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Abstract
In the setting ofmetricmeasure spaces satisfying the doubling condition and the (1, p)-
Poincaré inequality, we prove a metric analogue of the Bourgain–Brezis–Mironescu
formula for functions in the Sobolev space W 1,p(X , d, ν), under the assumption that
for ν-a.e. point the tangent space in the Gromov–Hausdorff sense is Euclidean with
fixed dimension N .
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1 Introduction

In this paper, we focus on the characterisation of Sobolev functions in metric spaces
using integrated differential quotients. Our principal motivation is the paper [5], in
which the authors prove the following characterisation of Sobolev functions on open
subsets of RN .

Theorem 1.1 (Bourgain, Brezis, Mironescu ’01) Suppose thatΩ ⊂ R
N is a smooth

bounded domain. Assume that f ∈ L p(Ω), where p ∈ (1,∞). Let ρn be a sequence
of nonnegative radial mollifiers such that

∫
RN ρn dx = 1 and for every δ > 0 we have

limn→∞
∫ ∞
δ

ρn(r) r N−1 dr = 0. Then,

(1) u ∈ W 1,p(Ω) if and only if

lim inf
n→∞

∫

Ω

∫

Ω

| f (x) − f (y)|p
|x − y|p ρn(x − y) dx dy < ∞.
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(2) When u ∈ W 1,p(Ω), then

lim
n→∞

∫

Ω

∫

Ω

| f (x) − f (y)|p
|x − y|p ρn(x − y) dx dy = Kp,N‖∇ f ‖p

L p(Ω). (1.1)

A similar result holds for p = 1 with the space BV (Ω) in place of W 1,1(Ω), see
[9]. Moreover, the authors of [5] (see also [22]) prove a precompactness result under
an additional assumption that ρ is nonincreasing as a function of r ; this result (or a
similar result proved in [3, Theorem 6.11]) is a standard argument in approximations
of local problems via nonlocal ones, see for instance [3,11].

A few authors, for instance [10] and [19], considered extensions of the first part
of Theorem 1.1 to the setting of measure metric spaces (see also [4] in the case of
Carnot groups). Let X be a metric space equipped with a doubling measure which
satisfies the (1, p)-Poincaré inequality. Consider the following metric analogue of the
left-hand side of the equality in Theorem 1.1:

Qr ,p( f ) = 1

r p

∫

X
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) dν(x).

We will call Qr ,p the BBM difference quotient. It corresponds to taking the mollifiers
ρn equal to characteristic functions of balls rescaled by the measure of these balls
(see the discussion in Sect. 4.1). Then, we ask if a following analogue of Theorem 1.1
holds: there exists a constant Cp,X such that for any f ∈ W 1,p(X , d, ν), we have

lim
r→0

1

r p

∫

X
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) dν(x) = Cp,X‖∇ f ‖p

L p(X ,ν)

for a gradient ∇ f understood in an appropriate sense. In such generality, there is
no hope of an exact analogue of the second part of Theorem 1.1, see Example 4.4.
However, there are some results concerning the first part of Theorem 1.1, concerning
the upper and lower limits of Qr ,p and their relationship with the Sobolev structure.

Theorem 1.2 ([19, Theorem 3.1]) Let (X , d, ν) be a metric space equipped with a
doubling measure which satisfies the (1, 1)-Poincaré inequality. Suppose that f ∈
L1(X , ν). Then

f ∈ BV (X , d, ν) ⇔ lim inf
r→0

1

r

∫

X

∫

B(x,r)

| f (y) − f (x)|√
ν(B(x, r))

√
ν(B(y, r))

dν(y) dν(x) < ∞.

In particular, since ν is doubling, we have

f ∈ BV (X , d, ν) ⇔ lim inf
r→0

1

r

∫

X
−
∫

B(x,r)
| f (y) − f (x)| dν(y) dν(x) < ∞,

see the discussion in [20].
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The proof given in [19] with minor modifications can also be used to provide a
characterisation of the Sobolev space W 1,p(X , d, ν) via the lower limit of Qr ,p. A
similar characterisation for p > 1, which also arises from taking a particular kernel
ρn in Theorem 1.1 and involves the limit of fractional Sobolev norms, was proved in
[10].

In this paper, we concentrate on the metric analogues of the second part of Theorem
1.1, namely on the existence and exact value of the constant Cp,X . We focus on
the case p > 1 in order to be able to use the equivalence of different definitions
of Sobolev spaces and the density of Lipschitz functions in the Sobolev norm. We
consider measure metric spaces that locally look like Euclidean spaces; to be more
precise, we consider spaces such that their tangents (in the Gromov–Hausdorff sense)
for ν-a.e. x ∈ X are Euclidean spaces with a fixed dimension N . This class contains for
instance Riemannian manifolds, weighted Euclidean spaces for continuous weights
bounded from below and (as was shown in [6]) RCD(K , N ) spaces. In the absence of
scaling and Taylor formula that are available to us in the Euclidean case, we will use
a blow-up technique and a version of the Rademacher theorem in their place.

The structure of the paper is as follows. In Sect. 2, we recall the necessary notions,
such as the (equivalent) definitions of Sobolev spaces on a metric measure space,
Gromov–Hausdorff convergence and the Rademacher theorem. In Sect. 3, we start
by proving a pointwise result (valid ν-a.e.) in the spirit of Theorem 1.1 for Lipschitz
functions and then prove the main result of the paper, Theorem 3.5:

Theorem 3.5 Suppose that (X , d, ν) is a complete, separable, doubling metric mea-
sure space which supports a (1, p)-Poincaré inequality. Suppose additionally that X
has Euclidean tangents of dimension N for ν-a.e. x ∈ X. Let f ∈ W 1,p(X , d, ν),
where p ∈ (1,∞). Then

lim
r→0

1

r p

∫

X
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) dν(x) = Cp,N · Chp( f ), (1.2)

where Chp( f ) is the Cheeger energy of f defined in (2.1) and Cp,N is the constant
defined in (3.9).

In particular, the constant Cp,X does not depend on the space X itself, only on
the dimension of the tangent space, so we denote it by Cp,N . Finally, in Sect. 4, we
comment on the relationship of results from Sect. 3 with existing literature and discuss
some extensions of the framework under which they are valid; in particular, we prove
an analogue of Theorem 3.5 when the tangent is the Heisenberg group and use it to
construct Example 4.4 showing that if the tangent space varies from point to point,
then equation (1.2) may no longer be true.

