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Abstract
We present different types of rotational symmetries for distances in homogeneous
groups, showing that the area formula for the associated spherical measure takes a
simple form.
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1 Introduction

The problem of computing the spherical measure of submanifolds in homogeneous
groups still has a number of questions to be investigated. Its intriguing aspect is how it
naturally involves the algebraic structure of the group and the “tangential properties”
of the submanifold. The anisotropic infinitesimal behavior of the submanifold in many
cases leads to new geometric questions.

Our motivations have their roots in the wider project to expand results and tools
of Geometric Measure Theory in the framework of noncommutative homogeneous
groups. A fundamental concept is that of area, that is obtained using the spherical
measure with respect to the distance of the group. To our knowledge, the first integral
formulas for this measure date back to the work of Pansu [29] in Heisenberg groups,
and of Heinonen [14] in Carnot groups. Related developments appeared later in con-
nection with the study of BV functions, sets of finite perimeter, intrinsic rectifiable
sets, currents and characterizations of intrinsic regular submanifolds. Due to the large
and always expanding literature, we limit ourselves to mention some related works,
[1,2,4,5,9–12,15,21,22,27,28,31] and the references therein, warning the reader that
this list is very far from being complete.

In the present work, we focus our attention on the role of symmetries of distances in
computing the spherical measure of C1 smooth submanifolds. Our results constitute
a continuation of those in [23], that together with this paper arise from the former
preprint [24]. However our tools also apply to intrinsic regular sets, as for instance in
[5] and [31]. Indeed, intrinsic regular sets might be very far from being smooth in the
standard sense, [16]. For such reason, area formulas in noncommutative homogenous
groups cannot rely on classical results of Geometric Measure Theory and represent a
rather challenging question.

Let � be an n-dimensional C1 smooth submanifold of degree N in a homogeneous
group G equipped with a homogeneous distance d. The analytic notions of degree
d(�) of a submanifold � and of pointwise degree d�(p) at p ∈ � were introduced
in [26]. We will refer to formulas (2.10) and (2.11) of [23, Sect. 2.3]. For each Borel
set B ⊂ �, the area formula reads as follows

∫
B

‖τ g̃
�,N(p)‖d volg̃(p) =

∫
B

βd(Ap�) dSN(p). (1.1)

The integral on the left hand side represents the intrinsic measure of �, introduced in
[26], see for instance [23, Definition 7.3]. The spherical measure SN is constructed by
the distance d. We have denoted by βd(Ap�) the spherical factorwith respect to Ap�

(Definition 1.1). The homogeneous tangent space Ap� at p has been introduced in [23,
Definition 2.7]. From a geometric viewpoint, the spherical factor βd(S) represents the
maximal area among all intersections of S withmetric unit balls, that stay at a bounded
distance from the origin.

Definition 1.1 (Spherical factor) Let S ⊂ G be a linear subspace of dimension n and
consider a homogeneous distance d on G. Let | · | denote the norm arising from the
fixed graded scalar product on G. The spherical factor of d with respect to S is the
number
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Rotational Symmetries and Spherical Measure Page 3 of 31 119

βd(S) = max
d(u,0)≤1

Hn|·|
(
B(u, 1) ∩ S

)
,

where B(u, 1) = {v ∈ G : d(v, u) ≤ 1} and Hn|·| is defined in (2.7).

Our main interest is in finding those conditions on the homogeneous distance d such
that βd(S) is constant as S ⊂ G varies in a specific class of subspaces. In the appli-
cations such subspaces will be the homogeneous tangent spaces of a submanifold.

The next definition will state the constancy of βd with respect to a fixed family F
of homogeneous subspaces. As in the previous definition, we refer to a fixed graded
scalar product on G and use the notion of homogeneous subspace (Sect. 2).

Definition 1.2 (Rotationally symmetric distance) Let d be a homogeneous distance on
a homogeneous group G and let F be a nonempty family of homogeneous subspaces
of G. We say that d is rotationally symmetric with respect to F if the spherical factor
βd is a constant function on F . We denote this constant by ωd(F).

If all homogeneous tangent spaces of a submanifold � are contained in a family F
and d is rotationally symmetric with respect toF , then (1.1) immediately yields a neat
formula for the integral representation of the spherical measure. Denoting by ωd(F)

the constant spherical factor and setting SN
d = ωd(F)SN, where SN is introduced in

(2.6), then (1.1) yields

SN
d (B) =

∫
B

‖τ g̃
�,N(p)‖d volg̃(p), (1.2)

that has the form of the standard area formula for Riemannian manifolds, [7, 3.2.46].
The simplest example of constant spherical factor is in the Euclidean space, that can
be seen as a commutative homogeneous group G ≈ R

q of step one, equipped with
the Euclidean distance dE . The spherical factor of an n-dimensional submanifold �

becomes

βdE (Ap�) = ωdE (Fq,n)

for all p ∈ � and the homogeneous tangent space Ap� coincides with the standard
tangent space. The constant ωdE (Fq,n) is the Lebesgue measure of the unit ball in Rn.
We have denoted by Fq,n the Grassmannian of n-dimensional subspaces of G ≈ R

q.
As soon as we consider any commutative homogeneous group of step one, then the
spherical factor need not be constant.We are actually dealing with a finite dimensional
Banach space, where a suitable area formula for submanifolds was proved in [3,
Theorem 4.2].

The general question about the constancy of βd is nontrivial, since it depends on
the algebraic and metric structure of the group. A general statement about symmetries
in homogeneous groups would involve infinitely many homogeneous groups, that are
not isomorphic to each other, hence their distances are not bi-Lipschitz equivalent. The
fact that we have such infinitely many “different geometries” makes general symmetry
results rather challenging.
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119 Page 4 of 31 V. Magnani

Our first case concerns rotationally symmetric distances with respect to the family
Nn of all n-dimensional vertical subgroups (Definition 3.1). Vertical subgroups are
the homogeneous tangent spaces at some points of transversal submanifolds, [23].
As a result, such rotationally symmetric distances imply a simpler integral form for
the spherical measure of transversal submaniofolds, according to Theorem 1.2 below.
The family of transversal manifolds includes all hypersurfaces and the larger class
of non-horizontal submanifolds, [19]. For instance, in Heisenberg groups a smooth
submanifold is either Legendrian or transversal.

The rotational symmetry with respect toNn is a property of n-vertically symmetric
distances (Definition 3.2) that is studied in Sect. 3. An interesting aspect of such dis-
tances is their symmetry with respect to special classes of isometries, that preserve the
shape of the metric unit ball, although they are not necessarily Lie group homomor-
phisms. The informal justification for this resides in the blow-up process, that suggests
us to look at the metric unit ball as embedded in the tangent space, where we only
have a linear structure. Vertical symmetric distances somehow possess the “minimal
rotational symmetries” such that the following theorem holds.

Theorem 1.1 If d is an n-vertically symmetric distance, then d is rotationally symmet-
ric with respect to the family Nn of all n-dimensional vertical subgroups.

Sections 3 and 5 provide different examples of n-vertically symmetric distances. The-
orem 1.1 has been used in [5] to establish a simpler form of the area formula of
low codimensionalH-regular surfaces. Combining Theorem 1.1 and the area formula
established in [23, (1.7)], we arrive at the following consequence.

Theorem 1.2 Let d be an n-vertically symmetric distance on the homogeneous group
G and denote byωd(Nn) its constant spherical factor. We define the spherical measure
SQn
d = ωd(Nn)SQn , whereQn is as in (3.4). If� ⊂ G is an n-dimensional transversal

submanifold, then for any Borel set B ⊂ � we have

SQn
d ��(B) =

∫
B

‖τ g̃
�,Qn

(p)‖g dσg̃(p). (1.3)

A byproduct of Theorem 1.2 is a simple form of area and coarea formulas in low
codimension. Let Q denote the Hausdorff dimension of G. If the codimension k of a
submanifold is less than the dimensionm of the first layer ofG, then the submanifold is
transversal if and only if it is non-horizontal and if and only if its degree is Q−k. So the
area formula (1.3) for n-vertically symmetric distances also applies to non-horizontal
submanifolds, giving simpler formulas, like (4.2), (4.3) and (4.4). As a consequence,
a standard form of the coarea formula for Rk-valued Riemannian Lipschitz maps can
be also established (Corollary 4.4). These topics are treated in Sect. 4.

