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Abstract
In this article, we study the stability problem for the Einstein–Hilbert functional on
compact symmetric spaces following and completing the seminal work of Koiso on
the subject. We classify in detail the irreducible representations of simple Lie algebras
with Casimir eigenvalue less than the Casimir eigenvalue of the adjoint representation
and use this information to prove the stability of the Einstein metrics on both the
quaternionic andCayley projective plane.Moreover, we prove that the Einsteinmetrics
on quaternionic Grassmannians different from projective spaces are unstable.
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1 Introduction

Perhaps the most interesting mathematical insight gained from studying general rel-
ativity is that the Einstein metrics g on a compact-connected manifold M can be
characterized variationally as critical points of the Einstein–Hilbert or total scalar
curvature functional

S[ g ] :=
∫
M
scalg | volg |

on the set M+ := �(Sym2+T ∗M ) of Riemannian metrics on M under volume-
preserving variations. Here, scalg denotes the scalar curvature of the metric g. By
construction, the functional S is invariant S[ ϕ∗g ] = S[ g ] under the right action
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of the diffeomorphism group Diff M on the set M+ via pull back, for this reason,
the second variation of the Einstein–Hilbert functional in a critical point will have an
infinite-dimensional space of null directions.

Factoring out the action of the connected component Diff◦M ⊆ Diff M of
the identity, we may consider instead the reduced Einstein–Hilbert functional S :
M V+ /Diff◦M −→ R on the set of marked isometry classes of Riemannian metrics
g ∈ M V+ of volume V = Vol[ g ] on a compact manifold M of dimension m ∈ N.
It is technically easier though to use the equivalent functional SV on the quotient of
the setM+ of all Riemannian metrics by the extended group R+ ×Diff◦M acting on
the right by pull back and constant rescaling

For every Einstein metric g of volume Vol[ g ] = V on M different from a round
metric on Sm the formal tangent space to g ∈ M+ decomposes into the direct sum
[2, Lemma 4.57]

�(Sym2T ∗M ) = C∞( M ) g ⊕ im D ⊕
(
ker D∗ ∩ �(Sym2◦T ∗M )

)
, (1)

where D∗ : �(Sym2T ∗M ) −→ �( T M ), h 
−→ D∗h, is the formally adjoint
differential operator to the Lie derivative D : �( T M ) −→ �(Sym2T ∗M ), X 
−→
LieX g. Both differential operators factorize over ∇ and can be written as sums over
local orthonormal bases:

DX :=
∑
μ

E�
μ · (∇Eμ X )� D∗h := −

∑
μ

( Eμ � ∇Eμh )� . (2)

The subspace R g ⊕ im D ⊕ { 0 } ⊆ �(Sym2T ∗M ) defined in terms of the decom-
position (1) is equal to the tangent space to the R

+ × Diff◦M-orbit of the Einstein
metric g in M+. Choosing the subspace C∞( M )◦ ⊆ C∞( M ) of functions with
zero integral as a linear complement to the constantsR ⊆ C∞( M ), we get a suitable
description of the formal tangent space

T[ g ]
(
M V+ /Diff◦M

)
=̂ C∞( M )◦g ⊕

(
ker D∗ ∩ �(Sym2◦T ∗M )

)

to the marked isometry class [ g ] of the Einstein metric in the quotientM V+ /Diff◦M .
Under this identification of the formal tangent space to the marked isometry class
of the Einstein metric g, the Hessian S ′′ of the reduced Einstein–Hilbert functional
becomes the following quadratic form for tuples f ⊕ h formed by a zero integral
function f and a so-called tt-tensor, a trace and divergence-free symmetric 2-tensor
h ∈ ker D∗ ∩ �(Sym2◦T ∗M )
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S ′′[ g; f ⊕ h ] := d2

dt2

∣∣∣∣
0
SV [ g + t ( h + f g ) ]

= −
(
�Lh − 2

scal

m
h, h

)
L2

+
(
m − 1

2

) (
� f − scal

m − 1
f , f

)
L2

,

(3)

see [2, Theorem 4.60]. In this formula �L denotes the Lichnerowicz Laplacian:

�L := ∇∗∇ + q(R) q( R ) := 1

2

∑
μν

(Eμ ∧ Eν) � REμ, Eν . (4)

The interested reader may find more details on �L and q( R ) in [16]. The original
definition of Lichnerowicz spelled out the curvature term q( R ) in the form:

where DerRic acts on 2-tensors by (DerRich )( X , Y ) := h(Ric X , Y )+ h( X ,

Ric Y ) and:

The explicit formula (3) of the Hessian S ′′ of the reduced Einstein–Hilbert func-
tional highlights again the special role of the round spheres in the decomposition (1):
According to the Theorem of Lichnerowicz–Obata [6], the Laplace–Beltrami operator
satisfies � > scal

m−1 on the subspace C
∞( M )◦ ⊆ C∞( M ) of zero integral functions

for all compact Einstein manifolds M of scalar curvature scal ∈ R and dimension
m ≥ 3 except for the round spheres. In consequence, the Hessian S ′′ of the reduced
Einstein–Hilbert functional is positive definite on the subspace C∞( M )◦ tangential
to conformal, volume-preserving variations of g.

En nuce the stability problem for compact Einstein manifolds M is the question,
whether the Hessian S ′′ of the reduced Einstein–Hilbert functional is negative definite
on the complementary subspace ker D∗ ∩ �(Sym2◦T ∗M ) of tt-tensors. Following the
seminal work of Koiso, we call an Einsteinmetric g stable, if its HessianS ′′ is negative
definite on the space of tt-tensors; in the same vein, we call g unstable provided that
there are tt-tensor directions on which S ′′ is positive definite [10, Definition 2.7]. The
kernel ofS ′′ agrees with the space of infinitesimal Einstein deformations characterized
by the linearized Einstein equation:

�Lh − 2
scal

m
h = 0 h ∈ ker D∗ ∩ �(Sym2◦T ∗M ) .

