < N+4s

2 . That is, V is of α-th order
Hölder continuity around x0.

The assumption (V1) allows us to introduce the inner products

〈u, v〉ε =
∫

RN

(
ε2sa(−�)

s
2 u · (−�)

s
2 v + V (x)uv

)
dx,

for u, v ∈ Hs(RN ). We also write

Hε =
{
u ∈ Hs(RN ) : ‖u‖ε = 〈u, u〉

1
2
ε < ∞

}
.

Now we state the existence result as follows.
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Theorem 1.3 Let a, b > 0, 1 < p < 2∗
s − 1 and V satisfies (V1) and (V2). Assume

that N = 4s and b
∫
RN |(−�)

s
2 Q|2dx < 1. Then there exists ε0 > 0 such that for all

ε ∈ (0, ε0), problem (1.8) has a solution uε of the form

uε = U

(
x − yε

ε

)
+ ϕε

with ϕε ∈ Hε, satisfying

yε → x0,

‖ϕε‖ε = o
(
ε

N
2

)

as ε → 0 .

Theorem 1.4 Let a, b > 0, 1 < p < 2∗
s − 1 and V satisfies (V1) and (V2). Assume

that N > 4s and b
∫
RN |(−�)

s
2 Q|2dx <

2sa
4s−N
2s (N−4s)

N−4s
2s

(N−2s)
N−2s
2s

. Let Ui (i = 1, 2) be

two positive solutions of problem (1.1). Then there exists ε0 > 0 such that for all
ε ∈ (0, ε0), problem (1.8) has two solutions uiε(x)(i = 1, 2) of the form

uiε(x) = Ui

(
x − yε

ε

)
+ ϕi

ε(x),

with ϕε ∈ Hε, satisfying

yiε → x0,∥∥∥ϕi
ε

∥∥∥
ε

= o
(
ε

N
2

)

as ε → 0 .

This paper is organized as follows. We complete the proof of Theorem 1.1 in Sect.
2 and prove Theorem 1.2 in Sect. 3. In Sect. 3, we present some basic results and
explain the strategy of the proof of Theorems 1.3 and 1.4.

Notation. Throughout this paper, we make use of the following notations.

• For any R > 0 and for any x ∈ R
N , BR(x) denotes the ball of radius R centered

at x ;
• ‖ · ‖q denotes the usual norm of the space Lq(RN ), 1 ≤ q ≤ ∞;
• on(1) denotes on(1) → 0 as n → ∞;
• C or Ci (i = 1, 2, · · · ) are some positive constants may change from line to line.

123



139 Page 8 of 24 Z. Yang

2 Proof of Theorem 1.1

In this section, we analyze the existence of solutions for the following fractional
Kirchhoff problem

⎧
⎪⎪⎨
⎪⎪⎩

(
a + b

∫
RN |(−�)

s
2 u|2dx

)
(−�)su + u = u p, in RN ,

u(x) > 0, in RN ,

u(x) ∈ Hs(RN ).

(2.1)

As mentioned in the introduction, we know that any solution to (2.1) has the following
form

U (x) = Q
(
E− 1

2s
0 x − x0

)
.

and

E0 = a + b‖(−�)
s
2 Q‖22E

N−2s
2s

0 ,

where Q being the unique positive radial solution to the following problem

⎧⎪⎨
⎪⎩

(−�)s Q + Q = Qp, in RN ,

Q(x) > 0, in RN ,

Q(x) ∈ Hs(RN ).

(2.2)

Let Q be the uniquely positive solution of (2.2) and also aminimizer of J (u). Consider
the equation

f (E) = E − a − b‖(−�)
s
2 Q‖22E

N−2s
2s = 0, E ∈ (a,+∞). (2.3)

Therefore, to find solution U (x) of (2.1), it suffices to find positive solutions of the
above algebraic Eq. (2.3).

Case 1 1 < N < 4s : In this case, we have N−2s
2s < 1, which implies that

lim
E→+∞

f (E) = +∞. Moreover, one has f (a) < 0. Consequently, there exists unique

E0 > a such that f (E0) = 0, which means that (2.1) has a unique solution.