Another class of rotational symmetric distances is that ofmultiradial distances, that
are explored inSect. 5. Suchdistanceswere used in [23] to relate theHausdorffmeasure
to the sphericalmeasure of horizontal submanifolds. The next theoremprovides an area
formula with multiradial distance for new classes of submanifolds. The area formula
(1.4) also yields a simpler form for the spherical measure of curves with respect to a
multiradial distance, improving the results of [17].
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Theorem 1.3 (Area formulas for multiradial distances) Let G be a homogeneous
group with a multiradial distance d and let � ⊂ G be a C1 smooth n-dimensional
submanifold of degree N. Suppose that one of the following conditions hold.

(1) The step of G is two, every point of maximum degree is algebraically regular and
points of lower degree are SN-negligible.

(2) The submanifold � is one dimensional.

We denote by F the family of all homogeneous subgroups of topological dimension
n and Hausdorff dimension N. Thus, in both of the previous cases, d is rotationally
symmetric with respect to F and we denote by ωd(F) the constant spherical factor.
Defining SN

d = ωd(F)SN, for any Borel set B ⊂ � the following area formula holds

SN
d (B) =

∫
B

‖τ g̃
�,N(p)‖g dσg̃(p). (1.4)

Finally, we study the spherical factor in the important case where the metric unit ball
is convex (Sect. 6). This condition is satisfied by important distances, like the Cygan–
Korányi distance, the distance d∞ of [10], and all homogeneous distances arising from
the construction of [13, Theorem 2].

Theorem 1.4 If d is a homogeneous distance whose metric unit ball B(0, 1) is convex
and N ⊂ G is an n-dimensional vertical subgroup of G, then

βd(N ) = Hn|·|(N ∩ B) . (1.5)

The main tool to prove this theorem is a concavity property of the area of “parallel
sections” of convex sets, given in Theorem 6.3. The intersections with the metric unit
ball are obtained by translated subspaces of arbitrarily fixed codimension. We believe
this result is certainlywell known from theBrunn–Minkowski theory of convex bodies.
However, due to its importance for our purposes, we also provide its proof.

Formula (1.5) not only simplifies the computation of the spherical factor, but it has
also applications in the study of the equality between centered Hausdorff measure and
spherical measure. This question in the setting of stratified groups was posed in [9].
The right hand side of (1.5) can be proved to represent the expression of an upper
centered density, where N is the homogeneous tangent space. Then we are lead to the
equality between Federer density, [21], and upper centered density [7, 2.10.19]. This
in turn yields the equality between spherical measure and centered Hausdorff measure.
The Q-dimensional spherical measure in G (where the Hausdorff dimension of G is
Q) always coincides with the Q-dimensional centered Hausdorff measure, according
to [9, Corollary 4.13]. However, in general these two measures may differ, [9,21].

As a consequence of (1.5) in the case of one codimensional vertical subgroups,
combining [9, (4.22)], [9, (4.23)] and [22, Theorem 1.3], we obtain that the spher-
ical measure equals the centered Hausodorff measure of dimension Q − 1 on all
G-rectifiable sets. This result extends [9, Theorem 4.28] to all homogeneous distances
whose metric unit ball is convex. Another application of Theorem 1.4 is for low codi-
mensional H-regular surfaces in Heisenberg groups Hn . When the metric unit ball is
convex, formula (1.5) was used in [5] to prove that spherical measure and centered
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Hausdorff measure coincide on low codimensional H-regular surfaces. From [23,
(1.7)], assuming that the metric unit ball is convex and combining (1.5), the centered
blow-up of [25, Theorem 1.1] and [9, Theorem 3.1], we obtain the equality between
centered Hausdorff measure and spherical measure also on all transversal submani-
folds. Similar applications of (1.3) can be obtained for multiradial distances, starting
from Theorems 5.3 and 5.5.

2 Basic Notions

A simply connected real and finite dimensional nilpotent Lie group can be regarded
as a linear space G equipped with a Lie product and a polynomial group operation
arising from the Baker–Campbell–Hausdorff formula. If we add the assumption that
G = H1 ⊕ · · · ⊕ H ι and

[Hi , H j ] ⊂ Hi+ j

for all i, j ≥ 0 and Hl = 0 for all l > ι, then we say that G is a graded group. We
have the grading

Lie(G) = V1 ⊕ · · · ⊕ Vι, [Vi ,V j ] ⊂ Vi+ j (2.1)

for all integers i, j ≥ 0 and V j = {0} for all j > ι, with Vι �= {0}. The integer ι ≥ 1 is
called the step of the group. We introduce dilations δr : G → G to be linear mappings
such that

δr (p) = r i p

for each p ∈ Hi , r > 0 and i = 1, . . . , ι. According to this homogeneity property of
dilations, elements of Hi can be called homogeneous vectors, having degree i . The
graded nilpotent Lie groupG equipped with intrinsic dilations is called homogeneous
group, [8].

We may further identify G with the tangent space T0G at the origin 0, getting
a canonical isomorphism between H j and V j , that associates to each v ∈ H j the
unique left invariant vector field X ∈ V j such that X(0) = v. If we think of G as
equipped with a Lie product inducing a Lie algebra structure, we get the following
Baker–Campbell–Hausdorff formula

xy =
ι∑

j=1

c j (x, y) = x + y + [x, y]
2

+
ι∑

j=3

c j (x, y) (2.2)

with x, y ∈ G, where c j are suitably defined polynomials, [30]. We refer to (2.2) in
short as BCH formula.

In the sequel q denotes the linear dimension of G. Linear subspaces S of G that
satisfy δr (S) ⊂ S for every r > 0 are called homogeneous subspaces. It is not
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difficult to observe that for a homogeneous subspace S ⊂ Gwehave the characterizing
condition

S = S1 ⊕ · · · ⊕ Sι,

where each S j is a subspace of H j . If a homogeneous subspace has in addition the
structure of Lie subgroup, then it is called homogeneous subgroup.

A homogeneous distance d on a graded nilpotent Lie group G is a left invariant
distance with d(δr x, δr y) = r d(p, q) for all p, q ∈ G and r > 0. Open and closed
balls are defined respectively as follows

B(p, r) = {
q ∈ G : d(q, p) < r

}
and B(p, r) = {

q ∈ G : d(q, p) ≤ r
}
.

The homogeneous norm associated to a homogeneous distance d is defined as

‖x‖ = d(x, 0)

for all x ∈ G.When the graded nilpotent Lie group is equipped with the corresponding
dilations, along with a homogeneous norm, is called homogeneous group. A graded
basis (e1, . . . , eq) of a homogeneous group G is a basis of vectors such that

(em j−1+1, em j−1+2, . . . , em j ) (2.3)

is a basis of H j for each j = 1, . . . , ι, where

m j =
j∑

i=1

hi and h j = dim H j , (2.4)

we have set m0 = 0. We also set m = m1 and observe that mι = q. A graded basis
provides the associated graded coordinates x = (x1, . . . , xq) ∈ R

q, then defining the
unique element p = ∑q

j=1 x j e j ∈ G. It is easy to realize that one can always equip a
homogeneous subgroupwith graded coordinates.Wefix throughout the paper a graded
left invariant Riemannian metric g on the homogeneous group G, that automatically
induces a scalar product on T0G. By the identification of G with T0G we also have a
fixed scalar product on G.

The fact that our left invariant Riemannian metric g is “graded” means that the
induced scalar product on G is graded, that is, all subspaces Hi with i = 1, . . . , ι are
orthogonal to each other. With a slight abuse of notation, both the norm on G and the
norm arising from the Riemannian metric g on tangent spaces are denoted by the same
symbol | · |. We refer to the norm onG as arising from a graded scalar product, hence
all subspaces Hi are orthogonal to each other. Clearly when a graded scalar product
is fixed, we can find a graded basis that is also orthonormal with respect to this scalar
product.

