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Abstract
In this paper, we deal with the following class of fractional (p, ¢)-Laplacian Kirchhoff
type problem:

(14 [ulf ) (=AY + (1 + [ull ) (=AY u+ V(ex)(ulP~2u + [ul!2u) = fu) inRY,
uewsP@R¥yNnw4@RN), u>0inRY,

wheree > 0,5 € (0,1),1 <p<gqg < éﬂ < 2q, (=A)], witht € {p, g}, is the frac-
tional z-Laplacian operator, V : R¥ — R is a positive continuous potential such that
infyn V > infp V for some bounded open set A C RY and f : R — Ris a super-
linear continuous nonlinearity with subcritical growth at infinity. By combining the
method of Nehari manifold, a penalization technique, and the Lusternik—Schnirelman
category theory, we study the multiplicity and concentration properties of solutions
for the above problem when ¢ — 0.
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1 Introduction

In this paper, we investigate the multiplicity and concentration phenomenon of solu-
tions for the following fractional (p, ¢)-Laplacian Kirchhoff type problem:

(14102 =+ (1400 ) (=805 V)P 2+ 920 = fu) nBY )
ueWwsP@®RV)NWwsI®RN), u>0inRY, |
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where ¢ > 0 is a small parameter, s € (0,1),1 < p <g < ¥ <2q,V: RY = Ris
a bounded and continuous potential fulfilling the following conditions [18]:

(V1) there exists Vy > 0 such that Vo = inf g~ V (x),
(V2) there exists a bounded open set A C RY such that

V0<rgli\nV and 0eM={xeA:Vx)= W},

and f : R — R is a continuous nonlinearity such that f(¢) = 0 for t+ < 0 and
satisfying the following hypotheses:

. f@)]
lim L0 g,
(1) i, 1T
t
(f2) there exists v € (2q, ¢¥) such that lt}i_l)noo |{|§_)1| = 0, where ¢ = NNTZ({,

1
(f3) there exists ¥ € (2¢q, v) such that 0 < ¥ F(t) = 19/ f(@)dr <tf(r) for all
0
t >0,

(fs) the map ¢ — M

poym is increasing in (0, 00).

The symbol (—A);, with t € {p, q}, stands for the fractional ¢-Laplacian operator
defined, up to a normalization constant depending on N, s and ¢, by setting

lu(x) —u() 2 ux) — u(y))

(=AY u(x) =2 lim PR

dy (x eRY),
r—0 ]RN\B,(x)

for any function  : RN — R sufficiently smooth. We recall that the recent years have
seen a surge of interest in nonlocal and fractional problems involving the fractional
t-Laplacian operator because of the presence of two features: the nonlinearity of the
operator and its nonlocal character. For this reason, several existence, multiplicity and
regularity results have been established by many authors; see for instance [4, 8, 10,
20, 24, 28, 38].

When s = 1, the study of (1.1) is strictly related to the following (p, ¢)-Laplacian
equation

—Apu — Agu + lulP"2u + u)9%u = f(x,u) inRY,
which comes from a general reaction—diffusion system
u; = div(D(u)Vu) + c(x, u) where D(u) = [Vu|’~2 + |Vul?2.
This system has a wide range of applications in physics and related sciences, such
as biophysics, plasma physics, and chemical reaction design. In such applications,
the function u describes a concentration, div(D (u)Vu) corresponds to the diffusion

with diffusion coefficient D(u), and the reaction term c(x, u) relates to source and
loss processes. Typically, in chemical and biological applications, the reaction term
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c(x, u) is a polynomial of u with variable coefficients; see [17]. Some classical results
for (p, ¢)-Laplacian problems in bounded or unbounded domains can be found in [2,
22,26, 27,31, 33, 34] and the references therein. We also mention [15, 30] in which
the authors discussed Kirchhoff type problems with the (p, g)-Laplacian operator
—Ap — Ay

For what concerns the nonlocal framework, only few papers studied fractional
(p, g¢)-Laplacian problems. Such problems involve the sum of two nonlocal nonlinear
operators with different scaling properties and so some nontrivial additional technical
difficulties arise with respect to the local case s = 1 and p # ¢, and the fractional
cases € (0,1) and p = gq.

In [16], the authors obtained existence, nonexistence, and multiplicity of solu-
tions for a subcritical fractional (p, g)-Laplacian problem. In [5], the author proved
an existence result for a critical fractional (p, g)-Laplacian problem, by using a
concentration-compactness lemma and the mountain pass theorem. Multiplicity results
for a class of fractional (p, g)-Laplacian problems in bounded domains and with crit-
ical nonlinearities have been established in [12]. The multiplicity of concentrating
solutions for a fractional (p, g)-Laplacian problem of Schrodinger type has been
recently demonstrated in [11]. For other contributions devoted to this class of prob-
lems, we refer to [1, 7, 9, 12, 25, 29].

To our knowledge, no results for Kirchhoff type problems driven by the fractional
(p, g)-Laplacian operator (—A)},+(—A), appear in the current literature. Particularly
motivated by this fact and the above-mentioned works, in this paper, we examine the
multiplicity and concentration properties of solutions for (1.1). More precisely, our
main result can be stated as follows:

Theorem 1.1 Assume that (V1)-(V2) and ( f1)-(fa) hold. Then, for any § > 0 such
that

Ms = {x e RN : dist(x, M) < 8} C A,

there exists &5 > 0 such that, for any € € (0, &5), problem (1.1) has at least catp; (M)
positive solutions. Moreover, if u. denotes one of these solutions and x, € RY is a
global maximum point of u, then

lim V(exgs) = Vp.
e—0

The proof of Theorem 1.1 is based on the generalized Nehari manifold method, a penal-
ization technique, and the Lusternik—Schnirelman category theory. Firstly, inspired by
[18], we modify the nonlinearity f in a suitable way and we consider an auxiliary
problem whose advantage with respect to (1.1) is that the corresponding energy func-
tional J; possesses a mountain pass geometry [3]. Moreover, an accurate analysis
allows us to verify that 7, satisfies the Palais—Smale condition at any level ¢ € R
((PS). condition for short). Secondly, since we are interested in providing a mul-
tiplicity result for (1.1), and our nonlinearity f is only continuous, we implement
the barycenter machinery and adapt some abstract critical point results found in [36].
This kind of argument also appears in [23] to analyze a Schrodinger—Kirchhoff elliptic
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equation, in [6] to handle various fractional Laplacian elliptic problems, and in [11]
to deal with a fractional (p, ¢)-Schrodinger equation. However, with respect to [6,
11, 23], the mixture of Kirchhoff terms and two different nonhomogeneous nonlocal
operators makes the study of (1.1) rather tough and an appropriate investigation will
be done to circumvent some significant technical complications; see for instance the
proofs of Lemmas 2.4, 2.5, 2.7 and Theorem 3.1. Finally, we show that the solutions of
the modified problem are solutions to (1.1) for ¢ > 0 small enough, by using a Moser
type iteration [32] and the Holder regularity result in [11]. As far as we know, this is
the first time that the penalization approach and the Lusternik—Schnirelman category
theory are combined to treat fractional (p, ¢)-Laplacian problems like (1.1).

The paper is organized as follows. In Sect. 2, we collect some basic results for
fractional Sobolev spaces and we introduce the modified problem. In Sect. 3, we
tackle the limiting Kirchhoff problem. In Sect. 4, we present a multiplicity result for
the modified problem. The last section is dedicated to the proof of Theorem 1.1.

2 The Modified Problem

2.1 Notations and Some Useful Lemmas

Let p € [1,00] and A C RY be a measurable set. We will denote by | - |Lr(a) the
norm in L?(A), and we will simply use the notation | - |, when A = RV,

Lets € (0,1), p € (1,00) and N > sp. The fractional Sobolev space W*?(R") is
defined by

lu(x) —u(y)|?
s, p MmNy _ P (N N L
W*P(RY) = {MEL R™): //RZN X =yt

dxdy < oo} ,
which is a Banach space with the norm

1
1 u(x) —u(y)|” »
lullws.p @y = (ulp + [wls p) 7, where [uly,, = (// Ty dxdy

For u, v € WP [RY), we put

_ Ju(x) = uP 2 x) —u()@E) = ()
(1, v)s P = - dxd
’ R2N x — y|NHsp
The following embeddings are well known in the literature.

Theorem 2.1 [19] Let s € (0,1), p € (1,00) and N > sp. Then, WP (RN) is
continuously embedded in L'(RN) for any t € [p, p¥] and compactly embedded in
L], .( RN forany t € [1, j298

For the reader’s convenience, we also recall some useful lemmas.
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Lemma2.1 [8] Lets € (0,1), p € (1,00) and N > sp. Letr € [p, p¥). If {un}nen
is a bounded sequence in WP (RN and if

lim sup / lun|"dx =0,
BRr(y)

n—>00 | RN

where R > 0, then u,, — 0 in L'(RN) forall t € (p, P

Lemma2.2 [8] Lets € (0,1), t € (1,00) and N > st. Let {u}neny C WS (RYN)
be a bounded sequence in W' (RN), and let ¢ € C®RN) be a function such that
0<¢ <1inRN ¢ = 0in B(0)and ¢ = 1 in B5(0). For each p > 0 let
dp(x) = ¢>(%). Then

t
lim lim sup // 180() = $p I |t (x)|' dxdy = 0.
RZN

P30 p—soo |x — |N+”

Proof The proof of this result can be found in [8], but here we give a more direct
proof. Using the definition of ¢, polar coordinates and the boundedness of {u,},en
in W (R"), we can see that

16p() = oI
//l‘gzzv |x — y|N+st [, (x)|" dxdy
16,00 =o'~
lun (X)|" dxd
A.M /y x=p X — yINﬂl Un y
|¢'°(x) oM '
/IARN ./; —xl<p X — y|N+5; [ty (x)|" dxdy
dy
ef (] )
RN n ly—x|>p |x _ y|N+st
C dy
+ — wn (O / —> "
= [ o ( e
dz C i
cclmor ([ ) ot Lo ([ )
A{N| n(X)] ( el=p 121N TS o RNl n(x)] o, T
® dr C o
' t
= C/RN T dx (/p m) + ;fRN e ()" dx (fo rt—t+1>

C Cc _ C C
< — | Junl dx + —tp*““f @ dx < — | Jup (o) dx < —
P JRN P RY P JRN p*
and letting first n — oo and then p — oo, we get the thesis. O

Lets € (0, 1) and p, g € (1, 00). Consider the space
W = WwP@®RY) N w4 RY)
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endowed with the norm
lulhw = ||u||WS-p(RN) + ||'4||W.V=q(RN)~

Since WS (RN), with r € (1, 00), is a separable reflexive Banach space (this can
be proved by using the operator T : W5 (RV) — L"(RVN) x L"(R*") defined by
Tu = (u,(u(x) —uly)lx — y|_¥_s) and arguing as in the proof of Proposition 8.1
in [13]), we obtain that }V is also a separable reflexive Banach space.