Case 2 N = 4s : In this case, (2.3) becomes

E − a − b‖(−�)
s
2 Q‖22E = 0, (2.4)

which means that this equation has a unique positive solution

E0 = a

1 − b‖(−�)
s
2 Q‖22

, (2.5)
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if and only if b < 1

‖(−�)
s
2 Q‖22

.

Case 3 N > 4s : A simple computation implies that

f ′(E) = 1 − N − 2s

2s
b‖(−�)

s
2 Q‖22E

N−4s
2s , (2.6)

which means that f (E) has a unique maximum point

E0 =
(

2s

(N − 2s)‖(−�)
s
2 Q‖22b

) 2s
N−4s

> 0, (2.7)

and the maximum of f (E) is

f (E0) = (
N − 4s

N − 2s
)

(
2s

(N − 2s)‖(−�)
s
2 Q‖22b

) 2s
N−4s

− a. (2.8)

It is easy to see that f (E0) ≥ 0 implies

b‖(−�)
s
2 Q‖22 ≤ 2sa

4s−N
2s (N − 4s)

N−4s
2s

(N − 2s)
N−2s
2s

. (2.9)

Since f ′′(E) < 0 in (0,+∞) due to N > 4s, we know that f (E) is concave in
(0,+∞). Noting further that f (0) = −a < 0 and lim

E→+∞
f (E) = −∞, a sufficient

and necessary condition for the solvability of Eq. (2.3) in (0,+∞) is f (E0) ≥ 0.
Hence, Eq. (2.3) has a solution in (0,+∞) if and only if inequality (2.9) holds.
Furthermore, we have

(i) If b‖(−�)
s
2 Q‖22 = 2sa

4s−N
2s (N−4s)

N−4s
2s

(N−2s)
N−2s
2s

, then Eq. (2.3) has exactly one positive

solution E0 defined by (2.7);

(i i) If b‖(−�)
s
2 Q‖22 <

2sa
4s−N
2s (N−4s)

N−4s
2s

(N−2s)
N−2s
2s

, then Eq. (2.3) has exactly two positive

solutions E1 and E2 such that E1 ∈ (0, E0) and E2 ∈ (E0,+∞).

Up to now, we have proved Theorem 1.1. Next, we analyze the asymptotic behavior
of solution obtained above as b → 0. In the case 1 < N ≤ 4s, if we denote by E0 the
unique positive solution to Eq. (2.3), we have lim

b→0
bE0 = 0. It infers from this that the

following conclusion holds.

Theorem 2.1 Assume that 1 < N ≤ 4s. Let Ub(x) be the unique solution to problem
(2.1). Then lim

b→0
Ub(x) = Q(x) in point wise.
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In the case N > 4s, if b‖(−�)
s
2 Q‖22 <

2sa
4s−N
2s (N−4s)

N−4s
2s

(N−2s)
N−2s
2s

, Eq. (2.1) has exactly

two solutions E1 and E2 such that

0 < E1 < E0 and E0 < E2 < +∞, where E0 =
(

2s

(N − 2s)‖(−�)
s
2 Q‖22b

) 2s
N−4s

.

(2.10)

Correspondingly, problem (2.1) has exactly two solutions

U 1
b (x) = Q

(
E− 1

2s
1 x

)
and U 2

b (x) = Q

(
E− 1

2s
2 x

)
.

From (2.10), we can see that

lim
b→0

bE2 ≥ lim
b→0

bE0 = +∞.

Hence,

lim
b→0

U 2
b (x) = Q(0), ∀x ∈ R

N .

By a similar analysis, we have lim
b→0

bE1 = 0, and the following conclusion is true.

Theorem 2.2 Suppose that N > 4s. Then

lim
b→0

U 1
b (x) = Q(x) and lim

b→0
U 2
b (x) = Q(0), ∀x ∈ R

N .