We close this section introducing the Carathéodory measure, which includes both
spherical measure and Hausdorff measure, that are used throughout the paper.
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Let F ⊂ P(G) denote a nonempty family of closed subsets and fix α > 0. For any
δ > 0 and E ⊂ G, we define

φα
δ (E)= inf

{ ∞∑
j=0

diam(Bj )
α

2α
: E⊂

⋃
j∈N

Bj , diam(Bj ) ≤ δ, Bj ∈F
}
, (2.5)

where the diameter diam(Bj ) is computed with respect to the distance d onG. When
F is the family of closed balls Fb, then we set

Sα(E) = sup
δ>0

φα
δ (E) (2.6)

to be the α-dimensional spherical measure of E . In the case F is the family of all
closed sets and k ∈ {1, 2, . . . , q − 1}, for any A ⊂ Gwe define theHausdorffmeasure

Hk|·|(A) = Lk
({

x ∈ R
k : dE (x, 0) ≤ 1

})
sup
δ>0

φk
δ,|·|(A), (2.7)

whereLk denotes the Lebesgue measure onRk and dE denotes the Euclidean distance
on R

k . The outer measure φk
δ,|·| refers to the norm | · | defined by the fixed graded

scalar product on G.

3 Vertically Symmetric Distances

The main object of this section is the proof of Theorem 1.1. We start by recalling the
notion of vertical subgroup and of transversal submanifold. More information can be
found in [25] and [23, Sect. 5].

Definition 3.1 A homogeneous subgroup N ⊂ G is vertical if we have a positive
integer � ≤ ι and a linear subspace N� ⊂ H � such that

N = N� ⊕ H �+1 ⊕ · · · ⊕ H ι. (3.1)

We denote by Nn the family of all n-dimensional vertical subgroups.

A transversal submanifold inG is a C1 smooth submanifold having at least one point
where the homogeneous tangent space is a vertical subgroup.

Denoting by n the dimension of the vertical subgroup N , we can find an explicit
formula for the integer � appearing in (3.1). We denote this integer by �n since it
depends on the dimension of N . One can easily check that

⎧⎪⎨
⎪⎩

�n = ι if 1 ≤ n ≤ dim H ι

ι∑
j=�n+1

dim H j < n ≤
ι∑

j=�n

dim H j if dim H ι < n ≤ q . (3.2)
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An equivalent definition for �n is to see it as the minimal degree of homogeneous
vectors belonging to N . Associated to �n , we also introduce the integer

rn :=

⎧⎪⎨
⎪⎩
n if 1 ≤ n ≤ dim H ι

n −
ι∑

j=�n+1

dim H j if dim H ι < n ≤ q , (3.3)

where 1 ≤ n ≤ q and clearly by definition rn ≥ 1. We finally observe that the integer

Qn = �n rn +
ι∑

j=�n+1

j dim H j (3.4)

precisely corresponds to the Hausdorff dimension of N with respect to d. It can
be proved that (3.4) is the Hausdorff dimension of any transversal submanifold of
dimension n, see [25].

To introduce the notion of n-vertically symmetric distance, we define the following
class of isometries

On(F) = {T : G → G | T is linear, T |H j = IdH j for all j �= �n, T |H�n ∈ F},
(3.5)

where we have taken into account that the subspaces Hi and H j of G are orthogonal
for i �= j and F is a family of isometries of H �n . We also introduce the subspaces

Un = H1 ⊕ · · · ⊕ H �n−1 and Vn = H1 ⊕ · · · ⊕ H �n , (3.6)

where Un = {0} for �n = 1.

Definition 3.2 (n-vertically symmetric distance) Let 1 ≤ n ≤ q and consider �n as in
(3.2) and rn as in (3.3). We introduce the integer

j =
{
0 if rn = dim H �n

rn if rn < dim H �n
.

If j = 0, then we say that d is n-vertically symmetric. In the case j > 0, we say that
d is n-vertically symmetric if the following conditions hold.

• There exists a family F of isometries of H �n such that for every couple of j -
dimensional subspaces S1, S2 ⊂ H �n , there exists J ∈ F that satisfies

J (S1) = S2. (3.7)

• Let Un and Vn be as in (3.6) and let PVn : G → Vn and PUn : G → Un be the
orthogonal projections onto Vn and Un, respectively. We consider On(F) defined
in (3.5) by our family of isometries F . Then we have:
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(1) PVn(B(0, 1)) = B(0, 1) ∩ Vn = {v ∈ Vn : ψ(PUn(v), |PH�n (v)|) ≤ r0} for
some r0 > 0 and ψ : Un × [0,+∞) → [0,+∞) is such that ψ(u, ·) is
monotone nondecreasing for all u ∈ Un,

(2) T (B(0, 1) ) = B(0, 1) for all T ∈ On(F).

The metric unit ball B(0, 1) is with respect to d and we have assumed that when
�n = 1, then ψ is any monotone nondecreasing function from [0,+∞) to [0,+∞).

Remark 3.1 The previous definition when n = q− 1, �n = 1 and ψ(t) = t , yields the
notion of H1-vertical symmetry introduced in [22, Definition 6.1]. In this definition
the transitivity of isometries of H1 corresponds to (3.7) for j = dim H1 − 1. In a few
words, any H1-vertically symmetric distance is also a (q − 1)-vertically symmetric
distance.

Example 3.2 In any H-type group with direct decomposition G = H1 ⊕ H2, the well
known Cygan–Korányi norm

‖x‖ = 4
√

|x1|4 + 16|x2|2,

where (x1, x2) ∈ H1 × H2 and x = x1 + x2, yields the associated homogeneous
distance d(x, y) = ‖x−1y‖, see [6]. It can be checked that d is p-vertically symmetric
for any p = 1, . . . , dimG − 1. This will be also a consequence of Proposition 5.1.

The next lemma provides a factorization of a homogeneous group G with respect to
a vertical subgroup N , although a complementary subgroup V such that V ⊕ N = G

may not exist. We simply consider V as a homogeneous subspace of G.

Lemma 3.3 If G is a homogeneous group, V ⊂ G is a homogeneous subspace and
N ⊂ G is a vertical subgroup such that V ⊕ N = G, then the mapping

V × N → G, (v, h) → vh

is an analytic diffeomorphism. Furthermore, its inverse mapping T : G → V × N is
defined by

T (x) = (PV (x),�N (x))

where PV : G → V is the linear projection onto V with respect to the direct sum
G = V ⊕ N and �N (x) = PV (x)−1x.

Proof The mapping F(v, h) = vh has the property that

∂vF(0, 0)|V = IdV and ∂h F(0, 0)|N = IdN

so the assumption that V ⊕ N = G implies that dF(0, 0) is invertible and F is locally
invertible around the origin. The homogeneity of F , i.e.

F(δrv, δr h) = δr F(h, v)

123
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shows that F is surjective. We now consider

vh = wk,

where v,w ∈ V and h, k ∈ N . By the BCH formula (2.2), we have

v + h +
ι∑

j=2

c j (v, h) = w + k +
ι∑

j=2

c j (w, k) (3.8)

where the fact that N is vertical gives

h +
ι∑

j=2

c j (v, h) ∈ N and k +
ι∑

j=2

c j (w, k) ∈ N .

Applying PV to the equality (3.8), it follows that

v = PV (vh) = PV (wk) = w.