2 Preliminaries

2.1 Sobolev Spaces on aMetric Space

Let (X , d, ν) be a metric measure space. In the whole paper, we will work under the

123



128 Page 4 of 22 W. Górny

standard assumptions that the measure ν is doubling and the space supports a (1, p)-
Poincaré inequality. We say that the measure ν is doubling, if there exists a constant
cD such that for all x ∈ X and all r > 0, we have

0 < ν(B(x, 2r)) ≤ cD ν(B(x, r)) < ∞.

Given f : X → R, we define its slope (also called the local Lipschitz constant of f )
by the formula:

Lip( f )(x) = lim sup
y→x

| f (y) − f (x)|
d(x, y)

.

We say that the metric measure space (X , d, ν) supports a (1, p)-Poincaré inequality,
if there exist constants cP and Λ such that for all f ∈ Lip(X) and r > 0, we have

−
∫

B(x,r)

∣
∣
∣
∣ f −

(

−
∫

B(x,r)
f dν

)∣
∣
∣
∣ dν ≤ cP r

(

−
∫

B(x,Λr)
(Lip( f ))p dν

)1/p

.

In this paper, wewill work in the setting inwhich the several known notions of Sobolev
spaces defined on a metric space are equivalent; for completeness, we present an “H
type” definition via approximation by Lipschitz functions.

Definition 2.1 Let p ∈ (1,∞). We say that g ∈ L p(X , ν) is a p-relaxed slope of f ∈
L p(X , ν), if there exist g̃ ∈ L p(X , ν) andLipschitz functions fn ∈ L p(X , ν)∩Lip(X)

such that

(1) fn → f in L p(X , ν) and Lip( fn)⇀g̃ weakly in L p(X , ν);
(2) g̃ ≤ g ν-a.e. in X .

We say that g is the minimal p-relaxed slope of f if its norm in L p(X , ν) is minimal
among p-relaxed slopes. We will denote the minimal p-relaxed slope by |∇ f |∗,p.

The definition of minimal p-relaxed slope is well-posed thanks to Mazur’s lemma
and uniform convexity of L p(X , ν), see the discussion after [1, Definition 4.2]. Using
the minimal p-relaxed slope, for p ∈ (1,∞) define the Cheeger energy as

Chp( f ) =
∫

X
|∇ f |p∗,p dν. (2.1)

Definition 2.2 Fix p ∈ (1,∞). Let f ∈ L p(X , ν). We say that f ∈ W 1,p(X , d, ν),
the Sobolev space of functions with a p-relaxed slope, if there exists a p-relaxed slope
of f . The space W 1,p(X , d, ν) is endowed with the norm:

‖ f ‖W 1,p(X ,d,ν) =
(

‖ f ‖p
L p(X ,ν) + Chp( f )

)1/p

.
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Under the assumptions that ν is doubling and the space supports a (1, p)-Poincaré
inequality, the spaceW 1,p(X , d, ν) is reflexive and bounded Lipschitz functions with
bounded support form a dense subset (see [2, Corollary 7.5, Proposition 7.6]). The
space W 1,p(X , d, ν) can equivalently be defined in a few other ways: instead of the
p-relaxed slope |∇ f |∗,p, we may use the Cheeger’s gradient |∇ f |C,p, the p-upper
gradient |∇|S,p or the minimal p-weak upper gradient |∇|w,p; for these equivalent
definitions (all the above gradients agree ν-a.e. in X ) and the proof of the equivalence
see [1].

In the proofs in Sect. 3, we are going to use one more equivalence of Sobolev
spaces—with the Hajlasz–Sobolev space M1,p(X) (see Lemma 2.3). While the norms
in W 1,p(X , d, ν) and M1,p(X) do not necessarily agree, classical arguments using
maximal functions (for instance, combine [17, Theorem 4.5] and [16, Theorem 1.0.1])
imply the following Lemma concerning the equivalence of these spaces.

Lemma 2.3 Let p ∈ (1,∞). Suppose that (X , d, ν) is a doubling metric measure
space which supports a (1, p)-Poincaré inequality. Then, for any f ∈ W 1,p(X , d, ν),
there exists g ∈ L p(X , ν) such that

| f (x) − f (y)| ≤ d(x, y) (g(x) + g(y))

for ν-a.e. x, y ∈ X (in other words, f is in the Hajlasz–Sobolev space M1,p(X)).
Moreover, we can choose g such that ‖g‖p

L p(X ,ν) ≤ C · Chp( f ).

2.2 Tangents of a Metric Space

Let us recall the definition of pointed measured Gromov–Hausdorff convergence of
metric spaces (first introduced in [12]; there are many equivalent ways to define it in
the literature, we use a variant from [8]).

Definition 2.4 A map φ : (X1, x1, d1) → (X2, x2, d2) between two metric spaces
with a distinguished point is called an ε-isometry if

|d2(φ(x), φ(y)) − d1(x, y)| ≤ ε (2.2)

for all x, y ∈ B(x, ε−1) and we have

Bd2(y, r − ε) ⊂ Nε(φ(Bd1(x, r))) (2.3)

for all r ∈ [ε−1, ε]. Here, Nε(E) denotes the open ε-neighbourhood of a set E ⊂ X2.

In particular, we do not necessarily have that φ(x1) = x2, but the properties of an
ε-isometry imply that d2(φ(x1), x2) ≤ 2ε.

Definition 2.5 A sequence of pointed metric spaces (Xn, xn, dn) converges in pointed
Gromov–Hausdorff sense to (X , x, d) if there exists a sequence εn → 0 such that
there exist εn-isometries φn : Xn → X and ψn : X → Xn .
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Moreover, we say that (Xn, xn, dn, νn) converges in measured pointed Gromov–
Hausdorff sense to (X , x, d, ν), if additionally (φn)#νn⇀ν weakly as measures on
X .

Definition 2.6 Let (X , x, d, ν) be a pointed metric measure space. A tangent cone at x
is a pointed metric space (X∞, x∞, d∞, ν∞), which is a measured pointed Gromov–
Hausdorff limit of some sequence (X , x, r−1

n d, νrn ), where rn → 0 and

νr = 1

ν(B(x, r))
ν.

In the literature, the renormalised limit measure ν∞ is sometimes omitted in the
definition of tangent cones; here, we follow [7] and include it, since we want to use a
version of Rademacher’s theorem.