Stability of Einstein metrics with respect to the Einstein–Hilbert functional S has been
extensively studied for example in [4,10] and [11]. In [10] Koiso essentially classified
the stable symmetric spaces of compact type. More precisely Koiso’s result stipulates
that the Einsteinmetrics on simply connected irreducible symmetric spaces of compact
type are stable unless the spaces belong to one of the following three categories with
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n ≥ 3; r , s ≥ 2:

In the work of Koiso, the complex quadric Gror2 R
5 = SO(5)/SO(3) × SO(2) in

CP4 was actually overlooked as remarked by Cao & He [3]; however, it is unsta-
ble according to results by Gasqui & Goldschmidt [7]. The stability status of the
quaternionic and Cayley projective plane HP2 and OP2 = F4/Spin(9), and the
quaternionic Grassmannians GrrHr+s = Sp(r + s)/Sp(r) × Sp(s) with r , s ≥ 2,
remained undecided by Koiso. Apparently this question has not been settled since. In
the recent work of Cao & He [3, Table 2], for example, the stability status of these
spaces is listed as unknown. Our main result fills this gap and clarifies the stability
status for the remaining symmetric spaces of compact type:

Theorem 1.1 (Stability of Quaternionic and Cayley Projective Plane) The Cayley pro-
jective plane OP2 = F4/Spin(9) is stable in the sense of Koiso. The quaternionic
Grassmannians GrrHr+s = Sp(r + s)/Sp(r) × Sp(s) of quaternionic subspaces of
dimension r in H

r+s are unstable in the sense of Koiso for all parameters r , s ≥ 2,
for r = 1 or s = 1; however, they are stable. In particular,HP2 = Gr1H3 is stable.

It should be pointed out that Koiso identified the Lichnerowicz Laplacian on symmet-
ric spaces with a suitably normalized Casimir operator Cas and used this information
to compute the first eigenvalue of �L on the space �(Sym2◦T ∗M ) of trace-free sym-
metric 2-tensors. The first eigenvalues 2(r+s)

(r+s+1)
scal
m and 4

3
scal
m Koiso obtained for the

quaternionic Grassmannians GrrHr+s and the Cayley projective plane OP2 are both
below the critical value 2 scal

m . Our contribution to the classification of Koiso solves
the question, whether the corresponding trace-free eigentensors h ∈ �(Sym2◦T ∗M )

of the Lichnerowicz Laplacian �L can be chosen to be divergence-free D∗h = 0 as
well or not.

Besides Koiso’s notion, there actually exists a weaker notion of stability of Einstein
metrics, the so-called S-linear stability (cf. [17,18]), which allows for the presence
of infinitesimal deformations. More precisely an Einstein metric is called S-linearly
stable, ifS ′′ is non-positive on the space of tt-tensors. According to the classification of
Koiso, the only two symmetric spaces of compact typewith infinitesimal deformations
and subcritical eigenvalues on�(Sym2◦T ∗M ) areSU( n ) andE6/F4. In a forthcoming
paper based on our approach, Schwahn [15] shows that both symmetric spaces are S-
linearly stable, because their subcritical eigenvalues are not realizable by tt-tensors.

In Sect. 2, we discuss the left regular representation on sections of homogeneous
vector bundles and use the Frobenius reciprocity to associate a family of linear maps,
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the prototypical differential operators, to every left invariant differential operator. The
prototypical divergence operators associated to D∗ allow us to translate the stability
problem into a problem in finite-dimensional linear algebra. In Sect. 3, we provide
the details of the classification of the critical representations by Koiso to identify
the subcritical eigenspaces for the quaternionic and Cayley projective plane and the
quaternionic Grassmannians. In Sects. 4 and 5, we decide for the Cayley projective
planeOP2 and the quaternionic Grassmannians, respectively, whether the subcritical
eigenvalues can be realized by tt-tensors or not.

2 Prototypical Differential Operators

Analysis on homogeneous spaces or Harmonic Analysis is a subtopic of differential
geometry of particular elegance, because many of its problems can be translated into
equivalent problems of linear algebra by means of an extensive dictionary of rules and
prescriptions. In this section, we focus on a particular concept in this dictionary, the
prototypical differential operators, in order to formulate the linear algebra equivalent
of the stability problem for compact symmetric spaces in Corollary 2.3. Of particular
importance in Sects. 4 and 5 is the formula (14) for the prototypical divergence operator
D∗

R . Below we will discuss this operator in a form geared to be easily accessible and
self-contained.

Let us recall that a homogeneous space is a manifold M endowed with a tran-
sitive smooth action G × M −→ M, ( g, p ) 
−→ g � p, of a Lie group G with
the associated group homomorphism μ : G −→ Diff M, g 
−→ μg, of left mul-
tiplication μg( p ) := g � p. A homogeneous vector bundle over a homogeneous
space is a vector bundle V M over the manifold M endowed with a smooth action
� : G × V M −→ V M, ( g, v ) 
−→ g � v, on its total space, which covers the action
of G on M and is linear on fibers. Every homogeneous vector bundle V M over M
gives rise to the infinite-dimensional left regular representation:

L : G × �( V M ) −→ �( V M ), ( g, v ) 
−→ Lgv ,

of the group G on the vector space �( V M ) by means of ( Lgv )( p ) := g � v( g−1 �
p ). Every tensor bundle – or more generally every natural vector bundle V M on a
homogeneous space M – is automatically a homogeneous vector bundle; the charac-
teristic smooth action � : G × V M −→ V M on its total space V M is implicitly
defined by stipulating the identity

Lgv
!= μ∗

g−1v (5)
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for all g ∈ G. The rather unexpected change g � g−1 in this identity is mandated
by the contravariance (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗ of the pull back of sections of natural
vector bundles. A left invariant differential operator on a homogeneous space M is a
differential operator

D : �( V M ) −→ �(WM ), v 
−→ D v , (6)

between the sections of homogeneous vector bundles V M and WM over M , which
is in addition equivariant D( Lgv ) = Lg( Dv ) under G for all v ∈ �( V M ) and
g ∈ G.

The fiber of a homogeneous vector bundle V M in a chosen base point p ∈ M is
naturally a representation VpM of the stabilizer or isotropy subgroup K := { k ∈
G | k � p = p } ⊆ G by restricting the smooth action � to the submanifold
K × VpM ⊆ G × V M . In terms of this representation the evaluation map evp :
�( V M ) −→ VpM, v 
−→ v( p ) is equivariant under the stabilizer subgroup K ⊆
G due to the trivial identity ( Lkv )( p ) = k � v( p ) for all k ∈ K and v ∈ �( V M ).
Postcomposition with evp, thus, induces a linear map

HomG( R, �( V M ) )
∼=−→ HomK ( R, VpM ), F 
−→ evp ◦ F (7)

for every finite-dimensional representation ( R, �R ) of the group G. The well-known
Frobenius reciprocity asserts that this linearmap is a vector space isomorphism, whose
inverse

HomK ( R, VpM )
∼=−→ HomG( R, �( V M ) ), F 
−→ Fext (8)

reads ( Fextr )( g � p ) = g � F( g−1�Rr ) for all r ∈ R and g ∈ G. Using Frobenius
reciprocity, we can break up a left invariant differential operator D : �( V M ) −→
�(WM ) into more manageable pieces, the prototypical differential operators DR

associated to D and a finite-dimensional representation R of the group G by means
of the commutative diagram

where the upper arrow is equal to postcomposition with D and the vertical arrows are
the Frobenius reciprocity isomorphisms. Prototypical differential operators are used
frequently in harmonic analysis, for example, to calculate the spectra of elliptic left
invariant differential operators on compact homogeneous spaces. In order to reduce
both statements of our main Theorem 1.1 to a statement about prototypical differen-
tial operators we formulate a representation theoretic concept akin to the concept of
characteristic subgroups in group theory:
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Definition 2.1 (Characteristic Subspaces of Representations). AG–characteristic sub-
space of the vector space �(V M) of sections of a homogeneous vector bundle V M
is a G–invariant subspace R ⊆ �(V M) under the left regular representation, which
contains the image F(R) ⊆ R of everyG–equivariant linear map F : R −→ �(V M).