For any ¢ > 0, we introduce the space

X, = {u eEW: / V(ex) (|u|p + |u|‘1) dx < oo}
]RN
equipped with the norm

lullx, = llullv,.p + lullv,.q,

where

1

t

lullv,,r = <[u]§,, +fN V(8x)|ulldx> fort € {p,q}.
R

2.2 The Penalization Approach

We adapt in a suitable way the del Pino—Felmer penalization approach [18] to attack
(1.1). First, we observe that the map ¢ +— SO increasing in (0, o). Indeed,

[T
fo  fo !
tP=l g pa=1 7 f2q=1yp=1 4 49-1
. .. . . 2g—1 .
and noting that ¢ — t{q(’_)l is increasing in (0, co) (by ( f1)), and that ¢ l,,_’qu is

increasing in (0, co) (because 2g > p), we deduce the desired result.
Now, let us fix

and let a > 0 be such that
Vo -1 -1
= — p q .
f(a) X (@’ +a®"")

We define

f @) ift <a,

[ = { %(tpfl +197Y ifr > a,
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and

XA F@O + (1= xax) f(1) ift >0,
g(x’t)_{o ift <0,

where x4 denotes the characteristic function of A ¢ RV, By (f1)-(f1), we infer that
g :RY x R — R is a Carathéodory function that fulfills the following assumptions:
(g1) lim ggx, ) = 0 uniformly with respect to x € RV,
-0 t2r=1
(g2) g(x,1) < f(t)forallx e RN andt > 0,
(g3) M0 < 9G(x,t) < gx,p)tforallx € Aandt > 0, (ii) 0 < pG(x,1) <
g(x, 0t < W (tP +19) forall x € A€and 1 > 0,

. X, t .. .
(g4) for each x € A, the function t —tp_‘gl(+ tzl—l is increasing in (0, 00), and for
p : gx, 1) .. o
each x € A€, the function ¢ — P Y is increasing in (0, a).

Let us introduce the auxiliary problem
(1 + [u]ﬁp) (—A)u + (1 + [u]?ﬁq) (=) u+ V(Eex)(ulP~2u + |ul?2u) = g(ex, u) inRV,
uewsPRMHNwSIRN), u>0inRN.
2.1
We stress that if u, is a solution to (2.1) such that u.(x) < a for all x € A, where

Ay = {x € RN : ex € A}, then u, is also a solution to (1.1). Then we consider the
functional J; : X; — R associated with (2.1), that is

1 1 2 1 1 2 /
p p q q
i + — + = + — —_ G(ex, u)dx.
~7s(“) p”u”Ve»P zp[u]s,p q”u”VsJ[ 2q[u]s,q RN (8x u) X

Clearly, 7, € C' (X, R) and it holds

(Te @), ) = (4 [ulf p)(u, 9)s.p + (A4 [l o) (1, @)s 4

+f V(ex)|ul?2u @ dx —+—/ V(ex)|ul92u ¢ dx
RV RV
—/ g(ex,u)pdx
RN
for any u, ¢ € X,. We denote by NV, the Nehari manifold associated with 7, namely
Ne = {u € X : (T (u), u) = 0},
and we set

Ce = ir}{/ Te(u).

ueNe
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Let X be the open set given by
X = {u € X, : [supp(u™) N A,| > 0},
and S} =S, N X}, where S, = {u € X; : |lu|lx, = 1} is the unit sphere in X,. Note

that S is an incomplete C!*!-manifold of codimension one. Hence, X, = 7,,S; @ Ru
forall u € S}, where

T.ST = {veXe: (14 [ulf ), v)s p + (1 + [ulf o) {u, v)s 4

+/ V(ex)(ulP2uv + [u|9 2uv) dx = 0}.
RN

The next lemma ensures that [J, possesses a mountain pass geometry [3].
Lemma 2.3 The functional J; satisfies the following properties:

(i) There exist o, p > 0 such that J.(u) > o for any u € X, with |ullx, = p.
(ii) There exists e € X, such that |le||x, > p and J¢(e) < 0.

Proof (i) Pick ¢ € (0, Vp). From (g1), (g2), (f1), and (f2), we can find C; > 0 such
that

lgCe, D < ¢l)P~" + Celt”™" for (x,1) e RV x R.

Taking into account the above estimate and applying Theorem 2.1, we have

Te(u)

v

1 1 c c
Sl o+ 2l =l - —>lul}

v

1 C
Calluly,,+ - —Jul}.

Choosing [Jullx, = p € (0, 1) and recalling that 1 < p < g, we get |lu|ly, , < 1 and
thus ||u||€£’p > ||u||(",£yp. Using

a'+b' > Ci(a+b) foralla,b>0andr > 1,
and Theorem 2.1, we can see that
q Cl v q v
Tew) 2 Callully, = =51ul} = Callully, = Csllully,.

Since v > ¢, there exists « > 0 such that J; (1) > o forany u € X, with |lu|x, = p.
(i) It follows from ( f3) that, for some constants A, B > 0,

F(t) > At” — B forallt > 0.
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Then, for all u € X and 7 > 0, we obtain

tP 24 o,
Te(tu) < ;IIMII +—[ —|| IIVSquZ[u]s,q

— A / ) dx + Blsupp(ut) N A,
Ag

which combined with the fact that & > 2¢ > 2p implies that 7, (fu) — —oo as
t — oo. Hence, for large + > 1, we can take e = tu such that |le|lx, > p and
Je(e) < 0. O

In view of Lemma 2.3, we can define the minimax level

c, = mIf II%(E)IX Je(y(@)) where T'e={y eC(0,1],X,):y(0)=0
yelet

and J.(y (1)) < O}

Exploiting a version of the mountain pass theorem without the Palais—Smale condition
(see [37]), we can find a Palais—Smale sequence {u, },eny C X at the level ¢ ((PS )cg
sequence for short).

Remark 2.1 We may always assume that any (P S). sequence {u,},en C X of T is
nonnegative. Indeed, noting that (77 (u,), u,, ) = 0,(1), where u,, = min{u,, 0}, and
using g(e-,t) = 0 fort < 0, we have

— p=2
(1 + [unl? p)// N tn ) ”"(xy)_lyw(zg’lfx) “nO (= () = ug () dxdy

ltn (x) = un D92 (x) — un (), _ _
+ (1 + [Mn]?,q) /:A;ZN I — le_’_Sq (Mn (x) — Uy (y)) dxdy

+fN V(ex)(unl? " 2un + |un|™un) u,; dx = o(1).
R
Recalling that

x—y 2 —y) " —y)=|x" —y ' forallx,yeRandr>1, (2.2)
we arrive at

||M;||€E,p + ||M;||Cx1/8,q = ox(1),

thatis u,, — 0in X,. Moreover, {u; },en is bounded in X. Since [u, I} , = [u;7 1} , +
on(1) and |lu,llv,,: = ||u,J{||V6,, + o,(1) for ¢t € {p, q}, we can easily deduce that

Te(un) = Teu)) + 0,(1) and J/(u,) = J.(u;}) + 0, (1). Therefore, T, (u;f) — ¢
and J/(u;)) — 0.

The next two results are very important because they allow us to overcome the
nondifferentiability of A, and the incompleteness of S
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Lemma 2.4 Assume that (V1)-(V2) and (f1)-(fa) hold. Then we have the following
properties:

(i) Foreachu € X/, let h, : RT™ — R be defined by h,(t) = J(tu). Then, there is
a unique t, > 0 such that

h, (t) > 0 forallt € (0,1,),
h,(t) <0 forallt € (t,, 00).

(ii) There exists T > 0, independent of u, such that t, > t for any u € Sg‘. Moreover,
for each compact set K C S}, there is a constant Cx > 0 such that t, < Ck for
anyu € K.

(iii) The map i, : X — N, given by i (u) = t,u is continuous and m, = nA1€|S;+ is

u

el -

(iv) If there is a sequence {uplpen C S; such that dist(u,,dS}) — 0, then
lme(un)llx, — 0o and Je(me(un)) — oo.

a homeomorphism between S} and N. Moreover, m7 ' (u) =

Proof (i) From the proof of Lemma 2.3, we derive that s, (0) = 0, h,,(t) > Ofort > 0
small enough and A, () < O for t > O sufficiently large. Then there exists a global
maximum point #, > 0 for &, in [0, co) such that 4}, (#,) = 0 and t,u € N;. We claim
that #, > 0 is the unique number such that /), (z,) = 0. Arguing by contradiction, we
assume that there exists 71 > 7 > 0 such that 4/, (t;) = h/,(t2) = 0, or equivalently

2p—1

p—1 14 2g—1
1 ”””Vg,p +1

2 —1 2
iy o el + = [ etex s
’ R

2p—1

p—1 )4 2g—1
153 ”U”Vg,p +t2

2 -1 2
[ulsp + 65 ull§, , + 657 [ulsly = f | 8lex, muwudx.
' R

Hence,

p q 2
”M”\/g’p ”u”Vg,q [M]Aﬁy i ]2q _ g(ex, tiu) 2qd

2g—p q 2g—2p Uls.qg = 2g—1 u X
5 1 5 RN (f1u)

and

2
llull, llll, [uly? (ex, tou)
4 eq 5P + [M]%qq :f —g uzqu.
R

24— q 22 21
5P ty 5y N (tau)=

Using the definition of g, (g4) and (f4), we have

S N YT (LA FPYTASY G, )
2g—p 2g—p Ve.p P Ve.q 2g—2p 2g—2p $p
f 1 1 b 7 )

:/ [g(sx,tlu) B g(ex,tzu)] 294
RN

(ru)?a—1 (u)?a—!
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Ex, hiu EX, hu
2/ [g< 1) _ 8 22_1)]u2qu
Acn{nus>a) L (E1u)™ (f2u)=4
X, hu EX, hu
. +/ [g( 1 _ 8 ;_f}zqu
ASN{ru<a<tiu} (tlu) q (tZM) q
X, hHu EX, hhu
+/ [g( 10 _ 8 22_1)}uzqu
ASN{tiu<a} (tyu)=4 (tau)=4
\% 1 1 1 1
> g (o~ Gars) * (o ~ )
Acn{nu=a) L\ ()47 (nu)“d=> () (u)?

