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Abstract
In this paper, we deal with the following class of fractional (p, q)-Laplacian Kirchhoff
type problem:
{ (

1 + [u]ps,p
)
(−�)spu + (

1 + [u]qs,q
)
(−�)squ + V (εx)(|u|p−2u + |u|q−2u) = f (u) in R

N ,

u ∈ Ws,p(RN ) ∩ Ws,q (RN ), u > 0 in R
N ,

where ε > 0, s ∈ (0, 1), 1 < p < q < N
s < 2q, (−�)st , with t ∈ {p, q}, is the frac-

tional t-Laplacian operator, V : R
N → R is a positive continuous potential such that

inf∂� V > inf� V for some bounded open set � ⊂ R
N , and f : R → R is a super-

linear continuous nonlinearity with subcritical growth at infinity. By combining the
method of Nehari manifold, a penalization technique, and the Lusternik–Schnirelman
category theory, we study the multiplicity and concentration properties of solutions
for the above problem when ε → 0.

Keywords Fractional (p, q)-Laplacian problem · Kirchhoff type problem ·
Penalization technique · Lusternik–Schnirelman theory
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1 Introduction

In this paper, we investigate the multiplicity and concentration phenomenon of solu-
tions for the following fractional (p, q)-Laplacian Kirchhoff type problem:

{ (
1 + [u]ps,p

)
(−�)spu +

(
1 + [u]qs,q

)
(−�)squ + V (εx)(|u|p−2u + |u|q−2u) = f (u) in R

N ,

u ∈ Ws,p(RN ) ∩ Ws,q (RN ), u > 0 in R
N ,

(1.1)
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where ε > 0 is a small parameter, s ∈ (0, 1), 1 < p < q < N
s < 2q, V : R

N → R is
a bounded and continuous potential fulfilling the following conditions [18]:

(V1) there exists V0 > 0 such that V0 = infx∈RN V (x),
(V2) there exists a bounded open set � ⊂ R

N such that

V0 < min
∂�

V and 0 ∈ M = {x ∈ � : V (x) = V0},

and f : R → R is a continuous nonlinearity such that f (t) = 0 for t ≤ 0 and
satisfying the following hypotheses:

( f1) lim|t |→0

| f (t)|
|t |2p−1 = 0,

( f2) there exists ν ∈ (2q, q∗
s ) such that lim|t |→∞

| f (t)|
|t |ν−1 = 0, where q∗

s = Nq
N−sq ,

( f3) there exists ϑ ∈ (2q, ν) such that 0 < ϑF(t) = ϑ

∫ t

0
f (τ ) dτ ≤ t f (t) for all

t > 0,

( f4) the map t 	→ f (t)

t2q−1 is increasing in (0,∞).

The symbol (−�)st , with t ∈ {p, q}, stands for the fractional t-Laplacian operator
defined, up to a normalization constant depending on N , s and t , by setting

(−�)st u(x) = 2 lim
r→0

∫
RN \Br (x)

|u(x) − u(y)|t−2(u(x) − u(y))

|x − y|N+st
dy (x ∈ R

N ),

for any function u : R
N → R sufficiently smooth. We recall that the recent years have

seen a surge of interest in nonlocal and fractional problems involving the fractional
t-Laplacian operator because of the presence of two features: the nonlinearity of the
operator and its nonlocal character. For this reason, several existence, multiplicity and
regularity results have been established by many authors; see for instance [4, 8, 10,
20, 24, 28, 38].

When s = 1, the study of (1.1) is strictly related to the following (p, q)-Laplacian
equation

−�pu − �qu + |u|p−2u + |u|q−2u = f (x, u) in R
N ,

which comes from a general reaction–diffusion system

ut = div(D(u)∇u) + c(x, u) where D(u) = |∇u|p−2 + |∇u|q−2.

This system has a wide range of applications in physics and related sciences, such
as biophysics, plasma physics, and chemical reaction design. In such applications,
the function u describes a concentration, div(D(u)∇u) corresponds to the diffusion
with diffusion coefficient D(u), and the reaction term c(x, u) relates to source and
loss processes. Typically, in chemical and biological applications, the reaction term
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c(x, u) is a polynomial of u with variable coefficients; see [17]. Some classical results
for (p, q)-Laplacian problems in bounded or unbounded domains can be found in [2,
22, 26, 27, 31, 33, 34] and the references therein. We also mention [15, 30] in which
the authors discussed Kirchhoff type problems with the (p, q)-Laplacian operator
−�p − �q .

For what concerns the nonlocal framework, only few papers studied fractional
(p, q)-Laplacian problems. Such problems involve the sum of two nonlocal nonlinear
operators with different scaling properties and so some nontrivial additional technical
difficulties arise with respect to the local case s = 1 and p �= q, and the fractional
case s ∈ (0, 1) and p = q.

In [16], the authors obtained existence, nonexistence, and multiplicity of solu-
tions for a subcritical fractional (p, q)-Laplacian problem. In [5], the author proved
an existence result for a critical fractional (p, q)-Laplacian problem, by using a
concentration-compactness lemmaand themountain pass theorem.Multiplicity results
for a class of fractional (p, q)-Laplacian problems in bounded domains and with crit-
ical nonlinearities have been established in [12]. The multiplicity of concentrating
solutions for a fractional (p, q)-Laplacian problem of Schrödinger type has been
recently demonstrated in [11]. For other contributions devoted to this class of prob-
lems, we refer to [1, 7, 9, 12, 25, 29].

To our knowledge, no results for Kirchhoff type problems driven by the fractional
(p, q)-Laplacian operator (−�)sp+(−�)sq appear in the current literature. Particularly
motivated by this fact and the above-mentioned works, in this paper, we examine the
multiplicity and concentration properties of solutions for (1.1). More precisely, our
main result can be stated as follows:

Theorem 1.1 Assume that (V1)-(V2) and ( f1)-( f4) hold. Then, for any δ > 0 such
that

Mδ = {x ∈ R
N : dist(x, M) ≤ δ} ⊂ �,

there exists εδ > 0 such that, for any ε ∈ (0, εδ), problem (1.1) has at least catMδ (M)

positive solutions. Moreover, if uε denotes one of these solutions and xε ∈ R
N is a

global maximum point of uε, then

lim
ε→0

V (εxε) = V0.

The proof of Theorem1.1 is based on the generalizedNeharimanifoldmethod, a penal-
ization technique, and the Lusternik–Schnirelman category theory. Firstly, inspired by
[18], we modify the nonlinearity f in a suitable way and we consider an auxiliary
problem whose advantage with respect to (1.1) is that the corresponding energy func-
tional Jε possesses a mountain pass geometry [3]. Moreover, an accurate analysis
allows us to verify that Jε satisfies the Palais–Smale condition at any level c ∈ R

((PS)c condition for short). Secondly, since we are interested in providing a mul-
tiplicity result for (1.1), and our nonlinearity f is only continuous, we implement
the barycenter machinery and adapt some abstract critical point results found in [36].
This kind of argument also appears in [23] to analyze a Schrödinger–Kirchhoff elliptic
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equation, in [6] to handle various fractional Laplacian elliptic problems, and in [11]
to deal with a fractional (p, q)-Schrödinger equation. However, with respect to [6,
11, 23], the mixture of Kirchhoff terms and two different nonhomogeneous nonlocal
operators makes the study of (1.1) rather tough and an appropriate investigation will
be done to circumvent some significant technical complications; see for instance the
proofs of Lemmas 2.4, 2.5, 2.7 and Theorem 3.1. Finally, we show that the solutions of
the modified problem are solutions to (1.1) for ε > 0 small enough, by using a Moser
type iteration [32] and the Hölder regularity result in [11]. As far as we know, this is
the first time that the penalization approach and the Lusternik–Schnirelman category
theory are combined to treat fractional (p, q)-Laplacian problems like (1.1).

The paper is organized as follows. In Sect. 2, we collect some basic results for
fractional Sobolev spaces and we introduce the modified problem. In Sect. 3, we
tackle the limiting Kirchhoff problem. In Sect. 4, we present a multiplicity result for
the modified problem. The last section is dedicated to the proof of Theorem 1.1.

2 TheModified Problem

2.1 Notations and Some Useful Lemmas

Let p ∈ [1,∞] and A ⊂ R
N be a measurable set. We will denote by | · |L p(A) the

norm in L p(A), and we will simply use the notation | · |p when A = R
N .

Let s ∈ (0, 1), p ∈ (1,∞) and N > sp. The fractional Sobolev space Ws,p(RN ) is
defined by

Ws,p(RN ) =
{
u ∈ L p(RN ) :

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy < ∞
}

,

which is a Banach space with the norm

‖u‖Ws,p(RN ) = (|u|pp + [u]ps,p)
1
p , where [u]s,p =

(∫∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy

) 1
p

.

For u, v ∈ Ws,p(RN ), we put

〈u, v〉s,p =
∫∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dxdy.

The following embeddings are well known in the literature.

Theorem 2.1 [19] Let s ∈ (0, 1), p ∈ (1,∞) and N > sp. Then, Ws,p(RN ) is
continuously embedded in Lt (RN ) for any t ∈ [p, p∗

s ] and compactly embedded in
Lt
loc(R

N ) for any t ∈ [1, p∗
s ).

For the reader’s convenience, we also recall some useful lemmas.
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Lemma 2.1 [8] Let s ∈ (0, 1), p ∈ (1,∞) and N > sp. Let r ∈ [p, p∗
s ). If {un}n∈N

is a bounded sequence in Ws,p(RN ) and if

lim
n→∞ sup

y∈RN

∫
BR(y)

|un|r dx = 0,

where R > 0, then un → 0 in Lt (RN ) for all t ∈ (p, p∗
s ).

Lemma 2.2 [8] Let s ∈ (0, 1), t ∈ (1,∞) and N > st . Let {un}n∈N ⊂ Ws,t (RN )

be a bounded sequence in Ws,t (RN ), and let φ ∈ C∞(RN ) be a function such that
0 ≤ φ ≤ 1 in R

N , φ = 0 in B1(0) and φ = 1 in Bc
2(0). For each ρ > 0 let

φρ(x) = φ( x
ρ
). Then

lim
ρ→∞ lim sup

n→∞

∫∫
R2N

|φρ(x) − φρ(y)|t
|x − y|N+st

|un(x)|t dxdy = 0.

Proof The proof of this result can be found in [8], but here we give a more direct
proof. Using the definition of φρ , polar coordinates and the boundedness of {un}n∈N
in Ws,t (RN ), we can see that

∫∫
R2N

|φρ(x) − φρ(y)|t
|x − y|N+st

|un(x)|t dxdy

=
∫
RN

∫
|y−x |>ρ

|φρ(x) − φρ(y)|t
|x − y|N+st

|un(x)|t dxdy

+
∫
RN

∫
|y−x |≤ρ

|φρ(x) − φρ(y)|t
|x − y|N+st

|un(x)|t dxdy

≤ C
∫
RN

|un(x)|t
(∫

|y−x |>ρ

dy

|x − y|N+st

)
dx

+ C

ρt

∫
RN

|un(x)|t
(∫

|y−x |≤ρ

dy

|x − y|N+st−t

)
dx

≤ C
∫
RN

|un(x)|t
(∫

|z|>ρ

dz

|z|N+st

)
dx + C

ρt

∫
RN

|un(x)|t
(∫

|z|≤ρ

dz

|z|N+st−t

)
dx

≤ C
∫
RN

|un(x)|t dx
(∫ ∞

ρ

dr

rst+1

)
+ C

ρt

∫
RN

|un(x)|t dx
(∫ ρ

0

dr

rst−t+1

)

≤ C

ρst

∫
RN

|un(x)|t dx + C

ρt
ρ−st+t

∫
RN

|un(x)|t dx ≤ C

ρst

∫
RN

|un(x)|t dx ≤ C

ρst
,

and letting first n → ∞ and then ρ → ∞, we get the thesis. ��
Let s ∈ (0, 1) and p, q ∈ (1,∞). Consider the space

W = Ws,p(RN ) ∩ Ws,q(RN )
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endowed with the norm

‖u‖W = ‖u‖Ws,p(RN ) + ‖u‖Ws,q (RN ).

Since Ws,r (RN ), with r ∈ (1,∞), is a separable reflexive Banach space (this can
be proved by using the operator T : Ws,r (RN ) → Lr (RN ) × Lr (R2N ) defined by

Tu = (u, (u(x) − u(y))|x − y|− N
r −s) and arguing as in the proof of Proposition 8.1

in [13]), we obtain that W is also a separable reflexive Banach space.
For any ε > 0, we introduce the space

Xε =
{
u ∈ W :

∫
RN

V (εx)
(|u|p + |u|q) dx < ∞

}

equipped with the norm

‖u‖Xε
= ‖u‖Vε,p + ‖u‖Vε,q ,

where

‖u‖Vε,t =
(

[u]ts,t +
∫
RN

V (εx)|u|t dx
) 1

t

for t ∈ {p, q}.

2.2 The Penalization Approach

We adapt in a suitable way the del Pino–Felmer penalization approach [18] to attack
(1.1). First, we observe that the map t 	→ f (t)

t p−1+tq−1 is increasing in (0,∞). Indeed,

f (t)

t p−1 + tq−1 = f (t)

t2q−1

t2q−1

t p−1 + tq−1

and noting that t 	→ f (t)
t2q−1 is increasing in (0,∞) (by ( f4)), and that t 	→ t2q−1

t p−1+tq−1 is
increasing in (0,∞) (because 2q > p), we deduce the desired result.