On complete metric spaces equipped with a doubling measure tangent cones exist
for all x ∈ X , see [7], but they are not necessarily unique. A key assumption we will
use is that for ν-a.e. x ∈ X the tangent cones are unique and are Euclidean spaces of
fixed dimension N . In this case, we will drop the sequence rn and simply index the
blow-ups of the space X by r ∈ (0,∞).

2.3 Rademacher Theorem

The core of the proofs in the next Section is a version of the Rademacher theorem for
metric measure spaces which satisfy the doubling property and the (1, p)-Poincaré
inequality. To this end, we introduce the following notation. Set φr : X → X∞ to be
the Gromov–Hausdorff approximation. Given a function f ∈ Lip(X), we denote

fr ,x (y) = f (y) − f (x)

r
.

We have fr ,x (y) ∈ Lip(X); moreover, if L is the Lipschitz constant of f , then the
Lipschitz constant of fr ,x is at most L

r and | fr ,x | is bounded by L on the ball B(x, r).
If we rescale themetric d to r−1d, then fr ,x has Lipschitz constant at most L , is locally
bounded and is bounded by L on the ball with radius one; hence, it admits a convergent
subsequence (still denoted by fr ,x ) such that fr ,x converge locally uniformly to a
function f0,x ∈ Lip(X∞) (modulo the identification of X as a subset of X∞ via φr ),
namely on B(x, r) we have

‖ f0,x (φr (·)) − fr ,x (·)‖∞ ≤ α(r), (2.4)

where α(r) → 0 as r → 0. Moreover, the Lipschitz constant of f0,x is at most L and
it is bounded by L on the ball B(x∞, 1).

Now, we recall the concept of generalised linear functions as introduced in [7].
Denote by g f the minimal upper gradient of a function f ∈ W 1,p(X , d, ν).

Definition 2.7 Let p ∈ (1,∞). A Lipschitz function l ∈ Lip(X) is generalised linear
if:
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(1) l ≡ 0 or range l = (−∞,∞);
(2) l is p-harmonic, in the sense that for any V ⊂⊂ X we have

∫

V
|gl |p ≤

∫

V
|gl+ f |p

for all functions f ∈ W 1,p(X , d, ν) with support in V ;
(3) gl ≡ c for some c ∈ R.

If X is the Euclidean space, then generalised linear functions are affine, see [7,
Theorem 8.11].

Theorem 2.8 ( [7, Theorem 10.2]) Suppose that (X , x, d, ν) is a pointed metric mea-
sure space. Suppose that ν is doubling and satisfies the (1, p)-Poincaré inequality for
some p ∈ (1,∞). Let f ∈ Lip(X) Then, for ν-a.e. x ∈ X the function f is infinitesi-
mally generalised linear, i.e. for all p′ > p any f0,x as above is a generalised linear
function. Moreover, we have Lip f0,x = Lip( f )(x).

3 Bourgain–Brezis–Mironescu Approach

In this Section, we deal with metric measure spaces (X , d, ν) which have Euclidean
tangents ν-a.e., i.e.

(X , x, r−1d, νr ) → (X∞, x∞, d∞, ν∞) = (RN , 0, ‖ · ‖, cNLN )

in themeasuredGromov–Hausdorff sense,where constant cN = 1
LN (B(0,1))

, so that the
measure of the unit ball equals one (this is a consequence of the definition of νr ). This
is the case for instance for Riemannian manifolds and (as shown in [6]) RCD(K , N )

spaces. Another important class of examples is weighted Euclidean spaces.

Example 3.1 Let (X , x, d, ν) = (RN , x, ‖ · ‖, wLN ), where w ∈ L1
loc(R

N ) is con-
tinuous LN -a.e. and LN -a.e. we have w ≥ c > 0. Choose x ∈ X which satisfies
these conditions and define φr : (RN , x, r−1‖ · ‖) → (RN , 0, ‖ · ‖) by the formula
φr (y) = y−x

r andnotice that it is an isometry (with an inversewhich is also an isometry)
which maps x to 0, so the spaces (RN , x, r−1‖·‖) converge in the Gromov–Hausdorff
sense to (RN , 0, ‖ · ‖). Moreover, a quick calculation shows that

(φr )#νr (z) = r N w(x + r z)
∫
B(x,r) w dLN

dLN (z) = cN
w(x + r z)

−
∫
B(x,r) w dLN

dLN (z)⇀cNLN .

Hence, (RN , 0, ‖ · ‖, cNLN ) satisfies all the conditions given in Definition 2.6 for any
subsequence rn → 0, so (X , x, d, ν) has Euclidean tangents ν-a.e.

The goal of this Section is to prove Theorem 3.5, which is an equivalent of Theorem
1.1 in the metric setting.The outline of the proof is in a way similar to the proof of
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Theorem 1.1 shown in [5]: first, we prove a pointwise result for a dense subset of the
Sobolev space which contains functions which are regular enough, and then integrate
this result over the whole space and prove that the limiting process is well defined.
Here, we further break this reasoning into separate results in order to underline the
moment when we use the assumption that the tangent spaces are Euclidean.

Lemma 3.2 Suppose that (X , d, ν) is a doublingmetric measure space, which satisfies
the (1, p)-Poincaré inequality for some p ∈ (1,∞). Let x ∈ X be a point such that
the implication in the Rademacher theorem (Theorem 2.8) holds. Then, in the notation
introduced in Sect. 2.2, we have

lim
r→0

(∫

B(x,r)
| fr ,x (y)|p dνr (y) −

∫

B(x∞,1)
| f0,x (z)|p d(φr )#νr (z)

)

= 0. (3.1)

This result will later play a role as an estimate on the remainder, when we will
approximate the rescaled nonlocal gradients fx,r by the linear part f0,x . Compared to
the situation, when X = R

N , the main difference is that there are two sources of error
here – one which is of the same type as the Taylor remainder and one that comes from
the fact that the domain changes in the approximation; it reflects the difference in the
shapes of balls B(x, r) and the ball B(x∞, 1).