3 Nondegeneracy Results

In this section we prove the nondegeneracy results of Theorem 1.2. For positive con-
stants a, b, we define the differential operator L as

L(u) =
(
a + b

∫

RN
|(−�)

s
2 u|2dx

)
(−�)su + u − |u|p−1u,

for any u ∈ Hs(RN ) in the weak sense. The linearized operator L+ of L at U is
defined as

L+(ϕ) = dL(U + tϕ)

dt

∣∣∣∣
t=0

, ∀ϕ ∈ Hs(RN ).
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It is easy to see that for any ϕ ∈ Hs(RN ),

L+(ϕ) =
(
a + b

∫

RN
|(−�)

s
2U |2dx

)
(−�)sϕ + ϕ − pU p−1ϕ + 2b

(∫

RN
(−�)

s
2U (−�)

s
2 ϕdx

)
(−�)sU

= T+(ϕ) + L2(ϕ)(−�)sU ,

acting on L2(RN ) with domain D(L), where

T+(ϕ) = c(−�)sϕ + ϕ − pU p−1ϕ,

with c = a + b
∫
RN |(−�)

s
2U |2dx and

L2(ϕ) = 2b
(∫

RN
(−�)

s
2U (−�)

s
2 ϕdx

)
.

We also denote by Ker(L) the kernel space of a linear operator L , that is

Ker(L) = {ϕ ∈ D(L) : L(ϕ) = 0}.

Definition 3.1 Let U ∈ Hs(RN ) be a solution to L(u) = 0. We say that U is non-

degenerate if Ker (L+) = span
{

∂U
∂x1

, ∂U
∂x2

, · · · , ∂U
∂xN

}
.

In the sequel, we always use U (x) to denote a positive solution to the equation
L(u) = 0 in Hs(RN ). We divide the proof of Theorem (1.2) into the following series
of lemmas.

Lemma 3.1 Ker(T+) = span
{

∂U
∂x1

, ∂U
∂x2

, · · · , ∂U
∂xN

}
.

Proof Since U (x) is a positive solution to the equation L(u) = 0,U (x) satisfies

(
a + b

∫

RN
|(−�)

s
2U |2dx

)
(−�)sU +U −U p = 0, in RN . (3.1)

For any fixed i ∈ {1, 2, . . . , N }, taking partial derivative with respect to xi on both
sides of the above Eq. (3.1), we obtain

(
a + b

∫

RN
|(−�)

s
2U |2dx

)
(−�)s

∂U

∂xi
+ ∂U

∂xi
− pU p−1 ∂U

∂xi
= 0, in RN .

This implies that T+
(

∂U
∂xi

)
= 0 for any fixed i ∈ {1, 2, . . . , N }. Therefore,

span

{
∂U

∂x1
,

∂U

∂x2
, · · · ,

∂U

∂xN

}
⊆ Ker(T+).
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On the other hand, for any ϕ ∈ Ker(T+), from the definition of Ker(T+), we have

c(−�)sϕ + ϕ − pU p−1ϕ = 0. (3.2)

Let x = c
1
2s y, ϕ̂(y) = ϕ(c

1
2s y) = ϕ(x) and Q(y) = U (c

1
2s y) = U (x). Then Eq.

(3.2) becomes

(−�)s ϕ̂(y) + ϕ̂(y) − pQp−1(y)ϕ̂(y) = 0. (3.3)

Noting that Q(y) is a solution to Eqs.(1.3), (3.3) implies that ϕ̂(y) ∈ Ker (T+). There-
fore, it follows from Proposition 1.2 that there are real numbers ai (i ∈ {1, 2, . . . , N })
such that

ϕ̂(y) =
N∑
i=1

ai
∂Q

∂ yi
.

Since ∂Q
∂ yi

= c
1
2s ∂U

∂xi
, we have

ϕ(x) = ϕ̂(y) =
N∑
i=1

ai
∂Q

∂ yi
=

N∑
i=1

ai c
1
2s

∂U

∂xi
.

This implies that ϕ ∈ span
{

∂U
∂x1

, ∂U
∂x2

, · · · , ∂U
∂xN

}
. From the arbitrariness of ϕ, we have

Ker(T+) ⊆ span
{

∂U
∂x1

, ∂U
∂x2

, · · · , ∂U
∂xN

}
. Thus, Ker(T+) = span

{
∂U
∂x1

, ∂U
∂x2

, · · · , ∂U
∂xN

}
.