Now, let us fix

K >
q

p

(
ϑ − p

ϑ − q

)
> 1,

and let a > 0 be such that

f (a) = V0
K

(a p−1 + aq−1).

We define

f̃ (t) =
{

f (t) if t ≤ a,
V0
K

(t p−1 + tq−1) if t > a,
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and

g(x, t) =
{

χ�(x) f (t) + (1 − χ�(x)) f̃ (t) if t > 0,
0 if t ≤ 0,

where χA denotes the characteristic function of A ⊂ R
N . By ( f1)-( f4), we infer that

g : R
N × R → R is a Carathéodory function that fulfills the following assumptions:

(g1) lim
t→0

g(x, t)

t2p−1 = 0 uniformly with respect to x ∈ R
N ,

(g2) g(x, t) ≤ f (t) for all x ∈ R
N and t > 0,

(g3) (i) 0 < ϑG(x, t) ≤ g(x, t)t for all x ∈ � and t > 0, (ii) 0 ≤ pG(x, t) ≤
g(x, t)t ≤ V0

K (t p + tq) for all x ∈ �c and t > 0,

(g4) for each x ∈ �, the function t 	→ g(x, t)

t p−1 + tq−1 is increasing in (0,∞), and for

each x ∈ �c, the function t 	→ g(x, t)

t p−1 + tq−1 is increasing in (0, a).

Let us introduce the auxiliary problem{ (
1 + [u]ps,p

)
(−�)spu +

(
1 + [u]qs,q

)
(−�)squ + V (εx)(|u|p−2u + |u|q−2u) = g(εx, u) in R

N ,

u ∈ Ws,p(RN ) ∩ Ws,q (RN ), u > 0 in R
N .

(2.1)

We stress that if uε is a solution to (2.1) such that uε(x) ≤ a for all x ∈ �c
ε, where

�ε = {x ∈ R
N : εx ∈ �}, then uε is also a solution to (1.1). Then we consider the

functional Jε : Xε → R associated with (2.1), that is

Jε(u) = 1

p
‖u‖p

Vε,p
+ 1

2p
[u]2ps,p + 1

q
‖u‖qVε,q

+ 1

2q
[u]2qs,q −

∫
RN

G(εx, u) dx .

Clearly, Jε ∈ C1(Xε, R) and it holds

〈J ′
ε(u), ϕ〉 = (1 + [u]ps,p)〈u, ϕ〉s,p + (1 + [u]qs,q)〈u, ϕ〉s,q

+
∫
RN

V (εx)|u|p−2u ϕ dx +
∫
RN

V (εx)|u|q−2u ϕ dx

−
∫
RN

g(εx, u)ϕ dx

for any u, ϕ ∈ Xε. We denote byNε the Nehari manifold associated with Jε, namely

Nε = {u ∈ Xε : 〈J ′
ε(u), u〉 = 0},

and we set

cε = inf
u∈Nε

Jε(u).
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Let X
+
ε be the open set given by

X
+
ε = {u ∈ Xε : |supp(u+) ∩ �ε| > 0},

and S
+
ε = Sε ∩ X

+
ε , where Sε = {u ∈ Xε : ‖u‖Xε

= 1} is the unit sphere in Xε. Note
that S+

ε is an incompleteC1,1-manifold of codimension one. Hence,Xε = TuS
+
ε ⊕Ru

for all u ∈ S
+
ε , where

TuS
+
ε = {

v ∈ Xε : (1 + [u]ps,p)〈u, v〉s,p + (1 + [u]qs,q)〈u, v〉s,q
+

∫
RN

V (εx)(|u|p−2uv + |u|q−2uv) dx = 0

}
.

The next lemma ensures that Jε possesses a mountain pass geometry [3].

Lemma 2.3 The functional Jε satisfies the following properties:

(i) There exist α, ρ > 0 such that Jε(u) ≥ α for any u ∈ Xε with ‖u‖Xε
= ρ.

(ii) There exists e ∈ Xε such that ‖e‖Xε
> ρ and Jε(e) < 0.

Proof (i) Pick ζ ∈ (0, V0). From (g1), (g2), ( f1), and ( f2), we can find Cζ > 0 such
that

|g(x, t)| ≤ ζ |t |p−1 + Cζ |t |ν−1 for (x, t) ∈ R
N × R.

Taking into account the above estimate and applying Theorem 2.1, we have

Jε(u) ≥ 1

p
‖u‖p

Vε,p
+ 1

q
‖u‖qVε,q

− ζ

p
|u|pp − Cζ

ν
|u|νν

≥ C1‖u‖p
Vε,p

+ 1

q
‖u‖qVε,q

− Cζ

ν
|u|νν.

Choosing ‖u‖Xε
= ρ ∈ (0, 1) and recalling that 1 < p < q, we get ‖u‖Vε,p < 1 and

thus ‖u‖p
Vε,p

≥ ‖u‖qVε,p
. Using

at + bt ≥ Ct (a + b)t for all a, b ≥ 0 and t > 1,

and Theorem 2.1, we can see that

Jε(u) ≥ C2‖u‖q
Xε

− Cζ

ν
|u|νν ≥ C2‖u‖q

Xε
− C3‖u‖ν

Xε
.

Since ν > q, there exists α > 0 such that Jε(u) ≥ α for any u ∈ Xε with ‖u‖Xε
= ρ.

(ii) It follows from ( f3) that, for some constants A, B > 0,

F(t) ≥ Atϑ − B for all t > 0.
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Then, for all u ∈ X
+
ε and t > 0, we obtain

Jε(tu) ≤ t p

p
‖u‖p

Vε,p
+ t2p

2p
[u]2ps,p + tq

q
‖u‖qVε,q

+ t2q

2q
[u]2qs,q

− Atϑ
∫

�ε

(u+)ϑ dx + B|supp(u+) ∩ �ε|

which combined with the fact that ϑ > 2q > 2p implies that Jε(tu) → −∞ as
t → ∞. Hence, for large t > 1, we can take e = tu such that ‖e‖Xε

> ρ and
Jε(e) < 0. ��

In view of Lemma 2.3, we can define the minimax level

c′
ε = inf

γ∈�ε

max
t∈[0,1]Jε(γ (t)) where �ε = {γ ∈ C([0, 1], Xε) : γ (0) = 0

and Jε(γ (1)) < 0}.

Exploiting a version of the mountain pass theoremwithout the Palais–Smale condition
(see [37]), we can find a Palais–Smale sequence {un}n∈N ⊂ Xε at the level c′

ε ((PS)c′
ε

sequence for short).

Remark 2.1 We may always assume that any (PS)c sequence {un}n∈N ⊂ Xε of Jε is
nonnegative. Indeed, noting that 〈J ′

ε(un), u
−
n 〉 = on(1), where u−

n = min{un, 0}, and
using g(ε·, t) = 0 for t ≤ 0, we have

(1 + [un]ps,p)
∫∫

R2N

|un(x) − un(y)|p−2(un(x) − un(y))

|x − y|N+sp
(u−

n (x) − u−
n (y)) dxdy

+ (1 + [un]qs,q )

∫∫
R2N

|un(x) − un(y)|q−2(un(x) − un(y))

|x − y|N+sq
(u−

n (x) − u−
n (y)) dxdy

+
∫
RN

V (εx)(|un |p−2un + |un |q−2un) u
−
n dx = on(1).

Recalling that

|x − y|t−2(x − y)(x− − y−) ≥ |x− − y−|t for all x, y ∈ R and t > 1, (2.2)

we arrive at

‖u−
n ‖p

Vε,p
+ ‖u−

n ‖qVε,q
= on(1),

that is u−
n → 0 in Xε. Moreover, {u+

n }n∈N is bounded in Xε. Since [un]ts,t = [u+
n ]ts,t +

on(1) and ‖un‖Vε,t = ‖u+
n ‖Vε,t + on(1) for t ∈ {p, q}, we can easily deduce that

Jε(un) = Jε(u+
n ) + on(1) and J ′

ε(un) = J ′
ε(u

+
n ) + on(1). Therefore, Jε(u+

n ) → c
and J ′

ε(u
+
n ) → 0.

The next two results are very important because they allow us to overcome the
nondifferentiability of Nε and the incompleteness of S

+
ε .
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Lemma 2.4 Assume that (V1)-(V2) and ( f1)-( f4) hold. Then we have the following
properties:

(i) For each u ∈ X
+
ε , let hu : R

+ → R be defined by hu(t) = Jε(tu). Then, there is
a unique tu > 0 such that

h′
u(t) > 0 for all t ∈ (0, tu),

h′
u(t) < 0 for all t ∈ (tu,∞).

(ii) There exists τ > 0, independent of u, such that tu ≥ τ for any u ∈ S
+
ε . Moreover,

for each compact set K ⊂ S
+
ε , there is a constant CK > 0 such that tu ≤ CK for

any u ∈ K.
(iii) The map m̂ε : X

+
ε → Nε given by m̂ε(u) = tuu is continuous and mε = m̂ε|S+

ε
is

a homeomorphism between S
+
ε and Nε. Moreover, m−1

ε (u) = u
‖u‖Xε

.

(iv) If there is a sequence {un}n∈N ⊂ S
+
ε such that dist(un, ∂S

+
ε ) → 0, then

‖mε(un)‖Xε
→ ∞ and Jε(mε(un)) → ∞.

Proof (i) From the proof of Lemma 2.3, we derive that hu(0) = 0, hu(t) > 0 for t > 0
small enough and hu(t) < 0 for t > 0 sufficiently large. Then there exists a global
maximum point tu > 0 for hu in [0,∞) such that h′

u(tu) = 0 and tuu ∈ Nε. We claim
that tu > 0 is the unique number such that h′

u(tu) = 0. Arguing by contradiction, we
assume that there exists t1 > t2 > 0 such that h′

u(t1) = h′
u(t2) = 0, or equivalently

t p−1
1 ‖u‖p

Vε,p
+ t2p−1

1 [u]2ps,p + tq−1
1 ‖u‖qVε,q

+ t2q−1
1 [u]2qs,q =

∫
RN

g(εx, t1u)u dx,

t p−1
2 ‖u‖p

Vε,p
+ t2p−1

2 [u]2ps,p + tq−1
2 ‖u‖qVε,q

+ t2q−1
2 [u]2qs,q =

∫
RN

g(εx, t2u)u dx .

Hence,

‖u‖p
Vε,p

t2q−p
1

+ ‖u‖qVε,q

tq1
+ [u]2ps,p

t2q−2p
1

+ [u]2qs,q =
∫
RN

g(εx, t1u)

(t1u)2q−1 u
2qdx

and

‖u‖p
Vε,p

t2q−p
2

+ ‖u‖qVε,q

tq2
+ [u]2ps,p

t2q−2p
2

+ [u]2qs,q =
∫
RN

g(εx, t2u)

(t2u)2q−1 u
2qdx .

Using the definition of g, (g4) and ( f4), we have

(
1

t2q−p
1

− 1

t2q−p
2

)
‖u‖p

Vε,p
+

(
1

tq1
− 1

tq2

)
‖u‖qVε,q

+
(

1

t2q−2p
1

− 1

t2q−2p
2

)
[u]2ps,p

=
∫
RN

[
g(εx, t1u)

(t1u)2q−1 − g(εx, t2u)

(t2u)2q−1

]
u2qdx
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≥
∫

�c
ε∩{t2u>a}

[
g(εx, t1u)

(t1u)2q−1 − g(εx, t2u)

(t2u)2q−1

]
u2qdx

q +
∫

�c
ε∩{t2u≤a<t1u}

[
g(εx, t1u)

(t1u)2q−1 − g(εx, t2u)

(t2u)2q−1

]
u2qdx

+
∫

�c
ε∩{t1u<a}

[
g(εx, t1u)

(t1u)2q−1 − g(εx, t2u)

(t2u)2q−1

]
u2qdx

≥ V0
K

∫
�c

ε∩{t2u>a}

[(
1

(t1u)2q−p
− 1

(t2u)2q−p

)
+

(
1

(t1u)q
− 1

(t2u)q

)]
u2qdx

+
∫

�c
ε∩{t2u≤a<t1u}

[
V0
K

(
1

(t1u)2q−p
+ 1

(t1u)q

)
− f (t2u)

(t2u)2q−1

]
u2qdx .