Proof Fix such x ∈ X such that the Rademacher theorem holds (the set of such points
is of full measure). Take the functions fr ,x , which by Arzela-Ascoli theorem converge
locally uniformly (on a subsequence still denoted by r ) to a function f0,x . As discussed
in Sect. 2.2, on B(x, r) we have

‖ f0,x (φr (·)) − fr ,x (·)‖∞ ≤ α(r),

where α(r) → 0 as r → 0. Now, write the left integral in (3.1) as follows:

∫

B(x,r)
| fr ,x (y)|p dνr (y) =

∫

B(x,r)
| f0,x (φr (y))|p dνr (y)

+
∫

B(x,r)

(

| fr ,x (y)|p − | f0,x (φr (y))|p
)

dνr (y).

(3.2)

We start by estimating the second summand on the right-hand side. By the Lagrange
mean value theorem for φ(t) = t p, we have that for any y ∈ B(x, r)

∣
∣
∣
∣| fr ,x (y)|p − | f0,x (φr (y))|p

∣
∣
∣
∣ = p τ p−1

∣
∣
∣
∣| fr ,x (y)| − | f0,x (φr (y))|

∣
∣
∣
∣

for some τ between | fr ,x (y)| and | f0,x (φr (y))|. But by definition of fr ,x , we have that
| fr ,x | is bounded by Lip( f )(x) on the ball B(x, r); since f0,x is the uniform limit of
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fr ,x as r → 0 on B(x, r), it satisfies the same bound. Hence, taking (2.4) into account,
we have that

p τ p−1
∣
∣
∣
∣| fr ,x (y)| − | f0,x (φr (y))|

∣
∣
∣
∣ ≤ p τ p−1 | fr ,x (y) − f0,x (φr (y))| ≤ p |Lip( f )(x)|p−1 α(r)

for all y ∈ B(x, r). Coming back to (3.2), we have

∣
∣
∣
∣

∫

B(x,r)

(

| fr ,x (y)|p − | f0,x (φr (y))|p
)

dνr (y)

∣
∣
∣
∣

≤
∫

B(x,r)

∣
∣
∣
∣| fr ,x (y)|p − | f0,x (φr (y))|p

∣
∣
∣
∣ dνr (y)

= −
∫

B(x,r)

∣
∣
∣
∣| fr ,x (y)|p − | f0,x (φr (y))|p

∣
∣
∣
∣ dν(y) ≤ p |Lip( f )(x)|p−1 α(r),

so

lim
r→0

∫

B(x,r)

(

| fr ,x (y)|p − | f0,x (φr (y))|p
)

dνr (y) = 0. (3.3)

To finish the proof, we need to show that the expression

∫

B(x,r)
| f0,x (φr (y))|p dνr (y) −

∫

B(x∞,1)
| f0,x (z)|p d(φr )#νr (z)

goes to zero as r → 0. Notice that

∫

B(x,r)
| f0,x (φr (y))|p dνr (y) =

∫

φr (B(x,r))
| f0,x |p d(φr )#νr

=
∫

B(x∞,1)
| f0,x |p d(φr )#νr

+
∫

φr (B(x,r))\B(x∞,1)
| f0,x |p d(φr )#νr

−
∫

B(x∞,1)\φr (B(x,r))
| f0,x |p d(φr )#νr , (3.4)

so we have to prove that the second and third summands on the right-hand side of
(3.4) disappear in the limit r → 0.

For the second summand, recall that φr are εr -isometries. For any x, y ∈ X , we
have

∣
∣
∣
∣d∞(φr (x), φr (y)) − r−1d(x, y)

∣
∣
∣
∣ ≤ εr , (3.5)
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so for y ∈ B(x, r), we have

d∞(φr (y), x∞) ≤ r−1d(x, y) + εr + d∞(φr (x), x∞) ≤ 1 + 3εr .

In other words, φr (B(x, r))\B(x∞, 1) ⊂ B(x∞, 1 + 3εr )\B(x∞, 1). Since εr → 0
as r → 0, fix ρk small enough that εr < 1

k for all r ∈ (0, ρk]. On the ball B(x∞, 4),
which contains all the sets B(x∞, 1 + 3εr )\B(x∞, 1) for r ∈ (0, ρk), the function
| f0,x | is uniformly bounded by some M , so

lim sup
r→0

∣
∣
∣
∣

∫

φr (B(x,r))\B(x∞,1)
| f0,x |p d(φr )#νr

∣
∣
∣
∣

≤ lim sup
r→0

Mp
∣
∣
∣
∣

∫

B(x∞,1+3εr )\B(x∞,1)
d(φr )#νr

∣
∣
∣
∣

≤ lim sup
r→0

Mp
∣
∣
∣
∣

∫

B(x∞,1+ 3
k )\B(x∞,1)

d(φr )#νr

∣
∣
∣
∣

= Mp ν∞(B(x∞, 1 + 3

k
)\B(x∞, 1)).

Recall that doubling measures (and ν∞ is doubling as a limit of a uniformly dou-
bling sequence) gives zero measure to boundaries of balls. In particular, we see that
ν∞(∂B(x∞, 1)) = 0. Since k was arbitrary, the right-hand side can bemade arbitrarily
small, and we see that

lim
r→0

( ∫

φr (B(x,r))\B(x∞,1)
| f0,x |p d(φr )#νr

)

= 0. (3.6)

We estimate the third summand in the right-hand side of (3.4) as follows. For any
x ∈ X and y /∈ B(x, r), by (3.5), we have

d∞(φr (y), x∞) ≥ r−1d(x, y) − εr − d∞(φr (x), x∞)‖ ≥ 1 − 3εr .

Again, fix ρk small enough that εr < 1
k for all r ∈ (0, ρk]; then the inequality above

means that φr (X)\φr (B(x, r)) ⊂ X∞\B(x∞, 1 − 3εr ) ⊂ X∞\B(x∞, 1 − 3
k ). By

definition of a pushforward measure, (φr )#νr is supported on the image of φr , so

lim sup
r→0

∣
∣
∣
∣

∫

B(x∞,1)\φr (B(x,r))
| f0,x |p d(φr )#νr

∣
∣
∣
∣

≤ lim sup
r→0

Mp
∣
∣
∣
∣

∫

B(x∞,1)\φr (B(x,r))
d(φr )#νr

∣
∣
∣
∣
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= lim sup
r→0

Mp
∣
∣
∣
∣

∫

B(x∞,1)∩(φr (X)\φr (B(x,r)))
d(φr )#νr

∣
∣
∣
∣

≤ lim sup
r→0

Mp
∣
∣
∣
∣

∫

B(x∞,1)\B(x∞,1− 3
k )

d(φr )#νr

∣
∣
∣
∣

= Mp ν∞(B(x∞, 1)\B(x∞, 1 − 3

k
)).