��
Since ∂U

∂xi
is non-radially symmetric, we have the following corollary:

Corollary 3.1 T+ is invertible on L2
rad (RN ).

Lemma 3.2 Let U (x) be a positive solution to the equation L(u) = 0 in Hs(RN ).

Then L2

(
∂U
∂xi

)
= 0 for i ∈ {1, 2, . . . , N }.

Proof From the definition of L2, and U is the solution of the equation

c(−�)sU +U = U p.

We have

L2

(
∂U

∂xi

)
= −2b

∫

RN

∂U

∂xi
(−�)sUdx .

Therefore,

L2

(
∂U

∂xi

)
= −2b

c

∫

RN

(
U p −U

) ∂U

∂xi
dx = −2b

c

∫

RN

∂
(

1
p+1U

p+1 − 1
2U

)

∂xi
dx .
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Since, for any fixed i , up to a translation, the function
∂
(

1
p+1U

p+1− 1
2U

)

∂xi
is odd in variable

xi , it is easy to see that

∫

RN

∂
(

1
p+1U

p+1 − 1
2U

)

∂xi
dx = 0.

Therefore, L2

(
∂U
∂xi

)
= 0. ��

Lemma 3.3 Let U (x) be a positive solution to the equation L(u) = 0 in Hs(RN ). If
N > 4s and

(N − 2s)b
∫
RN |(−�)

s
2U |2dx

2sc
= 1,

then

b
∫

RN
|(−�)

s
2 Q|2dx = 2sa

4s−N
2s (N − 4s)

N−4s
2s

(N − 2s)
N−2s
2s

,

where Q ∈ Hs(RN ) is the unique positive solution to the equation L0(u) = 0.

Proof Noting that c = a + b
∫
RN |(−�)

s
2U |2dx , the assumption

(N − 2s)b
∫
RN |(−�)

s
2U |2dx

2sc
= 1,

implies

b
∫

RN
|(−�)

s
2U |2dx = 2sa

N − 4s
and c = (N − 2s)a

N − 4s
.

Since U (x) ∈ Hs(RN ) is a positive solution to the equation L(u) = 0, we know that
U (x) has the following form

U (x) = Q
(
c− 1

2s x
)

,

with Q(x) ∈ Hs(RN ) being the unique positive solution to the Eq. (1.3). Therefore,

∫

RN
|(−�)

s
2U |2dx = c

N−2s
2s

∫

RN
|(−�)

s
2 Q|2dx

=
(

(N − 2s)a

N − 4s

) N−2s
2s

∫

RN
|(−�)

s
2 Q|2dx .
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Therefore, we have

b
∫

RN
|(−�)

s
2 Q|2dx = 2sa

4s−N
2s (N − 4s)

N−4s
2s

(N − 2s)
N−2s
2s

.

This completes the proof. ��
Lemma 3.4 Let U (x) be a positive solution to the equation L(u) = 0 in Hs(RN ).

Suppose that

1 < N ≤ 4s,

or

N > 4s and b
∫

RN
|(−�)

s
2 Q|2dx 
= 2sa

4s−N
2s (N − 4s)

N−4s
2s

(N − 2s)
N−2s
2s

.

Then

Ker (L+)
⋂

L2
rad(R

N ) = {0},

Proof Assume that v ∈ Hs(RN ) ∩ L2
rad(R

N ) belongs to kerL+. Then we have

(
a + b

∫

RN
|(−�)

s
2U |2dx

)
(−�)sv + v − pU p−1v

= −2b
(∫

RN
(−�)

s
2U (−�)

s
2 vdx

)
(−�)sU . (3.4)

Let c = a + b‖(−�)
s
2U‖22. Recall that U is a ground state solution of (1.1). It

follows from above that c is a constant independent of U under the assumptions of
Theorem 1.1. Hence,U solves (1.3) with c = a+b‖(−�)

s
2U‖22. We then can rewrite

(3.4) as

T+v = −2b
(∫

RN
(−�)

s
2U (−�)

s
2 vdx

)
(−�)sU = −2bσv

c
(−U +U p), (3.5)

where

σv =
∫

RN
(−�)

s
2U (−�)

s
2 vdx .