Multiplying both sides by (t1t2)2q−p

t2q−p
2 −t2q−p

1

< 0 (recall that 2q > p and t1 > t2), we get

‖u‖p
Vε,p

+ (t1t2)q−p

t2q−p
2 − t2q−p

1

(tq2 − tq1 )‖u‖qVε,q

= ‖u‖p
Vε,p

+ (t1t2)2q−p

t2q−p
2 − t2q−p

1

tq2 − tq1
(t1t2)q

‖u‖qVε,q

≤ V0
K

∫
�c

ε∩{t2u>a}
u pdx + V0

K

(t1t2)2q−p

t2q−p
2 − t2q−p

1

tq2 − tq1
(t2t1)q

∫
�c

ε∩{t2u>a}
uqdx

+ (t1t2)2q−p

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}

[
V0
K

(
1

(t1u)2q−p
+ 1

(t1u)q

)
− f (t2u)

(t2u)2q−1

]
u2qdx

≤ V0
K

∫
�c

ε∩{t2u>a}
u pdx + V0

K

(t1t2)q−p

t2q−p
2 − t2q−p

1

(tq2 − tq1 )

∫
�c

ε∩{t2u>a}
uqdx

+ V0
K

t2q−p
2

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
u p dx + V0

K

tq−p
1 t2q−p

2

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
uq dx

− (t1t2)2q−p

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
f (t2u)

(t2u)2q−1 u
2qdx

≤ V0
K

∫
�c

ε∩{t2u>a}
u pdx + V0

K

(t1t2)q−p

t2q−p
2 − t2q−p

1

(tq2 − tq1 )

∫
�c

ε∩{t2u>a}
uqdx

+ V0
K

t2q−p
2

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
u p dx + V0

K

tq−p
1 t2q−p

2

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
uq dx

− V0
K

t2q−p
1

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
u p dx − V0

K

t2q−p
1 tq−p

2

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
uq dx

= V0
K

∫
�c

ε∩{t2u>a}
u pdx + V0

K

(t1t2)q−p

t2q−p
2 − t2q−p

1

(tq2 − tq1 )

∫
�c

ε∩{t2u>a}
uqdx

+ V0
K

t2q−p
2

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
u p dx + V0

K

tq−p
1 t2q−p

2

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
uq dx
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− V0
K

t2q−p
1

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
u p dx − V0

K

t2q−p
1 tq−p

2

t2q−p
2 − t2q−p

1

∫
�c

ε∩{t2u≤a<t1u}
uq dx

≤ V0
K

∫
�c

ε

u p dx + V0
K

(t1t2)q−p

t2q−p
2 − t2q−p

1

(tq2 − tq1 )

∫
�c

ε

uqdx

≤ 1

K
‖u‖p

Vε,p
+ 1

K

(t1t2)q−p

t2q−p
2 − t2q−p

1

(tq2 − tq1 )‖u‖qVε,q
,

where we used the fact that ( f4) and our choice of the constant a produce

f (t2u)

(t2u)2q−1 = f (t2u)

(t2u)p−1 + (t2u)q−1

(t2u)p−1 + (t2u)q−1

(t2u)2q−1

≤ f (a)

a p−1 + aq−1

(t2u)p−1 + (t2u)q−1

(t2u)2q−1

= V0
K

(
1

(t2u)2q−p
+ 1

(t2u)q

)
in �c

ε ∩ {t2u ≤ a < t1u}.

Therefore,

(
1 − 1

K

) [
‖u‖p

Vε,p
+ (t1t2)q−p

t2q−p
2 − t2q−p

1

(tq2 − tq1 )‖u‖qVε,q

]
≤ 0,

which is inconsistent with u �= 0 and K > 1.
(ii) Fix u ∈ S

+
ε . By (i), there exists tu > 0 such that h′

u(tu) = 0, that is

t p−1
u ‖u‖p

Vε,p
+ tq−1

u ‖u‖qVε,q
+ t2p−1

u [u]2ps,p + t2q−1
u [u]2qs,q =

∫
RN

g(εx, tuu) u dx .

Pick ξ > 0. From (g1)-(g2) and Theorem 2.1, we derive

t p−1
u ‖u‖p

Vε,p
+ tq−1

u ‖u‖qVε,q
≤

∫
R3

g(εx, tuu) u dx ≤ ξ t p−1
u ‖u‖p

Vε,p

+ Cξ t
ν−1
u ‖u‖ν

Vε,q .

Choosing ξ > 0 sufficiently small, we have

Ct p−1
u ‖u‖p

Vε,p
+ tq−1

u ‖u‖qVε,q
≤ Ctν−1

u ‖u‖ν
Vε,q ≤ Ctν−1

u .

Now, if tu ≤ 1, then tq−1
u ≤ t p−1

u , and using the facts that 1 = ‖u‖Xε
≥ ‖u‖Vε,p and

that q > p imply that ‖u‖p
Vε,p

≥ ‖u‖qVε,p
, we get

Ctq−1
u = Ctq−1

u ‖u‖q
Xε

≤ tq−1
u (C‖u‖qVε,p

+ ‖u‖qVε,q
) ≤ tq−1

u (C‖u‖p
Vε,p

+ ‖u‖qVε,q
)

≤ Ctν−1
u .
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Since ν > q, there exists τ > 0, independent of u, such that tu ≥ τ .
When tu > 1, then tq−1

u > t p−1
u , and observing that 1 = ‖u‖Xε

≥ ‖u‖Vε,p and that
q > p yield ‖u‖p

Vε,p
≥ ‖u‖qVε,p

, we obtain

Ct p−1
u = Ct p−1

u ‖u‖q
Xε

≤ t p−1
u (C‖u‖qVε,p

+ ‖u‖qVε,q
) ≤ t p−1

u (C‖u‖p
Vε,p

+ ‖u‖qVε,q
)

≤ Ctν−1
u .

As ν > q > p, we can find τ > 0, independent of u, such that tu ≥ τ .
Now, let K ⊂ S

+
ε be a compact set, and suppose, by contradiction, that there exists

{un}n∈N ⊂ K such that tn = tun → ∞. Since K is compact, there is u ∈ K such that
un → u in Xε. By the proof of (ii) of Lemma 2.3, we see that

Jε(tnun) → −∞. (2.3)

On the other hand, if v ∈ Nε, by 〈J ′
ε(v), v〉 = 0 and (g3), we get

Jε(v) = Jε(v) − 1

ϑ
〈J ′

ε(v), v〉 ≥ C̃(‖v‖p
Vε,p

+ ‖v‖qVε,q
).

Taking vn = tun un ∈ Nε in the above inequality, we arrive at

Jε(tnun) ≥ C̃(‖vn‖p
Vε,p

+ ‖vn‖qVε,q
).

Since ‖vn‖Xε
= tn → ∞ and ‖vn‖Xε

= ‖vn‖Vε,p + ‖vn‖Vε,q , we can use (2.3) to
reach a contradiction.
(iii) First we note that m̂ε, mε and m−1

ε are well defined. Indeed, by (i), for each
u ∈ X

+
ε , there is a unique mε(u) ∈ Nε. On the other hand, if u ∈ Nε then u ∈ X

+
ε .

Otherwise, we would have

| supp(u+) ∩ �ε| = 0,

and by (g3)-(ii) we infer that

‖u‖p
Vε,p

+ ‖u‖qVε,q
≤

∫
RN

g(εx, u) u dx =
∫

�c
ε

g(εx, u) u dx +
∫

�ε

g(εx, u) u dx

=
∫

�c
ε

g(εx, u+) u+ dx

≤ 1

K

∫
�c

ε

V (εx)(|u|p + |u|q)dx

≤ 1

K
(‖u‖p

Vε,p
+ ‖u‖qVε,q

)
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which gives a contradiction because K > 1 and u �= 0. Consequently, m−1
ε (u) =

u
‖u‖Xε

∈ S
+
ε is well defined and continuous. Since

m−1
ε (mε(u)) = m−1

ε (tuu) = tuu

‖tuu‖Xε

= u

‖u‖Xε

= u for all u ∈ S
+
ε ,

we deduce that mε is a bijection. Now we prove that m̂ε : X
+
ε → Nε is continuous.

Let {un}n∈N ⊂ X
+
ε and u ∈ X

+
ε be such that un → u in Xε. By (ii), there exists t0 > 0

such that tn = t un‖un‖Xε

→ t0. Using tn
un‖un‖Xε

∈ Nε, that is

t pn
‖un‖p

Vε,p

‖un‖p
Xε

+ tqn
‖un‖qVε,q

‖un‖qXε

+ t2pn
[un]2ps,p
‖un‖2pXε

+ t2qn
[un]2qs,q
‖un‖2qXε

=
∫
RN

g

(
εx, tn

un
‖un‖Xε

)

tn
un

‖un‖Xε

dx,

and letting n → ∞ we find

t p0
‖u‖p

Vε,p

‖u‖p
Xε

+ tq0
‖u‖qVε,q

‖u‖q
Xε

+ t2p0
[u]2ps,p
‖u‖2p

Xε

+ t2q0
[u]2qs,q
‖u‖2q

Xε

=
∫
RN

g

(
εx, t0

u

‖u‖Xε

)

t0
u

‖u‖Xε

dx,

which implies that t0 u
‖u‖Xε

∈ Nε. From (i), t u
‖u‖Xε

= t0 and this assures that m̂ε(un) →
m̂ε(u) in X

+
ε . Therefore, m̂ε and mε are continuous functions.

(iv) Let {un}n∈N ⊂ S
+
ε be a sequence such that dist(un, ∂S

+
ε ) → 0. Then, for each

v ∈ ∂S
+
ε and n ∈ N, we have u+

n ≤ |un − v| a.e. in �ε. Hence, by (V1), (V2) and
Theorem 2.1, we can see that for each r ∈ [p, q∗

s ], there exists Cr > 0 such that

|u+
n |Lr (�ε) ≤ inf

v∈∂S+
ε

|un − v|Lr (�ε)

≤ Cr inf
v∈∂S+

ε

‖un − v‖Xε
for all n ∈ N.

Combining (g1), (g2), (g3)-(ii) and q > p, we get, for all t > 0,

∫
RN

G(εx, tun) dx =
∫

�c
ε

G(εx, tun) dx +
∫

�ε

G(εx, tun) dx

≤ V0
Kp

∫
�c

ε

(t p|un|p + tq |un|q)dx +
∫

�ε

F(tun) dx

≤ t p

K p

∫
RN

V (εx)|un|p dx + tq

K p

∫
RN

V (εx)|un|q dx

+ C1t
p
∫

�ε

(u+
n )pdx + C2t

ν

∫
�ε

(u+
n )νdx
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≤ t p

K p

∫
RN

V (εx)|un|p dx + tq

K p

∫
RN

V (εx)|un|q dx
+ C ′

pt
pdist(un, ∂S

+
ε )p + C ′

ν t
νdist(un, ∂S

+
ε )ν .

Thus, for all t > 0,

∫
RN

G(εx, tun) dx ≤ t p

K p

∫
RN

V (εx)|un|p dx + tq

K p

∫
RN

V (εx)|un|q dx + on(1).(2.4)

Now, we recall that K >
q
p > 1, and that 1 = ‖un‖Xε

≥ ‖un‖Vε,p implies ‖un‖p
Vε,p

≥
‖un‖qVε,p

. Then, for all t > 1, we obtain

t p

p
‖un‖p

Vε,p
+ tq

q
‖un‖qVε,q

− t p

K p

∫
RN

V (εx)|un|p dx − tq

K p

∫
RN

V (εx)|un|q dx

= t p

p
[un]ps,p + t p

(
1

p
− 1

Kp

) ∫
RN

V (εx)|un|p dx

+ tq

q
[un]qs,q + tq

(
1

q
− 1

Kp

) ∫
RN

V (εx)|un|q dx
≥ C1t

p‖un‖p
Vε,p

+ C2t
q‖un‖qVε,q

≥ C1t
p‖un‖qVε,p

+ C2t
q‖un‖qVε,q

≥ C1t
p‖un‖qVε,p

+ C2t
p‖un‖qVε,q

≥ C3t
p(‖un‖Vε,p + ‖un‖Vε,q)

q = C3t
p.

(2.5)

By using the definition of mε(un), (2.4) and (2.5), we have

lim inf
n→∞ Jε(mε(un)) ≥ lim inf

n→∞ Jε(tun)

≥ lim inf
n→∞

[
t p

p
‖un‖p

Vε,p
+ tq

q
‖un‖qVε,q

−
∫
RN

G(εx, tun) dx

]
≥ C3t

p for all t > 1.

Letting t → ∞ we deduce that Jε(mε(un)) → ∞ as n → ∞. Furthermore, by the
definition of Jε, we can see that for all n ∈ N

1

p
‖mε(un)‖p

Vε,p
(1 + ‖mε(un)‖p

Vε,p
) + 1

q
‖mε(un)‖qVε,q

(1 + ‖mε(un)‖qVε,q
)

≥ 1

p
‖mε(un)‖p

Vε,p
+ 1

2p
[mε(un)]2ps,p + 1

q
‖mε(un)‖qVε,q

+ 1

2q
[mε(un)]2qs,q

≥ Jε(mε(un))

and this yields ‖mε(un)‖Xε
→ ∞ as n → ∞. ��
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Remark 2.2 There exists κ > 0, independent of ε, such that ‖u‖Xε
≥ κ for all u ∈ Nε.

Indeed, if u ∈ Nε, we can use (g1), (g2) and Theorem 2.1 to see that

‖u‖p
Vε,p

+ ‖u‖qVε,q
≤

∫
RN

g(εx, u) u dx

≤ ζ |u|pp + Cζ |u|q∗
s

q∗
s

≤ ζ

V0
‖u‖p

Vε,p
+ C ′

ζ ‖u‖q∗
s
Vε,q

.

Choosing ζ ∈ (0, V0), we get ‖u‖Vε,q ≥ κ = (C ′
ζ )

− 1
q∗
s −q and thus ‖u‖Xε

≥ ‖u‖Vε,q ≥
κ .

Now we define the maps

ψ̂ε : X
+
ε → R and ψε : S

+
ε → R,

by setting ψ̂ε(u) = Jε(m̂ε(u)) and ψε = ψ̂ε|S+
ε
. From Lemma 2.4 and arguing as in

the proofs of Proposition 9 and Corollary 10 in [36], we may obtain the result below.

Proposition 2.1 Assume that (V1)-(V2)and ( f1)-( f4)hold. Thenwehave the following
properties:

(a) ψ̂ε ∈ C1(X+
ε , R) and

〈ψ̂ ′
ε(u), v〉 = ‖m̂ε(u)‖Xε

‖u‖Xε

〈J ′
ε(m̂ε(u)), v〉 for all u ∈ X

+
ε and v ∈ Xε.