\% 1 1 t
+/ |:—0 ( 5 + ) — ( 22u11 ] u*dx.
ASnfru<a<tiu} K \ (iu)=4—» (tu)? (tau)=1

Multiplying both sides by )t < 0 (recall that 2¢g > p and 1 > 1), we get

2q P_ Iqup

(t11)97P

RN
lully, , + s 3= — )y, ,
L' " =4

2q— q
()™ P 1 — ” \
t22q—p 2q P (it )q Ve.q

p
= lully, , +

Vi Vo ((np)2a—r 14l
S*O uPdx + 02(12) 2_ 2 1/ uldx
K AsN{u>a} K q P =P ()7 AéN{ru>a)
+ - (11)*177 / [&( L, 1 )_ [ (o) ]u2qu
2970 — 2977 Jaenppuza<owy LK \(uw)=r () ) ()2~
Vi Vi tp)4—P
5 70 Pd +io%(lg _t?) qu.x
K AsN{nu>a} K t q-p 2 9P ASN{tu>a}
& 1
Vo t22q P Vo tq pt22q P

P 1 e q
ufdx + — / u? dx
K 2qg— / 2 29—

12241 p_th 4 ASN{hu<a<tyu} K q P l‘lq P AsN{hhu<a<tu}

B (t112)%4—P / f(tau) W2y
A

122(1—[7 — llzq_p cN{nu<a<tyu} (1’214)2‘771
Vi Vo (n)i™?
< uldx + —= ﬁ(tg —1) uldx
K Jacninu=a) K 470 — 170 An{nu>a)

2 2
Vo 12977 Vo rdTPiaP \
t = 5 u? dx + X 27 _ a7 u dx
K [211 p _th P ASN{ru<a<tiu} K tzq P [lq P ASN{thu<a<tiu}

2q—p 29—=p 9-p
Vo 4 » VW 1 ty q
~ X 2 uldx = o 3 utdx
K [2q p_th P AsN{nu=<a<tju} K l‘zq p_th p Agnfru<a<tiu}

W Vo (nn)?™?

uPdx W
K ASN{nu>a} K Zq P t12q—p

] —1) uldx
ASN{tu>a}

2q—p q—p 2q—p
Voo 4 Vo 778

*ﬁ/ uldx + 2 ﬁ/ ut dx
K tzq p_th p ASnfru<a<tiu} K t, a=p th ’ Agu=<a<tiu}
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2q—p 2q—p .q—p
Vo 577 P Vo 57 ' 7 q
— 3 5 uf dx — 3 5 udx
K 12‘1 P —llq P J acnitu=a<tyu} K ty a-r —th P Jaentnusa<tiu)
Vo Vo (nn)i™?
— uldx + — —""——( —t uqu
= . + 2q—p _ 2q p(2 1)
AL Kt
I (nn)i~
< *”“”vs » T ?m(l‘z —f1)||'4||
1

where we used the fact that (f4) and our choice of the constant a produce

fow) f(tu) (nu)?~" + ()~
(u)?a=1 (u)P~! 4 (ru)q~! (ru)?a~1
fl@  (uw)?’ '+ (u)?™!
~aP~l gl (thu)2a—1
W 1 1 . e
=% <(t2u)2‘1_1’ + (tzu)q> in Ay N{hu <a < tu}.
Therefore,

1 P QL) S Y N
<1 - E) lully, , + 5= —tDllully, , | =0,

2q9—p 2qg—p
L' T

which is inconsistent with u % 0 and K > 1.
(ii) Fix u € S. By (i), there exists #, > 0 such that 4/, (#,) = 0, that is

1 1. -2g

-1 2 2
Pl ol 4 2 = [ e .
R

Pick & > 0. From (g1)-(g2) and Theorem 2.1, we derive

p—1 P p—1 P
Wl 4l ||u||Vqs/3g(sx,ruu)udxsszu Iy, ,
R
-1
+C§t; ||u||‘{,£’q.

Choosing & > 0 sufficiently small, we have

p—1 p v—1 1
Cty lully, , + IIMIIV g =Ct T lully, g = Cry

Now, if f, < 1, then ¢! < z;’” and using the facts that 1 = [lu]lx, > [lu[ly,., and

that g > p imply that ||u||€g e ||u||v o We get

-1 —1 —1 —1
Cii =Cry lulg, <™ (Clullf, , +lullf, ) <t (Clully, , + lulf, )

<cr
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Since v > g, there exists T > 0, independent of u, such that#, > t.
Whent, > 1,then /™' > 127", and observing that 1 = llullx, >

g > pyield [ully,_, = lluly,_ . we obtain

lullv,,p and that

p—1 p—1 q p—1 q q p—1 P q
Cti =Cu Nl < w7 (Cluly, , + luly, ) < a7 (Clully,, + lulf, )

<cr

Asv > g > p,wecan find T > 0, independent of u, such thatz, > 7.

Now, let K C Sj be a compact set, and suppose, by contradiction, that there exists
{un}nen C Ksuch thatt, =1,, — oo. Since K is compact, there is u € K such that
u, — uin X,. By the proof of (ii) of Lemma 2.3, we see that

Je (thuy,) — —o0. 2.3)

On the other hand, if v € A, by (J.(v), v) =0 and (g3), we get

1 -
Te@) = Tew) = ST/ @).v) 2 CAUIY,_, + I, ).
Taking v, = t,,un, € N; in the above inequality, we arrive at

Te(tgun) = C(llvally, , + loaly, -

Since |lvpllx, = tn — oo and |lvullx, = llvallv,,p + llVnllv,,q> We can use (2.3) to
reach a contradiction.

(iii) First we note that ., m, and m;l are well defined. Indeed, by (i), for each
u € X/, there is a unique m,(u) € N;. On the other hand, if u € N; then u € X}.
Otherwise, we would have

[supp(u™®) N Ag| =0,

and by (g3)-(ii) we infer that

lully, |+ lullf, < glex,wyudx = | glex,u)udx + | g(ex,u)udx
va S)q
) RN AS A
:/ g(ex, uHuT dx
A¢

1
— Viex)(u|? + |u|?)dx
K AS

IA

A

1
P q
< < (ullf, , + lulf, )
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which gives a contradiction because K > 1 and u # 0. Consequently, m;l(u) =

Hullx € S is well defined and continuous. Since

taut u

—1 —1 u

mg (me(u)) =mg (t,u) = T = T =u forallu e S/,
u £ &

we deduce that m, is a bijection. Now we prove that i, : X;" — N, is continuous.
Let {un}neny C X and u € X be such that u, — uin X,. By (ii), there exists fp > 0

such that 7, = tom_ = lo. Using t, —2— ”u o € N¢, that is
UnlixXg

14 q 2p 2q

P ”M””Vs,p 4 ”u””Vs,q +t2p [unlsp +12q [un]s,q _ ex. t Un

S TN P T P A N P
nlix, nllx, ”unnxg “L‘HHXF R nliXe

Up

o
lloen Iz,

and letting n — oo we find

||u||v lull, o Wl g [l u
FE it 1" — 1 5L = /ﬁ(sx’“’n—)
R

IIuIIXE lluelly, ||u||X’: ||u||X‘i ullx,

dx,
llullx,

which implies that # ”uﬁx € N;.From (i), ¢ = t¢ and this assures that 1. (u,,) —

Talx

me(u) in X;“. Therefore, 1, and m, are contlnuous functions.

(iv) Let {un}neny C S be a sequence such that dist(u,, 3S;}) — 0. Then, for each
v € S} and n € N, we have u;” < |u, — v| a.e. in A,. Hence, by (V}), (V2) and
Theorem 2.1, we can see that for each r € [p, g1, there exists C, > 0 such that

) | Lray < Hlf [t — vlLr (A,
v€6

<C, inf |lu, —vl|lx, foralln eN.
vedST

Combining (g1), (g2), (g3)-(ii) and ¢ > p, we get, forall ¢ > 0,

/ G(ex, tuy)dx :/ G(ex,tun)dx—i—/ G(ex, tu,)dx
RN ¢ A
Vo
— | @ lunl? 4+t uy | DHdx + F(tu,)dx
Kp Jac

IA

A

IA

tP 4
—/ V(ex)|un|pdx+—/ V(ex)|u,|? dx
Kp Jrn Kp Jrn

+Cit? | wuhHPdx +Cat" | (u)) dx
Ag Ag
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tP 4

< — V(ex)|un|pdx+—/ V(ex)|uy|? dx
Kp Jry Kp Jry

+ CtPdist(uy, 3ST)P + C"dist(u,, 0ST)".

Thus, forall t > 0,

tP 14
/ G(ex, tuy)dx < —/ V(ex)|u,|? dx + —/ V(ex)|u,|? dx + 0, (D.4)
RN Kp Jrn Kp JrN

Now, we recall that K > % > l,and that I = ||u,|lx, > |lunllv,,p implies ||u,,||€€ =

”“"”l\I/S,p' Then, for all # > 1, we obtain

tP » 11 g tP » 14 q
el + - laally, g = 5 fRN V(ex)|up|? dx — K—p/RN V (ex)|un|? dx

tP 1 1
—[unl? p + 17 (— — —)[ V(ex)|uy|? dx
p p Kp/ Jry
14 P 1 1
+ —fuplsg +t9 (= — — V(ex)|u,|? dx
q g KpJ Jry

> Culualll, , + Catfunl?,,
q q

e Cltp”un“Vg,p + C2tq||un||vs,q

> CuPlualld, , + Cot?lunl?,

> C3tP(llunllv,,p + llunllv, ) = Cst?.

(2.5)

By using the definition of m (u,), (2.4) and (2.5), we have
liminf J, (m¢(u,)) > liminf 7, (tu,)
n—oo n—oo
> lim inf 17 P 14 q
= lnrglog ;”u””VE,p + ;”un”\/&q
—/ G(sx,tun)dx:| > Cst? forallt > 1.
RN

Letting + — oo we deduce that 7, (m(u,)) — 00 as n — oo. Furthermore, by the
definition of 7, we can see that for alln € N

1 p p 1 q q
;”ms(un)uvs,p(l + ”ms(un)”‘/hp) + 5|Ims(un)||vs,q(1 + ”ma(un)”\/g‘q)

1 1 5, 1 1 )
> —Ilms(un)llfﬂmp + —[me )5, + ;”ms(un)”c\l/gﬂ + Z[ms(un)]s,qq

2p
> Je(me(uy))

S

and this yields ||m,(u,)|x, — oo asn — oo. O
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Remark 2.2 There exists k > 0, independent of ¢, such that ||lu[|x, > « forallu € N.

Indeed, if u € N;, we can use (g1), (g2) and Theorem 2.1 to see that

Il ,+ bl < [ serwuds
a
< clul) + Celul®s
¢ 14 ’ q5
< ol + G,

1
Choosing ¢ € (0, Vo), we get [lullv, 4 = & = (Cp) %~ and thus ||ulx, > llullv, 4 >
K.

Now we define the maps
Ve :XF >R and ¥, :SS - R,
by setting g@s (u) = Je(mg(u)) and ¢, = Wa |S+ From Lemma 2.4 and arguing as in

the proofs of Proposition 9 and Corollary 10 in [36], we may obtain the result below.