Since k was arbitrary, the right-hand side can be made arbitrarily small and we see
that

lim
r→0

( ∫

B(x∞,1)\φr (B(x,r))
| f0,x |p d(φr )#νr

)

= 0. (3.7)

When we plug in equations (3.6) and (3.7) to (3.4), we obtain that

lim
r→0

( ∫

B(x,r)
| f0,x (φr (y))|p dνr (y) −

∫

B(x∞,1)
| f0,x (z)|p d(φr )#νr (z)

)

= 0,

which together with (3.3) give the statement of the Lemma. ��

Proposition 3.3 Suppose that (X , d, ν) is a doubling metric measure space, which
satisfies the (1, p)-Poincaré inequality for some p ∈ (1,∞). Let f ∈ Lip(X) and
suppose that x ∈ X is a differentiability point of f , i.e. the statement of theRademacher
theorem (Theorem 2.8) holds for x. Suppose additionally that the tangent cone at x is
a Euclidean space of dimension N. Then,

lim
r→0

1

r p
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) = Cp,N |Lip( f )(x)|p, (3.8)

where

Cp,N = −
∫

B(0,1)
|z · v|p dLN (z), (3.9)

Here, v is any unit vector in RN .

The constantCp,N is not the same as the constant Kp,N in the statement of Theorem
1.1, but they are closely related, see Sect. 4.1.

Proof In the notation introduced in Sect. 2.2, notice that | f (x) − f (y)| = r | fr ,x (y)|.
Using Lemma 3.2 in the third equality and the fact that the measures (φr )#νr converge
weakly to ν∞ (by the definition of measured Gromov–Hausdorff convergence) in the
last equality, we obtain
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lim
r→0

1

r p
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) = lim

r→0

1

r p

∫

B(x,r)
| f (x) − f (y)|p dνr (y)

= lim
r→0

∫

B(x,r)
| fr ,x (y)|p dνr (y)

= lim
r→0

∫

B(x∞,1)
| f0,x (z)|p d(φr )#νr (z)

=
∫

B(x∞,1)
| f0,x (z)|p dν∞(z). (3.10)

Now, we need to estimate this last expression using the fact that for ν-a.e. x ∈ X the
tangent space is the Euclidean space (RN , 0, ‖ · ‖, cNLN ).

Recall that f0,x is a generalised linear function with Lipschitz constant Lip( f )(x).
Since the tangent space X∞ is Euclidean, by [7, Theorem 8.11] f0,x is affine; since
f0,x is the locally uniform limit of fr ,x , it has value 0 at zero. This means that f0,x is
of the form:

f0,x (z) = Lip( f )(x) z · v,

where v is a vector of length one. Since (X∞, x∞, d∞, ν∞) = (RN , 0, ‖ · ‖, cNLN ),
we have

∫

B(x∞,1)
| f0,x (z)|p dν∞(z) =

∫

B(0,1)
| f0,x (z)|p cN dLN (z)

=
( ∫

B(0,1)
|z · v|p cN dLN (z)

)

|Lip( f )(x)|p

= Cp,N |Lip( f )(x)|p, (3.11)

where Cp,N is the constant introduced in (3.9); note that it only depends on p and the
dimension of the tangent space. ��

This approach, using a blow-up technique and the Rademacher theorem instead of
the Taylor formula used in the original proof in [5], gives a new proof even in the
context of Euclidean spaces. Notice that the constant Cp,N does not depend on the
metric space itself—it depends only on the dimension of the tangent space N .

Moreover, a significant part of the proof did not depend on the structure of the tan-
gent space; it plays a role only via the characterisation of generalised linear functions.
In the general case, when the unique tangent cone to (X , d, ν) is an arbitrary metric
space (X∞, x∞, d∞, ν∞), the calculation in equation (3.10) remains the same. What
remains to be shown is that the value of the integral

∫

B∞(x∞,1)
| f0,x (z)|p dν∞(z)

appearing in equation (3.10) is the same for every generalised linear function f0,x
with prescribed (constant) value of the minimal upper gradient. In other words, one
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needs to show that the constant Cp,X is well defined. Therefore, this approach allows
for some extensions in terms of the structure of the tangent space, such as the case
when the tangent space is the Heisenberg group H1, see Sect. 4.2.

Now, we use the pointwise result proved above to prove the desired result for
Sobolev spaces for p > 1. The first step is to prove a uniform estimate on the integral
of the nonlocal gradient for Sobolev functions. From now on, denote Δr = {(x, y) ∈
X × X : d(x, y) < r}.
Lemma 3.4 Let p ∈ (1,∞). Suppose that (X , d, ν) is a doubling metric measure
space which supports a (1, p)-Poincaré inequality. For any f ∈ W 1,p(X , d, ν), we
have

1

r p

∫

X
−
∫

B(x,r)
| f (y) − f (x)|p dν(y) dν(x) ≤ C(p, X) · Chp( f ). (3.12)

Proof Take g ∈ L p(X , ν) given by Lemma 2.3 and calculate

1

r p

∫

X
−
∫

B(x,r)
| f (y) − f (x)|p dν(y) dν(x)

= 1

ν(B(x, r))

∫

Δr

∣
∣
∣
∣
f (y) − f (x)

r

∣
∣
∣
∣

p

dν(y) dν(x)

≤ 1

ν(B(x, r))

∫

Δr

∣
∣
∣
∣
f (y) − f (x)

d(x, y)

∣
∣
∣
∣

p

dν(y)dν(x)

≤ C p

ν(B(x, r))

∫

Δr

(g(x) + g(y))pdν(y)dν(x)

≤ C p 2p−1

ν(B(x, r))

∫

Δr

(

(g(x))p + (g(y))p
)

dν(y) dν(x)

= C p 2p−1

ν(B(x, r))

( ∫

X

∫

B(x,r)
(g(x))p dν(y) dν(x) +

∫

B(y,r)

∫

X
(g(y))p dν(y) dν(x)

)

= C p 2p−1
∫

X
(g(x))p dν(x) + C p 2p−1 ν(B(y, r))

ν(B(x, r))

∫

X
(g(y))p dν(y)

≤ C ′
∫

X
(g(x))p dν(x) ≤ C(p, X) · Chp( f ).