(b) ψε ∈ C1(S+
ε , R) and

〈ψ ′
ε(u), v〉 = ‖mε(u)‖Xε

〈J ′
ε(mε(u)), v〉 for all v ∈ TuS

+
ε .

(c) If {un}n∈N is a (PS)c sequence for ψε, then {mε(un)}n∈N is a (PS)c sequence for
Jε. If {un}n∈N ⊂ Nε is a bounded (PS)c sequence for Jε, then {m−1

ε (un)}n∈N is
a (PS)c sequence for ψε.

(d) u is a critical point of ψε if and only if mε(u) is a critical point for Jε. Moreover,
the corresponding critical values coincide and

inf
u∈S+

ε

ψε(u) = inf
u∈Nε

Jε(u).

Remark 2.3 As in [36],we have the followingminimax characterization of the infimum
of Jε over Nε:

cε = inf
u∈Nε

Jε(u) = inf
u∈X+

ε

max
t>0

Jε(tu) = inf
u∈S+

ε

max
t>0

Jε(tu).

Moreover, arguing as in [37], we can prove that cε = c′
ε.
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In the remainder of this section, we check that the modified functional satisfies
the Palais–Smale condition. We start by showing the boundedness of Palais–Smale
sequences.

Lemma 2.5 Let c ∈ R and let {un}n∈N ⊂ Xε be a (PS)c sequence for Jε. Then
{un}n∈N is bounded in Xε.

Proof Using (g3), q > p and ϑ > 2q, we see that

C0(1 + ‖un‖Xε
) ≥ Jε(un) − 1

ϑ
〈J ′

ε(un), un〉

=
(
1

p
− 1

ϑ

)
‖un‖p

Vε,p
+

(
1

2p
− 1

ϑ

)
[un]2ps,p

+
(
1

q
− 1

ϑ

)
‖un‖qVε,q

+
(

1

2q
− 1

ϑ

)
[un]2qs,q

+ 1

ϑ

∫
�c

ε

[g(εx, un)un − ϑG(εx, un)] dx

+ 1

ϑ

∫
�ε

[g(εx, un)un − ϑG(εx, un)] dx

≥
(
1

q
− 1

ϑ

)
[‖un‖p

Vε,p
+ ‖un‖qVε,q

]

−
(
1

p
− 1

ϑ

)
1

K

∫
�c

ε

V (εx)(|un|p + |un|q) dx

≥
[(

1

q
− 1

ϑ

)
−

(
1

p
− 1

ϑ

)
1

K

]
(‖un‖p

Vε,p
+ ‖un‖qVε,q

)

= C̃(‖un‖p
Vε,p

+ ‖un‖qVε,q
), (2.6)

where C̃ =
[(

1
q − 1

ϑ

)
−

(
1
p − 1

ϑ

)
1
K

]
> 0 since K >

(
ϑ−p
ϑ−q

)
q
p . Suppose, by con-

tradiction, that ‖un‖Xε
→ ∞. Then we discuss the following cases:

Case 1 ‖un‖Vε,p → ∞ and ‖un‖Vε,q → ∞.
For n large, we get ‖un‖q−p

Vε,q
≥ 1, that is ‖un‖qVε,q

≥ ‖un‖p
Vε,q

. Therefore, from (2.6),

C0(1 + ‖un‖Xε
) ≥C̃(‖un‖p

Vε,p
+ ‖un‖p

Vε,q
) ≥ C1(‖un‖Vε,p + ‖un‖Vε,q)

p

= C1‖un‖p
Xε

which is a contradiction.
Case 2 ‖un‖Vε,p → ∞ and ‖un‖Vε,q is bounded.
We have

C0(1 + ‖un‖Vε,p + ‖un‖Vε,q) = C0(1 + ‖un‖Xε
) ≥ C̃‖un‖p

Vε,p
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and thus

C0

(
1

‖un‖p
Vε,p

+ 1

‖un‖p−1
Vε,p

+ ‖un‖Vε,q

‖un‖p
Vε,p

)
≥ C̃ .

Since p > 1 and letting n → ∞, we find 0 < C̃ ≤ 0, that is a contradiction.
Case 3 ‖un‖Vε,q → ∞ and ‖un‖Vε,p is bounded.
This case is similar to the case 2, so we skip the details.
In conclusion, {un}n∈N is bounded in Xε. ��

Lemma 2.6 Let c ∈ R and let {un}n∈N ⊂ Xε be a (PS)c sequence for Jε. Then for
any η > 0 there exists R = R(η) > 0 such that

lim sup
n→∞

∫
Bc
R(0)

(∫
RN

|un(x) − un(y)|p
|x − y|N+sp

+ |un(x) − un(y)|q
|x − y|N+sq

dy

+V (εx)(|un|p + |un|q)
)
dx < η. (2.7)

Proof Let ψ ∈ C∞(RN ) be such that 0 ≤ ψ ≤ 1, ψ = 0 in B 1
2
(0), ψR = 1 in

Bc
1(0), and |∇ψ |∞ ≤ C , for some C > 0. For R > 0, define ψR(x) = ψ( x

R ). Then,
0 ≤ ψR ≤ 1, ψR = 0 in B R

2
(0), ψR = 1 in Bc

R(0), and |∇ψR |∞ ≤ C
R with C > 0

independent of R. Since {ψRun}n∈N is bounded in Xε, it holds 〈J ′
ε(un), ψRun〉 =

on(1), that is

(1 + [un]ps,p)
∫∫

R2N

|un(x) − un(y)|p
|x − y|N+sp

ψR(x) dxdy + (1 + [un]qs,q)∫∫
R2N

|un(x) − un(y)|q
|x − y|N+sq

ψR(x) dxdy

+
∫
RN

V (εx)|un|pψR dx +
∫
RN

V (εx)|un|qψR dx

= on(1) +
∫
RN

g(εx, un)ψRun dx

− (1 + [un]ps,p)
∫∫

R2N

|un(x) − un(y)|p−2(un(x) − un(y))(ψR(x) − ψR(y))

|x − y|N+sp
un(y) dxdy

− (1 + [un]qs,q)
∫∫

R2N

|un(x) − un(y)|q−2(un(x) − un(y))(ψR(x) − ψR(y))

|x − y|N+sq
un(y) dxdy.
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Pick R > 0 such that �ε ⊂ B R
2
(0). By the definition of ψR and using (g3)-(ii), we

obtain that

∫∫
R2N

|un(x) − un(y)|p
|x − y|N+sp

ψR(x) dxdy +
∫∫

R2N

|un(x) − un(y)|q
|x − y|N+sq

ψR(x) dxdy

+
(
1 − 1

K

) ∫
RN

V (εx)(|un|p + |un|q)ψR dx

≤ on(1) − (1 + [un]ps,p)∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))(ψR(x) − ψR(y))

|x − y|N+sp
un(y) dxdy

− (1 + [un]qs,q)∫∫
R2N

|un(x) − un(y)|q−2(un(x) − un(y))(ψR(x) − ψR(y))

|x − y|N+sq
un(y) dxdy.

(2.8)

Now, from the Hölder inequality and the boundedness of {un}n∈N in Xε, we get, for
t ∈ {p, q},

∣∣∣∣
∫∫

R2N

|un(x) − un(y)|t−2(un(x) − un(y))(ψR(x) − ψR(y))

|x − y|N+st
un(y) dxdy

∣∣∣∣
≤ C

(∫∫
R2N

|ψR(x) − ψR(y)|t
|x − y|N+st

|un(y)|t dxdy
) 1

t

. (2.9)

An inspection of the proof of Lemma 2.2 shows that, for t ∈ {p, q},

lim sup
n→∞

∫∫
R2N

|ψR(x) − ψR(y)|t
|x − y|N+st

|un(y)|t dxdy ≤ C

Rst
. (2.10)

Combining (2.8), (2.9) and (2.10), and recalling the definition ofψR , for some C > 0,

we can take R = R(η) > (C
η
)
1
s so that (2.7) is satisfied. ��

Since we are working with a Kirchhoff type problem, the next lemma will be funda-
mental to obtain the strong convergence of bounded Palais–Smale sequences.
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Lemma 2.7 Let c ∈ R and let {un}n∈N ⊂ Xε be a (PS)c sequence for Jε. Let R > 0.
Then

lim
n→∞

∫
BR(0){∫

RN

[ |un(x) − un(y)|p
|x − y|N+sp

+ |un(x) − un(y)|q
|x − y|N+sq

]
dy + V (εx)(|un|p + |un|q)

}
dx

=
∫
BR(0){∫

RN

[ |u(x) − u(y)|p
|x − y|N+sp

+ |u(x) − u(y)|q
|x − y|N+sq

]
dy + V (εx)(|u|p + |u|q)

}
dx .

(2.11)

Proof Let η ∈ C∞(RN ) be such that 0 ≤ η ≤ 1, η = 1 in B1(0), η = 0 in Bc
2(0) and|∇η|∞ ≤ 2. For ρ > 0, put ηρ(x) = η( x

ρ
). Then 0 ≤ ηρ ≤ 1, η = 1 in Bρ(0), η = 0

in Bc
2ρ(0) and |∇η|∞ ≤ 2

ρ
. Since {un}n∈N is bounded in Xε (by Lemma 2.5), we may

suppose that [un]ps,p → �p and [un]qs,q → �q as n → ∞.
Fix R > 0 and take ρ > R. We recall the following well-known elementary

inequalities [35]: for any ξ, η ∈ R
N we have

(|ξ |r−2ξ − |η|r−2η) · (ξ − η) ≥ c1|ξ − η|r for r ≥ 2, (2.12)

(|ξ | + |η|)2−r [(|ξ |r−2ξ − |η|r−2η) · (ξ − η)] ≥ c2|ξ − η|2 for 1 < r < 2,
(2.13)

for some constants c1, c2 > 0. Note that, when 1 < r < 2, using (2.13) and the
elementary inequality

(|ξ | + |η|)r ≤ 2r−1(|ξ |r + |η|r ) for all ξ, η ∈ R
N ,

we deduce that there exists c3 > 0 such that, for any ξ, η ∈ R
N , the following relation

is satisfied

(|ξ |r + |η|r ) 2−r
2

[
(|ξ |r−2ξ − |η|r−2η) · (ξ − η)

] r
2 ≥ c3|ξ − η|r for 1 < r < 2.

(2.14)

For t ∈ {p, q} and n ∈ N, we set

Atn(x) = (1 + [un]ts,t )∫
RN

[
|un(x) − un(y)|t−2(un(x) − un(y))

|x − y|N+st
− |u(x) − u(y)|t−2(u(x) − u(y))

|x − y|N+st

]
×

× [(un(x) − un(y)) − (u(x) − u(y))] dy
+ V (εx)(|un(x)|t−2un(x) − |u(x)|t−2u(x))(un(x) − u(x)).
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Note that, for t ∈ {p, q} and n ∈ N, we have

0 ≤
∫
BR(0)

At
n(x) dx =

∫
BR(0)

At
n(x)ηρ(x) dx

≤ (1 + [un]ts,t )∫∫
R2N

[ |un(x) − un(y)|t−2(un(x) − un(y))

|x − y|N+st
− |u(x) − u(y)|t−2(u(x) − u(y))

|x − y|N+st

]
×

× [(un(x) − un(y)) − (u(x) − u(y))]ηρ(x) dxdy

+
∫
RN

V (εx)(|un|t−2un − |u|t−2u)(un − u)ηρ dx

= (1 + [un]ts,t )
∫∫

R2N

|un(x) − un(y)|t
|x − y|N+st

ηρ(x) dxdy +
∫
RN

V (εx)|un|tηρ dx

+ (1 + [un]ts,t )
∫∫

R2N

|u(x) − u(y)|t
|x − y|N+st

ηρ(x) dxdy +
∫
RN

V (εx)|u|tηρ dx

−
[
(1 + [un]ts,t )

∫∫
R2N

|un(x) − un(y)|t−2

|x − y|N+st
(un(x) − un(y))(u(x)

−u(y))ηρ(x) dxdy

+
∫
RN

V (εx)|un|t−2unuηρ dx

]

−
[
(1 + [un]ts,t )

∫∫
R2N

|u(x) − u(y)|t−2

|x − y|N+st
(un(x)

−un(y))(u(x) − u(y))ηρ(x) dxdy

+
∫
RN

V (εx)|u|t−2uunηρ dx

]
.

Define

I 1n,ρ = (1 + [un]ps,p)
∫∫

R2N

|un(x) − un(y)|p
|x − y|N+sp

ηρ(x) dxdy +
∫
RN

V (εx)|un|pηρ dx

+ (1 + [un]qs,q)
∫∫

R2N

|un(x) − un(y)|q
|x − y|N+sq

ηρ(x) dxdy +
∫
RN

V (εx)|un|qηρ dx

−
∫
RN

g(εx, un)unηρ dx,

I 2n,ρ = (1 + [un]ps,p)
∫∫

R2N

|u(x) − u(y)|p
|x − y|N+sp

ηρ(x) dxdy

+
∫
RN

V (εx)|u|pηρ dx

− (1 + [un]ps,p)
∫∫

R2N

|u(x) − u(y)|p−2

|x − y|N+sp
(u(x)
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− u(y))(un(x) − un(y))ηρ(x) dxdy

−
∫
RN

V (εx)|u|p−2uunηρ dx

+ (1 + [un]qs,q)
∫∫

R2N

|u(x) − u(y)|q
|x − y|N+sq

ηρ(x) dxdy

+
∫
RN

V (εx)|u|qηρ dx

− (1 + [un]qs,q)
∫∫

R2N

|u(x) − u(y)|q−2

|x − y|N+sq
(u(x) − u(y))(un(x)

− un(y))ηρ(x) dxdy

−
∫
RN

V (εx)|u|q−2uunηρ dx,

I 3n,ρ = (1 + [un]ps,p)
∫∫

R2N

|un(x) − un(y)|p−2

|x − y|N+sp
(un(x)

− un(y))(u(x) − u(y))ηρ(x) dxdy

+
∫
RN

V (εx)|un|p−2unuηρ dx

+ (1 + [un]qs,q)
∫∫

R2N

|un(x) − un(y)|q−2

|x − y|N+sq
(un(x) − un(y))(u(x)

− u(y))ηρ(x) dxdy

+
∫
RN

V (εx)|un|q−2unuηρ dx

−
∫
RN

g(εx, un)uηρ dx,

and

I 4n,ρ =
∫
RN

g(εx, un)(un − u)ηρ dx .