Proposition 2.1 Assume that (V1)-(V2) and (f1)-(f4) hold. Then we have the following
properties:

() Y. € C'(X}, R) and

7726 () |Ix:,

Tl (TLGie (), v) forallu € X and v € X,.
ullx,

(Ul (u), v) =

®) ¥ € CHSH, R) and
(Wi, v) = llme W) |x, (T, (me W), v) forallv e T,S;.

©) If{untnenisa (PS). sequence for Ve, then {mg(u,)}nen is a (PS). sequence for
Te. If {uptnen C N is a bounded (PS). sequence for T, then {m;l(un)},,eN is
a (PS). sequence for V.

(d) u is a critical point of V. if and only if m¢(u) is a critical point for J.. Moreover,
the corresponding critical values coincide and

inf Y.(u) = 1nf Te(u).

ueSy

Remark 2.3 Asin [36], we have the following minimax characterization of the infimum

of J; over Ng:

Ce = 1nf Je(n) = 1nf maxjg(tu) inf maé(jg(tu)

ueN; uexg >0 ueST

Moreover, arguing as in [37], we can prove that ¢, = cj,.
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In the remainder of this section, we check that the modified functional satisfies
the Palais—Smale condition. We start by showing the boundedness of Palais—Smale
sequences.

Lemma2.5 Let ¢ € R and let {u,}en C Xg be a (PS). sequence for J,. Then
{uy}nen is bounded in X,.

Proof Using (g3), ¢ > p and ¥ > 2q, we see that

1
Co(l + llunllx,) = T (un) — g(jé(un), Un)

1 1 1 1 2

= (; - 5) ”un”\’;‘s,p + (E - 5) [un]x,l;
1 1 1 1 2

q q

+ (g - 5) ”u’l”V,,;,q + (z - 5) [unls.q

1
+— | lglex,un)u, —0G(ex, u,)ldx

1
+ — [g(ex, up)u, —9G(ex, u,)]dx
O Ja,

1 1
q
> <5 - 5) Ulunlly, , + lually, ]

_ <l _ l) i/ V(ex)(lun|? + |upl?) dx
A¢

p U)K
1 1 I 1\ 1
p q
> [(5 - 5) - <; - 5) ;] lanll?, , + Nunll, )
= Cllunll}, , + lually, ) 2.6)

where C = [(% - %) - (% - %) %] > 0 since K > (g%f;) %. Suppose, by con-

tradiction, that ||u, ||x, — oo. Then we discuss the following cases:
Case 1 |u,llv,,p — oo and ||lu,|lv, 4 — oo.

For n large, we get ||u, |22 > 1, thatis |[un||2, =~ > ||lusll?, . Therefore, from (2.6),
g g Veuq Veuq Vg

Co(l + llunlix) =CNlunlly, , + lually, ) = Crlllunllv,,p + lunllv.,q)”

p
=C ||“n||xg

which is a contradiction.
Case 2 |luy|ly,,p — oo and |lu,lly, 4 is bounded.
We have

Co(l + llunllv,. p + lunllv, g) = Co(l + llunllx,) = Clluglly, ,
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135 Page 18 of 46 V. Ambrosio

1 1 lunllv,, ~
Co( et g+t | 2 C
”un”\/s’p ||u,,||vg’p ”“n”vg,p

Since p > 1 and letting n — oo, we find 0 < C < 0, that is a contradiction.

Case 3 |luylly, 4 — oo and |lu,|lv,,p is bounded.

This case is similar to the case 2, so we skip the details.

In conclusion, {u,},¢cn is bounded in X;. O

and thus

Lemma 2.6 Let c € R and let {uy},en C Xe be a (PS), sequence for J.. Then for
any n > 0 there exists R = R(n) > 0 such that

lim sup/ </ [tn (x) — un (VP + [ty (x) — un(y)|9 J
n—oo JB4(0) \JRN [x — y|N+SP lx — y|N+sq

+V (ex)(Junl? + lunl?)) dx < 7. 2.7

Proof Let v € C®(RY) be such that 0 < ¢ < 1, % = 0 in B%(O), Yr = 1in
B{(0), and |V{r| < C, for some C > 0. For R > 0, define ¢z (x) = Kﬁ(%)- Then,
0<vyr <1, ¥g =0in Bg(O), Yr = 1in B%(0), and [VYg|eo < %with C>0

independent of R. Since {Ygruy}nen is bounded in X, it holds (J/(un), Yrun) =
0, (1), that is

p
it [[ O o dady + 1+ )

y|N+vp

// |un(x) — un(y)l’fw () dxdy
R2N

|x _ y|N+vq

+/ V(ex) un"Yg dx +/ V(ex) un g dx
RN RN

=o0,(1) +f glex, up)Yru, dx
RN

_ 14
1+ [un]s,p) ‘/:/RZN

|t (X) = tn ()P 72 (x) — un (M) (WPR(X) — YR(Y))

|x — y|N+sp

_ q
1+ [un]s,q) /A{ZN

|t (X) = tn (D972 (n (x) — tn(0) (Yr(X) — YR())

|x _ y|N+sq

uy(y) dxdy

uy(y)dxdy.
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Pick R > O such that A, C B R (0). By the definition of ¥ g and using (g3)-(ii), we
obtain that

P q
//R i) w17 (x)‘”dy*/fw |M,L<Cx1 |Lfv"+(3;)| U drdy

|x _ y|N+vp

K
<on(1)—(1+ [un] p)
/f it (X) — un (D772 (x) = un (P WR(X) — YR(Y))
R2N

Ix _ y|N+sp

1
+ (1 - _> / V(ex)(unl? + lun|) Y dx
RN

un(y) dxdy

- (1 + [Mn]?,q)
// litn (%) = un D972 Wn (x) — un (M) (PR — YR())
R2N

x — y|N+sq

Up ()’) dxdy'
(2.8)

Now, from the Holder inequality and the boundedness of {u,},cn in X,, we get, for
t€{p.q},

it (X) = 1n (D" (1 (x) — un (M) (PR X) = YR())
uy(y)dxdy
Ry =y v
1
[yr(x) = YR ‘ ‘
=c ( [, R o dsay ) 29)
An inspection of the proof of Lemma 2.2 shows that, for ¢t € {p, ¢},
. [VR(x) — YR ¢ c
i [, SR o ety < @10

Combining (2.8), (2.9) and (2.10), and recalling the definition of ¥/, for some C > 0,
we can take R = R(n) > (%)% so that (2.7) is satisfied. O

Since we are working with a Kirchhoff type problem, the next lemma will be funda-
mental to obtain the strong convergence of bounded Palais—Smale sequences.
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Lemma 2.7 Letc € R and let {un}en C Xe be a (PS). sequence for Je. Let R > 0.
Then

lim
n—o0 BR (O)

{/ |:|un(x) —un(YI? + lin (x) — un ()4
RV L — NP |x — y|Ntsa
N /BR(O)

{/ [IM(X)—u(y)I” lu(x) —u)|?
RN

|x_y|N+sp |x_y|N+sq

] dy + V(ex)(lun|” + |Mn|q)} dx

] dy + V(ex)(lul? + Iulq)} dx.
@2.11)

Proof Letn € C®°(RN)besuchthat0 <5 <1,n=1in B;(0),n =0in B5(0) and
[Vl < 2. For p > 0, put n,(x) = n(%). Then0 <n, <1,n=1inB,(0),n =0

in ng (0) and |Vn|eo < %. Since {u, },en is bounded in X, (by Lemma 2.5), we may

suppose that [un]ﬁp — £, and [u,,]?’q — £y asn — o0.
Fix R > 0 and take p > R. We recall the following well-known elementary
inequalities [35]: for any £, n € RY we have

(&% —InI" ) - (€ —n) = c1l€ —n|" forr =2, (2.12)
(EL+ D> LAEN 26 — InI"20) - € — )] = a2l — > forl <r <2,
(2.13)

for some constants c1, c; > 0. Note that, when 1 < r < 2, using (2.13) and the
elementary inequality

&1+ )" <277 1(€ + nl") forall &, e RY,

we deduce that there exists ¢z > 0 such that, forany &, n € RY the following relation
is satisfied

(ST

r = r—2 r—2 r
(gl + 7 [Ger =2 =1l - ¢ =" zesle —nl" fort<r <2,
(2.14)

Fort € {p,q} and n € N, we set
A ) = (4 [l )
/ [wn(x) —un I () — un () ) —u()I' (ul) - u(y))} y
RN

|x_y|N+st |x_y|N+st

X [(ttn (X) = un (y)) — (u(x) — u(y)dy
+ V(ex) (Jun )2 (x) = [0 ™2u(x) (un (x) — u(x)).
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Note that, fort € {p, ¢} and n € N, we have

0 5/ A;(x) dx =/ A;(x)np(x) dx
Br(0) Bg(0)

< (1 + [unls,)
// [Iun(X) —un W 7w (0) —un(y) ) =) @) — u(y))}
R2N

|x—y|N+S’ |x_y|N+Sl

X [(un (x) = un(y)) — (u(x) — u(y))n,(x) dxdy

+ fR V(ex) (il 2t — ]2t — ), dx
0 () — tn ()"
= (14 [u,l5 ) //RZN o ylbjf,ﬂ); np(x) dxdy—}-/RN V(ex)|un|'n, dx
, |u(x> ) ,
ra+tu ([ B @ asdy+ [ VDl dx

t—2
[<1+[un]§,> /f '“"(") “lg(fs),' (1 () — 10 (7)) )

—u(y))n,(x) dxdy

+/ Vi(ex)|uy, |’_2unm]p dxi|
RN

_ 1—2
[(1 (i1, »ff '”(’“) y”|,(vy+)' (1 (x)

—un(y)) (u(x) — u(y))np(X) dxdy

+f V(ex)|ul "2uunn, dxi| .
RN

Define

P
I =1+ [l ) '”"(x) Jn ) = un O dedy + V() unlPny dx
0 RN

y|N+sp

q
+(1+[un] q)f/ |14n(x) Mn(y)| p(x)dxdy-i-/ V(SX)|un|q7]pdx
R2N RN

|x — |N+sq

—/Ng(ex,un)unnpdx,
R

lu(x) —u(y)|?
= (1 l/ln s, p) \/,/].QZN |)C _ |N+sp (x) dxdy

+ / V(ex)|ulPn, dx

p—2
C (0t ) ff '”(x) ”l(Nyﬁ'P ()
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— u(y))(un(x) — un(¥))n,(x) dxdy

—/ V(ex)|ulP~ 2uunnpdx

— q
+(1+[un]sq)// Ju)) — w0 dxay

o x —y |N+Aq

+ / V(ex)|ulin, dx

_ q—2
—(1+[un]sq>/f '”(’C) JC)) = O ey — () ()

y|N+sq

—un(Y)np(x)dxdy

— fRN V(ex)lulq_zuunnp dx,

— p—2
1=ttty [[ O )

|x — y| NP
— un(y) @ (x) —u(y)n,(x) dxdy

+/ V(Ex)lunlp_2ununpdx
RN
q—2
+ (1 + [l ) f f '”"(x) y”j’}viys)q' (1 () = 4 () (0 ()
—u(YNnp(x)dxdy

+/ V(ex)|un|q_2ununp dx
RN

- /N glex, uy)un, dx,
R

and
Lip= /R g(ex, n) uy — ) dx.
Then it holds
OS/ (AR @)+ AT dx < |1} |+ 11 1+ I I+ 1yl (215)
Bgr(0)
Since

|un(x) —u, (P2

I, = (T n) unnp) — | (1 + [un)f ) /f S
(un(x) — un(y))(np(x) No(Y)un(y) dxdy
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- q-2
+ (1 + [ually) /A@v Iun(;)_ yul;(,&}?() (1n (x)

— un ()01 () = 1y (M)t (y) dxdly |

and {u,np}nen is bounded in X, we see that (J/(un), unn,) = 0,(1). Using the
Holder inequality and the boundedness of {u,},cn in X, we have

_ t—2
‘ / /R b ”j';(fs),' (Wn () = 4 () (0 (¥) — 1 ()it () ey

lx —y
1
e =l
<c([/w e dxdy ) fort € p.g)

which combined with Lemma in 2.2 (applied with ¢, =1 — 1, yields

lim lim sup
P=0 p—so0

_ =2
L, 2 ) = 1 0000 =m0 ) | =0

fort € {p, q}.