We have shown that any element x ∈ G can be uniquely written as the product

PV (x)�N (x),

therefore concluding the proof. 
�
Lemma 3.4 If G is a homogeneous group, V ⊂ G is a homogeneous subspace and
N ⊂ G is a vertical subgroup such that V ⊕ N = G, then for every v ∈ V we have

v + N = vN . (3.9)

Proof From (2.2) and the fact that N is an ideal with respect to the Lie algebra structure
of G, there holds

vn = v + n +
ι∑

j=2

c j (v, n) ∈ v + N

being c j (v, n) ∈ N for every j = 2, . . . , ι. This shows that vN ⊂ v + N . Conversely,
considering v + n ∈ G and applying Lemma 3.3 we get

v + n = PV (v + n)�N (v + n) = v�N (v + n) = vñ

where ñ = �N (v + n) ∈ N . We have then established the opposite inclusion. 
�
An important feature of vertical subgroups is the following left invariance property of
the Hausdorff measure, once we consider our fixed graded scalar product on G.
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Lemma 3.5 If G is a homogeneous group and N ⊂ G is an n-dimensional vertical
subgroup, then for every p ∈ G and every measurable set A ⊂ N, we have

Hn|·|(A) = Hn|·|(l p(A)), (3.10)

where lp : G → G denotes the left translation by p.

Proof We consider a graded basis (e1, . . . , eq), such that

V = span
{
e1, . . . , eq−n

}
and N = span

{
eq−n+1, . . . , eq

}

and the associated graded coordinates in G, setting

p =
q∑
j=1

x j e j and n =
n∑
j=1

ζ j eq−n+ j ∈ N .

We express the left translation explicitly

l pn =
q−n∑
j=1

x j e j +
q∑

j=q−n+1

(x j + ζ j−q+n)e j +
q∑

j=m+1

c j (x̄
d j−1, ζ̄ d j−1)e j .

(3.11)

According to theBaker-Campbell-Hausdorff formula, the functions c j are polynomials
that only depends on variables of degree less than d j . We have defined

x̄d j−1 =
∑

di≤d j−1

xi b̃i and ζ̄ d j−1 =
∑

dq−n+i≤d j−1
q−n+1≤i≤q

ζi b̃q−n+i , (3.12)

where (b̃1, . . . , b̃q) is the canonical basis of Rq. Let us remark that ζ̄ d j−1 = 0 for
d j ≤ dq−n+1. We decompose p into the sum

p = v + w, where v =
q−n∑
j=1

x j e j and w =
q∑

j=q−n+1

x j e j .

With this notation formula (3.9) gives pN = v + N . Since v /∈ N , this decomposition
improves (3.11), giving

l pn =
q−n∑
j=1

x j e j +
q∑

j=q−n+1

(x j + ζ j )e j +
q∑

j=kn

c j (x̄
d j−1, ζ̄ d j−1)e j ,
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with kn = max {q − n + 1,m + 1}. We now consider the projection

T : v + N → R
n, v +

q∑
j=q−n+1

ζ j e j −→
q∑

j=q−n+1

ζ j b j−q+n,

where (b1, . . . , bn) is the canonical basis of Rn and J : Rn → N , defined as

J (ζ1, . . . , ζn) =
n∑
j=1

ζ j eq−n+ j .

The composition F : Rn → R
n defined as F = T ◦ l p ◦ J can be written as follows

F(ζ ) =
n∑
j=1

(xq−n+ j + ζ j ) b j +
n∑

j=kn−q+n

cq−n+ j (x̄
dq−n+ j−1, ζ̄ dq−n+ j−1)b j .

As a consequence of the previous formulas, for every j, l = 1, . . . , n we get

∂Fj

∂ζl
= δ

j
l + ∂cq−n+ j (x̄q−n+ j , ·)

∂ζl
.

In the special case l ≥ j , due to (3.12) the function ζ → cq−n+ j (x̄q−n+ j , ζ ) only
depends on ζi with dq−n+i ≤ dq−n+ j − 1, therefore i < j ≤ l. We have proved that

∂Fj

∂ζl
= δ

j
i whenever l ≥ j,

hence the Jacobian of F is one. Since both T and J are isometries one easily observes
that image measures satisfy

T�Hn|·| = Ln and J�Ln = Hn|·|.

Since F preserves the Lebesgue measure Ln, the following equalities conclude the
proof, that is

Hn|·|
(
l p(A)

) = T�Hn|·|
(
F ◦ J−1(A)

)
= Ln

(
F(J−1(A))

)

= Ln
(
J−1(A)

)
= J�Ln(A) = Hn|·|(A).


�

The previous results allow us to establish our first main result.

123



119 Page 14 of 31 V. Magnani

3.1 Proof of Theorem 1.1

First of all, we consider the integers �n and rn defined in (3.2) and (3.3), respectively.
If rn = dim H �n , then j = 0 in Definition 3.2 and d is automaticaly n-vertically
symmetric. Thus, the only n-dimensional vertical subgroup is

N0 = H �n ⊕ · · · ⊕ H ι

and the spherical factor is obviously constant and equal to β(d, N0). Let us consider
the case 0 < j = rn < dim H �n , where

n = j + h�n+1 + · · · + hι.

To simplify notation, in the rest of the proof we will write � in place of �n. We fix
z ∈ B(0, 1) and consider two arbitrary n-dimensional vertical subgroups

N1 = S1 ⊕ W and N2 = S2 ⊕ W ,

where S1 and S2 are j -dimensional subspaces of H � and

W = H �+1 ⊕ · · · ⊕ H ι.

By the n-vertical symmetry of d, there exists an isometry J : H � → H � with

J (S1) = S2.

This defines the isometry T : G → G such that

T |H j = IdH j and T |H� = J

for each j �= �. We now define the subspace

V1 = H1 ⊕ · · · ⊕ H �−1 ⊕ Z1

such that Z1 is orthogonal to S1 and

Z1 ⊕ S1 = H �.

We consider the orthogonal projection PV1 : G → V1, that is also the linear projection
associated to the direct sum

G = V1 ⊕ N1.

Defining the nonlinear projection

�N1(x) = PV1(x)
−1x,
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Lemma 3.3 ensures the following unique product decomposition

z−1 = PV1(z
−1)�N1(z

−1) with �N1(z
−1) ∈ N1. (3.13)

Setting PV1(z
−1) = v1, �N1(z

−1) = h1 and taking into account (3.10), (3.13) and
(3.9), we get

Hn|·|(B(z, 1) ∩ N1) = Hn|·|(B(0, 1) ∩ (v1 + N1)).

Since the previously defined mapping T belongs to O, in view of the property (2) of
Definition 3.2, we obtain that

Hn|·|(B(z, 1) ∩ N1) = Hn|·|
(
B(0, 1) ∩ (T v1 + T (N1))

)
.

It is not difficult to realize that

T (N1) = T (S1 ⊕ W ) = J (S1) ⊕ W = S2 ⊕ W = N2,

due to the definition of T and the inclusions S1 ⊂ H �. We have proved that

Hn|·|(B(z, 1) ∩ N1) = Hn|·|
(
B(0, 1) ∩ (T v1 + N2)

)
. (3.14)

We wish to check whether (T v1)
−1 is a suitable element of B(0, 1). To do this, we

define the subspace

V = H1 ⊕ · · · ⊕ H �

and consider the orthogonal decompositions

z−1 = v1 + η1 = v + η,

where PV (z−1) = v ∈ V , v1 and v are orthogonal to η1 ∈ N1 and η ∈ W , respectively.
The previous equality gives

s1 = v − v1 = η1 − η ∈ V ∩ (S1 ⊕ W ) = S1 ⊂ H �,

hence v1 and s1 are orthogonal. We write the orthogonal decomposition

v1 = w1 + z1 with w1 ∈ H1 ⊕ · · · ⊕ H �−1 and z1 ∈ Z1,

therefore v = w1 + z1 + s1. Since s1 is orthogonal to w1 and to z1, we get

|PH�v| = |z1 + s1| =
√

|z1|2 + |s1|2 ≥ |z1|.
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By the property (1) of Definition 3.2, since

PV (z−1) = v ∈ PV (B(0, 1)) = B(0, 1) ∩ V ,

we have ψ(u, t) ≥ 0 that is monotone nondecreasing with respect to t and such that

v ∈ B(0, 1) ∩ V = {y ∈ V : ψ(PU (y), |PH� (y)|) ≤ r0},

where U = H1 ⊕ · · · ⊕ H �−1. From the monotonicity of ψ we have

ψ(PU (v1), |PH� (v1)|) = ψ(PU (v), |z1|) ≤ ψ(PU (v), |PH� (v)|) ≤ r0.