Lemma 2.2 (Kernels of Left Invariant Differential Operators)Consider a left invariant
differential operator D : �( V M ) −→ �(WM ) between sections of homogeneous
vector bundles V M and WM over a homogeneous space M under a transitive smooth
action G×M −→ M of a compact Lie groupG. A finite-dimensional G-characteristic
subspace R ⊆ �( V M ) intersects the kernel of D trivially R ∩ ker D = { 0 }, if
and only if the prototypical differential operator associated to D and R is injective:

DR : HomK ( R, VpM ) −→ HomK ( R, WpM )

Proof Assuming for the moment that the prototypical differential operator DR asso-
ciated to D and R is injective, we observe that the kernel of the left invariant
differential operator D : �( V M ) −→ �(WM ) is necessarily a G-invariant sub-
space ker D ⊆ �( V M ). The intersection R ∩ ker D ⊆ R is, thus, a G-invariant
subspace of the finite-dimensional representation R of the compact group G so that
there exists a surjective G-equivariant projection P : R −→ R ∩ ker D. Interpreting
P as a G-equivariant linear map P : R −→ �( V M ) we obtain an element P of the
kernel of postcomposition with the differential operator D:

HomG( R, �( V M ) ) −→ HomG( R, �(WM ) ), F 
−→ D ◦ F . (10)

Postcomposition with D, however, is conjugated to the injective prototypical dif-
ferential operator DR via the commutative diagram, and so we conclude P = 0 and
in turn R ∩ ker D = { 0 } due to the surjectivity of P . Conversely let us assume that
R and ker D intersect trivially R ∩ ker D = { 0 } and let F : R −→ �( V M ) be the
G-equivariant linear map Frobenius reciprocal to a linear map evp ◦ F ∈ ker DR in
the kernel of the prototypical differential operator DR . With D ◦ F = 0 vanishing
the image of F is contained in ker D; moreover, F( R ) ⊆ R for the G-characteristic
subspace R. In consequence F( R ) ⊆ R ∩ ker D = { 0 } leading to F = 0 and in
turn to ker DR = { 0 }. ��
In the context of Theorem 1.1, we are interested in compact-connected Riemannian
symmetric spaces M and the G-invariant subspace R ⊆ �(Sym2◦T ∗M ) given by the
direct sum of all eigenspaces of the Lichnerowicz Laplacian (4) restricted to trace-free
symmetric 2-tensors

�L : �(Sym2◦T ∗M ) −→ �(Sym2◦T ∗M )

for the eigenvalues below the critical value 2 scal
m . Here, scal and m denote the scalar

curvature and the dimension of M , respectively. Elliptic regularity [12] enjoyed
by the elliptic differential operators of Laplace type like �L ensures that R ⊆
�(Sym2◦T ∗M ) is a finite-dimensional G-invariant subspace. In order to verify that
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R is a G-characteristic subspace, we observe that the Lichnerowicz Laplacian �L is
a special case of the standard Laplace operator � defined in [16] and, thus, agrees
on every symmetric space M with the Casimir operator of G. More precisely let
Cas ∈ U g be the Casimir operator with respect to the unique invariant scalar prod-
uct B : g × g −→ R on the Lie algebra g of the group G, which makes the orbit
map G −→ M, g 
−→ g � p, through a point p ∈ M a Riemannian submersion.
The image of Cas ∈ U g under the left regular representation L on �(Sym2◦T ∗M )

satisfies

�L ◦ F = LCas ◦ F = F ◦ (Cas �R ) (11)

for every G-equivariant linear map F : R −→ �(Sym2◦T ∗M ). According to equa-
tion (11) every finite direct sum R ⊆ �(Sym2◦T ∗M ) of eigenspaces of �L is
G-characteristic, because every G-equivariant linear map F : R −→ �(Sym2◦T ∗M )

maps R necessarily into the direct sum of eigenspaces of �L for the eigenvalues the
Casimir operator Cas assumes on R:

Corollary 2.3 (Stability of Einstein Metrics on Symmetric Spaces) Consider a com-
pact irreducible Riemannian symmetric space M of dimension m and scalar curvature
scal as a homogeneous space under the transitive action G × M −→ M of its isome-
try group G. The direct sum of all eigenspaces of the Lichnerowicz Laplacian �L for
the eigenvalues below the critical value 2 scal

m is a finite-dimensional G-characteristic
subspace R ⊆ �(Sym2◦T ∗M ). In particular, the symmetric Einstein metric on M is
stable

R ∩ ker
(
D∗ : �(Sym2◦T ∗M ) −→ �( T M )

)
= { 0 } ,

if and only if the prototypical differential operator associated to the divergence D∗ is
injective:

D∗
R : HomK ( R, Sym2◦T ∗

p M ) −→ HomK ( R, TpM ) .

For Riemannian symmetric spaces, the critical value 2 scal
m has a rather direct interpre-

tation in terms of the Casimir operator Cas. In order to establish this interpretation,
we remark that the standard Laplace operator � is defined in [16] for every natural
vector bundle over a Riemannian manifold M , not only for Sym2◦T ∗M , in particular,
the version of � defined on the tangent bundle appears in the following identity for
Killing vector fields X ∈ �( T M ):

�X = 2 Ric X . (12)

For a Riemannian symmetric space M , the fundamental vector field map

F : g −→ �( T M ), X 
−→ XM := d

dt

∣∣∣∣
0
μet X
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maps g to the Lie algebra of Killing vector fields and so equations (11) and (12) imply:

2 Ric ◦ F = � ◦ F = F ◦ (Cas �g ) .

Remark 2.4 (Casimir Eigenvalue of Adjoint Representation) The eigenvalue of the
Casimir operator Cas ∈ U g on the adjoint representation g of the isometry group G
of an irreducible Riemannian symmetric space M of dimension m is equal to

Cas �g = 2
scal

m
idg

provided the Casimir operator Cas ∈ U g is defined with respect to the unique invari-
ant scalar product on g, which makes the orbit map G −→ M, g 
−→ g � p, a
Riemannian submersion.