Consequently, recalling that [u,,]g), — {; fort € {p, q}, we get

1,}4” —0. (2.16)

lim |:
P=X| n—soo
We also observe that
, lun (x) — un (y)|P 2
= (T un) — [(1+ 1 f/ e
(un(x) — un(y))(np(x) —np(Y)u(y)dxdy

_ q—2
1 + [un] // [t (x) — un ()] (tt (x)

|x — y|N+sa

— un () () = (v dxdly |,

and using (J/(u,), un,) = 0,(1), we can argue as before to achieve that

lim [lim sup|1,%p|i| =0. (2.17)
P=0 | n—oo ’

Next we prove that
lim [nmsupu,f P'} =0. (2.18)
P=30 | n—oo ’
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From the weak convergence, we have

/ V(ex)|ul "2uuy, — u)n,dx = 0,(1) fort € {p,q}.
RN

Notice that, for 7 € {p, g},

_ t—2
(14 [unl!, // '”(x) y”;(Nnyt W) —u(y)
[(p —u)(x) — (uy — u)(y)]np(X) dxdy

_ t—2
+ualt, ff '”(x) y”jﬁff' () — u(y))

[(un —u)(x) — (up — u)(y)](np(X) — Ddxdy
_ =2
(1+ [ual. f / '”(") ”|(Ny ) = 7y
—u(Y)[(up —u)(x) — (un —u)(y)ldxdy.

By u,—u in X, and [Mn]ﬂ,t — ¢, fort € {p, q}, we deduce that

. |u<x>—u<y>|’ g
Tim (1+ [T, //H; R ) — u)

[(un — u)(x) = (un — u)(y)] dxdy =0 forre{p.q}

On the other hand, using the boundedness of {u,},ecn in X, and applying the Holder
inequality, we see that

. -2
0t [, OO
[(un —u)(x) — (up — u)(Y)](np(X) — D dxdy|
=1

_ t ' i
< (1+ O)luy — ul,, (//Rz/v 1) y|'fv(+y3,| 11 () — lldedy>

t—1

— t , ;
<C</A‘@N%| p(X) — 1|’1dxdy) fort € {p, q}.

Sincen, — la.e.in RN asp — ooandu € W' (RY), it follows from the dominated
convergence theorem that

. u(x) —u(y)l’ -
lim f/RZN| ylmyn n,(x) — 1|71 dxdy =0 fort € {p,q}.

p—>00

The validity of (2.18) is now an immediate consequence of the definition of I,i , and
of the above relations.
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Finally, exploiting u,, — uin L}, (RN) forall ¥ € [p, ¢¥) and the growth assump-
tions on g, we obtain

lim |1} =0 foranyp > R. (2.19)
n—oo ’

Combining (2.15) with (2.16)—(2.19), we find

lim (AP (x) + Al(x))dx =0,

whence

Tim {1+ [Tt )

ol

(|un(x) — un "2 () —un () ) = a7 @) — u(y))) y

|x—y|N+S’ |x_y|N+st

X ((un (x) = un(y)) = (u(x) —u(y))) dy] dx

+/ V(ex) (|un|t72un — |u|t72u) (u, —u) dx} =0 forte{p,q}.
Br(0)
(2.20)

Assume first that ¢+ > 2. Using (2.12), the boundedness of {u,},en in X and (2.20),

we get
s —0E) =t — 0O ]
0< vl da
B /BR(()) |:/RN |x — y|N+st y|ax

<c / [ f <|un(x) — 2 () = 14 (1))
— Jero)tIry |x — y| Nt

) —u P x) — u(y))) y

lx — yNVHst

X ((un(x) = un(y)) — (u(x) —u(y))) dy] dx = op(1).

In a similar fashion,

05/ V(Sx)lu,,—ul'dxfC/
Br(0) Br(0)

V(ex) (ual 20 — ') (0 = ) dx = 0,(1).
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Suppose now that I < ¢ < 2. From (2.14), the boundedness of {u, },cn in X, Holder’s
inequality, and (2.20), we derive

[y — u)(x) — (up — u)(y)| ]
dy|d
/BR(O) [/RN [x — y|NFst Y]

2—t

< C(lwall, +1ult,) T

Ui L

(Iun(x) — un "2 @ () —un(y) Ju(x) — (|7 @x) — u(y))) y

|x_y|N+st |x_y|N+st

X ((un(x) = un(y)) = (u(x) —u(y))) dy] dx] :

<c{f,  IL.

(Iun(X) —un W (0) —un(y)) ) — a7 @) — u(y))> o

|x _y|N+st |x_y|N+st

X (4 () = () = @) — () dy] dx}* = 0,(1).

Analogously,

0< / V(ex)|u, —u| dx
Br(0)
t

<cC [/ V(ex) (|un|f—2un _ |u|f—2u) (y — 1) dx:|2 = o, ().
Br(0)

Consequently, for z € {p, g},

_ t
lim [/ Jun () = ()P i’v"(yt” dy+V(8x)|u,,|ti| dx
n=o0 Jpp) LIry  |x — y|VF

= Ju®) —u I t}
- /BR(O) [/RN |x — y|N+st dy + V(ex)|ul' | dx

which implies (2.11). This completes the proof. O

Now we are ready to prove the following compactness result.

Lemma 2.8 7, satisfies the (PS). condition at any level ¢ € R.

Proof Let ¢ € R and let {u,} ey C X, be a (PS). sequence for 7. By Lemma 2.5,
we know that {u, },cn is bounded in X,. Up to a subsequence, we may suppose that
up,—u in Xg and u, — wu in LZ’OC(RN) forall » € [1, ¢J). In view of Lemma 2.6, for
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each n > 0, there exists R = R(n) > (%)%, with C > 0 independent of 7, such that
(2.11) holds. This fact combined with Lemma 2.7 yields

p q Sy p q
el , + Nl , < timinf a1, |, + lal, )

: P q
< limsup(lunll§, , + llunlf, )
n—0o0

= lim sup{/
n—00 °JBr(0)

/ (|“n(x)_un(y)|p + |un(x)_un()’)|q> d
av \ = vV =y ) @

+V (e (ual” + lua|)] dx
un(x) — un(y)? |“n(x)_un(y)|q>
+ + d
/B;,(O) |:/]RN ( |x — y|N+sp |x — y|N+sa
+V ) (fual” + lua|)] dx |

_/ [/ <|u(x)—u(y)|l’+ Iu(x)—u(y)|q> .
~ Jeroy LJry U lx — yVEop Ix — y|N+5q y

+V (ex)(Jul? + u|?)] dx
—i—limsup{/
n—o00 BFQ(O)
[, (x) — up(¥)IP [y (x) — un (¥4
(et s ) o
+V ) fual” + lua|)] x|

- / [/ <|M(X) —u(y)|? n |1 (x) —u(y)|q> dy
Br(0) LJrN \ [x — y|NFsp |x — y|N+s4

+V (ex)(ul? + [u|)] dx + 1.

Letting n — 0, we have R — oo and then

p 4 limi p q
el , + lully, , < timinf (g1, + lual, )

< Timsup(Jlun ¥, 4 luall? )
RS Ve,p Ve.q

P
< lullf, , + lullf, .

whence
lanll), , + anl, o = Nl + el + on(1). (2.21)

Since the Brezis—Lieb lemma [14] gives
lan =l = lunll), , = Nullf, , +o0n(1) and luy —ull, = lually, ,

~ el , + on(D).
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we infer that
it =l + ln =l , = on(1).
This last fact implies that u#,, — u in X; asn — oo. O

Corollary 2.1 The functional , satisfies the (P S). condition on S} atany level ¢ € R.

Proof Let ¢ € R and let {u,},en C S be a (PS). sequence for .. Hence,
Ve(un) — ¢ and  ¥.(u,) — O0in (T, ST

By Proposition 2.1-(c), we know that {m(u,)},en C X isa (PS), sequence for J.
Then, by Lemma 2.8, we deduce that 7, satisfies the (P S). condition in X,, and thus
there exists u € S} such that, up to a subsequence,

me(uy) —> me(u) in Xg.

By Lemma 2.4-(iii), we conclude that u, — u in S;}. ]

We conclude this section by establishing an existence result for (2.1).

Theorem 2.2 Assume that (V1)—(V3) and (f1)—(f1) hold. Then, for all ¢ > 0, there
exists a positive ground state solution to (2.1).

Proof In light of Lemmas 2.3 and 2.8, we can apply the mountain pass theorem [3] to
see that for all ¢ > O there exists a nontrivial critical point #, € X, of 7,. By Remark
2.3, we deduce that u, is a ground state solution to (2.1). Using (J/(ue), u; ) = 0,
where u~ = min{u, 0}, (V1), g(-,t) = 0fort < 0 and (2.2), we have

Clllug Wy p gy + 14z 1ycq @) <0,
which gives u; = 0, thatis u, > 0in R". Arguing as in the proof of Lemma 5.1 below

(see also Lemma 4.1 and Theorem 2.2 in [11]), we obtain thatu, € L®(RN)NCRY),
and applying the strong maximum principle [7] we infer that u, > 0in RV. O

3 The Limiting Kirchhoff Problem

Since we are interested in providing a multiplicity result for the auxiliary problem
(2.1), it is important to analyze the limiting problem associated with (1.1), namely

(1 1002) A0t (14 Ll ) (=AYt VolulP 2 + a2 = fa) inBY. 5 )
we WSP@RV)NWSI@RN), u>0in RV,

Let Yy, = W57° RNy N W54 (RN) equipped with the norm

lullyy, = lulls,p + llullsqs
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where

1
lulls,e = ([uli, + Volul; )" forz e {p,q)}.