We have proved that v1 ∈ V ∩ B(0, 1). Moreover, taking into account that

T v1 = w1 + J z1 = PU (v1) + J z1 = PU (T v1) + J z1,

there holds

ψ(PU (T v1), |PH� (T v1)|)=ψ(w1, |J z1|)=ψ(w1, |z1|)=ψ(PU (v1), |PH� (v1)|)≤r0.

It follows that

T v1 ∈ B(0, 1) ∩ V ⊂ B(0, 1)

and clearly v0 = (T v1)
−1 ∈ V ∩ B(0, 1). Due to (3.10), it follows that

Hn|·| (B(v0, 1) ∩ N2) = Hn|·|
(
B(0, 1) ∩ v−1

0 N2

)
= Hn|·| (B(0, 1) ∩ (T v1)N2) .

(3.15)

Since T is an isometry, the images T v1 and N2 = T (N1) are orthogonal, being so v1
and N1. We may apply (3.9), getting

Hn|·| (B(v0, 1) ∩ N2) = Hn|·| (B(0, 1) ∩ (T v1 + N2)) .

The previous equality joined with (3.14) yields

Hn|·|(B(z, 1) ∩ N1) = Hn|·| (B(v0, 1) ∩ N2) ≤ βd(N2)

and the arbitrary choice of z ∈ B(0, 1) yields βd(N1) ≤ βd(N2). Exchanging the role
of N1 with that of N2, we are able to conclude the proof.

Remark 3.6 The intriguing aspect of Theorem 1.1 is that the metric unit ball is not
assumed to satisfy a strong geometric condition like convexity. The role of convexity
is specifically studied in Sect. 6.
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As an example, the sub-Riemannian ball in the Heisenberg group is not convex, but
it is 2-vertically symmetric, as already pointed out in [22]. This is also an interesting
casewhere a distance is vertical symmetric, but it does not satisfy the stronger condition
of being multiradial. Multiradial distances will be studied in Sect. 5.

4 Area and Coarea Formulas in Low Codimension

The area formula (1.3) for n-vertically symmetric distances implies a simple form
of area and coarea formulas in low codimension. Indeed, when k ≤ m = dim H1,
the level set of a smooth Rk-valued mapping f is a k-codimensional transversal sub-
manifold if and only if all the horizontal gradients ∇H fi of the components fi are
independent. Thus, the area formula (1.3) applies, giving the simpler area formulas
(4.2), (4.3) and (4.4), and finally leading to the coarea formula of Corollary 4.4.

In this section we always assume k ≤ m. Then a C1 smooth submanifold of
codimension k is non-horizontal if and only if its degree is Q−k. We fix a Riemannian
metric g̃ such that its associated volume measure volg̃ is left invariant. Considering
also our fixed left invariant Riemannianmetric g, we introduce the associated the linear
isomorphisms g̃∗, g∗ : TG → T ∗

G. In a canonical way, taking wedge products, such
mappings generate g̃∗

k , g
∗
k : �k(TG) → �k(TG). Following the notation of [19], we

introduce the unit k-normals n and ñ of a non-horizontal submanifold �, that defined
with respect to the Riemannian metrics g and g̃, respectively. The horizontal k-normal
at p with respect to g̃ and g is defined as

ñg(p) = (g∗
k )

−1g̃∗
k (ñ(p))

for every p ∈ � of degree Q − k. Using the horizontal projection πg,H with respect
to g ( [19, Definition 3.1]), we set

ñg,H (p) = πg,H (ñg(p)).

We define the unique geometric constant c(g, g̃) > 0 such that

c(g, g̃) volg̃ = volg.

Since the class of (q− k)-vertically symmetric distances is larger than the one in [19,
Sect. 6], using Theorem 1.2 we obtain an area formula with constant spherical factor
for a larger family of distances.

Corollary 4.1 Let 1 ≤ k ≤ m and let � ⊂ G be a C1 smooth submanifold of codi-
mension k and degree Q − k. Let d be (q − k)-vertically symmetric, let Nq−k be the
family of all vertical subgroups of topological dimension q − k and let ωd(Nq−k) be
the constant spherical factor associated to this family. We fix any Riemannian metric g̃
whose volume measure is left invariant. We rescale the spherical measure as follows

SQ−k
d = ωd(Nq−k)SQ−k . (4.1)
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For every Borel set B ⊂ �, it follows that

SQ−k
d (B) = c(g, g̃)

∫
B

‖ñg,H (p)‖g dσg̃(p). (4.2)

Proof Being 1 ≤ k ≤ m, we have Qq−k = Q− k, where Qn is given by formula (3.4).
Our claim is then a consequence of (1.3) joined with formula (12) of [19]. 
�
The spherical measure SQ−k appearing in (4.1) is introduced at the end of Sect. 2.

Remark 4.2 It is well known that anyC1 smooth hypersurface� ⊂ G is automatically
a non-horizontal submanifold, therefore (4.2) holds for any C1 smooth hypersurface
of a homogeneous group G. The local isoperimetric inequality applied to a suitably
“small” open subset U ⊂ � of � shows that it must have positive SQ−1 measure.
Since characteristic points are SQ−1 negligible, [18], the subset U must contain non-
characteristic points. This shows that � has degree Q − 1.

In any homogeneous groupG equipped with graded coordinates x j , the corresponding
basis of left invariant vector fields X1, . . . , Xq has the form

X j = ∂x j +
∑
dl>d j

a jl Xl ,

and it is automatically assumed to be orthonormalwith respect to the fixed left invariant
metric g. The dual basis of left invariant differential forms has the form

ξ j = dx j +
∑
dl<d j

b jl dxl .

The special form of the left invariant differential forms ξ j implies that

ξ1 ∧ ξ2 ∧ · · · ∧ ξq = dx1 ∧ dx2 ∧ · · · ∧ dxq,

therefore using the Euclidean metric in place of g̃ yields

c(g, g̃) = 1.

This simplifies the expression of (4.2), when use the Euclidean metric to compute the
spherical measure of a submanifold.

Example 4.3 Using graded coordinates x j in a homogeneous groupG, we consider the
standardEuclideanmetric g̃ givenby δi j , alongwith ourfixed left invariantRiemannian
metric g. We notice that the volume measure volg̃ associated to g̃ is left invariant.
Let � be a non-horizontal submanifold of codimension k, with unit normal ñE with
repect to the Euclidean metric g̃. We define k-vector

ñE,g(p) = (g∗
k )

−1g̃∗
k (ñE (p)) ,
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hence [19, Proposition 3.1] gives

‖ñE,g,H‖g =
√ ∑

1≤ j1< j2<···< jk≤m

〈
ñE , X j1 ∧ · · · ∧ X jk

〉2
E ,

where 〈·, ·〉E denotes the Euclidean scalar product on k-vectors and

ñE,g,H = πg,H
(
ñE,g

)
.

Since in this case c(g, g̃) = 1, combining (4.1) and (4.2), we obtain

SQ−k
d (B) =

∫
B

√ ∑
1≤ j1< j2<···< jk≤m

〈
ñE , X j1 ∧ · · · ∧ X jk

〉2
E dHq−k

E (p) (4.3)

for every Borel set B ⊂ � and for any (q − k)-vertically symmetric homogeneous
distances d. The symbol Hq−k

E denotes the (q − k)-dimensional Hausdorff measure
with respect to the Euclidean distance. In particular, since all smooth hypersurfaces are
non-horizontal submanifolds, the previous formula for k = 1 yields the well known
formula for the spherical measure SQ−1 of hypersurfaces

SQ−1
d (�) =

∫
�

√√√√ m∑
j=1

〈
ñE , X j

〉2
E dHq−1

E (p) (4.4)

that is here extended to the largest class of suitably symmetric distances, namely the
(q − 1)-vertically symmetric distances. In this case ñE is a normal to � with respect
to the Euclidean metric.