By applying Proposition 1.2, we conclude that

v = −2bσv

c
T−1+ (−U +U p) = −bσv

sc
ψ, (3.6)
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where ψ = x · ∇U . Multiplying (3.6) by (−�)sU and integrating over RN , we see
that

∫

RN
v(−�)sUdx = −bσv

sc

∫

RN
ψ(−�)sUdx . (3.7)

Note that

∫

RN
v(−�)sUdx =

∫

RN
(−�)

s
2U (−�)

s
2 vdx, (3.8)

and

∫

RN
ψ(−�)sUdx = 2s − N

2

∫

RN
|(−�)

s
2U |2dx, (3.9)

(see e.g. [39]). We then conclude from (3.7)-(3.9) that

σv = −b(2s − N )σv

2sc

∫

RN
|(−�)

s
2U |2dx = − (c − a)(2s − N )

2sc
σv.

It follows from Lemma 3.3 that

1 + (2s − N )b
∫
RN |(−�)

s
2U |2dx

2sc

= 0,

provided that 1 < N ≤ 4s, or N > 4s andb
∫
RN |(−�)

s
2 Q|2dx 
= 2sa

4s−N
2s (N−4s)

N−4s
2s

(N−2s)
N−2s
2s

.

Therefore, under this assumption, we have v ≡ 0. This completes the proof. ��

Proof of Theorem 1.2 Let U (x) ∈ Hs(RN ) be a positive solution to the equation
L(u) = 0. For any i ∈ {1, 2, . . . , N }, by Lemmas 3.1 and 3.2, we have

L+
(

∂U

∂xi

)
= T+

(
∂U

∂xi

)
+ L2

(
∂U

∂xi

)
(−�)sU = 0.

This implies that

span

{
∂U

∂x1
,

∂U

∂x2
, · · · ,

∂U

∂xN

}
⊆ Ker (L+) .

On the other hand, for any ϕ(x) ∈ Ker (L+), we have

T+(ϕ) = −L2(ϕ)(−�)sU . (3.10)
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To prove ϕ ∈ span
{

∂U
∂x1

, ∂U
∂x2

, · · · , ∂U
∂xN

}
, it follows fromCorollary 3.1 that there exists

a unique radial function ψ1(r) ∈ L2
rad (RN ) such that

T+ (ψ1) = −L2(ϕ)(−�)sU . (3.11)

SetW = ψ(x)−ψ1(r).Then, from (3.10) and (3.11), we have T+(W ) = 0.Therefore,
it follows from Lemma 3.1 that there are some real numbers ai such that

W =
N∑
i=1

ai
∂U

∂xi
.

This implies that any solution ψ(x) to the Eq. (3.10) has the following form

ψ(x) = ψ1(r) +
N∑
i=1

ai
∂U

∂xi
.

Since ϕ(x) is a solution to (3.10), we conclude that

ϕ(x) = ψ1(r) +
N∑
i=1

ai
∂U

∂xi
(3.12)

for some real numbers ai . Noting that ϕ(x) and ∂U
∂xi

are in Ker (L+), we can conclude
from (3.12) that L+ (ψ1(r)) = 0. That is ψ1(r) ∈ Ker (L+) . Hence, it follows from
Lemma 3.4 that ψ1(r) ≡ 0. Now, from (3.12), we have

ϕ(x) =
N∑
i=1

ai
∂U

∂xi
,

for some real numbers ai . This implies that ϕ ∈ span
{

∂U
∂x1

, ∂U
∂x2

, · · · , ∂U
∂xN

}
. From the

arbitrariness of ϕ, we see that Ker (L+) ⊆ span
{

∂U
∂x1

, ∂U
∂x2

, · · · , ∂U
∂xN

}
.