Then it holds

0 ≤
∫
BR(0)

(Ap
n (x) + Aq

n(x)) dx ≤ |I 1n,ρ | + |I 2n,ρ | + |I 3n,ρ | + |I 4n,ρ |. (2.15)

Since

I 1n,ρ = 〈J ′
ε(un), unηρ〉 −

[(
1 + [un]ps,p

) ∫∫
R2N

|un(x) − un(y)|p−2

|x − y|N+sp

(un(x) − un(y))(ηρ(x) − ηρ(y))un(y) dxdy
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+ (
1 + [un]qs,q

) ∫∫
R2N

|un(x) − un(y)|q−2

|x − y|N+sq
(un(x)

− un(y))(ηρ(x) − ηρ(y))un(y) dxdy
]

and {unηρ}n∈N is bounded in Xε, we see that 〈J ′
ε(un), unηρ〉 = on(1). Using the

Hölder inequality and the boundedness of {un}n∈N in Xε, we have

∣∣∣∣
∫∫

R2N

|un(x) − un(y)|t−2

|x − y|N+st
(un(x) − un(y))(ηρ(x) − ηρ(y))un(y) dxdy

∣∣∣∣
≤ C

(∫∫
R2N

|ηρ(x) − ηρ(y)|t
|x − y|N+st

|un(y)|t dxdy
) 1

t

for t ∈ {p, q},

which combined with Lemma in 2.2 (applied with φρ = 1 − ηρ) yields

lim
ρ→∞ lim sup

n→∞∣∣∣∣
∫∫

R2N

|un(x) − un(y)|t−2

|x − y|N+st
(un(x) − un(y))(ηρ(x) − ηρ(y))un(y) dxdy

∣∣∣∣ = 0

for t ∈ {p, q}.

Consequently, recalling that [un]ts,t → �t for t ∈ {p, q}, we get

lim
ρ→∞

[
lim sup
n→∞

∣∣∣I 1n,ρ

∣∣∣
]

= 0. (2.16)

We also observe that

I 3n,ρ = 〈J ′
ε(un), uηρ〉 −

[(
1 + [un]ps,p

) ∫∫
R2N

|un(x) − un(y)|p−2

|x − y|N+sp

(un(x) − un(y))(ηρ(x) − ηρ(y))u(y) dxdy

+ (
1 + [un]qs,q

) ∫∫
R2N

|un(x) − un(y)|q−2

|x − y|N+sq
(un(x)

− un(y))(ηρ(x) − ηρ(y))u(y) dxdy
]
,

and using 〈J ′
ε(un), uηρ〉 = on(1), we can argue as before to achieve that

lim
ρ→∞

[
lim sup
n→∞

|I 3n,ρ |
]

= 0. (2.17)

Next we prove that

lim
ρ→∞

[
lim sup
n→∞

|I 2n,ρ |
]

= 0. (2.18)
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From the weak convergence, we have

∫
RN

V (εx)|u|t−2u(un − u)ηρ dx = on(1) for t ∈ {p, q}.

Notice that, for t ∈ {p, q},
(
1 + [un]ts,t

) ∫∫
R2N

|u(x) − u(y)|t−2

|x − y|N+st
(u(x) − u(y))

[(un − u)(x) − (un − u)(y)]ηρ(x) dxdy

= (
1 + [un]ts,t

) ∫∫
R2N

|u(x) − u(y)|t−2

|x − y|N+st
(u(x) − u(y))

[(un − u)(x) − (un − u)(y)](ηρ(x) − 1) dxdy

+ (
1 + [un]ts,t

) ∫∫
R2N

|u(x) − u(y)|t−2

|x − y|N+st
(u(x)

− u(y))[(un − u)(x) − (un − u)(y)] dxdy.

By un⇀u in Xε and [un]ts,t → �t for t ∈ {p, q}, we deduce that

lim
n→∞

(
1 + [un]ts,t

) ∫∫
R2N

|u(x) − u(y)|t−2

|x − y|N+st
(u(x) − u(y))

[(un − u)(x) − (un − u)(y)] dxdy = 0 for t ∈ {p, q}.

On the other hand, using the boundedness of {un}n∈N in Xε and applying the Hölder
inequality, we see that

∣∣∣∣(1 + [un]ts,t
) ∫∫

R2N

|u(x) − u(y)|t−2

|x − y|N+st
(u(x) − u(y))

[(un − u)(x) − (un − u)(y)](ηρ(x) − 1) dxdy
∣∣

≤ (1 + C)[un − u]s,t
(∫∫

R2N

|u(x) − u(y)|t
|x − y|N+st

|ηρ(x) − 1| t
t−1 dxdy

) t−1
t

≤ C

(∫∫
R2N

|u(x) − u(y)|t
|x − y|N+st

|ηρ(x) − 1| t
t−1 dxdy

) t−1
t

for t ∈ {p, q}.

Since ηρ → 1 a.e. inR
N as ρ → ∞ and u ∈ Ws,t (RN ), it follows from the dominated

convergence theorem that

lim
ρ→∞

∫∫
R2N

|u(x) − u(y)|t
|x − y|N+st

|ηρ(x) − 1| t
t−1 dxdy = 0 for t ∈ {p, q}.

The validity of (2.18) is now an immediate consequence of the definition of I 2n,ρ and
of the above relations.
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Finally, exploiting un → u in Lr
loc(R

N ) for all r ∈ [p, q∗
s ) and the growth assump-

tions on g, we obtain

lim
n→∞ |I 4n,ρ | = 0 for any ρ > R. (2.19)

Combining (2.15) with (2.16)–(2.19), we find

lim
n→∞

∫
BR(0)

(Ap
n (x) + Aq

n(x)) dx = 0,

whence

lim
n→∞

{
(1 + [un]ts,t )∫

BR(0)

[∫
RN( |un(x) − un(y)|t−2(un(x) − un(y))

|x − y|N+st
− |u(x) − u(y)|t−2(u(x) − u(y))

|x − y|N+st

)
×

× ((un(x) − un(y)) − (u(x) − u(y))) dy
]
dx

+
∫
BR(0)

V (εx)
(
|un|t−2un − |u|t−2u

)
(un − u) dx

}
= 0 for t ∈ {p, q}.

(2.20)

Assume first that t ≥ 2. Using (2.12), the boundedness of {un}n∈N in Xε and (2.20),
we get

0 ≤
∫
BR(0)

[∫
RN

|(un − u)(x) − (un − u)(y)|t
|x − y|N+st

dy

]
dx

≤ C
∫
BR(0)

[∫
RN

( |un(x) − un(y)|t−2(un(x) − un(y))

|x − y|N+st

−|u(x) − u(y)|t−2(u(x) − u(y))

|x − y|N+st

)
×

× ((un(x) − un(y)) − (u(x) − u(y))) dy
]
dx = on(1).

In a similar fashion,

0 ≤
∫
BR(0)

V (εx)|un − u|t dx ≤ C
∫
BR(0)

V (εx)
(
|un|t−2un − |u|t−2u

)
(un − u) dx = on(1).
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Suppose now that 1 < t < 2. From (2.14), the boundedness of {un}n∈N inXε, Hölder’s
inequality, and (2.20), we derive

∫
BR(0)

[∫
RN

|(un − u)(x) − (un − u)(y)|t
|x − y|N+st

dy

]
dx

≤ C
(
[un]ts,t + [u]ts,t

) 2−t
2

{∫
BR(0)

[∫
RN( |un(x) − un(y)|t−2(un(x) − un(y))

|x − y|N+st
− |u(x) − u(y)|t−2(u(x) − u(y))

|x − y|N+st

)
×

× ((un(x) − un(y)) − (u(x) − u(y))) dy
]
dx

} t
2

≤ C
{∫

BR(0)

[∫
RN( |un(x) − un(y)|t−2(un(x) − un(y))

|x − y|N+st
− |u(x) − u(y)|t−2(u(x) − u(y))

|x − y|N+st

)
×

× ((un(x) − un(y)) − (u(x) − u(y))) dy
]
dx

} t
2 = on(1).

Analogously,

0 ≤
∫
BR(0)

V (εx)|un − u|t dx

≤ C

[∫
BR(0)

V (εx)
(
|un|t−2un − |u|t−2u

)
(un − u) dx

] t
2 = on(1).

Consequently, for t ∈ {p, q},

lim
n→∞

∫
BR(0)

[∫
RN

|un(x) − un(y)|t
|x − y|N+st

dy + V (εx)|un|t
]
dx

=
∫
BR(0)

[∫
RN

|u(x) − u(y)|t
|x − y|N+st

dy + V (εx)|u|t
]
dx

which implies (2.11). This completes the proof. ��
Now we are ready to prove the following compactness result.

Lemma 2.8 Jε satisfies the (PS)c condition at any level c ∈ R.

Proof Let c ∈ R and let {un}n∈N ⊂ Xε be a (PS)c sequence for Jε. By Lemma 2.5,
we know that {un}n∈N is bounded in Xε. Up to a subsequence, we may suppose that
un⇀u in Xε and un → u in Lr

loc(R
N ) for all r ∈ [1, q∗

s ). In view of Lemma 2.6, for
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each η > 0, there exists R = R(η) > (C
η
)
1
s , with C > 0 independent of η, such that

(2.11) holds. This fact combined with Lemma 2.7 yields

‖u‖p
Vε,p

+ ‖u‖qVε,q
≤ lim inf

n→∞ (‖un‖p
Vε,p

+ ‖un‖qVε,q
)

≤ lim sup
n→∞

(‖un‖p
Vε,p

+ ‖un‖qVε,q
)

= lim sup
n→∞

{∫
BR(0)[∫

RN

( |un(x) − un(y)|p
|x − y|N+sp

+ |un(x) − un(y)|q
|x − y|N+sq

)
dy

+V (εx)(|un|p + |un|q)
]
dx

+
∫
Bc
R(0)

[∫
RN

( |un(x) − un(y)|p
|x − y|N+sp

+ |un(x) − un(y)|q
|x − y|N+sq

)
dy

+V (εx)(|un|p + |un|q)
]
dx

}

=
∫
BR(0)

[∫
RN

( |u(x) − u(y)|p
|x − y|N+sp

+ |u(x) − u(y)|q
|x − y|N+sq

)
dy

+V (εx)(|u|p + |u|q)] dx

+ lim sup
n→∞

{∫
Bc
R(0)[∫

RN

( |un(x) − un(y)|p
|x − y|N+sp

+ |un(x) − un(y)|q
|x − y|N+sq

)
dy

+V (εx)(|un|p + |un|q)
]
dx

}

<

∫
BR(0)

[∫
RN

( |u(x) − u(y)|p
|x − y|N+sp

+ |u(x) − u(y)|q
|x − y|N+sq

)
dy

+V (εx)(|u|p + |u|q)] dx + η.

Letting η → 0, we have R → ∞ and then

‖u‖p
Vε,p

+ ‖u‖qVε,q
≤ lim inf

n→∞ (‖un‖p
Vε,p

+ ‖un‖qVε,q
)

≤ lim sup
n→∞

(‖un‖p
Vε,p

+ ‖un‖qVε,q
)

≤ ‖u‖p
Vε,p

+ ‖u‖qVε,q
,

whence
‖un‖p

Vε,p
+ ‖un‖qVε,q

= ‖u‖p
Vε,p

+ ‖u‖qVε,q
+ on(1). (2.21)

Since the Brezis–Lieb lemma [14] gives
‖un − u‖p

Vε,p
= ‖un‖p

Vε,p
− ‖u‖p

Vε,p
+ on(1) and ‖un − u‖qVε,q

= ‖un‖qVε,q

−‖u‖qVε,q
+ on(1),
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we infer that

‖un − u‖p
Vε,p

+ ‖un − u‖qVε,q
= on(1).

This last fact implies that un → u in Xε as n → ∞. ��
Corollary 2.1 The functionalψε satisfies the (PS)c condition on S

+
ε at any level c ∈ R.

Proof Let c ∈ R and let {un}n∈N ⊂ S
+
ε be a (PS)c sequence for ψε. Hence,

ψε(un) → c and ψ ′
ε(un) → 0 in (TunS

+
ε )′.

By Proposition 2.1-(c), we know that {mε(un)}n∈N ⊂ Xε is a (PS)c sequence for Jε.
Then, by Lemma 2.8, we deduce that Jε satisfies the (PS)c condition in Xε, and thus
there exists u ∈ S

+
ε such that, up to a subsequence,

mε(un) → mε(u) in Xε.

By Lemma 2.4-(iii), we conclude that un → u in S
+
ε . ��

We conclude this section by establishing an existence result for (2.1).

Theorem 2.2 Assume that (V1)–(V2) and ( f1)–( f4) hold. Then, for all ε > 0, there
exists a positive ground state solution to (2.1).