Corollary 2.3 and Remark 2.4 reduce Theorem 1.1 in essence to a simple and straight-
forward problem in linear algebra. In order to make this reduction effective, however,
we need to calculate the prototypical differential operators D∗

R associated to the diver-
gence operator D∗ : �(Sym2◦T ∗M ) −→ �( T M ) of equation (2) restricted to
trace-free symmetric 2-tensors. For this purpose, we recall that the Lie derivative
of a section v ∈ �( V M ) of a tensor bundle V M along X ∈ �( T M ) can be written
in terms of the connection:

LieXv = ∇Xv − (∇opX ) � v ,

induced on V M from a connection∇ on the tangent bundle, where∇op
Y X := ∇XY −

[X ,Y ] denotes the connection opposite to ∇ and � the infinitesimal representation of
the Lie algebra bundle End T M on V M . For the torsion-free Levi–Civita connection
and the fundamental vector field XM := d

dt

∣∣
0 μet X ∈ �( T M ) associated to X ∈ g,

this formula becomes

∇XM v = LieXM v + (∇XM ) � v = d

dt

∣∣∣∣
0
μ∗
et X v + (∇XM ) � v . (13)

In contrast to general Riemannian homogeneous spaces, the Lie algebra g of the
isometry group G of a Riemannian symmetric space M splits naturally into the direct
sum g = k ⊕ m of the Lie subalgebra k ⊆ g of the stabilizer K ⊆ G of a chosen
base point p ∈ M and the subspace m of transvections. The latter space corresponds
to the Killing vector fields which are parallel, i.e., in the case of symmetric spaces, the
complement m allows the description

m := { X ∈ g | (∇XM )p = 0 } ∼=−→ TpM, X 
−→ XM
p

in p. Choosing a basis E1, . . . , Em ∈ m with orthonormal values in TpM we, thus,
find
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( D∗
RF )( r ) :=

(
D∗Fext( r )

)
p

= −
m∑

μ= 1

(
EM

μ � ∇EM
μ
Fext( r )

)�

p

= −
m∑

μ= 1

(
(EM

μ )p �
( d

dt

∣∣∣∣
0
μ∗
et Eμ

Fext( r )
)
p

)�

= −
m∑

μ= 1

(
(EM

μ )p �
( d

dt

∣∣∣∣
0
Le−t Eμ Fext( r )

)
p

)�

for every given argument F ∈ HomK ( R, Sym2◦T ∗
p M ) with Frobenius reciprocal

extension Fext : R −→ �(Sym2◦T ∗M ) by using (∇EM
μ )p = 0 and equa-

tion (5) in the last line. Note that the equality ( D∗h )p = −∑
( EM

μ �∇EM
μ
h )

�
p

requires orthonormality of the local basis EM
1 , . . . , EM

m in the point p ∈ M only,
because X �∇Y h depends C∞( M )-bilinearly on X and Y . By construction Fext is
G-equivariant with Le−t Eμ Fext( r ) = Fext( e−t Eμ�Rr ) so that we can summarize
our arguments for all F ∈ HomK ( R, Sym2◦T ∗

p M ) in the form:

( D∗
RF )( r ) = −

m∑
μ= 1

(
(EM

μ )p � F(− Eμ �R r )
)�

. (14)

3 Critical Representations of Simple Lie Algebras

On a compact irreducible Riemannian symmetric space M of dimension m and scalar
curvature scal the direct sum of all eigenspaces of the Lichnerowicz Laplacian �L

on trace-free symmetric 2-tensors with eigenvalues below the critical value 2 scal
m is

a characteristic subspace R ⊆ �(Sym2◦T ∗M ) under the isometry group G. Being
a characteristic subspace R is equal to the direct sum of all isotypical components
of �(Sym2◦T ∗M ) corresponding to irreducible representations of G with Casimir
eigenvalues below the Casimir eigenvalue Casg = 2 scal

m , i.e., the eigenvalue of the
adjoint representation g according to Remark 2.4:

Definition 3.1 (Critical Representation) An irreducible finite-dimensional repre-
sentation R of a simple Lie algebra g is a critical representation with respect to the
stability problem of Einstein metrics provided its Casimir eigenvalue CasR is at most
equal to the Casimir eigenvalue Casg of the adjoint representation:

0 ≤ CasR
Casg

≤ 1 .

In order to classify the critical representations of a simple complex Lie algebra g of
rank n, we choose a maximal torus t ⊆ g, an ordering of roots in form of a system
α1, . . . , αn ∈ t∗ of simple roots and a Weyl invariant scalar product b : t∗ × t∗ −→
C, which is positive definite on the real subspace spanned by the (simple) roots.
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The geometry of the system of simple roots is encoded in the Dynkin diagram of
the simple Lie algebra g [5], and this geometry determines the fundamental weights
ω1, . . . , ωn ∈ t∗ by means of the identity

b( ωr , αs ) = δrs

2
b( αs, αs )

valid for all r , s = 1, . . . , n, where δrs denotes the Kronecker delta which casts
the boolean expression r = s to 1 or 0. A detailed tabulation of the systems of
fundamental weights for all simple complex Lie algebras can be found in a number of
references, for example in [5], and we will freely use this information in the sequel.
Up to isomorphism every irreducible finite-dimensional representation R = Rλ is
characterized by its highest weight, an element

λ = λ1 ω1 + · · · + λn ωn (15)

of the additive semigroup of t∗ generated by the fundamental weights with
λ1, . . . , λn ∈ N0. According to Freudenthal’s formula for the Casimir eigenval-
ues [5] the Casimir operator Cas ∈ U g can be normalized in such a way that the
Casimir eigenvalue of every irreducible representation R = Rλ is equal to theCasimir
constant CasR = Casλ of its highest weight λ:

Casλ := b( λ, λ + 2 ρ ) ρ := ω1 + · · · + ωn . (16)

By construction the highest weights of the form (15) form an additive semigroup
�+ ⊆ t∗. Addition in this semigroup corresponds to the Cartan product of irreducible
representations, in other words the Cartan product of two irreducible representations

Rλ and Rλ̂ of highest weights λ and λ̂ is some irreducible representation Rλ+ λ̂ =
Rλ � Rλ̂ of highest weight λ + λ̂. The Casimir eigenvalue of the Cartan product is
equal to the sum of Casimir eigenvalues

Cas
λ+λ̂

= b( λ + λ̂, λ + λ̂ + 2ρ )

= b( λ, λ + 2ρ ) + 2 b( λ, λ̂ ) + b( λ̂, λ̂ + 2ρ )

= Casλ + 2 b( λ, λ̂ ) + Cas
λ̂

plus an additional term b( λ, λ̂ ). Both highest weights λ and λ̂ pertain to the Weyl
chamber, the real cone in t∗ generated by the fundamental weights ω1, . . . , ωn , and
so the additional term is strictly positive b( λ, λ̂ ) > 0 unless λ = 0 or λ̂ = 0.
Thought of as a map Cas : �+ −→ R, λ 
−→ Casλ, the Casimir eigenvalue is, thus,
superadditive in the sense Cas

λ+λ̂
≥ Casλ + Cas

λ̂
, hence the equality (15) converts

into the linear lower bound

Casλ ≥ λ1 Casω1 + · · · + λn Casωn (17)
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for the Casimir eigenvalue of a highest weight λ ∈ �+ with equality, if and only if λ is
itself a fundamental weight or zero. This linear lower bound is of course rather weak,
after all the Casimir eigenvalue is the quadratic polynomial (16) in λ, nevertheless it
suffices to select a short list of candidates for critical representations for every simple
Lie algebra g.