Here, the constant in the last line comes from Lemma 2.3 and the doubling property.
��

Now,we integrate the pointwise result (Proposition 3.3) and use the density of Lips-
chitz functions to prove an analogue of Theorem 1.1 for Sobolev spacesW 1,p(X , d, ν)

for p > 1 in the general setting.

Theorem 3.5 Suppose that (X , d, ν) is a complete, separable, doubling metric mea-
sure space which supports a (1, p)-Poincaré inequality. Suppose additionally that X
has Euclidean tangents of dimension N for ν-a.e. x ∈ X. Let f ∈ W 1,p(X , d, ν),
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where p ∈ (1,∞). Then

lim
r→0

1

r p

∫

X
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) dν(x) = Cp,N · Chp( f ). (3.13)

Proof Define an auxiliary function fr ∈ L p(X × X , ν ⊗ ν) by the formula

f r (x, y) = | f (x) − f (y)|
r

χB(x,r)(y) |B(x, r)|−1/p.

The fact that fr ∈ L p(X×X , ν⊗ν) follows from Lemma 3.4. Using this function, we
can rephrase equation (3.12) as ‖ f r‖p

L p(X×X ,ν⊗ν) ≤ C · Chp( f ) and equation (3.13)
as follows:

lim
r→0

‖ f r‖p
L p(X×X ,ν⊗ν) = Cp,N · Chp( f ).

Now, take any f , g ∈ W 1,p(X , d, ν). We estimate

∣
∣
∣
∣‖ f r‖L p(X×X ,ν⊗ν) − ‖gr‖L p(X×X ,ν⊗ν)

∣
∣
∣
∣

≤ 2p−1‖( f − g)r‖L p(X×X ,ν⊗ν) ≤ C · (Chp( f − g))1/p.

By the above equation, taking into account the density of Lipschitz functions with
bounded support inW 1,p(X , d, ν), it suffices to establish equation (3.13) for Lipbs(X).

Take any f ∈ Lipbs(X)withLipschitz constant L . First, suppose thatd(x, supp f ) ≤
r ; then, we get

1

r p
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) ≤ −

∫

B(x,r)
L p dν(y) = L p.

On the other hand, if d(x, supp f ) > r , then clearly

1

r p
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) = 0.

Let us rewrite the above considerations as follows. Denote

h(x) =
{
L p if d(x, supp f ) ≤ 1;
0 if d(x, supp f ) > 1.

Then, h ∈ L p(X , ν). Given any r ∈ (0, 1), for ν-a.e. x ∈ X we have

1

r p
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) ≤ h(x). (3.14)

123



Bourgain–Brezis–Mironescu Approach in Metric Spaces Page 15 of 22 128

Now, we use Proposition 3.3; since the set of points in the statement of Theorem 2.8
(Rademacher theorem) is of full measure, for ν−a.e. x ∈ X we obtain equality (3.8).
By the estimate (3.14), we may integrate equality (3.8) over X and use the dominated
convergence theorem to take the limit r → 0; we get that (3.13) is satisfied for f . We
extend this result to W 1,p(X , d, ν) by density of Lipschitz functions with bounded
support. ��

4 Comments and Extensions

4.1 Comparison with Taking Averages on Balls

The constant Kp,N in Theorem1.1 and the constantCp,N in Theorem3.5 are not equal,
but they are closely related; in the case when X = R

N , the two results are related as
follows: if we make the right choice of the approximating kernel ρr in Theorem 1.1,
namely

ρr (x) =
(

r N
∫

B(0,1)
|z|p dLN (z)

)−1 |x |p
r p

χB(0,r)(x),

we get Theorem 3.5. Such ρr satisfies the assumptions of Theorem 1.1, since it is
nonnegative, radial, has support in the ball B(0, r) and the normalisation constant is
chosen so that

∫
RN ρr dLN = 1. If we use such ρr in Theorem 1.1, we obtain

Kp,N ‖∇ f ‖p
L p(RN )

= lim
r→0

∫

RN

∫

RN

| f (x) − f (y)|p
|x − y|p ρr (|x − y|) dLN (x) dLN (y)

= lim
r→0

(

r N
∫

B(0,1)
|z|p dLN (z)

)−1

1

r p

∫

RN

∫

B(x,r)
| f (x) − f (y)|p dLN (x) dLN (y)

= lim
r→0

( ∫

B(0,1)
|z|p dLN (z)

)−1

1

r p

∫

RN
r−N

∫

B(x,r)
| f (x) − f (y)|p dLN (x) dLN (y)

= lim
r→0

(

−
∫

B(0,1)
|z|p dLN (z)

)−1

1

r p

∫

RN
−
∫

B(x,r)
| f (x) − f (y)|p dLN (x) dLN (y),

so
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lim
r→0

1

r p

∫

RN
−
∫

B(x,r)
| f (x) − f (y)|p dLN (x) dLN (y)

=
(

−
∫

B(0,1)
|z|p dLN (z)

)

Kp,N‖∇ f ‖p
L p(RN )

.

Hence, we have

Cp,N =
(

−
∫

B(0,1)
|z|p dLN (z)

)

Kp,N .

Finally, let us see that it agrees with the value given in Proposition 3.3. We use the
spherical version of the Fubini theorem with u(x) = χB(0,1)(x) |x |p:

Cp,N = Kp,N

LN (B(0, 1))

∫

B(0,1)
|z|p dLN (z)

= Kp,N

LN (B(0, 1))

∫ 1

0
r N+p−1

∫

∂B(0,1)
1 dσ dr

= HN−1(SN−1) Kp,N

LN (B(0, 1))

∫ 1

0
r N+p−1 dr

= HN−1(SN−1)

LN (B(0, 1))

∫ 1

0
r N+p−1 −

∫

∂B(0,1)
|x · v|p dσ dr

= 1

LN (B(0, 1))

∫ 1

0
r N−1

∫

∂B(0,1)
|r x · v|p dσ dr

= 1

LN (B(0, 1))

∫ ∞

0
r N−1

∫

∂B(0,1)
χB(0,1)(r x) |r x · v|p dσ dr

= 1

LN (B(0, 1))

∫

RN
χB(0,1)(x) |x · v|p dLN (x) = −

∫

B(0,1)
|x · v|p dLN (x),

hence, the constant Cp,N is consistent with the constant Kp,N for a special choice of
the approximating sequence.