Proof In light of Lemmas 2.3 and 2.8, we can apply the mountain pass theorem [3] to
see that for all ε > 0 there exists a nontrivial critical point uε ∈ Xε of Jε. By Remark
2.3, we deduce that uε is a ground state solution to (2.1). Using 〈J ′

ε(uε), u−
ε 〉 = 0,

where u− = min{u, 0}, (V1), g(·, t) = 0 for t ≤ 0 and (2.2), we have

C(‖u−
ε ‖p

Ws,p(RN )
+ ‖u−

ε ‖q
Ws,q (RN )

) ≤ 0,

which gives u−
ε = 0, that is uε ≥ 0 inR

N . Arguing as in the proof of Lemma 5.1 below
(see also Lemma 4.1 and Theorem 2.2 in [11]), we obtain that uε ∈ L∞(RN )∩C(RN ),
and applying the strong maximum principle [7] we infer that uε > 0 in R

N . ��

3 The Limiting Kirchhoff Problem

Since we are interested in providing a multiplicity result for the auxiliary problem
(2.1), it is important to analyze the limiting problem associated with (1.1), namely{ (

1 + [u]ps.p
)

(−�)spu +
(
1 + [u]qs,q

)
(−�)squ + V0(|u|p−2u + |u|q−2u) = f (u) in R

N ,

u ∈ Ws,p(RN ) ∩ Ws,q (RN ), u > 0 in R
N .

(3.1)

Let YV0 = Ws,p(RN ) ∩ Ws,q(RN ) equipped with the norm

‖u‖YV0
= ‖u‖s,p + ‖u‖s,q ,
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where

‖u‖s,t = ([u]ts,t + V0|u|tt
) 1
t for t ∈ {p, q}.

The energy functional LV0 : YV0 → R associated with (3.1) is given by

LV0(u) = 1

p
‖u‖p

s,p + 1

q
‖u‖qs,q + 1

2p
[u]2ps,p + 1

2q
[u]2qs,q −

∫
RN

F(u) dx .

Standard arguments show that LV0 ∈ C1(YV0 , R) and that

〈L′
V0(u), ϕ〉 = (1 + [u]ps,p)〈u, ϕ〉s,p + (1 + [u]qs,q)〈u, ϕ〉s,q

+ V0

[∫
RN

|u|p−2u ϕ dx +
∫
RN

|u|q−2u ϕ dx

]
−

∫
RN

f (u)ϕ dx

for any u, ϕ ∈ YV0 . We also consider the Nehari manifoldMV0 associated with LV0 ,
that is

MV0 = {u ∈ YV0 \ {0} : 〈L′
V0(u), u〉 = 0},

and we set dV0 = infu∈MV0
LV0(u). Now we define

Y
+
V0

= {u ∈ YV0 : | supp(u+)| > 0},

and S
+
V0

= SV0 ∩ Y
+
V0
, where SV0 is the unit sphere of YV0 . As in Sect. 2, S

+
V0

is an

incomplete C1,1-manifold of codimension one and contained in Y
+
V0
. Thus, YV0 =

TuS
+
V0

⊕ Ru for each u ∈ S
+
V0
, where

TuS
+
V0

=
{
v ∈ YV0 : (1 + [u]ps,p)〈u, v〉s,p + (1 + [u]qs,q)〈u, v〉s,q

+ V0

∫
RN

(|u|p−2uv + |u|q−2uv) dx = 0
}
.

In the sequel, we state without proofs the following results which can be obtained
arguing as in Sect. 2.

Lemma 3.1 Assume that ( f1)–( f4) hold. Then we have the following properties:

(i) For each u ∈ Y
+
V0
, let h : R

+ → R be defined by hu(t) = LV0(tu). Then, there is
a unique tu > 0 such that

h′
u(t) > 0 for all t ∈ (0, tu),

h′
u(t) < 0 for all t ∈ (tu,∞).
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(ii) There exists τ > 0, independent of u, such that tu ≥ τ for any u ∈ S
+
V0
. Moreover,

for each compact set K ⊂ S
+
V0
, there is a constant CK > 0 such that tu ≤ CK

for any u ∈ K.
(iii) The map m̂V0 : Y

+
V0

→ MV0 given by m̂V0(u) = tuu is continuous and

mV0 = m̂V0 |S+
V0

is a homeomorphism between S
+
V0

and MV0 . Moreover,

m−1
V0

(u) = u
‖u‖YV0

.

(iv) If there is a sequence {un}n∈N ⊂ S
+
V0

such that dist(un, ∂S
+
V0

) → 0, then
‖mV0(un)‖YV0

→ ∞ and LV0(mV0(un)) → ∞.

Let us consider the maps

ψ̂V0 : Y
+
V0

→ R and ψV0 : S
+
V0

→ R,

defined by ψ̂V0(u) = LV0(m̂V0(u)) and ψV0 = ψ̂V0 |S+
V0
.

Proposition 3.1 Assume that ( f1)-( f4) hold. Then we have the following properties:

(a) ψ̂V0 ∈ C1(Y+
V0

, R) and

〈ψ̂ ′
V0(u), v〉 = ‖m̂V0(u)‖YV0

‖u‖YV0

〈L′
V0(m̂V0(u)), v〉 for all u ∈ Y

+
V0

and v ∈ YV0 .

(b) ψV0 ∈ C1(S+
V0

, R) and

〈ψ ′
V0(u), v〉 = ‖mV0(u)‖YV0

〈L′
V0(mV0(u)), v〉 for all v ∈ TuS

+
V0

.

(c) If {un}n∈N is a (PS)d sequence forψV0 , then {mV0(un)}n∈N is a (PS)d sequence for
LV0 . If {un}n∈N ⊂ MV0 is a bounded (PS)d sequence forLV0 , then {m−1

V0
(un)}n∈N

is a (PS)d sequence for ψV0 .
(d) u is a critical point of ψV0 if and only if mV0(u) is a nontrivial critical point for

LV0 . Moreover, the corresponding critical values coincide and

inf
u∈S+

V0

ψV0(u) = inf
u∈MV0

LV0(u).

Remark 3.1 As in Sect. 2, we have the following minimax characterization of the
infimum of LV0 over MV0 :

0 < dV0 = inf
u∈MV0

LV0(u) = inf
u∈Y+

V0

max
t>0

LV0(tu) = inf
u∈S+

V0

max
t>0

LV0(tu).

The lemma below allows us to assume that the weak limit of a (PS)dV0
sequence

of LV0 is nontrivial.

Lemma 3.2 Let {un}n∈N ⊂ YV0 be a (PS)dV0
sequence for LV0 such that un⇀0 in

YV0 . Then we have either
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(a) un → 0 in YV0 , or
(b) there exists a sequence {yn}n∈N ⊂ R

N and constants R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

|un|q dx ≥ β.

Proof Suppose that (b) is false. Since {un}n∈N is bounded in YV0 , we can use Lemma
2.1 to see that

un → 0 in Lr (RN ) for all r ∈ (p, q∗
s ).

Moreover, by ( f1) and ( f2), we have that

∫
RN

f (un)un dx = on(1) as n → ∞.

Since 〈L′
V0

(un), un〉 = on(1), we get

‖un‖p
s,p + ‖un‖qs,q ≤

∫
RN

f (un)un dx = on(1),

that is ‖un‖YV0
→ 0 as n → ∞. Then, (a) is true. ��

Remark 3.2 As it has been mentioned earlier, if {un}n∈N ⊂ YV0 is a (PS)dV0
sequence

for LV0 such that un⇀u in YV0 , then we may assume that u �= 0. Otherwise, if un⇀0
in YV0 and, if un � 0 in YV0 , it follows from Lemma 3.2 that there are {yn}n∈N ⊂ R

N

and R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

|un|q dx ≥ β.

Define vn(x) = un(x + yn). Then, using the invariance of R
N by translation, we see

that {vn}n∈N is a bounded (PS)dV0
sequence for LV0 such that vn⇀v in YV0 with

v �= 0.

In the following lemma, we obtain a positive ground state solution for the
autonomous problem (3.1).

Theorem 3.1 Let {un}n∈N ⊂ YV0 be a (PS)dV0
sequence of LV0 . Then there exists

u ∈ YV0 \ {0}, with u ≥ 0, such that, up to a subsequence, un → u in YV0 . Moreover,
u is a positive ground state solution to (3.1).

Proof Proceeding as in the proof of Lemma 2.5, we can verify that {un}n∈N is bounded
in YV0 . By passing to a subsequence if necessary, we may assume that

un⇀u in YV0 ,

un → u in Lr
loc(R

N ) for all r ∈ [1, p∗
s ).

(3.2)
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From Remark 3.2, we may suppose that u �= 0. Moreover, we may assume that
[un]ps,p → t1 and [un]qs,q → t2. Our aim is to prove that [un]s,t → [u]s,t for t ∈ {p, q}.
By Fatou’s lemma, we know that [u]ps,p ≤ t1 and [u]qs,q ≤ t2. Now we show that
[u]ps,p = t1 and [u]qs,q = t2. Assume, by contradiction, that [u]ps,p < t1 and [u]qs,q ≤ t2.
Since 〈L′

V0
(un), ϕ〉 → 0 for allϕ ∈ C∞

c (RN ), andC∞
c (RN ) is dense inYV0 (see [19]),

we can deduce that

(1 + t1)[u]ps,p + (1 + t2)[u]qs,q + V0(|u|pp + |u|qq) =
∫
RN

f (u)u dx .

Therefore,

(1 + [u]ps,p)[u]ps,p + (1 + [u]qs,q)[u]qs,q + V0(|u|pp + |u|qq) −
∫
RN

f (u)u dx

< (1 + t1)[u]ps,p + (1 + t2)[u]qs,q + V0(|u|pp + |u|qq) −
∫
RN

f (u)u dx = 0,

that is 〈L′
V0

(u), u〉 < 0. From ( f1) and ( f2), we have 〈L′
V0

(t0u), t0u〉 > 0 for some
0 < t0 � 1. Hence, there exists τ ∈ (t0, 1) such that 〈L′

V0
(τu), τu〉 = 0. Combining

this fact with the characterization of dV0 and using the fact that t 	→ 1
2q f (t)t − F(t)

is increasing (thanks to ( f3) and ( f4)), by Fatou’s lemma, we get

dV0 ≤ LV0(τu) = LV0(τu) − 1

2q
〈L′

V0(τu), τu〉

< LV0(u) − 1

2q
〈L′

V0(u), u〉

≤ lim inf
n→∞

[
LV0(un) − 1

2q
〈L′

V0(un), un〉
]

= dV0

and we arrive at a contradiction. Hence, [un]s,t → [u]s,t for t ∈ {p, q}, and we obtain
L′
V0

(u) = 0. Finally, we prove that u is positive in R
N . Since 〈L′

V0
(u), u−〉 = 0,

where u− = min{u, 0}, and f (t) = 0 for t ≤ 0, we have

‖u−‖p
s,p + ‖u−‖qs,q ≤ 0

which implies that u− = 0, that is u ≥ 0 in R
N . Thus, u ≥ 0 and u �≡ 0 in R

N . Using
a Moser iteration argument [32] (see the proof of Lemma 5.1 below), we obtain that
u ∈ L∞(RN ). Since u solves

αu(−�)spu + βu(−�)squ = −V0(u
p−1 + uq−1) + f (u) ∈ L∞(RN ),

where αu = 1+[u]ps,p and βu = 1+[u]qs,q are bounded quantities, we can argue as in
the proof of Theorem 2.2 in [11] to infer that u ∈ C0,α(RN ). In particular, u(x) → 0
as |x | → ∞. By using the strong maximum principle [7], we deduce that u > 0 in
R

N . ��
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The next lemma is a compactness result for the autonomous problem (3.1).

Lemma 3.3 Let {un}n∈N ⊂ MV0 be a sequence such that LV0(un) → dV0 . Then,
{un}n∈N has a convergent subsequence in YV0 .

Proof Since {un}n∈N ⊂ MV0 and LV0(un) → dV0 , it follows from Lemma 3.1-(iii),
Proposition 3.1-(d) and the definition of dV0 that

vn = m−1
V0

(un) = un
‖un‖YV0

∈ S
+
V0

for all n ∈ N,

and

ψV0(vn) = LV0(un) → dV0 = inf
v∈S+

V0

ψV0(v).

Let us define G : S
+
V0 → R ∪ {∞} by

G(u) =
{

ψV0(u) ifu ∈ S
+
V0

,

∞ if u ∈ ∂S
+
V0

.

We observe that the following properties hold:

• (S
+
V0 , δV0), where δV0(u, v) = ‖u − v‖YV0

, is a complete metric space.

• G ∈ C(S
+
V0 , R ∪ {∞}), by Lemma 3.1-(iv).

• G is bounded below, by Proposition 3.1-(d).

By using the Ekeland variational principle [21], there exists {v̂n}n∈N ⊂ S
+
V0

such that
{v̂n}n∈N is a (PS)dV0

sequence forψV0 and ‖v̂n −vn‖YV0
= on(1). Now the remainder

of the proof follows from Proposition 3.1, Theorem 3.1, and arguing as in the proof
of Corollary 2.1. ��

We conclude this section by showing a useful relation between the minimax levels
cε and dV0 .

Lemma 3.4 It holds limε→0 cε = dV0 .