In conclusion, we have Ker (L+) = span
{

∂U
∂x1

, ∂U
∂x2

, · · · , ∂U
∂xN

}
. That is, U (x) is

non-degenerate. This completes the proof of Theorem 1.2. ��

4 The Lyapunov–Schmidt Reduction

As mentioned in the Introduction, non-degeneracy property of positive solutions for
the limit problem in entire space can be used to construct concentrated solutions for
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singularly perturbed problems. Here, we take the following problem as an example:

{(
ε2sa + ε4s−Nb

∫
RN |(−�)

s
2 u|2dx

)
(−�)su + V (x)u = u p, in RN

0 < u(x) ∈ Hs(RN ).
(4.1)

where V : RN → R satisfies the following conditions:

(V1) V is a bounded continuous function with inf
x∈RN

V > 0;

(V2) There exist x0 ∈ R
N and r0 > 0 such that

V (x0) < V (x) for 0 < |x − x0| < r0,

and V ∈ Cα
(
B̄r0 (x0)

)
for some 0 < α < N+4s

2 . That is, V is of α-th order
Hölder continuity around x0.

It is known that every solution to Eq. (4.1) is a critical point of the energy functional
Iε : Hε → R, given by

Iε(u) = 1

2
‖u‖2ε + bε4s−N

4

(∫

RN
|(−�)

s
2 u|2dx

)2

− 1

p + 1

∫

RN
u p+1dx,

for u ∈ Hε. It is standard to verify that Iε ∈ C2 (Hε) . So we are left to find a critical
point of Iε. Since the procedure of Lyapunov–Schmidt reduction is the same as in [41],
we just state some Lemmas and explain the strategy of the proof. Readers interested
in the full proof shall refer to [41].

4.1 Finite Dimensional Reduction

Wewill restrict our argument to the existence of a critical point of Iε that concentrates,
as ε small enough. For δ, η > 0, fixing y ∈ Bδ(x0), we define

Mε,η = {
(y, ϕ) : y ∈ Bδ(x0), ϕ ∈ Eε,y

}
,

where we denote Eε,y by

Eε,y :=
{
ϕ ∈ Hε :

〈
∂Uε,yi

∂ yi
, ϕ

〉

ε

= 0, i = 1, . . . , N

}
.

We are looking for a critical point of the form

uε = Uε,y + ϕε.

For this we introduce a new functional Jε : Mε,η → R defined by

Jε(y, ϕ) = Iε
(
Uε,y + ϕ

)
, ϕ ∈ Eε,y .
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In fact, we divide the proof of Theorem 1.3 and 1.4 into two steps:

Step 1 for each ε, δ sufficiently small and for each y ∈ Bδ(x0), we will find a critical
pointϕε,y for Jε(y, ·) (the function y �→ ϕε,y also belongs to the classC1 (Hε)

);
Step 2 for each ε, δ sufficiently small, we will find a critical point yε for the function

jε : Bδ(x0) → R induced by

y �→ jε(y) ≡ J
(
y, ϕε,y

)
. (4.2)

That is, we will find a critical point yε in the interior of Bδ(x0).

It is standard to verify that
(
yε, ϕε,yε

)
is a critical point of Jε for ε sufficiently small

by the chain rule. This gives a solution uε = Uε,yε +ϕε,yε to Eq. (4.1) for ε sufficiently
small in virtue of the following lemma.

Lemma 4.1 There exist ε0, η0 > 0 such that for ε ∈ (0, ε0] , η ∈ (0, η0], and (y, ϕ) ∈
Mε,y the following are equivalent:

(i) uε = Uε,yε + ϕε,yε is a critical point of Iε in Hε.
(i) (y, ϕ) is a critical point of Jε.