The energy functional Ly, : Yy, — R associated with (3.1) is given by

1 1 1 2 [}
L = Zull? Zu? —[ul;? + —[u? —/ F(u)dx.
vo (1) ? ”””x,p + q ”u”sq + 2 [”]s,p + 24 [u]s,q o (u) dx

Standard arguments show that Ly, € C'(Yy,, R) and that

(Lyp ), @) = (1+ []f ) (u, )5 p + (1 + [l ), 9)s 4

+ W |:/ |u|p_2u<pdx+/ Iulq_zugodx] —/ fw)eodx
RN RN RN

for any u, ¢ € Yy,. We also consider the Nehari manifold My, associated with Ly,

that is
My, = {u € Yy, \ {0} : (Ly, (), u) =0},
and we set dy, = inf,,EMV0 Ly, (u). Now we define

Yy, = fu € Yy, : [supp(u™)| > 0},

and SJ‘ZO =Sy, N YJ‘ZO, where Sy is the unit sphere of Yy,. As in Sect. 2, S% is an

incomplete C L1_manifold of codimension one and contained in Y“to. Thus, Yy, =

T, S‘\to @® Ru foreach u € Sj,'o, where

TS = {v e Yo s (L [l p) (0, )5+ (14 [l ) (1, )

Ve / (1”210 + al?2uv) dx = 0.
RN

In the sequel, we state without proofs the following results which can be obtained

arguing as in Sect. 2.

Lemma 3.1 Assume that ( f1)—(f1) hold. Then we have the following properties:

(i) Foreachu e YJ‘;O, let h : RY — R be defined by h,(t) = Ly, (tu). Then, there is

a unique t, > 0 such that

h/u(t) > 0 forallt € (0,t,),
h,(t) <0 forallt € (t,, 00).
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(ii) There exists T > 0, independent of u, such thatt, > t foranyu € S"’,'O. Moreover,
for each compact set K C S+O, there is a constant Cx > 0 such that t, < Cg

foranyu € K.
(iii) The map my, : Y—‘to — My, given by my,(u) = tyu is continuous and
my, = mylg+ is a homeomorphism between Sj,'o and My,. Moreover,
Yo
—1 _ u
Myy ) = Talyy

(iv) If there is a sequence {un}en C S% such that dist(u,,, 8S‘J§O) — 0, then
lIm vy (un)llyy, = o0 and Ly, (my, (un)) — oc.

Let us consider the maps
Uvy 1Yy, >R and vy, : S, - R,
defined by Jrvq () = Ly, Oty () and Yrvy = vy gy -

Proposition 3.1 Assume that (f1)-(f4) hold. Then we have the following properties:
@) Vv, € C'(YY, . R) and

ity @) vy,

lully,

(LY, (v, (W), v)  forallu e Y‘to and v € Yy,.

(Y, ), v) =

(b) Yy, € CI(S+O, R) and

(W, (), v) = lmyy () 1y, (L, (myy @), v)  forall v € T,S5,.

(©) If{untnenisa (PS)q sequence for yry,, then {my,(u,)}nen is a (P S)q sequence for
Ly, If {untneny C My, is a bounded (P S)q sequence for Ly,, then {m‘_,ol (Un) }neN
is a (PS)q sequence for yry,.

(d) u is a critical point of Vv, if and only if my,(u) is a nontrivial critical point for
Ly,. Moreover, the corresponding critical values coincide and

inf = inf L .
uleg%wvo(u) MEIMVO vo ()

Remark 3.1 As in Sect. 2, we have the following minimax characterization of the
infimum of Ly, over My,:

0<dy,= inf Ly,(u)= inf max Ly,(tu) = inf max Ly, (tu).
ueMy, MGY\J;O >0 MGS% >0

The lemma below allows us to assume that the weak limit of a (PS)dvo sequence
of Ly, is nontrivial.

Lemma3.2 Let {up}pen C Yy, bea (PS)dV0 sequence for Ly, such that u,—0 in
Yv,. Then we have either
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(@ u, - 0inYy,, or
(b) there exists a sequence {y,}nen C RN and constants R, B > 0 such that

liminf/ luy|?dx > B.
BR(yn)

n—oo

Proof Suppose that (b) is false. Since {u, },en is bounded in Yy, we can use Lemma
2.1 to see that

up = 0 in L"(RY) forallr e (p.q)).

Moreover, by (f1) and (f>), we have that
/ flup)u,dx = o0,(1) asn — oo.
RN

Since (E’VO (un), un) = 0,(1), we get

N2 p + lun| g < /RN Flunn dx = on(1),

that is ||u, ”YVO — 0 as n — oo. Then, (a) is true. O

Remark 3.2 As it has been mentioned earlier, if {u, },en C Yy, isa( PS)dV0 sequence
for Ly, such that u,—u in Yy, then we may assume that u # 0. Otherwise, if u,—0
in Yy, and, if u, -+ 01in Yy, it follows from Lemma 3.2 that there are {y, },en C RN
and R, B > 0 such that

liminf/ luy,|?dx > B.
=00 Bgr(yn)

Define v, (x) = u,(x + y,). Then, using the invariance of R" by translation, we see
that {v,},en is a bounded (PS)dVO sequence for Ly, such that v,—v in Yy, with

v #O0.

In the following lemma, we obtain a positive ground state solution for the
autonomous problem (3.1).

Theorem 3.1 Let {uy}pen C Yy, be a (PS)dVO sequence of Ly,. Then there exists
u € Yy, \ {0}, withu > O, such that, up to a subsequence, u, — u in Yy,. Moreover,
u is a positive ground state solution to (3.1).

Proof Proceeding as in the proof of Lemma 2.5, we can verify that {u,, },cn is bounded
in Yy,. By passing to a subsequence if necessary, we may assume that

up,—u in Yy,

3 r
up —> u inLj

RNy forallr € [1, p¥). 3.2)
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From Remark 3.2, we may suppose that u # 0. Moreover, we may assume that
[unlf p — t1and[u,]! ;, — 1. Ouraimis to prove that [u, |5, — [uls, fort € {p, q}.
By Fatou’s lemma, we know that [u]{ , < t; and [u]{, < t». Now we show that

[u]f,p =t and [u]?,q = 1p. Assume, by contradiction, that [u]gp < 11 and [u]?,q <.

Since (L}, (un), ¢) — Oforallg € C®(RV),and C*(RV) is dense in Yy, (see [19]),
we can deduce that

(L+t)[ulf ) + A+ o)[ull § + Vo(lulh + [uld) = A@ fudx.
Therefore,

(1 + [wlf pllf p + A+ [l Hlul? 4 + Volulh + uld) — /RN fwudx

< (L4 mwlf )+ U+ )ull § + Voulh + luld) — fRN fwudx =0,

that is (L’Vo(u), u) < 0. From (f}) and ( f2), we have (E’Vo(tou), tou) > 0 for some
0 < t9p <« 1. Hence, there exists T € (fp, 1) such that (E/VO (tu), tu) = 0. Combining

this fact with the characterization of dy, and using the fact that ¢ ﬁ ft— F(t)
is increasing (thanks to (f3) and ( f4)), by Fatou’s lemma, we get

1
dvy = Ly (o) = Ly () = 2o (Ly, (T, )
1
< L) = 3o (L3, ). 1)

.. 1
< lgglolgf [ﬁvo (un) — vaﬂ(un), m} =dy,
and we arrive at a contradiction. Hence, [u,]s,; — [u]s; fort € {p, g}, and we obtain
L/VO (u) = 0. Finally, we prove that u is positive in R¥. Since (E/VO (u),u”) =0,
where u~ = min{u, 0}, and f(¢) = 0 for ¢+ < 0, we have

lu™ IS + el g <0
which implies that u~ = 0, thatis u > 0 in RY . Thus, u > 0 and u # 0in RNV, Using
a Moser iteration argument [32] (see the proof of Lemma 5.1 below), we obtain that
u € L®@RN). Since u solves
(=AY + Bu(=A)u = =Vow” ™' +ul™") + f(u) € LXRY),

where o, = 1+ [u]g pand B, =1+ [u]?‘q are bounded quantities, we can argue as in
the proof of Theorem 2.2 in [11] to infer that u € C 0.«(RN). In particular, u(x) — 0
as |x| — oo. By using the strong maximum principle [7], we deduce that u > 0 in

RN, o
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The next lemma is a compactness result for the autonomous problem (3.1).

Lemma3.3 Let {up}peny C My, be a sequence such that Ly, (u,) — dy,. Then,
{tn}nen has a convergent subsequence in Y y,,.

Proof Since {u,},eny C My, and Ly, (u,) — dy,, it follows from Lemma 3.1-(iii),
Proposition 3.1-(d) and the definition of dy, that

Un

es?

Vo foralln e N,

—1
Up = my, () =
Yo lunllyy,

and

vao(vn) = EVO (uy) — dVo = inf WVO(U)-
UES‘JZO

Let us define G : SJ‘;) — R U {oo} by

Yy (u) ifu € S},
ifu €3S}, .
0

Gu) =

We observe that the following properties hold:

° (gJ‘;O, 8v,), where Sy, (u, v) = |lu — v||yV0, is a complete metric space.
e G € C(Sy,, RU {00}), by Lemma 3.1-(iv).
e G is bounded below, by Proposition 3.1-(d).

By using the Ekeland variational principle [21], there exists {0, },en C SJ‘ZO such that
{Up}nenisa (P S)(,IV0 sequence for yry, and || 0, — vy ||Yv0 = 0, (1). Now the remainder
of the proof follows from Proposition 3.1, Theorem 3.1, and arguing as in the proof
of Corollary 2.1. O

We conclude this section by showing a useful relation between the minimax levels
¢e and dy,.

Lemma 3.4 It holds limy_, c; = dy,.