4.2 Spaces with Heisenberg Group as a Tangent

A closer look at the structure of the proof of Theorem 3.5 reveals that the assumption
that X has Euclidean tangents ν-a.e. comes into play only via the structure of gen-
eralised linear functions on the tangent space X∞. Therefore, in principle, it should
be possible to generalise Theorem 3.5 to the case when the tangent space at ν-a.e.
point is fixed, but not Euclidean. In this Section, we take a closer look at the classical
results of Cheeger ( [7]) to present such an argument for a simple case: the Heisenberg
groupH1. We also discuss the main difficulties with such an argument for an arbitrary
tangent space.
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Recall that the Heisenberg group H
1 is the space R

3 equipped with a Lie group
structure with multiplication

(x1, x2, x3) · (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 + 2(x1y2 − x2y1))

and equipped with the Carnot-Carathéodory distance (arising from a family of left
invariant vector fields). By the left invariance of the distance, it is enough to compute
the distance from 0 to any given point (denoted by d0); then, the distance dH1 is related
to d0 by left invariance, namely dH1(x, y) = d0(y−1x). As proved in [13, Corollary
3.2], d0 is given by the formula:

d0

(

(x1, x2, x3)

)

= x3√
x21 + x22

sin

(

πH−1(
x3

x21 + x22
)

)

+
√
x21 + x22 cos

(

πH−1(
x3

x21 + x22
)

)

,

(4.1)

where H : (−1, 1) → R is defined by the formula:

H(s) = 2π

1 − cos(2πs)

(

s − sin(2πs)

2π

)

.

The function H is a real analytic diffeomorphism of (−1, 1) onto R with H(0) = 0.
We begin the argument by recalling [7, Theorem 8.10].

Theorem 4.1 Assume that Z is complete, noncompact, equipped with a doubling mea-
sure μ which satisfies the (1, p)-Poincaré inequality. Let l ∈ Lip(Z) be a generalised
linear function on Z. Then, for any z0 ∈ Z, there exists a geodesic γ : (−∞,∞) → Z
with γ (0) = z0 such that γ is an integral curve for the upper gradient gl = Lip(l).

Next, we set bγ,s(z) = d(z, γ (s)) − |s|, and define the Busemann functions b±
γ (z)

by the formula b±
γ (z) = lims→±∞ bγ,s(z). The limit is well defined since the bγ,s is

decreasing in |s| and bounded from below on compact subsets of Z . Now, we recall
[7, Theorem 8.11].

Theorem 4.2 Under the assumptions of Theorem 4.1, for any geodesic γ as given by
that Theorem, we have

l(z0) − Lip(l) · b+
γ (z) ≤ l(z) ≤ l(z0) + Lip(l) · b−

γ (z). (4.2)

Our goal is to analyse the Busemann functions to show that on theHeisenberg group
H

1 these inequalities are in fact equalities (as in the Euclidean case), which will give a
structure result on the generalised linear functions. In the case interesting to us, when
Z = H

1, unbounded geodesics are horizontal lines (which is not true in general even
for Carnot groups), see [14, Proposition 5.6]. Let γ be given by Theorem 4.1; then,
since it is a horizontal line, it is of the form γ (s) = (as, bs, 0), where a2 + b2 = 1.
Since by equation (4.1) the distance dH1 is invariant with respect to rotations in the
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horizontal plane, without loss of generality we may assume that (a, b) = (1, 0). Then,
given z = (z1, z2, z3), we have

bγ,s(z) = dH1 (z, γ (s)) − |s| = d0(0, (−γ (s)) · z) − |s| = d0((z1 − s, z2, z3 − 2z2s)) − |s|
= (z3 − 2z2s)√

(z1 − s)2 + z22

sin

(

πH−1(
z3 − 2z2s

(z1 − s)2 + z22
)

)

+
√

(z1 − s)2 + z22 cos

(

πH−1(
z3 − 2z2s

(z1 − s)2 + z22
)

)

− |s|.

We will compute the limit of bγ,s as s → +∞; the other calculation is similar. Recall
that H ′(0) �= 0 and H(0) = 0, so on the first part we have

lim
s→∞

(z3 − 2z2s)√
(z1 − s)2 + z22

sin

(

πH−1(
z3 − 2z2s

(z1 − s)2 + z22
)

)

= lim
s→∞(−2z2) sin

(

πH−1(
z3 − 2z2s

(z1 − s)2 + z22
)

)

= 0.

On the second part, we have

lim
s→∞

(√
(z1 − s)2 + z22 cos

(

πH−1(
z3 − 2z2s

(z1 − s)2 + z22
)

)

− s

)

= lim
s→∞

((z1 − s)2 + z22) cos
2(πH−1( z3−2z2s

(z1−s)2+z22
)) − s2

√
(z1 − s)2 + z22 cos(πH−1( z3−2z2s

(z1−s)2+z22
)) + s

= lim
s→∞

1

2s

(

((z1 − s)2 + z22) cos
2(πH−1(

z3 − 2z2s

(z1 − s)2 + z22
)) − s2

)

= lim
s→∞

1

2s

(

(s2 − 2z1s) cos
2(πH−1(

z3 − 2z2s

(z1 − s)2 + z22
)) − s2

)

= lim
s→∞

(
1

2
s(cos2(πH−1(

z3 − 2z2s

(z1 − s)2 + z22
)) − 1)

−z1 cos
2(πH−1(

z3 − 2z2s

(z1 − s)2 + z22
))

)

= −z1.

Hence, we have that b+
γ ((z1, z2, z3)) = −z1; similarly, we have b−

γ ((z1, z2, z3)) = z1.
In particular, b+

γ = −b−
γ , so we have equalities in equation (4.2). Assuming addition-

ally that l((0, 0, 0)) = 0, we have that the function l is of the form l((z1, z2, z3)) =
Lip(l)z1. In general, for any horizontal line (as, bs, 0), we obtain that for v = (a, b, 0)
we have l(z) = Lip(l)(z · v), where · denotes the usual scalar product in R3.