Corollary 4.4 (Coarea formula) Let 1 ≤ k ≤ m and let f : A → R
k be a Riemannian

Lipschitz map, where A ⊂ G is measurable. We consider a homogeneous distance d
onG that is (q−k)-vertically symmetric. By Theorem 1.1, d is rotationally symmetric
with respect toNq−k , hence we denote byωd(Nq−k) the associated constant spherical
factor. Thus, defining the rescaled spherical measure

SQ−k
d = ωd(Nq−k)SQ−k,

for any nonnegative measurable function u : A → R, we have

∫
A
u(x)Jg,H f (x) d volg(x) =

∫
Rk

(∫
f −1(t)

u(x)SQ−k
d (x)

)
dt, (4.5)

where volg is the Riemannian volume measure on G and

Jg,H (x) = ‖πx,k(∇ f1(x) ∧ ∇ f2(x) ∧ · · · ∧ ∇ fk(x))‖

is the horizontal Jacobian at every differentiability point x ∈ A of f .
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We point out that the class of rotationally symmetric distances for which the coarea
formula (4.5) holds is larger than the family of distances considered in [19]. The
arguments to establish the previous corollary are the same ones of [19, Theorem 1.2].
In our case they are combined with the area formula (4.2). If we divide both members
of (4.5) by c(g, g̃), we immediately establish that

∫
A
u(x)Jg,H f (x) d volg̃(x) =

∫
Rk

(∫
f −1(t)

u(x)SQ−k
d,g̃ (x)

)
dt, (4.6)

under the assumptions of Corollary 4.4. We have set SQ−k
d,g̃ = SQ−k

d /c(g, g̃).

5 Multiradial Distances

In this section, we study integral formulas for the spherical measure with respect to
a multiradial distance, that is another type of “rotational symmetric distance”. Two
important classes of multiradial distances are the Cygan–Korányi distance (Exam-
ple 3.2) and the d∞ distance (Example 6.2).

Definition 5.1 (Multiradial distance) We say that a homogeneous distance d on a
homogeneous group G is multiradial if there exists ϕ : [0,+∞)ι → [0,+∞) con-
tinuous and monotone nondecreasing on each single variable, such that

d(x, 0) = ϕ(|x1|, . . . , |xι|), (5.1)

x j = PH j (x) and PH j : G → H j is the canonical projection with respect to the
direct sum decomposition of G into subspaces H j .

As an easy consequence of 1-homogeneity of d with respect to dilations, one may
also observe that ϕ in the definition of multiradial distance satisfies

ϕ(x) → +∞ as |x | → +∞,

where | · | is the Euclidean norm of Rι.
The following proposition shows that the assumptions of Theorem 1.1 also hold

when the distance d is multiradial.

Proposition 5.1 If d : G × G → [0,+∞) is multiradial, then it is also n-vertically
symmetric for every n = 1, . . . , q − 1.

Proof We represent the metric unit ball as follows

B(0, 1) = {x ∈ G : ϕ(|x1|, . . . , |xι|) ≤ 1} , (5.2)

observing that in general it need not be convex. Let us fix � = �n, referring to (3.2).
Let us consider the nontrivial case where

n = j + h�+1 + · · · + hι
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and 0 < j < h�, we consider two j-dimensional subspaces S1, S2 ⊂ H �. We choose
any isometry J : H � → H � with J (S1) = S2 with respect to the fixed graded scalar
product on G and set F to be the set of all isometries of H �. The map T : G → G

defined as

T |H� = J and T |H j = IdH j

for all j �= �, is clearly an isometry ofG. The special representation (5.2) of the metric
unit ball clearly gives

T (B(0, 1)) = B(0, 1).

Let us consider the projection PV : G → V with V = H1 ⊕ · · · ⊕ H � and observe
that

PV (B(0, 1)) ⊂ B(0, 1) ∩ V = {x ∈ V : d(x, 0) = ϕ(|x1|, . . . , |x�|, 0, . . . , 0) ≤ 1}

in view of the nondecreasing monotonicity of ϕ with respect to each single variable.
Clearly, any element v ∈ B(0, 1) ∩ V is equal to PV (v), therefore

B(0, 1) ∩ V ⊂ PV (B(0, 1)).

If we set ψ : (H1 ⊕ · · · ⊕ H �−1) × [0,+∞) → [0,+∞) as

ψ(u, t) = ϕ(|PH1u|, . . . , |PH�−1u|, t, 0, . . . , 0),

then also property (1) of Definition 3.2 is established, that is d is an n-vertically
symmetric distance. 
�
Remark 5.2 As a consequence of Proposition 5.1 joined with Theorem 1.1, the area
formulas (1.3) and (4.2), and the coarea formula (4.5) hold with respect to any multi-
radial distance.

5.1 Multiradial Distances in Step Two Homogeneous Groups

The next theorem shows that in step two homogeneous groups the spherical factor
with respect to a multiradial distance has a simple formula. The same formula will be
obtained in Sect. 6 for all homogeneous distances such that their metric unit ball is
convex.

Theorem 5.3 If G is a step two homogeneous group and d is a multiradial distance,
then for every n-dimensional homogeneous subspace V ⊂ G we have

βd(V ) = Hn|·|(B ∩ V ), (5.3)

where 1 ≤ n ≤ q − 1 and B = {x ∈ G : d(x, 0) ≤ 1}.

123



119 Page 22 of 31 V. Magnani

Proof We choose z ∈ B and write V = V1 ⊕ V2 with Vj ⊂ H j , being V a homoge-
neous subspace of G. Then the assumptions on d ensure that B is defined as in (5.2),
therefore we get

V ∩ B(z, 1) =
{
v ∈ V : ϕ(|PH1(z−1v)|, |PH2(z−1v|) ≤ 1

}
.

The BCH formula (2.2) yields

V ∩ B(z, 1) =
{
v1 + v2 ∈ V : ϕ

(
|v1 − z1|,

∣∣∣∣v2 − z2 − 1

2
[z1, v1]

∣∣∣∣
)

≤ 1

}

with z j = PH j (z) and v j = PH j (v). From the coercivity of ϕ we can define

r1 = sup {t ≥ 0 : ϕ(t, 0) ≤ 1} ∈ (0,+∞),

then considering an orthogonal system of coordinates on V and denoting by Ln the
corresponding Lebesgue measure on V , Fubini’s theorem yields

Hn|·|(V ∩ B(z, 1)) = Ln(V ∩ B(z, 1))

=
∫
V1∩BE (z1,r1)

Ln2 ({v2 ∈ V2 : v1 + v2 ∈ B(z, 1)}) dv1
(5.4)

where BE (z, r) = {x ∈ G : |x − z| < r} and n j = dim Vj with j = 1, 2. From the
nondecreasing monotonicity of ϕ with respect to each variable, defining

ρ(x) = sup {t ≥ 0 : ϕ(|x |, t) ≤ 1}

whenever |x | < r1 gives the monotonicity

ρ(w2) ≤ ρ(w1) for |w1| ≤ |w2| < r1. (5.5)

As a consequence, using the integral representation (5.4) for z = 0 we get the formula

Hn|·|(V ∩ B(0, 1)) =
∫
V1∩BE (0,r1)

Ln2 ({v2 ∈ V2 : ϕ(|v1|, |v2|) ≤ 1}) dv1

=
∫
V1∩BE (0,r1)

Ln2
(
V2 ∩ BE (0, ρ(v1))

)
dv1,

(5.6)

that will be used later. Defining the function �(z, v1) = z2 + 1
2 [z1, v1], we have

Hn|·|(V ∩ B(z, 1)) =
∫
V1∩BE (z1,r1)

Ln2
(
V2 ∩ BE

(
�(z, v1), ρ(v1 − z1)

))
dv1

=
∫

(V1−z1)∩BE (0,r1)
Ln2

(
V2 ∩ BE

(
�(z, v1), ρ(v1)

))
dv1
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≤
∫
V1∩BE (0,r1)

Ln2
(
(V2 − �(z, v1)) ∩ BE

(
0, ρ(v1)

))
dv1.