Proof For ε > 0, let ωε(x) = ψε(x)ω(x), where ω is a positive ground state of
(3.1) (whose existence is guaranteed by Theorem 3.1), and ψε(x) = ψ(εx) with
ψ ∈ C∞

c (RN ) such that 0 ≤ ψ ≤ 1, ψ(x) = 1 if |x | ≤ 1 and ψ(x) = 0 if |x | ≥ 2.
For simplicity, we assume that supp(ψ) ⊂ B2 ⊂ �. Using the dominated convergence
theorem, we see that

ωε → ω inW and LV0(ωε) → LV0(ω) = dV0 (3.3)

as ε → 0. Now, for each ε > 0, there exists tε > 0 such that

Jε(tεωε) = max
t≥0

Jε(tωε).
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Therefore, 〈J ′
ε(tεωε), ωε〉 = 0 and this implies that

t pε [ωε]ps,p + t2pε [ωε]2ps,p + tqε [ωε]qs,q
+ t2qε [ωε]2qs,q + t pε

∫
RN

V (εx)ωp
ε dx + tqε

∫
RN

V (εx)ωq
ε dx

=
∫
RN

f (tεωε)tεωε dx .

If tε → ∞, then

t p−2q
ε [ωε]ps,p + t2p−2q

ε [ωε]2ps,p
+ t−q [ωε]qs,q + [ωε]2qs,q + t p−2q

ε

∫
RN

V (εx)ωp
ε dx + t−q

∫
RN

V (εx)ωq
ε dx

=
∫
RN

f (tεωε)

(tεωε)2q−1ω2q
ε dx, (3.4)

and using (3.3), p < 2q and ( f3), we obtain that [ω]2qs,q = ∞, which is impossible.
Then, tε → t0 ∈ [0,∞). If t0 = 0, using ( f1) and ( f2), we see that, for ζ ∈ (0, V0),
it holds

(
1 − ζ

V0

)
‖ωε‖p

Vε,p
+ tq−p

ε ‖ωε‖qVε,q
≤ Cζ t

q−p
ε ‖ωε‖q

∗
s
Vε,q

.

This together with q > p yields ‖ω‖p
s,p = 0, that is a contradiction. Hence, tε → t0 ∈

(0,∞).
Taking the limit as ε → 0 in (3.4), we get

t p−2q
0 [ω]ps,p + t2p−2q

0 [ω]2ps,p + t−q
0 [ω]qs,q + [ω]2qs,q

+ t p−2q
0

∫
RN

V0ω
p dx + t−q

0

∫
RN

V0ω
q dx =

∫
RN

f (t0ω)

(t0ω)2q−1ω2q dx,

which combined with 2q > q > p, ( f4) and ω ∈ MV0 , implies that t0 = 1.
Now, we note that

cε ≤ maxt≥0 Jε(tωε) = Jε(tεωε) = LV0(tεωε) + t pε
p

∫
RN (V (εx) − V0)ω

p
ε dx

+ tqε
q

∫
RN (V (εx) − V0)ω

q
ε dx .

Since V (ε·) is bounded on the support of ωε, we can use the dominated convergence
theorem, (3.3) and the above inequality to deduce that lim supε→0 cε ≤ dV0 . By (V1),
we obtain that lim infε→0 cε ≥ dV0 , and thus limε→0 cε = dV0 . This completes the
proof. ��
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4 AMultiplicity Result for (2.1)

In this section, we deal with the multiplicity of solutions to (2.1). Let δ > 0 be such
that

Mδ = {x ∈ R
N : dist(x, M) ≤ δ} ⊂ �,

and let w ∈ YV0 be a positive ground state solution to (3.1) (by virtue of Theorem
3.1).

Consider a nonincreasing function η ∈ C∞([0,∞), [0, 1]) such that η(t) = 1 if
0 ≤ t ≤ δ

2 , η(t) = 0 if t ≥ δ and |η′(t)| ≤ c for some c > 0. For any y ∈ M , we
define

�ε,y(x) = η(|εx − y|)w
(

εx − y

ε

)
.

Let �ε : M → Nε be given by

�ε(y) = tε�ε,y,

where tε > 0 satisfies

max
t≥0

Jε(t�ε,y) = Jε(tε�ε,y).

By construction, �ε(y) has compact support for any y ∈ M .

Lemma 4.1 The function �ε has the following property:

lim
ε→0

Jε(�ε(y)) = dV0 uniformly in y ∈ M .

Proof Assume, by contradiction, that there exist δ0 > 0, {yn}n∈N ⊂ M and εn → 0
such that

|Jεn (�εn (yn)) − dV0 | ≥ δ0. (4.1)

For each n ∈ N and for all z ∈ B δ
εn

(0), we have εnz ∈ Bδ(0), and thus

εnz + yn ∈ Bδ(yn) ⊂ Mδ ⊂ �.

Using the change of variable z = εn x−yn
εn

and the fact that G = F in � × R, we can
write

Jεn (�εn (yn)) = t pεn
p

‖�εn ,yn‖p
Vεn ,p + t2pεn

2p
[�εn ,yn ]2ps,p + tqεn

q
‖�εn ,yn‖qVεn ,q

+ t2qεn

2q
[�εn ,yn ]2qs,q −

∫
RN

G(εnx, tεn�εn ,yn ) dx
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= t pεn
p

(
[η(|εn · |)w]ps,p +

∫
RN

V (εnz + yn)(η(|εnz|)w(z))p dz

)

+ t2pεn

2p
[η(|εn · |)w]2ps,p

+ tqεn
q

(
[η(|εn · |)w]qs,q +

∫
RN

V (εnz + yn)(η(|εnz|)w(z))q dz

)

+ t2qεn

2q
[η(|εn · |)w]2qs,q

−
∫
RN

F(tεnη(|εnz|)w(z)) dz. (4.2)

We claim that tεn → 1 as n → ∞. We start by proving that tεn → t0 ∈ [0,∞). Since
�εn (yn) ∈ Nεn and g = f on � × R, we have

1

t2q−p
εn

‖�εn ,yn‖p
Vεn ,p + 1

tqε
‖�εn ,yn‖qVεn ,q + 1

t2q−2p
ε

[�εn ,yn ]2ps,p + [�εn ,yn ]2qs,q

=
∫
RN

[ f (tεnη(|εnz|)w(z))

(tεnη(|εnz|)w(z))2q−1

]
(η(|εnz|)w(z))2q dz. (4.3)

Observing that η(|x |) = 1 for x ∈ B δ
2
(0) and that B δ

2
(0) ⊂ B δ

εn
(0) for all n large

enough, the identity (4.3) yields

1

t2q−p
εn

‖�εn ,yn‖p
Vεn ,p + 1

tqε
‖�εn ,yn‖qVεn ,q + 1

t2q−2p
ε

[�εn ,yn ]2ps,p + [�εn ,yn ]2qs,q

≥
∫
B δ
2
(0)

[ f (tεnw(z))

(tεnw(z))2q−1

]
|w(z)|2q dz,

which together with ( f4) gives

1

t2q−p
εn

‖�εn ,yn‖p
Vεn ,p + 1

tqε
‖�εn ,yn‖qVεn ,q + 1

t2q−2p
ε

[�εn ,yn ]2ps,p + [�εn ,yn ]2qs,q

≥
[ f (tεnw(ẑ))

(tεnw(ẑ))2q−1

]
|w(ẑ)|2q |B δ

2
(0)|, (4.4)

where

w(ẑ) = min
z∈B̄ δ

2
(0)

w(z) > 0

(we recall that w is continuous and positive in R
N ). If tεn → ∞, the dominated

convergence theorem results in

‖�εn ,yn‖Vεn ,r → ‖w‖s,r ∈ (0,∞) for all r ∈ {p, q}, (4.5)
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and recalling that 2q > q > p, we also have

1

t2q−p
εn

‖�εn ,yn‖p
Vεn ,p + 1

tqε
‖�εn ,yn‖qVεn ,q + 1

t2q−2p
ε

[�εn ,yn ]2ps,p

+ [�εn ,yn ]2qs,q → [ω]2qs,q . (4.6)

On the other hand, by ( f3), we get

lim
n→∞

f (tεnw(ẑ))

(tεnw(ẑ))2q−1 = ∞. (4.7)

Combining (4.4), (4.6) and (4.7), we achieve a contradiction. Consequently, {tεn }n∈N
is bounded in R and, up to a subsequence, we may assume that tεn → t0 for some
t0 ∈ [0,∞). From (4.3), (4.5), ( f1), ( f2), we can see that t0 ∈ (0,∞). Now we prove
that t0 = 1. Letting n → ∞ in (4.3), and using (4.5) and the dominated convergence
theorem, we have that

t p−2q
0 ‖w‖p

s,p + t2p−2q
0 [w]2ps,p + t−q

0 ‖w‖qs,q + [w]2qs,q =
∫
RN

f (t0w)

(t0w)2q−1 w2q dx .

Since w ∈ MV0 , it holds

‖w‖p
s,p + ‖w‖qs,q + [w]2ps,p + [w]2qs,q =

∫
RN

f (w)w dx,

Then we obtain

(t p−2q
0 − 1)‖w‖p

s,p + (t2p−2q
0 − 1)[w]2ps,p + (t−q

0 − 1)[w]2qs,q
=

∫
RN

[
f (t0w)

(t0w)2q−1 − f (w)

w2q−1

]
w2q dx .

Using 2q > q > p and assumption ( f4), we conclude that t0 = 1. Therefore, passing
to the limit as n → ∞ in (4.2), we deduce that

lim
n→∞Jεn (�εn ,yn ) = LV0(w) = dV0 ,

which contradicts (4.1). ��

Let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Define Υ : R
N → R

N by setting

Υ (x) =
{
x if |x | < ρ,
ρx
|x | if |x | ≥ ρ.
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Let us consider the barycenter map βε : Nε → R
N given by

βε(u) =

∫
RN

Υ (εx)(|u(x)|p + |u(x)|q) dx
∫
RN

(|u(x)|p + |u(x)|q) dx
.

Arguing as in the proof of Lemma 3.6 in [11], we can prove the following result.

Lemma 4.2 The function βε satisfies the following limit

lim
ε→0

βε(�ε(y)) = y uniformly in y ∈ M .

The next compactness result plays an important role in showing that the solutions of
the modified problem are also solutions of the original one.

Lemma 4.3 Let εn → 0 and {un}n∈N ⊂ Nεn be such that Jεn (un) → dV0 . Then there
exists {ỹn}n∈N ⊂ R

N such that vn(x) = un(x + ỹn) has a convergent subsequence in
YV0 . Moreover, up to a subsequence, {yn}n∈N = {εn ỹn}n∈N is such that yn → y0 ∈ M.

Proof Since 〈J ′
εn

(un), un〉 = 0 and Jεn (un) → dV0 , we can argue as in the proof
of Lemma 2.5 to verify that {un}n∈N is bounded in YV0 . According to dV0 > 0,
‖un‖Xεn

� 0. Then, proceeding as in the proof of Lemma 3.2, we obtain a sequence
{ỹn}n∈N ⊂ R

N and constants R, β > 0 such that

lim inf
n→∞

∫
BR(ỹn)

|un|qdx ≥ β.

Set vn(x) = un(x+ ỹn). Thus, {vn}n∈N is bounded inYV0 , and, up to a subsequence,we
may assume that vn⇀v �≡ 0 in YV0 . Let tn ∈ (0,∞) be such that ṽn = tnvn ∈ MV0 ,
and set yn = εn ỹn . From the definition of dV0 , {un}n∈N ⊂ Nεn , (g2) and Jεn (un) →
dV0 , we have

dV0 ≤ LV0(ṽn)

≤ 1

p
[ṽn]ps,p + 1

2p
[ṽn]2ps,p + 1

q
[ṽn]qs,q + 1

2q
[ṽn]2qs,q

+
∫
RN

V (εnx + yn)

(
1

p
|ṽn|p + 1

q
|ṽn|q

)
dx −

∫
RN

F(ṽn) dx

≤ t pn
p

[un]ps,p + t2pn
2p

[un]2ps,p + tqn
q

[un]qs,q + t2qn
2q

[un]2qs,q

+
∫
RN

V (εnx)

(
t pn
p

|un|p + tqn
q

|un|q
)

dx

−
∫
RN

G(εnx, tnun) dx

= Jεn (tnun) ≤ Jεn (un) = dV0 + on(1),
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which implies that

LV0(ṽn) → dV0 and {ṽn}n∈N ⊂ MV0 . (4.8)

In particular, {ṽn}n∈N is bounded inYV0 and, by extracting a subsequence if necessary,
we may assume that ṽn⇀ṽ in YV0 . Since {vn}n∈N and {ṽn}n∈N are bounded in YV0 ,
and vn � 0 in YV0 , we deduce that {tn}n∈N is bounded in R and, up to a subsequence,
we may assume that tn → t0 ≥ 0. If t0 = 0, then ṽn → 0 in YV0 (because {vn}n∈N
is bounded in YV0 ), and thus LV0(ṽn) → 0, which contradicts dV0 > 0. Hence,
t0 ∈ (0,∞). From the uniqueness of the weak limit, we see that ṽ = t0v �≡ 0.
This fact combined with Lemma 3.3 yields ṽn → ṽ in YV0 , and so vn → v in YV0 .
Furthermore,

LV0(ṽ) = dV0 and 〈L′
V0(ṽ), ṽ〉 = 0.

In what follows, we show that {yn}n∈N admits a subsequence, still denoted by itself,
such that yn → y0 ∈ M .We begin by proving that {yn}n∈N is bounded inR

N . Suppose,
by contradiction, that there exists a subsequence of {yn}n∈N, still denoted by itself,
such that |yn| → ∞. Choose R > 0 such that � ⊂ BR(0). For n large enough, we
may assume that |yn| > 2R. Then, for each x ∈ BR/εn (0),

|εnx + yn| ≥ |yn| − |εnx | > R.