Now, in order to realize Step 1, we expand Jε(y, ·) near ϕ = 0 for each fixed y as
follows:

Jε(y, ϕ) = Jε(y, 0) + lε(ϕ) + 1

2
〈Lεϕ, ϕ〉 + Rε(ϕ),

where Jε(y, 0) = Iε
(
Uε,y

)
, and lε,Lε and Rε are defined for ϕ,ψ ∈ Hε as follows:

lε(ϕ) = 〈
I ′
ε

(
Uε,y

)
, ϕ

〉

= 〈
Uε,y, ϕ

〉
ε
+ bε4s−N

(∫

RN

∣∣∣(−�)
s
2Uε,y

∣∣∣
2
dx

)∫

RN
(−�)

s
2Uε,y

· (−�)
s
2 ϕdx −

∫

RN
U p

ε,yϕdx,

(4.3)

and Lε : L2
(
R

N
) → L2

(
R

N
)
is the bilinear form around Uε,y defined by

〈Lεϕ, ψ〉 = 〈
I ′′
ε

(
Uε,y

) [ϕ], ψ 〉

= 〈ϕ,ψ〉ε + bε4s−N
(∫

RN

∣∣∣(−�)
s
2Uε,y

∣∣∣
2
dx

)∫

RN
(−�)

s
2 ϕ · (−�)

s
2 ψdx

+ 2ε4s−Nb

(∫

RN
(−�)

s
2Uε,y · (−�)

s
2 ϕdx

)

(∫

RN
(−�)

s
2Uε,y · (−�)

s
2 ψdx

)
− p

∫

RN
U p−1

ε,y ϕψdx,
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and Rε denotes the second order reminder term given by

Rε(ϕ) = Jε(y, ϕ) − Jε(y, 0) − lε(ϕ) − 1

2
〈Lεϕ, ϕ〉 . (4.4)

We remark that Rε belongs to C2 (Hε) since so is every term in the right hand side of
(4.4).

Lemma 4.2 Assume that V satisfies (V1) and (V2). Then, there exists a constantC > 0,
independent of ε, such that for any y ∈ B1(0), there holds

|lε(ϕ)| ≤ Cε
N
2
(
εα + (|V (y) − V (x0)|)

) ‖ϕ‖ε,

for ϕ ∈ Hε. Here α denotes the order of the Hölder continuity of V in Br0(0).

Lemma 4.3 There exists a constant C > 0, independent of ε and b, such that for
i ∈ {0, 1, 2}, there hold

∥∥∥R(i)
ε (ϕ)

∥∥∥ ≤ Cε− N (p−1)
2 ‖ϕ‖p+1−i

ε + C(b + 1)ε− N
2

(
1 + ε− N

2 ‖ϕ‖ε

)
‖ϕ‖N−i

ε ,

for all ϕ ∈ Hε.

Lemma 4.4 Assume that V satisfies (V 1) and (V 2). Then, for ε > 0 sufficiently small,
there is a small constant τ > 0 and C > 0 such that,

Iε
(
Uε,y

) =AεN + BεN ((V (y) − V (x0))) + OεN+α,

where

A = 1
2

∫
RN

(
a|(−�)

s
2U |2 +U 2

)
dx + b

4

(∫
RN |(−�)

s
2U |2dx

)2

− 1
p+1

∫
RN U p+1dx,

and

B = 1

2

∫

RN
U 2dx .
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In this subsection we complete Step 1 for the Lyapunov–Schmidt reductionmethod
as in Sect. 4. We first consider the operator Lε,

〈Lεϕ, ψ〉 = 〈ϕ,ψ〉ε + ε4s−Nb
∫

RN

∣∣∣(−�)
s
2Uε,y

∣∣∣
2
dx

∫

RN
(−�)

s
2 ϕ · (−�)

s
2 ψdx

+ 2ε4s−Nb

(∫

RN
(−�)

s
2Uε,y · (−�)

s
2 ϕdx

)

(∫

RN
(−�)

s
2Uε,y · (−�)

s
2 ψdx

)

− p
∫

RN
U p−1

ε,y ϕψdx,

for ϕ,ψ ∈ Hε. The following result shows that Lε is invertible when restricted on
Eε,y

Lemma 4.5 There exist ε1 > 0, δ1 > 0 and ρ > 0 sufficiently small, such that for
every ε ∈ (0, ε1) , δ ∈ (0, δ1), there holds

‖Lεϕ‖ε ≥ ρ‖ϕ‖ε, ∀ϕ ∈ Eε,y,

uniformly with respect to y ∈ Bδ(x0).