Taking into account the last inequality, Theorem 6.3 and formula (5.6), we get

Hn|·|(V ∩ B(z, 1)) ≤
∫
V1∩BE (0,r1)

Ln2
(
V2 ∩ BE

(
0, ρ(v1)

))
dv1 = Hn|·|(V ∩ B),

therefore concluding the proof. 
�
By (5.3) we show that a multiradial distance is also rotationally symmetric with

respect to “large families" of homogeneous subspaces.

Theorem 5.4 Let G be a homogeneous group of step two and let d be a multiradial
distance. Let 1 ≤ n1, n2 ≤ q − 1 be two integers such that n1 + n2 = n ≤ q − 1
and let Fn1,n2 be the family of all homogeneous subspaces V = V1 ⊕ V2 ⊂ G such
that dim V1 = n1 and dim V2 = n2. Then d is rotationally symmetric with respect to
Fn1,n2 .

Proof SinceG is of step two,wehaveG = H1⊕H2. Let us consider twohomogeneous
subspaces V and W with direct decompositions V1 ⊕ V2 and W1 ⊕ W2, respectively,
where V1,W1 ⊂ H1, V2,W2 ⊂ H2 and we have the conditions

dim V1 = dimW1 = n1 and dim V2 = dimW2 = n2.

Considering two isometries J1 : H1 → H1 and J2 : H2 → H2 such that

J1(V1) = W1 and J2(V2) = W2,

respectively, then for every x1 ∈ H1 and x2 ∈ H2 we define

T (x1 + x2) = J1(x1) + J2(x2).

The mapping T : G → G is an isometry, since H1 is orthogonal to H2 with respect
to our fixed graded scalar product onG. Moreover, the shape of the metric unit ball B
gives the equalities

T (B ∩ V ) = T ({x1 + x2 ∈ G : x1 ∈ V1, x2 ∈ V2, ϕ(|x1|, |x2|) ≤ 1})
= {T (x1) + T (x2) ∈ G : x1 ∈ V1, x2 ∈ V2, ϕ(|x1|, |x2|) ≤ 1}
= {T (x1) + T (x2) ∈ G : x1 ∈ V1, x2 ∈ V2, ϕ(|T (x1)|, |T (x2)|) ≤ 1}
= {y1 + y2 ∈ G : y1 ∈ W1, y2 ∈ W2, ϕ(|y1|, |y2|) ≤ 1}
= B ∩ W .

As a consequence, formula (5.3) concludes the proof. 
�
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5.2 One Dimensional Rotational Symmetries

We show that any multiradial distance has rotational symmetries with respect to one
dimensional homogeneous subspaces of the Lie algebra.

Theorem 5.5 Let d be a multiradial distance on a homogeneous group G and let
1 ≤ N ≤ ι. Then for every one dimensional subspace L ⊂ HN we have

βd(L) = H1|·|(B ∩ L), (5.7)

where B = {x ∈ G : d(x, 0) ≤ 1}.
Proof We consider a one dimensional subspace L of HN. We observe that

L ∩ B(z, 1) =
{
v ∈ L : z−1v ∈ B

}
.

Since d is multiradial, we may write

L ∩ B(z, 1) =
{
v ∈ L : ϕ(|PH1(z−1v)|, . . . , |PH ι (z−1v|) ≤ 1

}
.

The nondecreasing monotonicity of ϕ with respect to each variable shows that

L ∩ B(z, 1) ⊂
{
v ∈ L : ϕ

(
0, . . . , 0︸ ︷︷ ︸
N−1 zeros

, |v − PHN(z)|, 0, . . . , 0) ≤ 1
}

= ζz + JL ,

where ζz = PHN(z) and JL = {v ∈ L : ϕ(0, . . . , 0, |v|, 0, . . . , 0) ≤ 1}. The previous
inclusion yields

H1|·| (L ∩ B(z, 1)) ≤ H1|·| (ζz + JL) = L1(JL).

Observing that

H1|·| (L ∩ B) = H1|·| ({v ∈ L : ϕ(0, . . . , 0, |v|, 0, . . . , 0) ≤ 1}) = L1(JL),

we have shown our claim. 
�
Theorem 5.6 Let d be a multiradial distance on a homogeneous group G and let
1 ≤ N ≤ ι. Then d is rotationally symmetric with respect to the family of all one
dimensional subspaces of HN ⊂ G.

Proof Let us consider the one dimensional subspaces V ,W ⊂ HN and define the
isometries Ji : Hi → Hi such that

JN(V ) = W and Ji = IdHi ,
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for all i �= N with 1 ≤ i ≤ ι. For xi ∈ Hi , we define

T (x1 + · · · + xι) = J1(x1) + J2(x2) + · · · + Jι(xι),

so observing that the subspaces Hi are orthogonal we conclude that T : G → G is an
isometry. The fact that d is multiradial implies that

T (B ∩ V ) = T
({

x ∈ HN : x ∈ V , ϕ
(
0, . . . , 0︸ ︷︷ ︸
N−1 zeros

, |x |, 0, . . . ) ≤ 1
})

=
{
JN(x) ∈ HN : x ∈ V , ϕ(0, . . . , |x |, 0, . . .) ≤ 1

}

= {y ∈ W : ϕ(0, . . . , |y|, 0, . . .) ≤ 1}
= B ∩ W .

As a consequence, formula (5.7) concludes the proof. 
�
Remark 5.7 Let us point out that all one dimensional subspaces of a homogeneous
group are automatically Lie subgroups.

5.3 Proof of Theorem 1.3 and Applications

In this section we apply the previous results to obtain a standard form of area formulas
with respect to multiradial distances. Throughout this section, G is a fixed homo-
geneous group and � ⊂ G is an n-dimensional C1 smooth submanifold of degree
N.

Proof of Theorem 1.3 Let us now assume that conditions (1) hold. If V ∈ F is any
homogeneous subgroup of the form V = V1⊕V2, with dim V1 = n1 and dim V2 = n2,
then we must have

n1 + n2 = n and n1 + 2n2 = N.

The previous conditions uniquely define the integers

n1 = 2n − N and n2 = N − n.

By virtue of Theorem 5.4, d is rotationally symmetric with respect to F and ωd(F)

denotes its constant spherical factor. By our assumptions the homogeneous tangent
space at points of maximum degree N is a homogeneous subgroup. Due to [23, Propo-
sition 3.3] and [23, Proposition 3.5], its topological dimension is n and its Hausdorff
dimension is N. We are also in the assumptions of [23, Theorem 1.3], so the area
formula (1.7) of [23] exactly gives (1.4).

Let us assume now that conditions (2) hold, namely � is one dimensional. Again
from [23, Proposition 3.3] and [23, Proposition 3.5], at points of maximum degree
the homogeneous tangent space is a one dimensional subspace of HN, that is auto-
matically a one dimensional homogeneous subgroup of Hausdorff dimension N. By
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Theorem 5.6 the distance d is rotationally symmetric with respect to the family F
of all one dimensional homogeneous subgroups of Hausdorff dimension N. Applying
the area formula (1.7) of [23] we immediately establish (1.4), concluding the proof. 
�
A special application of the previous theorem is the following.

Corollary 5.8 If � is a C1,1 smooth submanifold in a step two homogeneous group
G equipped with a multiradial distance d, then there exists a constant ωd(F) as in
Theorem 1.3 such that (1.4) holds, with SN

d = ωd(F)SN.

Proof Due to the C1,1 smoothness, we may apply [20, Corollary 1.2], concluding
that the subset of � made by all points of degree less than N is SN-negligible. The
same smoothness, by [26, Lemma 3.9], implies that the homogeneous tangent space
at all points of maximum degree is a homogeneous subgroup. We are precisely in the
assumptions (1) of Theorem 1.3, hence (1.4) is established. 
�
A simple application of the previous corollary is given in the next example.

