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In the sketch of the proof of Theorem 4 we claimed that a weak solution (ξ, κ, σ )

can be obtained by following the same lines as in the proof of [1, Proposition 3.4 and
Theorem 3]. However, an appropriate argument should be slightly different due to
different boundary conditions. The aim of this addendum is to fill that gap.

More precisely, in [1] at the free end one has σε(t, 0) = κε(t, 0) = 0 for all
t ∈ [0, T ]. Therefore, the uniform (w.r.t. to ε) L2 bound for (σ ε, κε) follows directly
from the Poincaré inequality and the uniform L2 bound for (∂sσ

ε, ∂sκ
ε). In our case,

the vanishing boundary conditions for σε and κε are no longer satisfied. We thus need
some additional estimates to obtain the uniform L2 bound.

We first estimate the spatial average σε(t) := ∫
S1

σ ε(s, t) ds. Indeed, an integration
by parts and Cauchy–Schwarz yield
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∣
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ε ds
∣
∣ = ∣

∣ −
∫

S1
∂sκ

ε · ξε ds
∣
∣ ≤ ‖∂sκε(t, ·)‖L2(S1)‖ξε‖L2(S1), ∀t ∈ [0, T ].

Thus

‖σ ε‖L2([0,T ]) ≤ sup
t∈[0,T ]

‖ξε(t, ·)‖L2(S1)‖∂sκε‖L2(QT ),

where the right-hand side is uniformly bounded (cf. [1, Proposition 3.1]). Thus from
Poincaré inequality ‖σε −σ ε‖L2(QT ) ≤ C(T )‖∂sσ ε‖L2(QT ) we obtain ‖σε‖L2(QT ) ≤
C with C independent of ε.

The original article can be found online at https://doi.org/10.1007/s12220-018-00104-z.
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It remains to show that κε is uniformly bounded in L2(QT ). To this end, we note
that from the definition of κε one has ∂sξ

ε = εκε + κε√
ε+|κε |2 , whence

σ ε = κε · ∂sξ
ε = |κε |

(

ε|κε | + |κε |
√

ε + |κε |2
)

≥ |κε ||∂sξε |.

Observing that

|∂sξε | = ε|κε | + |κε |
√

ε + |κε |2 ≥ ε + 1√
1 + ε

> 1

provided |κε | ≥ 1, we infer that |κε | ≤ σ ε when |κε | ≥ 1. Thus,

∫

QT

|κε |2 dsdt =
∫

{(s,t)∈QT :|κε |<1}
|κε |2 dsdt +

∫

{(s,t)∈QT :|κε |≥1}
|κε |2 dsdt

≤ |QT | +
∫

QT

|σ ε |2 dsdt ≤ C,

where C does not depend on ε.
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