Let us discuss this procedure for the sequence of special linear Lie algebras sl(n +
1,C) for all n ≥ 1, which correspond to the Dynkin diagrams of type An . Theweights
ε1, . . . , εn+1 of the defining representation V := C

n+1 generate the dual t∗ of the
maximal torus t ⊆ sl(n + 1,C) of diagonal matrices and are subject only to the
characteristic trace zero constraint

ε1 + ε2 + · · · + εn+1 = 0 .

which is reflected by the following Weyl invariant scalar product b : t∗ × t∗ −→ C

on t∗:

b( εμ, εν ) := δμν − 1

n + 1
. (18)

Due to the trace zero constraint the generating weights ε1, . . . , εn+1 are linearly
dependent, nevertheless the scalar product b( λ, λ̂ ) of two linear combinations λ, λ̂ ∈
t∗ of ε1, . . . , εn+1 is readily calculated by first pretending that ε1, . . . , εn+1 is an
orthonormal basis of t∗ and then subtracting the product of the two coefficient sums
of λ and λ̂ respectively divided by n + 1. For a suitable ordering of roots the simple
roots and fundamental weights read

α1 = ε1 − ε2 ω1 = ε1
α2 = ε2 − ε3 ω2 = ε1 + ε2
α3 = ε3 − ε4 ω3 = ε1 + ε2 + ε3

...
...

αn = εn − εn+1 ωn = ε1 + ε2 + ε3 + · · · + εn ,

in particular 2 ρ = 2n ε1 + 2(n − 1) ε2 + · · · + 2 εn has coefficient sum equal to
n(n + 1). The adjoint representation of g = sl(n + 1,C) is isomorphic to the Cartan
product V ∗ � V of the irreducible representations for ωn and ω1 of highest weight
ε1 − εn+1 resulting in

Casg = b( ε1 − εn+1, ε1 − εn+1 + 2 ρ ) = 2 n + 2 − 0 · ( 0 + n(n + 1) )

n + 1
= 2 (n + 1) .

The irreducible representation corresponding to the fundamental weight ωr is equal to
the exterior power �r V ∼= �n+1−r V ∗ of the defining representation V with Casimir
eigenvalue:
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Casωr = b( ε1 + · · · + εr , ε1 + · · · + εr + 2 ρ )

= r ( 2n − r + 2 ) − r · ( r + n(n + 1) )

n + 1
= n + 2

n + 1
r ( n + 1 − r ) .

Considered as a quadratic polynomial in r the Casimir eigenvalue has zeroes in r =
0, n + 1, hence it is symmetric about r = n+1

2 and strictly monotonely increasing
for r ∈ [ 0, n+1

2 ]:

Casω1 < Casω2 < Casω3 < · · · > Casωn−2 > Casωn−1 > Casωn .

(19)

In passing, we observe that there are fewer different fundamental weights than shown
in this diagram for n ≤ 4. The classification of all possible critical representations of
the Lie algebras sl(n + 1,C) with n ≥ 1 follows from the lower linear estimate (17),
the inequality

3
Casω1

Casg
= 3 (n + 2) n

2 (n + 1)2
> 1 (20)

valid for all n ≥ 1 and two additional inequalities valid for n ≥ 3 and n ≥ 7,
respectively:

Casω1

Casg
+ Casω2

Casg
= (n + 2) (3n − 2)

2 (n + 1)2
> 1

Casω3

Casg
= 3 (n + 2) (n − 2)

2 (n + 1)2
> 1 .

(21)

According to the inequalities (19) and (20) the highest weight λ of every critical
representation for sl(n + 1,C) is the sum of at most two fundamental weights, the
first inequality in (21) ensures in turn that λ is either zero, a fundamental weight or
the sum 2ω1, ω1 + ωn or 2ωn of two fundamental weights in { ω1, ωn }. Moreover,
the second inequality in (21) excludes the fundamental weights ω3, . . . , ωn−2 for all
n ≥ 7 from consideration, while the two sums 2ω1 and 2ωn have to be discarded by
hand for all n ≥ 2 by verifying for those n:

Cas2ω1 = b( 2 ε1, 2 ε1 + 2 ρ ) = 4 n + 4 − 2 · ( 2 + n(n + 1) )

n + 1

= 2 n (n + 3)

(n + 1)
> Casg .

In consequence, the trivial representationC, the adjoint representation V ∗ �V and the
four fundamental representations V , �2V , �2V ∗ and V ∗ of sl(n + 1,C) are critical
representations, and they comprise all possible critical representations of sl(n+ 1,C)

unless n = 5 or n = 6, in which case �3V and �3V ∗ are critical representations of
sl(n + 1,C) as well.
Repeating the preceding discussion for the other three series of classical simple Lie
algebras, we recall first of all that the Dynkin diagrams of type Bn with n ≥ 2 are

123



137 Page 14 of 27 U. Semmelmann, G. Weingart

represented by the odd-dimensional orthogonal Lie algebras so(2n + 1,C) of rank
n ∈ N. The weights±ε1, . . . , ±εn and 0 of the defining representation V := C

2n+1

of so(2n + 1,C) form an orthonormal basis ε1, . . . , εn of the dual t∗ of a maximal
torus with respect to the Weyl invariant scalar product b : t∗ × t∗ −→ C of choice.
For a suitable ordering of roots the simple roots and fundamental weights of the Lie
algebras of type Bn read

α1 = ε1 − ε2 ω1 = ε1

α2 = ε2 − ε3 ω2 = ε1 + ε2
...

...

αn−1 = εn−1 − εn ωn−1 = ε1 + ε2 + · · · + εn−1

αn = εn ωn = 1
2 ( ε1 + ε2 + · · · + εn−1 + εn ) .

Using 2 ρ = (2n − 1) ε1 + (2n − 3) ε2 + · · · + εn , we can calculate the Casimir
eigenvalues

Casωr = b( ε1 + · · · + εr , ε1 + · · · + εr + 2 ρ ) = r ( 2n + 1 − r )

for the exterior powers �r V of the defining representation V , which are irreducible
representations of highest weight ωr for r = 1, . . . , n − 1. In the same vein the
Casimir eigenvalue of the spinor representation, the irreducible representation � of
the highest weight ωn is equal to

Casωn = b( 1
2 ( e1 + · · · + εn ), 1

2 ( ε1 + · · · + εn ) + 2 ρ ) = 1
4 n ( 2n + 1 ) .