Example 5.9 Let us consider an open, bounded and connected set U ⊂ R
n, assuming

that there exists another open set Ũ withU ⊂ Ũ and a smooth embedding� : Ũ → G

of classC1,1. We assume thatG is equipped with a structure of H-type group equipped
with a multiradial distance that satisfies

d(x, 0) = 4
√

|x1|4 + 16|x2|2

for all x ∈ G, see Example 3.2. Let | · | be the norm on G associated to this H-type
structure. We consider the C1,1 submanifold � = �(U ) and denote its degree by N.
Therefore we have two uniquely defined integers

n1 = 2n − N and n2 = N − n

that satisfy n = n1+n2 and N = n1+2n2. By Theorem 5.4, d is rotationally invariant
with respect to the family F2,G of all n-dimensional homogeneous subgroups V of
Hausdorff dimension N.We denote byωd(F2,G) the associated constant spherical fac-
tor and introduce the renormalized spherical measure SN

d = ωd(F2,G)SN. We denote
by y = (y1, . . . , yn) the local coordinates of � with respect to �. As a consequence
of Corollary 5.8 and [23, Proposition 7.5], we get

SN
d (�) =

∫
U

‖π�(y),N
(
∂y1�(y) ∧ · · · ∧ ∂yn�(y)

)‖g dy, (5.8)

where g is the left invariant Riemannian metric associated to fixed norm | · | on G.

Remark 5.10 Assuming that we have a transversal C1 smooth curve � in the Heisen-
berg group H

n , namely a non-horizontal curve, then Theorem 1.2 yields the area
formula

S2
d��(B) =

∫
B

‖τ g̃
�,N(p)‖g dσg̃(p) (5.9)
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for any homogeneous distance. We do not need further assumptions on the distance.
From Definition 3.2 one may easily notice that in H

n any homogeneous distance is
automatically 1-vertically symmetric. In particular, formula (5.9) holds for the sub-
Riemannian distance of Hn , that is not multiradial.

6 Sections of Convex Balls

In this section, we study the spherical factor of those homogeneous distances whose
metric unit ball is a convex set. Such distances can be found in any homogeneous
group, according to the next examples.

Example 6.1 Theorem 2 of [13] shows that in a homogeneous group we can find a
homogeneous distance whose metric unit ball is an Euclidean ball with suitably small
radius, where all layers H j in the decomposition of G are orthogonal. In particular,
the metric unit ball is a convex set.

Example 6.2 The homogeneous distance d∞ of [10] can be easily checked to have a
convex metric unit ball. This distance is also multiradial.

The Cygan–Korányi distance of Example 3.2 has a convex metric unit ball and it is
multiradial. The following fact is our crucial tool.

Theorem 6.3 Let H be a q-dimensional Hilbert space with q ≥ 2 and let C ⊂ H
be a compact and convex set, whose interior is nonempty and it contains the origin.
Let S denote an n-dimensional subspace of H and consider V = S⊥ its orthogonal
subspace. Then the subset D = {v ∈ V : C ∩ (v + S) �= ∅} is convex and ψ : D →
[0,+∞), defined as follows

ψ(v) = [Hn|·|
(
C ∩ (v + S)

)]1/n

is concave on D.

Proof It is easy to observe that D is convex and with nonempty interior in V . Let us
consider v,w ∈ D and θ ∈ (0, 1). Convexity of C gives

θ ((v + S) ∩ C ) + (1 − θ)((w + S) ∩ C ) ⊂ ([θv + (1 − θ)w] + S ) ∩ C ,

that it can be rewritten as follows
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((θv+S)∩θC )+(((1 − θ)w + S ) )∩(1 − θ)C ) ⊂ ([θv + (1 − θ)w]+S ) ∩ C .

(6.1)

Our point is to use the the classical Brunn–Minkowski inequality, in dimension n. We
observe the following equality of sets

(γ u + S) ∩ γC = γ u + (S ∩ (γC − γ u) )

for every γ ∈ R and u ∈ H , hence we define

C(γ, u) = S ∩ (γC − γ u ). (6.2)

Thus, the inclusion (6.1) can be written as follows

[
θv + C(θ, v)

] + [
(1 − θ)w + C

(
(1 − θ), w

)] ⊂ ([θv + (1 − θ)w] + S
) ∩ C .

It follows that

θv + (1 − θ)w + C(θ, v) + C((1 − θ), w ) ⊂ ([θv + (1 − θ)w] + S
) ∩ C .

(6.3)

The Brunn–Minkowski inequality in S gives

[Hn|·|
(
C(θ, v)+C((1−θ), w)

)]1/n≥[Hn|·|
(
C(θ, v)

)]1/n+[Hn|·|
(
C
(
(1 − θ), w

))]1/n
.

(6.4)

Taking into account that

C(θ, u) = θ C(1, u) and C
(
(1 − θ), u

) = (1 − θ)C(1, u),

the inequality (6.4) joined with the inclusion (6.3), we obtain

ψ(θv + (1 − θ)w ) ≥ θ
[Hn|·|(C(1, v) )

]1/n + (1 − θ)
[Hn|·|(C(1, w) )

]1/n
.

Finally, we observe that

ψ(u) = [Hn|·|(C(1, u) )
]1/n

for each u ∈ D, hence completing the proof. 
�
We are now in the position to prove an explicit formula for the spherical factor when
the metric unit ball is convex.
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Proof of Theorem 1.4 According to the definition of vertical subgroup, we set

N = N� ⊕ H �+1 ⊕ · · · ⊕ H ι,

for � = �n, where �n is defined in (3.2). Applying Lemma 3.5, we get

Hn|·|(N ∩ B(z, 1) ) = Hn|·|(B(0, 1) ∩ z−1N ) . (6.5)

To study the previous function with respect to z, we define

a(z) = Hn|·|(B(0, 1) ∩ zN ) .

We set V = N⊥, that can be written as follows

V = H1 ⊕ · · · ⊕ H �−1 + S�.

This is a homogeneous subspace of G, that need not be a subgroup. However
Lemma 3.3 gives the mappings

PV : G → V and �N : G → N ,

such that for y ∈ G we have

y = PV (y)�N (y),

where PV is the projection onto V with respect to the direct sum G = V ⊕ N . As a
consequence, we can write

a(z) = Hn|·|(B(0, 1) ∩ zN ) = Hn|·|(B(0, 1) ∩ PV (z)N ) . (6.6)

We are in the assumptions to apply (3.9), hence PV (z)N = PV (z) + N . Our special
representation of G also allows us to have

B(0, 1)−1 = −B(0, 1). (6.7)

It follows that

a(z) = Hn|·|(B(0, 1) ∩ (PV (z) + N ) ) = Hn|·|(B(0, 1) ∩ ( − PV (z) + N ) )

and the property −PV (z) = PV (z−1) yields

a(z) = Hn|·|(B(0, 1) ∩ (PV (z−1) + N ) ) = Hn|·|(B(0, 1) ∩ (PV (z−1)N ) ).

Thus, by (6.6) we have proved that

a(z) = Hn|·|(B(0, 1) ∩ (z−1N ) ) = a(z−1) = a(−z), (6.8)
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hence a is even. We define v = PV (z−1) and we introduce the even function

b(t) =
[
Hn|·|

(
B(0, 1) ∩ (tv + N )

)]1/n

for all t ∈ R, observing that

b(1) = n
√
a(z) and b(0) = n

√
Hn|·|(N ∩ B(0, 1) ).

Due to Theorem 6.3, the function t → b(t) is also concave on the compact interval

I = {t ∈ R : B(0, 1) ∩ (tv + N ) �= ∅}.

By (6.7) one easily observes that I is an even interval, therefore b : I → [0,+∞)

takes its maximum at 0, getting in particular that

a(z) ≤ Hn|·|(N ∩ B(0, 1) ).

Taking into account (6.5) and (6.8), we have proved that

βd(N ) = max
z∈B(0,1)

Hn|·|((N ∩ B(z, 1) ) = Hn|·|(N ∩ B(0, 1) ),

concluding the proof. 
�
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