Proof For ¢ > 0, let w(x) = VY.(x)w(x), where w is a positive ground state of
(3.1) (whose existence is guaranteed by Theorem 3.1), and ¥ (x) = v (ex) with
¥ € CORN)suchthat 0 < ¢ < 1, ¥(x) = 1if [x| < 1 and ¥ (x) = 0if x| > 2.
For simplicity, we assume that supp(y/) C By C A. Using the dominated convergence
theorem, we see that

we =~ o inW and Ly, (w:) = Ly, (w) = dy, 3.3)

as ¢ — 0. Now, for each ¢ > 0, there exists 7, > 0 such that

Te(tewg) = ma(;( Te(twg).
1>
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Therefore, (J,(tew:), we) = 0 and this implies that

2 2
lf[wg]f,p + tgp[a)e]s,l;) + tg[we]?,q

+ tgq[we]?,qq +1? /N V(ex)w? dx + tg/
R

V(ex)wl dx
RN

= f ftewe)tewe dx.
RN
If t, — o0, then

-2 p 2p—2 2p
tép q[a)g]s,p—‘f_tsp q[ws]s,p

+ 17wl + [l +t§*2'1/ V(ex)w? dx+f‘1/ V(ex)w! dx
RN RN

_ / AU (3.4)
R

N (tsa)s)zq_l

and using (3.3), p < 2¢ and (f3), we obtain that [w]??q = 00, which is impossible.
Then, t; — t9 € [0, 00). If 1o = 0, using (f1) and (f>), we see that, for ¢ € (0, Vp),
it holds

¢ p - a - o
(1 . 70 ||a)g”\/&p + tg [7”0)8”‘/8# 5 C;tg pré‘”\;&q.

This together with ¢ > p yields ||} p = 0, that is a contradiction. Hence, 1, — o €
(0, 00).
Taking the limit as ¢ — 0 in (3.4), we get

—2, 2p—2 2 — 2
15 Nwly ) + 15" ol + 1 ol! § + [0l

—2q —q S (tow) 2
174 Vow? d t, Vow? dx = ————wdx,
+ 1 /RN ow" dx + 1, /RN ow? dx /RN (toa))2q—1w X

which combined with 2¢ > g > p, (f4) and w € My, implies that o = 1.

Now, we note that

4
Ce < MaX;>( Te(tws) = Te(tews) = EV() (tewe) + % fRN(V(Sx) - VO)wf dx
i q
+& Jpn (V(ex) — Vo)t dx.

Since V (¢-) is bounded on the support of w,, we can use the dominated convergence
theorem, (3.3) and the above inequality to deduce that lim sup,_, o ¢, < dy,. By (V1),

we obtain that liminf, .0 ¢, > dy,, and thus lim;_, ¢ c; = dy,. This completes the
proof. O
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4 A Multiplicity Result for (2.1)

In this section, we deal with the multiplicity of solutions to (2.1). Let § > 0 be such
that

Ms = {x e RN : dist(x, M) < 8} C A,

and let w € Yy, be a positive ground state solution to (3.1) (by virtue of Theorem
3.1).

Consider a nonincreasing function n € C*([0, 00), [0, 1]) such that n(¢) = 1 if
0<tr< %, n() = 0ifr > & and |'(r)| < ¢ for some ¢ > 0. For any y € M, we
define

ex —y
\Ils,y(x) =n(lex — yDw < . ) .
Let ®, : M — N, be given by
D (y) = tsws,y’
where t, > 0 satisfies

1}136( Te(tWey) = Te(te Ve y).

By construction, ®,(y) has compact support for any y € M.
Lemma 4.1 The function ®. has the following property:

lin%) Te(@:(y)) =dy, uniformlyiny € M.
E—>

Proof Assume, by contradiction, that there exist 89 > 0, {y;}neny € M and &, — 0
such that

| Te,, (®e, (¥n)) — dv,| = 0. (4.1)
For each n € N and for all z € B s (0), we have ¢,z € Bs(0), and thus

enz+ yn € Bs(yn) C My C A.

Using the change of variable z = “2—* and the fact that G = F in A x R, we can
write

[&{) P £2p 2p tsq q
j&n (q>€n (Yn)) - ? ”\IJEn,yn ” en s D + 2p [‘Ijan)’n ]S,p + ? ”qjé‘ﬂsYn || V‘?n’q
29
tsn 2q
+ [‘yen,}'n]&q - / G(Sn'x’ t‘?n \Ijen»})n)dx
2q RN
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14
= %” ([7)(|5n Hwlf , + /RN V(enz + yn)((enzDw(2))? dz)
t£2p 2p
+ 2"p [n(len - DwIs,p
q
+ L <[n(|8n Dwld, +/ V(enz + yn)(n(lenz)w(2))? dz)
q RN
2q 5
&n . q
+ 26] [n(len |)w]s,q
—/RN F(te,n(lenzDw(2)) dz. 4.2)

We claim that #;, — 1 asn — oo. We start by proving that z,, — #y € [0, 00). Since
@, (vn) € Ne, and g = f on A x R, we have

1 1 2 2,
P q 4 q
t2q—p ||\lj€ns)’n ” ensD + g”wi‘?na)’n ” en 4 + tgzq_ZP [wé‘na}’n]&P + [\yan)’n]S,q

_/ [ F e, n(lenzhw(z))
— Jrv L e, n(lenzhw(z))20-1

|tnenziuw) dz. 43)

Observing that n(|x]) = 1 for x € B%(O) and that B%(O) C B (0) for all n large
enough, the identity (4.3) yields ’

1 2 2
p q P q
=y Wewwlly, » t_q”\ljé‘n,yn Iv,, .4+ m[q’en,yn]s,p + [We, .y, 159
&n & 5

> f [ L) Yoe a,
B%(O)

(tg,, U)(Z))Zq_l

which together with ( f1) gives

1 2 2
p q P q
=y Wewwlly,, » t_q”\ljé‘n,yn Iv,, ¢+ m[q’en,yn]s,p + [We, .y, 159
&n & 5

f (e, w(2)) o
- [W]'w@l 185 )], )
where
wE) = min w(z) >0
ZEB%(O)

(we recall that w is continuous and positive in RM). 1If tg, — 00, the dominated
convergence theorem results in

e,y llv,,.r = llwlls,r € (0,00) forallr € {p,q}, 4.5
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and recalling that 2¢ > g > p, we also have

1 1 )
p q p
i MWenon I, 4 o 1Wesn g + g e K
&n 5
2 2
+ [lysn,y,,]s?q — [w]s,qq~ (4.6)
On the other hand, by (f3), we get
; A
Nl wl@) o @)

=00 (g, w(2))%4 =1
Combining (4.4), (4.6) and (4.7), we achieve a contradiction. Consequently, {f;, },eN
is bounded in R and, up to a subsequence, we may assume that ¢, — #o for some
to € [0, 00). From (4.3), (4.5), (f1), (f2), we can see that 7y € (0, 00). Now we prove

that fp = 1. Letting n — o0 in (4.3), and using (4.5) and the dominated convergence
theorem, we have that

p=2q ) P 2p=2 q flow) o,
t() ”w”s,p"'t() [w]5p+t0 ”w”Aq"'[w] /RNWU) dx.

Since w € My, it holds

||w||5p+||w”5q+[w] +[wsq—/ Sw)wdx,

Then we obtain
W72 = Dlwl?, + @37 = DIwl, + (1 — Diwl,
B faow)  f@) ] o,
= Jou | Gowy2a=T ~ wrai wdx.

Using 2q > g > p and assumption ( f4), we conclude that fo = 1. Therefore, passing
to the limit as n — o0 in (4.2), we deduce that

lim jsn (q>s,1‘y,1) = EVO(w) = dVOs
n—00

which contradicts (4.1). O

Let p = p(8) > 0 be such that Ms C B,(0). Define 7" : RN — RN by setting
T(x) = {)Zx ;
|x]
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Let us consider the barycenter map B : N — RY given by

/ T (ex)(u(0)|? + [u (o)) dx
RN

Be(u) =
/ (Ju ()P + |u(x)|7) dx
RN

Arguing as in the proof of Lemma 3.6 in [11], we can prove the following result.

Lemma 4.2 The function B. satisfies the following limit
lim B, (®:(y)) =y uniformlyiny € M.
e—0

The next compactness result plays an important role in showing that the solutions of
the modified problem are also solutions of the original one.

Lemma4.3 Lete, — 0and {uptnen C N, be such that Jz, (u,) — dy,. Then there
exists {Yn}nen C RN such that v, (x) = u,(x + ¥,) has a convergent subsequence in
Yv,. Moreover, up to a subsequence, {yn}neN = {€1Yn}nen is suchthaty, — yo € M.

Proof Since (Jg’n (un), up) = 0 and Jg, (u,) — dy,, we can argue as in the proof
of Lemma 2.5 to verify that {u,},eN is bounded in Yy,. According to dy, > O,
lunllx,, — 0. Then, proceeding as in the proof of Lemma 3.2, we obtain a sequence

{Fntnen € RN and constants R, B > 0 such that

liminf/ luy|4dx > B.
n—00 BR(S’H)

Setv, (x) = up(x+y,). Thus, {v,},cn is bounded in Yy, and, up to a subsequence, we
may assume that v,—v # 0in Yy,. Let #, € (0, 00) be such that v, = t,v, € My,,
and set y, = &,y,. From the definition of dv,, {ts}sen C Ne,, (g2) and Tz, (u,) —
dy,, we have

dVo < »CVO (ﬁn)

1 . 1 . 1 . 1 . 5
= ;[vn]f,p + Z[ n]s,I; + E[U"]g’q + Z[ n]s,qq
1 . 1 . -
+/ V(enx + yn) <_|Un|p + _|vn|q> dx _/ F(v,)dx
RN p q RN

i W o, 1 T
=< ;[”n]ﬁp + E[un]r,pp + ;[un]?,q + Z[”n]v,qq

tn tn
+ V(enx) [ —lunl? + —lun|? ) dx
RN p q

—/ G(epx, thuy) dx
RN
= \78,, (thuy) < u7s,1 (uy) = dV() + o0, (1),
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which implies that

Ly, (Bn) — dy, and {5}nen C My, 4.8)
In particular, {v, },¢cN is bounded in Yy, and, by extracting a subsequence if necessary,
we may assume that v,— in Yy;,. Since {v,},en and {0, },en are bounded in Yy,
and v, - 0in Yy,, we deduce that {#,},cn is bounded in R and, up to a subsequence,
we may assume that t, — 9 > 0. If 1y = 0, then v, — 01in Yy, (because {v,},en
is bounded in Yy,), and thus Ly,(v,) — 0, which contradicts dy, > 0. Hence,
to € (0, 00). From the uniqueness of the weak limit, we see that v = fov # O.
This fact combined with Lemma 3.3 yields v, — v in Yy,, and so v, — v in Yy,.
Furthermore,

Ly, (3) = dy, and (L}, (), 7) = 0.

In what follows, we show that {y, },en admits a subsequence, still denoted by itself,
suchthat y, — yo € M. We begin by proving that {y, },cx is bounded in RV . Suppose,
by contradiction, that there exists a subsequence of {y,},en, still denoted by itself,
such that |y,| — o0o. Choose R > 0 such that A C Bg(0). For n large enough, we
may assume that |y,| > 2R. Then, for each x € Bg/, (0),

lenx + ynl > [ynl — lénx] > R.