The Casimir eigenvalue of the adjoint representation �2V of so(2n + 1,C) is equal
to 2 (2n − 1) even in the exceptional case n = 2, where the highest weight of
�2V is equal to 2ω2 = ε1 + ε2. Discussing the roots of the quadratic polynomial
Casωr = r (2n + 1 − r) in r , we conclude

Casω1 < Casω2 < · · · < Casωn−1 . (22)

Taking these inequalities together with the lower bound (17) and the auxiliary inequal-
ities

Casω1

Casg
= 2 n

2 (2n − 1)
>

1

2

Casωn

Casg
= 2n (2n + 1)

16 (2n − 1)
>

1

2

valid for all n ≥ 2 and n ≥ 3, respectively, we conclude that the highest weight λ ∈
t∗ of a critical representation for so(2n+1,C) is either zero or a fundamentalweight for
all n ≥ 3, interestingly 2ω2 is the highest weight of the critical adjoint representation
so(5,C) = �2V in the exceptional casen = 2.Due to the inequalities (22) combined
with Casω2 = Casg the fundamental weights ω3, . . . , ωn−1 cannot be critical for
n ≥ 3, in consequence classification of the critical irreducible representations of
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so(2n + 1,C) centers on the candidates C, V , �2V and the spinor representation �,
the latter, however, is critical only for n = 2, . . . , 6.
Let us now turn to the symplectic Lie algebras g = sp(2n,C) of rank n ∈ N and
Dynkin diagrams of typeCn under the assumption n ≥ 2. Theweights±ε1, . . . , ±εn
of the defining representation V = C

2n of the symplectic Lie algebras form a basis
ε1, . . . , εn of the dual t∗ of a maximal torus t, which is actually an orthonormal basis
for the Weyl invariant scalar product b : t∗ × t∗ −→ C of our choice. In terms of this
orthonormal basis the simple roots associated to a suitable ordering of roots and the
corresponding fundamental weights is equal to

α1 = ε1 − ε2 ω1 = ε1
α2 = ε2 − ε3 ω2 = ε1 + ε2

...
...

αn−1 = εn−1 − εn ωn−1 = ε1 + ε2 + · · · + εn−1
αn = 2 εn ωn = ε1 + ε2 + · · · + εn−1 + εn ,

and so 2 ρ = 2n ε1 + 2(n−1) ε2 + · · · + 2 εn . In consequence theCasimir eigenvalue
of the fundamental representation �r◦V corresponding to the fundamental weight ωr

is equal to

Casωr = b( ε1 + · · · + εr , ε1 + · · · + εr + 2 ρ ) = r ( 2n − r + 2 )

for r = 1, . . . , n. In analogy to the inequalities (19) and (22), we establish the
inequalities:

Casω1 < Casω1 < · · · < Casωn . (23)

The adjoint representation of g = sp(2n,C) is isomorphic to the second symmetric
power sp(2n,C) = Sym2V of the defining representation V , its Casimir eigenvalue
is equal to

Cas2 ε1 = b( 2 ε1, 2 ε1 + 2 ρ ) = 4 (n + 1) .

The sequence of inequalities (23) together with the auxiliary inequalities

Casω1

Casg
+ Casω2

Casg
= 6n + 1

4 (n + 1)
> 1

Casω3

Casg
= 3 (2n − 1)

4 (n + 1)
> 1

valid for all n ≥ 2 and all n ≥ 4, respectively, tell us that the highest weight λ of a
critical representation of sp(2n,C) is either zero λ = 0, the highest weight λ = 2ω1
of the adjoint representation or one of the two fundamentalweightsλ = ω1 orλ = ω2
unless n = 3, where λ = ω3 is an additional possibility. The critical representations
of the symplectic Lie algebras sp(2n,C) are, thus,C, V , Sym2V and�2◦V with�3◦V
being critical only for n = 3.

The last sequence Dn of irreducible Dynkin diagrams is represented by the even
dimensional orthogonal Lie algebras so(2n,C) of rank n ≥ 3, the classification of
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their critical representation, thus, follows the discussion of the odd dimensional orthog-
onal Lie algebras closely. The weights ±ε1, . . . , ±εn of the defining representation
V := C

2n form again an orthonormal basis ε1, . . . , εn of the dual t∗ of a maximal
torus with respect to our preferred Weyl invariant scalar product b : t∗ × t∗ −→ C.
Simple roots and fundamental weights read

α1 = ε1 − ε2 ω1 = ε1

α2 = ε2 − ε3 ω2 = ε1 + ε2
...

...

αn−2 = εn−2 − εn−1 ωn−2 = ε1 + ε2 + · · · + εn−2

αn−1 = εn−1 − εn ωn−1 = 1
2 ( ε1 + ε2 + · · · + εn−2 + εn−1 − εn )

αn = εn−1 + εn ωn = 1
2 ( ε1 + ε2 + · · · + εn−2 + εn−1 + εn )

for a suitable ordering of roots. The Casimir eigenvalues for the exterior powers �r V
is equal to

Casωr = b( ε1 + · · · + εr , ε1 + · · · + εr + 2 ρ ) = r ( 2n − r ) .

for all r = 1, . . . , n−2 due to 2 ρ = (2n−2) ε1 + (2n−4) ε2 + · · · + 2 εn−1. The
Casimir eigenvalues of the two half spinor representations�− and�+ of so(2n,C) of
highest weight ωn−1 and ωn agree due to the existence of the exterior automorphism
+εn � −εn :

Casωn−1 = Casωn = b( 1
2 ( ε1 + · · · + εn ), 1

2 ( ε1 + · · · + εn ) + 2 ρ )

= 1
4 n ( 2n − 1 ) .

In consequence, theCasimir eigenvalue of the adjoint representation�2V of so(2n,C)

is equal to 2 (2n−2) even in the exceptional case n = 3, where the highest weight of
�2V equals ω2 + ω3 = ε1 + ε2. The sequence of inequalities between the Casimir
eigenvalues

Casω1 < Casω2 < · · · < Casωn−2 (24)

established by considering Casωr = r(2n−r) as a quadratic polynomial in r together
with

Casω1

Casg
= 2n − 1

2 (2n − 2)
>

1

2

Casωn−1

Casg
= Casωn

Casg
= 2n (2n − 1)

16 (2n − 2)
>

1

2

for all n ≥ 3 and n ≥ 4, respectively, imply that the highest weight λ of a critical
representation is either zero or a fundamental weight different from ω3, . . . , ωn−2
unless n = 3, in which case ω2 + ω3 = ε1 + ε2 is equal to the highest weight of
the critical adjoint representation �2V of so(6,C) ∼= sl(4,C). Leaving aside this
special case already discussed above, we conclude that the only candidates for critical
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representations are C, V , �2V and the two half spinor representations �+ and �−,
the latter, however, are critical only for n = 3, . . . , 7.