Now,we investigate the proof of Theorem 3.5. The only placewhere the assumption
that the tangent is the Euclidean space comes into play is in the proof of Proposition
3.3. In this proof, the computation in equation (3.10) stays the same, and the only
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difference is in its final step.Wemodify the proof for the Euclidean tangent as follows.
By the considerations above f0,x (in the notation of Proposition 3.3) is of the form

f0,x (z) = Lip( f )(x) z · v,

where v = (a, b, 0) with a2 + b2 = 1. Denote cH1 = (L3(BH1(0, 1)))−1. Since
(X∞, x∞, d∞, ν∞) = (H1, 0, dH1 , cH1L3), we make a similar calculation as in equa-
tion (3.11) and get

∫

B(x∞,1)
| f0,x (z)|p dν∞(z) =

∫

B
H1 (0,1)

| f0,x (z)|p cH1 dL3(z)

=
( ∫

B
H1 (0,1)

|z · v|p cH1 dL3(z)

)

|Lip( f )(x)|p

= Cp,H1 |Lip( f )(x)|p,

where

Cp,H1 = −
∫

B
H1 (0,1)

|z · v|p dL3(z).

Here, v is any unit horizontal vector. Note that this does not depend on the choice of
v due to the invariance of the distance dH1(0, x) with respect to horizontal rotations
- it is a constant that again only depends on p and the choice of the tangent space.
Therefore, we proved that

Corollary 4.3 Suppose that (X , d, ν) is a complete, separable, doubling metric mea-
sure space which supports a (1, p)-Poincaré inequality. Suppose additionally that
the tangent space to X for ν-a.e. x ∈ X is the Heisenberg group H

1. Let f ∈
W 1,p(X , d, ν), where p ∈ (1,∞). Then

lim
r→0

1

r p

∫

X
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) dν(x) = Cp,H1 · Chp( f ).

Since the formula (4.1) for the distance holds also in higher Heisenberg groupsHN

(as proved in [13]), the same proof works also in that case; however, for simplicity we
presented the proof for H1.

In light of the results in [18], it is natural to consider the case when the tangent
is an arbitrary Carnot group G equipped with a sub-Finsler distance. However, the
situation in this case is much more complicated. Recall that in the proof of Theorem
3.5 the only place where the assumption that the tangent is the Euclidean space comes
into play is in the second half of the proof of Proposition 3.3, when we show that the
integral

∫

B∞(x∞,1)
| f0,x (z)|p dν∞(z)

123



128 Page 20 of 22 W. Górny

on the right-hand side of equation (3.10) is the same for every generalised linear
function with prescribed upper gradient. Therefore, one needs to show the precise
form of all generalised linear functions and justify the invariance of the integral.
However, even assuming that they have the same form as for the Heisenberg group,
i.e. that up to a multiplicative constant all of them have the form z · v, where v is a
unit horizontal vector, it is not clear that the value of the integral does not depend on
the choice of v. This holds for instance when the distance is invariant with respect
to horizontal rotations. In fact, this type of assumption was used in [4] to obtain
a Bourgain–Brezis–Mironescu type result on Carnot groups. However, even for the
standard Carnot-Carathéodory distance, this property is only known for some special
choices of the Carnot group G (for instance, for the Heisenberg groups HN it follows
from formula (4.1)).

4.3 Spaces with Tangent Changing from Point to Point

In this subsection, we want to illustrate that the assumption that the tangent space is
fixed is crucial in order for Theorem 3.5 to hold. If we allow for different tangent
spaces for different points and use Proposition 3.3, we may end up with different
constants in the pointwise estimate for Lipschitz functions and there would be no
global constant satisfying the statement of Theorem 3.5. With these considerations in
mind, we will construct an example of this phenomenon using the space constructed in
[15, Remark 6.19(a)] by glueing together the Euclidean space R4 and the Heisenberg
group.

Suppose that A is a closed subset of a metric space Y such that an isometric copy
of A lies inside a metric space Z , i.e. there exists an isometric embedding i : A → Z .
We understand this embedding to be fixed and consider A to be a closed subset of both
Y and Z . We define the space Y ∪A Z to be the disjoint union of Y and Z with points
in the two copies of A identified. This space is endowed with a natural metric which
extends the original metrics in Y and Z ; given x1, x2 ∈ Y ∪A Z , we set

d(x1, x2) =
⎧
⎨

⎩

dY (x1, x2) if x1, x2 ∈ Y ;
dZ (x1, x2) if x1, x2 ∈ Z;
infa∈A(dY (x1, a) + dZ (a, x2)) if x1 ∈ Y and x2 ∈ Z .

Example 4.4 Let X = R
4 ∪A H

1, where A is an unbounded geodesic (any line in R
4

and a horizontal line inH1). As shown in [15, Remark 6.19(a)], this space is doubling
(even 4-regular) and admits a (1, p)-Poincaré inequality for all p > 3.

Now, we take two functions with supports away from A. Namely, we set f ∈
C∞
c (R4\A) and g ∈ C∞

c (H1\A). We extend them by zero to the whole space X .
Then, since the support of f lies entirely in R4, by Theorem 3.5 we have

lim
r→0

1

r p

∫

X
−
∫

B(x,r)
| f (x) − f (y)|p dν(y) dν(x) = Cp,4 · Chp( f )
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and since the support of g lies entirely in H1, by Corollary 4.3 we have

lim
r→0

1

r p

∫

X
−
∫

B(x,r)
|g(x) − g(y)|p dν(y) dν(x) = Cp,H1 · Chp(g).

In particular, there is no single constant Cp,X such that the statement of Theorem 3.5
holds, since there exists p > 3 such thatCp,4 �= Cp,H1 ; for instance, for p = 4, taking
v = e1 in the definition of C4,4 we have

C4,4 = −
∫

B
R4 (0,1)

|z · e1|4 dL4(z) = 1
1
2π

2

∫

B
R4 (0,1)

|z1|4 dL4(z)

= 2

π2

∫ 1

−1
|z1|4

( ∫

B((z1,0,0,0),
√
1−z21)

1 dL3((z2, z3, z4))

)

dL1(z1)

= 2

π2

∫ 1

−1
|z1|4 4

3
π(1 − z21)

3
2 dL1(z1)

= 8

3π

∫ 1

−1
|z1|4 (1 − z21)

3
2 dL1(z1) = 1

16
= 0.0625,

while the constant C4,H1 (which we can compute numerically from the explicit
parametrisation of the unit ball in H1 given in [21]) has value C4,H1 ≈ 0.106. Hence,
for p = 4 the space is doubling and satisfies a (1, p)-Poincaré inequality, but since it
has different tangents at different points, an analogue of Theorem 3.5 does not hold
in this setting.
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