Using {u, }neny C N, , achange of variable, the definition of g and the above relation,
we have

1oallZp + lnl .y < / gCent oy U da
R

< / Fo)undx + / F(on)on dx.
BR/en ©0) BS,,, ©)

Since v, — vin Yy, and | B Jen (0)] — 0, it follows from the dominated convergence
theorem that

f ) fpvpdx = 0,(1).
B /g, ()

On the other hand, f(v,,)vn < %(|vn|p + |v,]?), and so
p q Vo p q
lvalls,p + valls.g < — (Ival” + [va|?) dx + on(1).
K JBgje, 0)
Consequently,
_ 1 p g
1 K (”Un”s,p + ”Un”s,q) < on(),
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and we reach a contradiction because v, — v # 0in Yy,. Thus, {y,},en is bounded
in R" and, up to a subsequence, we may assume that y, — yo € RV.If yg ¢ A, then
we can argue as before to get v, — 0in Yy, that is a contradiction. Hence, yy € A.
Let us note that if V (yg) = Vo, then yp ¢ dA in view of (V2). Therefore, it suffices
to prove that V (yg) = Vj to deduce that yp € M. To accomplish this, we assume, by
contradiction, that V (yp) > Vp. Using this fact, v, — v in Yy,, Fatou’s lemma and
the invariance of RV by translation, we see that

dyy = Ly, (D)
N i 1 . 2 1 . | B}
< timint| [y + 5 (B + - Toalfg + 5 (000

1 . 1 . -
+/ Venx + yn) <_|Un|p + _|Un|q> dx _/ F(Un)dx]
RN p q RN

< liminf 7, (t,u,) < liminf J;, (u,) = dy,,
n—0o0 n—0oo

which is a contradiction. The proof is now complete. O

Let us define
Ne={ueN:: Je(w) <dy, +7(e)},

where 7 (g) = supycp [ Te(Pe () — dyy| — 0as e — 0, according to Lemma 4.1.

By thg definition of m(¢), we have that, forally € M and ¢ > 0, ®.(y) € ./Vs and
thus AV, # @. Arguing as in the proof of Lemma 3.7 in [11], we deduce the following
result.

Lemma 4.4 Forany§ > 0, we have

lim sup dist(B.(u), Ms) = 0.
e—0 v
ueN,

We conclude the section by presenting a relation between the topology of M and
the number of solutions of the modified problem (2.1). Since S is not a complete
metric space, we invoke the abstract category result in [36] to achieve our purpose.

Theorem 4.1 Assume that (Vy)—(V2) and (f1)—(f4) hold. Then, for any § > 0 such
that Ms C A, there exists €5 > 0 such that, for any ¢ € (0, &s), problem (2.1) has at
least caty; (M) positive solutions.

Proof For each ¢ > 0, we define the map o, : M — S} by setting o (y) =
m;l(cbg(y)). By Lemma 4.1, we see that

lim ¥ (e (y)) = lim J(P¢(y)) = dy, uniformly in y € M.
e—0 e—0

Hence, there is anumber & > 0 such that the seté«:’;r ={w e S} : Ye(w) <dy,+7(e)}
isnonempty forall e € (0, &), since V. (M) C Sj.Heren(e) = SUpycpy [ Ve (e () —
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dy,| — 0as & — 0. From the above considerations, and taking into account Lemma
4.1, Lemma 2.4-(iii), Lemmas 4.4 and 4.2, we see that there exists € = &5 > 0 such
that, for any ¢ € (0, €), the diagram

-1

O, myg me Be
M— O, (M) - a;(M) - O, (M) — M

is well defined. According to Lemma 4.2, for ¢ > 0 small, we can write 8, (®.(y)) =
y+6(e,y) fory € M, where |0(e, y)| < % uniformly in y € M. Define H (¢, y) =
y+(1—=1)0(e, y)for (¢, y) € [0, 1]x M.Clearly, H : [0, 1] x M — Mj is continuous,
H(,y) = B:(P:(y)) and H(1,y) = y forall y € M. Then H(t, y) is a homotopy
between B, 0 &, = (B o mg) o (ms_l o ®,) and the inclusion map id : M — Mj.
This fact implies that

caty, (myots (M) > catpy; (M). 4.9)

It follows from Corollary 2.1, Lemma 3.4, and Theorem 27 in [36], with ¢ = ¢, <
dy,+7m(e) =dand K = o (M), that WV, has at least caty, (m)oe (M) critical points on
Sj . Therefore, by Propositigvn 2.1-(d) and (4.9), we conclude that 7, admits at least
caty; (M) critical points in N. O

5 Proof of Theorem 1.1

This section is devoted to the proof of the main result of this paper. The idea is to
show that the solutions obtained in Theorem 4.1 satisfy, for ¢ > 0 small enough, the
estimate u.(x) < a for any x € A¢. This fact implies that these solutions are indeed
solutions of the original problem (1.1). We start with the following lemma which plays
a key role in studying the behavior of the maximum points of solutions to (1.1), whose
proof is related to the Moser iteration method [32].

Lemma5.1 Lete, — Oand {un},en C ./’\75" be a sequence of solutions to (2.1). Then
Te, (up) — dy,, and there exists {y, }peN C RN such that v, = u,(-+73,) € L¥RN)
and for some C > 0 it holds

[Vpleoc < C  foralln € N.
Moreover,

vp(x) = 0 as |x| — oo uniformly inn € N. 5.1

Proof Since J;, (un) < dy, + m(e,), with w(g,) — 0 as n — 0o, we can argue as at
the beginning of the proof of Lemma 4.3 to deduce that J;, (u,) — dy,. Then, using
Lemma 4.3, we can find {J,},eny C RY such that v, = u,(- + y,) — v in Yy, for
some v € Yy, \ {0} and &,y, — yo € M.
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Now we examine the boundedness of {v,},en in L (RY). For each n € N and
L > 0, we define

y () = vl e X,

where v, 1 = min{v,, L}, and B > 1 will be chosen later. Taking y (v,) as test
function in the problem solved by v,, we have
(1 + [valf )
/ / 0 () = v (P2 (0 (¥) = V2 ) (VLT ) () = Wl F ™ ”)(y))
R2N

lx — y|NHsP

+ (1 + [val?y)
// 102 () = v 142 W () = v O (@) ) = W2 T ()
RZN

x— y Ve

dxdy
~ 1 1
+/N V(enx + &n¥n)lvnl? Z(Lﬂ )dx+/ V(enXx + €n3n)|vnl? Z(f )dx
R RN

:/ g(snx—l—snyn,vn)vn q(ﬁ 1)d)c
RN

In light of the growth assumptions on g, we know that for all £ € (0, Vp), there exists
C: > 0 such that

lgCx, )| < E)/P~" + Celt|% ™ for (x,1) e RY x R.
From the above facts and (V}), we obtain

(I+ [Un]fp)

// 100 (0) = v D IP 20 (1) = v D (e~ (@) = e}~ ”)(y))
dxdy
RN Iy
+ (1 +[vall )
102 () = v 142 W () = 0w (vl ™)) = W]~ ”)(y)) e
/ /R Ve y
5cf ol % 0V dx. (5.2)
RN

Observing that, forz € {p,q}, 1 < 14 [v,];, < C foralln € N, we can reproduce
the Moser iteration argument carried out in the proof of Lemma 4.1 in [11] to derive
that |v,| < C forall n € N. Since {v, },en is uniformly bounded in L>(R") N Yvg.
we can argue as in the proof of Theorem 2.2 in [11] to deduce that [v, || co.e@y) < C
for all n € N. This fact combined with v, — v in Yy, implies that v,(x) — 0 as
|x| — oo uniformly in n € N. The proof of Lemma 5.1 is complete. O
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We now have all ingredients to prove Theorem 1.1.

Proof of Theorem 1.1 Let § > 0 be a number satisfying Ms C A. We first show that
there exists &5 > 0 such that, for any ¢ € (0, &5) and any solution u, € N; of (2.1), it
holds

lue|Loae) < a. (5.3)

Assume, by contradiction, that there exists a subsequence ¢, — 0, u, = u,, € /\N/'g,,
such that J; (ug,) = 0 and

lunlLong,) = a. (5.4)

As in the proof of Lemma 5.1, we can verify that J;, (u,) — dy,. Then, applying
Lemma 4.3, we obtain a sequence {y, },eny C RY such that v, = u,(- + Yn) — vin
Yy, and &,y, — yo € M.

Pick r > 0 such that B, (yyp) C B2,(y9) C A. Thus, B;ﬁ(g—:) C Ay, foralln € N.

Moreover, for any y € Br (3,), we see that

~ Yo
Yn — —
&

n

1 2r
< —(r+o,(1) < —
£ £

n n

< |y —ul+

‘ Y0
y _——
£

n

for n large enough. For these values of n, we have

A, C B ()
Using (5.1), we can find R > 0 such that v,(x) < a for any |x| > Rand n € N, and
S0 up(x) < a forany x € B (¥,) and n € N. On the other hand, there exists ng € N
such that, for any n > no,

A, C B (n) C Br(Gn)-

Hence, u,(x) < a forany x € Ag and n > ng, which is in contrast with (5.4). This
proves our claim.

Let &5 > 0 be given by Theorem 4.1 and set 5 = min{és, &5}. Fix ¢ € (0, &5).
Applying Theorem 4.1, we get at least catMa(A{{ ) positive solutions to (2.1). If u,
denotes one of these solutions, we have that u, € N, and using (5.3) and the definition
of g, we deduce that u, is also a solution to (1.1). Consequently, (1.1) admits at least
catpy, (M) positive solutions.

Now we investigate the behavior of the maximum points of solutions to (1.1). Take
en — 0 and consider a sequence {u, },eny C X, of solutions to (1.1) as above. Let us
observe that (g1) implies that there exists o € (0, a) such that

V
g(ex, 1)t < ?O(zp 119 for (x,1) € RY x [0, o]. (5.5)
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Arguing as before, we can choose R > 0 such that

|un|L00(B;'e(§n)) <o. (56)

Moreover, up to a subsequence, we may assume that

[tn| Lo (Br(5,)) = O- 5.7

Indeed, if (5.7) does not hold, then, in view of (5.6), we have that |u, |~ < o. Hence,
using (J; (un), un) = 0 and (5.5), we get

Vo
p qa < P q
il + st = [ senr munds < 2 [ dunl? + k) do

which leads to a contradiction. Therefore, (5.7) is satisfied.

Let p, € RY be a global maximum point of u,. Combining (5.6) and (5.7), we
infer that p, = ¥, + ¢,, for some ¢, € Bg(0). Since ¢,y, — yo € M and |g,| < R
for all n € N, we have that €, p, — o, and using the continuity of V we obtain

lim V(e,pn) = V(yo) = Vo.
n— 00

The proof of Theorem 1.1 is now complete. O
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