For the convenience of the reader, we summarize the preceding classification of
the critical representations of the classical simple Lie algebras of types A to D in the
following table, in which the column denoted by Casimir is reserved for the relative
Casimir eigenvalue Casλ

Casg
:

Algebra Weight Representation Casimir Constraints

sl( n + 1, C ) 0 C 0 for all n ≥ 1

ω1 V n(n+2)
2(n+1)2

for all n ≥ 1

ωn V ∗ n(n+2)
2(n+1)2

for all n ≥ 2

ω2 �2V (n−1)(n+2)
(n+1)2

for all n ≥ 3

ωn−1 �2V ∗ (n−1)(n+2)
(n+1)2

for all n ≥ 4

ω3 �3V 7
8 , 48

49 for n = 5, 6
ω4 �3V ∗ 48

49 for n = 6
ω1 + ωn V ∗ � V 1 for all n ≥ 1

so( 2n + 1, C ) 0 C 0 for all n ≥ 1
ω1 V 2n

2(2n−1) for all n ≥ 1

ω2 �2V 1 for all n ≥ 2

ωn �
2n(2n+1)
16(2n−1) for n = 1, . . . , 6

sp( 2n, C ) 0 C 0 for all n ≥ 1
ω1 V 2n+1

4(n+1) for all n ≥ 1

ω2 �2◦V 4n
4(n+1) for all n ≥ 2

ω3 �3◦V 15
16 for n = 3

2ω1 Sym2V 1 for all n ≥ 1
so( 2n, C ) 0 C 0 for all n ≥ 3

ω1 V 2n−1
2(2n−2) for all n ≥ 3

ω2 �2V 1 for all n ≥ 3

ωn−1 �− 2n(2n−1)
16(2n−2) for n = 3, . . . , 7

ωn �+ 2n(2n−1)
16(2n−2) for n = 3, . . . , 7

The classification of the critical representations of the exceptional simple Lie alge-
bras of types E6, E7, E8 and F4, G2 is significantly simpler, because all the Casimir
eigenvalues are explicit rational numbers and the highest weights of the adjoint rep-
resentations g are all fundamental weights. Moreover, all Casimir eigenvalues of the
fundamental weights turn out to be greater than or equal to 1

2 so that the highest
weights of all non-trivial critical representations are necessarily fundamental weights.
The resulting classification reads
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Algebra Representation Casimir Algebra Representation Casimir

e6 C 0 e8 C 0
[ 27 ] 13

18 [ 248 ] 1

[27 ]∗ 13
18 f4 C 0

[ 78 ] 1 Im A
2
3

e7 C 0 [ 52 ] 1
[ 56 ] 19

24 g2 C 0
[ 133 ] 1 Im O

1
2[ 14 ] 1

In these tables, we have indicated the non-trivial critical irreducible representations
by their dimensions only in order to avoid any ambiguity caused by the rather arbitrary
enumeration of simple roots and fundamental weights of the exceptional Lie algebras.
The two exceptions are the two critical representations of G2 and F4 arising from the
octonionsO and the 27-dimensional Albert algebra A, which will be studied in detail
in Sect. 4.

4 Geometry of the Cayley Projective Plane

In order to prove the stability of the Cayley projective plane OP2, we will study
the Albert algebra A of hermitian 3 × 3-matrices over the octonions O to describe
the unique non-trivial critical representation R = ImA of its automorphism group
F4 = AutA. Using the machinery of prototypical differential operators introduced
in Sect. 2 and our description of R, we will proceed to prove the injectivity of the
associated prototypical divergence operator D∗

R and conclude that the Einstein metric
on OP2 is stable in the sense of Koiso. A detailed introduction to the octonions and
the Albert algebra can be found in [1] or the book [8].

Working with the algebra O of Cayley numbers or octonions is hampered by the
fact that many different constructions and definitions of O exist in the literature, it
can hardly be called obvious that all these constructions lead to the same algebra.
Perhaps the most direct construction of O is via the Cayley–Dickson process, in
this construction octonions are tuples ( a, α ) ∈ H ⊕ H of quaternions with the
multiplication, conjugation and algebra unit:

( a, α ) ( b, β ) := ( ab − βα, βa + αb ) ( a, α ) := ( a,−α )

1 := ( 1, 0 ) .

All our subsequent calculations are independent from the question, which construction
of the octonions is to be preferred; they only rely on four characteristic properties of
the algebra O, which the reader may easily verify in her or his favorite model for the
octonions:

• The algebraO of octonions is an algebra with unit 1 ∈ Owhich decomposes into
the vector space direct sum O = R ⊕ ImO of the line generated by 1 and the
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subspace ImO ⊆ O of imaginary octonions spanned by all the square roots of
−1 in O.

• The involutive linear mapO −→ O, A 
−→ A, with eigenspaces R and ImO for
the eigenvalues +1 and −1, respectively, is an algebra antiautomorphism AB =
B A.

• Every two octonions A, B ∈ O lie in a common associative subalgebra of O
together with the unit 1 ∈ O and in consequence A = 2(Re A)1 − A as well as
B. In particular, there is no need to indicate parentheses in expressions like AAB
or BAA.

• The expression gO(A, B) := Re (A B) defines a positive definite scalar prod-
uct on O. In the same vein, �(A, B,C) := Re (ABC) is well defined for all
A, B, C ∈ O independent of the way we evaluate it and defines a cyclically
invariant 3-form �.

In the Cayley–Dickson construction of the octonions for example the 3-form � reads

�
(

( a, α ), ( b, β ), ( c, γ )
) := Re

(
abc − αγ b − βαc − γ βa

)

and is, thus, cyclically invariant, it becomes an alternating 3-form only after restriction
to the subspace ImO ⊆ O of imaginary octonions. The four properties formulated
above in particular imply the fundamental identity AA = | A |2

O
1 for all A ∈ O,

which is needed in the verification of essentially all the formulas stipulated below.
The Albert algebra is the commutative algebra A of all hermitian 3× 3-matrices with
coefficients in O

A :=
⎧⎨
⎩

⎛
⎝a1 A3 A2

A3 a2 A1

A2 A1 a3

⎞
⎠

∣∣∣∣∣∣ a1, a2, a3 ∈ R and A1, A2, A3 ∈ O

⎫⎬
⎭

under the symmetrizedmatrixmultiplicationA ∗ Â = 1
2 (A Â+ Â A ) or equivalently

under:

⎛
⎝a1 A3 A2
A3 a2 A1
A2 A1 a3

⎞
⎠
2

=
⎛
⎝ a21 + |A2|2 + |A3|2 (a1 + a2)A3 + A2A1 (a3 + a1)A2 + A3A1

(a1 + a2)A3 + A1A2 a22 + |A3|2 + |A1|2 (a2 + a3)A1 + A3A2
(a3 + a1)A2 + A1A3 (a2 + a3)A1 + A2A3 a23 + |A1|2 + |A2|2

⎞
⎠ .