Lemma 4.5 implies that by restricting on Eε,y , the quadratic formLε : Eε,y → Eε,y

has a bounded inverse, with
∥∥L−1

ε

∥∥ ≤ ρ−1 uniformly with respect to y ∈ Bδ(x0). This
further implies the following reduction map.

Lemma 4.6 There exist ε0 > 0, δ0 > 0 sufficiently small such that for all ε ∈
(0, ε0) , δ ∈ (0, δ0), there exists a C1 map ϕε : Bδ(x0) → Hε with y �→ ϕε,y ∈ Eε,y

satisfying

〈
∂ Jε

(
y, ϕε,y

)

∂ϕ
,ψ

〉

ε

= 0, ∀ψ ∈ Eε,y .

Moreover, there exists a constant C > 0 independent of ε small enough and κ ∈ (0, α
2 )

such that

‖ϕε,y‖ε ≤ Cε
N
2 +α−κ + Cε

N
2 (V (y) − V (x0))

1−κ .

4.2 Proof of Theorems 1.3 and 1.4

Let ε0 and δ0 be defined as in Lemma 4.6 and let ε < ε0. Fix 0 < δ < δ0. Let y �→ ϕε,y

for y ∈ Bδ(x0) be the map obtained in Lemma 4.6. As aforementioned in Step 2, it is
equivalent to find a critical point for the function jε defined as in (4.2) by Lemma 4.1.
By the Taylor expansion, we have

jε(y) = J
(
y, ϕε,y

) = Iε
(
Uε,y

) + lε
(
ϕε,y

) + 1

2

〈Lεϕε,y, ϕε,y
〉 + Rε

(
ϕε,y

)
.
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We analyze the asymptotic behavior of jε with respect to ε first.
By Lemmas 4.2, 4.3, 4.4 and 4.6, we have

jε(y) = Iε
(
Uε,y

) + O
(
‖lε‖ ‖ϕε‖ + ‖ϕε‖2

)

= AεN + BεN (V (y) − V (x0)) + εN
(
εα−κ

+ (V (y) − V (x0))
1−κ

)2 + OεN+α.

(4.5)

Now consider the minimizing problem

jε (yε) ≡ inf
y∈Bδ(x0)

jε(y).

Assume that jε is achieved by some yε in Bδ(x0). We will prove that yε is an interior
point of Bδ(x0).

To prove the claim, we apply a comparison argument. Let e ∈ R
N with |e| = 1 and

η > 1. We will choose η later. Let zε = εηe ∈ Bδ(0) for a sufficiently large η > 1.
By the above asymptotics formula, we have

jε (zε) = AεN + BεN (V (zε) − V (0)) + O
(
εN+α

)

+ O
(
εN

) (
εα−κ + (V (zε) − V (0))1−κ

)2
.

Applying the Hölder continuity of V , we derive that

jε (zε) = AεN + O
(
εN+αη

)
+ O

(
εN+α

)

+ O
(
εN

(
ε2(α−τ) + ε2ηα(1−κ)

))

= AεN + O
(
εN+α

)
.

where η > 1 is chosen to be sufficiently large accordingly. Note that we also used the
fact that κ � α/2. Thus, by using j (yε) ≤ j (zε) we deduce

BεN (V (yε) − V (0)) + O
(
εN

) (
εα−κ + (V (yε) − V (0))1−κ

)2 ≤ O
(
εN+α

)

That is,

B (V (yε) − V (0)) + O(1)
(
εα−κ + (V (yε) − V (0))1−κ

)2 ≤ O
(
εα
)
. (4.6)

If yε ∈ ∂Bδ(0), then by the assumption (V2), we have

V (yε) − V (0) ≥ c0 > 0,
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for some constant 0 < c0 � 1 since V is continuous at x = 0 and δ is sufficiently
small. Thus, by noting that B > 0 from Lemma 4.4 and sending ε → 0, we infer from
(4.6) that

c0 ≤ 0.

We reach a contradiction. This proves the claim. Thus yε is a critical point of jε in
Bδ(x0). Then Theorems 1.3 and 1.4 now follows from the claim and Lemma 4.1.
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