Using {un}n∈N ⊂ Nεn , a change of variable, the definition of g and the above relation,
we have

‖vn‖p
s,p + ‖vn‖qs,q ≤

∫
RN

g(εnx + yn, vn)vn dx

≤
∫
BR/εn (0)

f̃ (vn)vn dx +
∫
Bc
R/εn

(0)
f (vn)vn dx .

Since vn → v inYV0 and |Bc
R/εn

(0)| → 0, it follows from the dominated convergence
theorem that

∫
Bc
R/εn

(0)
f (vn)vn dx = on(1).

On the other hand, f̃ (vn)vn ≤ V0
K (|vn|p + |vn|q), and so

‖vn‖p
s,p + ‖vn‖qs,q ≤ V0

K

∫
BR/εn (0)

(|vn|p + |vn|q) dx + on(1).

Consequently,

(
1 − 1

K

)
(‖vn‖p

s,p + ‖vn‖qs,q) ≤ on(1),
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and we reach a contradiction because vn → v �≡ 0 in YV0 . Thus, {yn}n∈N is bounded
in R

N and, up to a subsequence, we may assume that yn → y0 ∈ R
N . If y0 /∈ �, then

we can argue as before to get vn → 0 in YV0 , that is a contradiction. Hence, y0 ∈ �.
Let us note that if V (y0) = V0, then y0 /∈ ∂� in view of (V 2). Therefore, it suffices
to prove that V (y0) = V0 to deduce that y0 ∈ M . To accomplish this, we assume, by
contradiction, that V (y0) > V0. Using this fact, ṽn → ṽ in YV0 , Fatou’s lemma and
the invariance of R

N by translation, we see that

dV0 = LV0(ṽ)

< lim inf
n→∞

[ 1
p
[ṽn]ps,p + 1

2p
[ṽn]2ps,p + 1

q
[ṽn]qs,q + 1

2q
[ṽn]2qs,q

+
∫
RN

V (εnx + yn)

(
1

p
|ṽn|p + 1

q
|ṽn|q

)
dx −

∫
RN

F(ṽn) dx
]

≤ lim inf
n→∞ Jεn (tnun) ≤ lim inf

n→∞ Jεn (un) = dV0 ,

which is a contradiction. The proof is now complete. ��
Let us define

Ñε = {
u ∈ Nε : Jε(u) ≤ dV0 + π(ε)

}
,

where π(ε) = supy∈M |Jε(�ε(y)) − dV0 | → 0 as ε → 0, according to Lemma 4.1.
By the definition of π(ε), we have that, for all y ∈ M and ε > 0, �ε(y) ∈ Ñε and
thus Ñε �= ∅. Arguing as in the proof of Lemma 3.7 in [11], we deduce the following
result.

Lemma 4.4 For any δ > 0, we have

lim
ε→0

sup
u∈Ñε

dist(βε(u), Mδ) = 0.

We conclude the section by presenting a relation between the topology of M and
the number of solutions of the modified problem (2.1). Since S

+
ε is not a complete

metric space, we invoke the abstract category result in [36] to achieve our purpose.

Theorem 4.1 Assume that (V1)–(V2) and ( f1)–( f4) hold. Then, for any δ > 0 such
that Mδ ⊂ �, there exists ε̄δ > 0 such that, for any ε ∈ (0, ε̄δ), problem (2.1) has at
least catMδ (M) positive solutions.

Proof For each ε > 0, we define the map αε : M → S
+
ε by setting αε(y) =

m−1
ε (�ε(y)). By Lemma 4.1, we see that

lim
ε→0

ψε(αε(y)) = lim
ε→0

Jε(�ε(y)) = dV0 uniformly in y ∈ M .

Hence, there is a number ε̂ > 0 such that the set S̃+
ε = {w ∈ S

+
ε : ψε(w) ≤ dV0+π(ε)}

is nonempty for all ε ∈ (0, ε̂), sinceψε(M) ⊂ S̃+
ε . Hereπ(ε) = supy∈M |ψε(αε(y))−
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dV0 | → 0 as ε → 0. From the above considerations, and taking into account Lemma
4.1, Lemma 2.4-(iii), Lemmas 4.4 and 4.2, we see that there exists ε̄ = ε̄δ > 0 such
that, for any ε ∈ (0, ε̄), the diagram

M
�ε→ �ε(M)

m−1
ε→ αε(M)

mε→ �ε(M)
βε→ Mδ

is well defined. According to Lemma 4.2, for ε > 0 small, we can write βε(�ε(y)) =
y + θ(ε, y) for y ∈ M , where |θ(ε, y)| < δ

2 uniformly in y ∈ M . Define H(t, y) =
y+(1−t)θ(ε, y) for (t, y) ∈ [0, 1]×M . Clearly, H : [0, 1]×M → Mδ is continuous,
H(0, y) = βε(�ε(y)) and H(1, y) = y for all y ∈ M . Then H(t, y) is a homotopy
between βε ◦ �ε = (βε ◦ mε) ◦ (m−1

ε ◦ �ε) and the inclusion map id : M → Mδ .
This fact implies that

catαε(M)αε(M) ≥ catMδ (M). (4.9)

It follows from Corollary 2.1, Lemma 3.4, and Theorem 27 in [36], with c = cε ≤
dV0 +π(ε) = d and K = αε(M), that�ε has at least catαε(M)αε(M) critical points on
S̃+

ε . Therefore, by Proposition 2.1-(d) and (4.9), we conclude that Jε admits at least
catMδ (M) critical points in Ñε. ��

5 Proof of Theorem 1.1

This section is devoted to the proof of the main result of this paper. The idea is to
show that the solutions obtained in Theorem 4.1 satisfy, for ε > 0 small enough, the
estimate uε(x) ≤ a for any x ∈ �c

ε. This fact implies that these solutions are indeed
solutions of the original problem (1.1).We start with the following lemmawhich plays
a key role in studying the behavior of the maximum points of solutions to (1.1), whose
proof is related to the Moser iteration method [32].

Lemma 5.1 Let εn → 0 and {un}n∈N ⊂ Ñεn be a sequence of solutions to (2.1). Then
Jεn (un) → dV0 , and there exists {ỹn}n∈N ⊂ R

N such that vn = un(·+ ỹn) ∈ L∞(RN )

and for some C > 0 it holds

|vn|∞ ≤ C for all n ∈ N.

Moreover,

vn(x) → 0 as |x | → ∞ uniformly in n ∈ N. (5.1)

Proof Since Jεn (un) ≤ dV0 + π(εn), with π(εn) → 0 as n → ∞, we can argue as at
the beginning of the proof of Lemma 4.3 to deduce that Jεn (un) → dV0 . Then, using
Lemma 4.3, we can find {ỹn}n∈N ⊂ R

N such that vn = un(· + ỹn) → v in YV0 for
some v ∈ YV0 \ {0} and εn ỹn → y0 ∈ M .
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Now we examine the boundedness of {vn}n∈N in L∞(RN ). For each n ∈ N and
L > 0, we define

γ (vn) = vnv
q(β−1)
n,L ∈ Xε,

where vn,L = min{vn, L}, and β > 1 will be chosen later. Taking γ (vn) as test
function in the problem solved by vn , we have

(1 + [vn]ps,p)∫∫
R2N

|vn(x) − vn(y)|p−2(vn(x) − vn(y))((vnv
q(β−1)
n,L )(x) − (vnv

q(β−1)
n,L )(y))

|x − y|N+sp
dxdy

+ (1 + [vn]qs,q)∫∫
R2N

|vn(x) − vn(y)|q−2(vn(x) − vn(y))((vnv
q(β−1)
n,L )(x) − (vnv

q(β−1)
n,L )(y))

|x − y|N+sq
dxdy

+
∫
RN

V (εnx + εn ỹn)|vn|pvq(β−1)
n,L dx +

∫
RN

V (εnx + εn ỹn)|vn|qvq(β−1)
n,L dx

=
∫
RN

g(εnx + εn ỹn, vn)vnv
q(β−1)
n,L dx .

In light of the growth assumptions on g, we know that for all ξ ∈ (0, V0), there exists
Cξ > 0 such that

|g(x, t)| ≤ ξ |t |p−1 + Cξ |t |q∗
s −1 for (x, t) ∈ R

N × R.

From the above facts and (V1), we obtain

(1 + [vn]ps,p)∫∫
R2N

|vn(x) − vn(y)|p−2(vn(x) − vn(y))((vnv
q(β−1)
n,L )(x) − (vnv

q(β−1)
n,L )(y))

|x − y|N+sp
dxdy

+ (1 + [vn]qs,q)∫∫
R2N

|vn(x) − vn(y)|q−2(vn(x) − vn(y))((vnv
q(β−1)
n,L )(x) − (vnv

q(β−1)
n,L )(y))

|x − y|N+sq
dxdy

≤ C
∫
RN

|vn|q∗
s v

q(β−1)
n,L dx . (5.2)

Observing that, for t ∈ {p, q}, 1 ≤ 1 + [vn]ts,t ≤ C for all n ∈ N, we can reproduce
the Moser iteration argument carried out in the proof of Lemma 4.1 in [11] to derive
that |vn|∞ ≤ C for all n ∈ N. Since {vn}n∈N is uniformly bounded in L∞(RN )∩YV0 ,
we can argue as in the proof of Theorem 2.2 in [11] to deduce that ‖vn‖C0,α(RN ) ≤ C
for all n ∈ N. This fact combined with vn → v in YV0 implies that vn(x) → 0 as
|x | → ∞ uniformly in n ∈ N. The proof of Lemma 5.1 is complete. ��
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We now have all ingredients to prove Theorem 1.1.

Proof of Theorem 1.1 Let δ > 0 be a number satisfying Mδ ⊂ �. We first show that
there exists ε̃δ > 0 such that, for any ε ∈ (0, ε̃δ) and any solution uε ∈ Ñε of (2.1), it
holds

|uε|L∞(�c
ε)

< a. (5.3)

Assume, by contradiction, that there exists a subsequence εn → 0, un = uεn ∈ Ñεn

such that J ′
εn

(uεn ) = 0 and

|un|L∞(�c
εn ) ≥ a. (5.4)

As in the proof of Lemma 5.1, we can verify that Jεn (un) → dV0 . Then, applying
Lemma 4.3, we obtain a sequence {ỹn}n∈N ⊂ R

N such that vn = un(· + ỹn) → v in
YV0 and εn ỹn → y0 ∈ M .

Pick r > 0 such that Br (y0) ⊂ B2r (y0) ⊂ �. Thus, B r
εn

(
y0
εn

) ⊂ �εn for all n ∈ N.

Moreover, for any y ∈ B r
εn

(ỹn), we see that

∣∣∣∣y − y0
εn

∣∣∣∣ ≤ |y − ỹn| +
∣∣∣∣ỹn − y0

εn

∣∣∣∣ <
1

εn
(r + on(1)) <

2r

εn

for n large enough. For these values of n, we have

�c
εn

⊂ Bc
r
εn

(ỹn).

Using (5.1), we can find R > 0 such that vn(x) < a for any |x | ≥ R and n ∈ N, and
so un(x) < a for any x ∈ Bc

R(ỹn) and n ∈ N. On the other hand, there exists n0 ∈ N

such that, for any n ≥ n0,

�c
εn

⊂ Bc
r
εn

(ỹn) ⊂ Bc
R(ỹn).

Hence, un(x) < a for any x ∈ �c
εn

and n ≥ n0, which is in contrast with (5.4). This
proves our claim.

Let ε̄δ > 0 be given by Theorem 4.1 and set εδ = min{ε̃δ, ε̄δ}. Fix ε ∈ (0, εδ).
Applying Theorem 4.1, we get at least catMδ (M) positive solutions to (2.1). If uε

denotes one of these solutions, we have that uε ∈ Ñε, and using (5.3) and the definition
of g, we deduce that uε is also a solution to (1.1). Consequently, (1.1) admits at least
catMδ (M) positive solutions.

Now we investigate the behavior of the maximum points of solutions to (1.1). Take
εn → 0 and consider a sequence {un}n∈N ⊂ Xεn of solutions to (1.1) as above. Let us
observe that (g1) implies that there exists σ ∈ (0, a) such that

g(εx, t)t ≤ V0
K

(t p + tq) for (x, t) ∈ R
N × [0, σ ]. (5.5)
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Arguing as before, we can choose R > 0 such that

|un|L∞(Bc
R(ỹn)) < σ. (5.6)

Moreover, up to a subsequence, we may assume that

|un|L∞(BR(ỹn)) ≥ σ. (5.7)

Indeed, if (5.7) does not hold, then, in view of (5.6), we have that |un|∞ < σ . Hence,
using 〈J ′

εn
(un), un〉 = 0 and (5.5), we get

‖un‖p
Vεn ,p + ‖un‖qVεn ,q ≤

∫
RN

g(εnx, un)un dx ≤ V0
K

∫
RN

(|un|p + |un|q) dx

which leads to a contradiction. Therefore, (5.7) is satisfied.
Let pn ∈ R

N be a global maximum point of un . Combining (5.6) and (5.7), we
infer that pn = ỹn + qn , for some qn ∈ BR(0). Since εn ỹn → y0 ∈ M and |qn| < R
for all n ∈ N, we have that εn pn → y0, and using the continuity of V we obtain

lim
n→∞ V (εn pn) = V (y0) = V0.

The proof of Theorem 1.1 is now complete. ��
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