Let us point out two subspaces of theAlbert algebra, the vector and the spinor subspace

V :=
⎧⎨
⎩

⎛
⎝0 0 0
0 +A0 A1
0 A1 −A0

⎞
⎠

⎫⎬
⎭ � :=

⎧⎨
⎩

⎛
⎝ 0 α3 α2

α3 0 0
α2 0 0

⎞
⎠

⎫⎬
⎭ (25)

with parameters A0 ∈ R and A1, α2, α3 ∈ O. The vector space underlying the
Albert algebra A decomposes into the internal direct sum of V and � as well as the
two real lines

A = R ⊕ R� ⊕ V ⊕ � , (26)
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spanned by the algebra unit 1 ∈ A and the auxiliary trace-free element� ∈ A defined
by

1 :=
⎛
⎝+1 0 0

0 +1 0
0 0 +1

⎞
⎠ � :=

⎛
⎝+2 0 0

0 −1 0
0 0 −1

⎞
⎠ . (27)

Most importantly the multiplication in the Albert algebra can be written completely in
terms of the decomposition (26) and the spin geometry of the euclidean vector space
V , namely

(
a ⊕ a � ⊕ A ⊕ α

)2 =
(
a2 + 2 a2 + 2

3
gV ( A, A ) + 2

3
g�( α, α )

)

⊕
(
2 a a + a2 − 1

3
gV ( A, A ) + 1

6
g�( α, α )

)
�

⊕
(

( 2a − 2a ) A + 1

2
α � α

)
⊕

(
( 2a+a ) α + A • α

)

(28)

for all a, a ∈ R, A ∈ V andα ∈ �. In this spinorial description of themultiplication
in the Albert algebra the notation gV : V × V −→ R and g� : � × � −→ R refers
to the standard positive definite scalar products on V ∼= R ⊕ O and � ∼= O ⊕ O,
respectively

gV ( A0 ⊕ A1, A0 ⊕ A1 ) := A2
0 + | A1 |2

O
g�( α2 ⊕ α3, α2 ⊕ α3 )

:= | α2 |2
O

+ | α3 |2
O

,

while • : V ×� −→ � refers to the Clifford multiplication of V on its spinor module
�:

( A0 ⊕ A1 ) • ( α2 ⊕ α3 ) :=
(

− A0 α2 + α3 A1
)

⊕
(

+ A0 α3 + A1 α2

)
.

Last but not least � : � × � −→ V denotes the symmetric bilinear spinor multipli-
cation:

( α2 ⊕ α3 ) � ( β2 ⊕ β3 ) :=
(
gO(α3, β3) − gO(α2, β2)

)
⊕

(
α2 β3 + β2 α3

)
.

The verification of the formula (28) for the multiplication in A is a slightly tedious,
but otherwise straightforward exercise in expanding definitions. In the same vein the
identities

A • ( A • α ) = gV (A, A) α ( α � α ) • α = g�(α, α) α (29)

are easily verified for all A ∈ V and α ∈ � by expanding definitions and using the
cyclic invariance of�. It is the first of these two identities of course which allows us to
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think of • as themultiplication of theClifford algebraCl( V , −gV ) ∼= Mat16×16(R⊕
R) on its irreducible module � ∼= R

16. The cyclic invariance of � is needed as well
to establish the identity

gV ( A, α � β ) = g�( A • α, β ) = g�( α, A • β ) (30)

for all A ∈ V and α, β ∈ �, which tells us in particular that the symmetric spinor
multiplication � is completely determined by the Clifford multiplication • and, thus,
by the spin geometry of V . In consequence, the spin group Spin( V , −gV ) acts by
automorphisms on A

F � ( a ⊕ a � ⊕ A ⊕ α ) := a ⊕ a � ⊕ AdF A ⊕ ( F • α )

for all F ∈ Spin( V ,−gV ) ⊆ Cl( V , −gV ), where AdF ∈ SO( V , −gV ) =
SO( V , +gV ) denotes the restriction of the conjugation by F to the subspace V ⊆
Cl( V , −gV ). The full automorphism group of A, however, is much larger due to the
presence of the derivations

ϑξ ( a ⊕ a � ⊕ A ⊕ α ) := 0 ⊕ ( − g�(ξ, α) ) � ⊕ ( ξ � α ) ⊕ ( − A • ξ + 3 a ξ )

(31)

for the multiplication (28) parametrized by an arbitrary spinor ξ ∈ �. The full auto-
morphism group of the Albert algebra A turns out to be generated by Spin( V , −gV )

and the exponentials of the derivations (31), in particular the automorphism group
of A equals the compact simple Lie group F4 := AutA of dimension 52 [1] with
Z2-graded Lie algebra

f4 := aut A = so( V , gV ) ⊕ { ϑξ | ξ ∈ � } (32)

in the sense that the commutator [ ϑξ , ϑ
ξ̂
] ∈ so( V , gV ) of two of the derivations

(31) lies in so( V , gV ). The symmetric space corresponding to this Z2-graded Lie
algebra is the Cayley projective plane OP2, which can be defined for example as the
orbit of the element � ∈ A defined in equation (27) under the automorphism group
F4 of the Albert algebra A.

For the purpose of this article, the most important conclusion of the preceding dis-
cussion is that the 26-dimensional subspace R := ImA ⊆ A of trace-free albertions
represents the unique non-trivial critical irreducible representation of the simple Lie
group F4 = AutA found in Sect. 3, in fact all other non-trivial irreducible represen-
tations of F4 have strictly larger dimensions. In particular, R decomposes under the
stabilizer subgroup Spin( V , −gV ) ∼= Spin( 9 ) of the base point � ∈ ImA of the
Cayley plane OP2 into

R := Im A = R ⊕ V ⊕ � . (33)

According to decomposition (32), the isotropy representation of the Cayley projective
planeOP2 equals the spinor representation� parametrizing the derivations (31) of the
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Albert algebra, we may, thus, assume that the Riemannian metric on OP2 is induced
by g� . Second symmetric and exterior powers of spinor representations �∗ ∼= �

decompose into exterior powers of the vector representation V , in the case at hand
this decomposition reads

Sym2�∗ = R ⊕ V ⊕ �4V �2�∗ = �2V ⊕ �3V . (34)

According to equations (33) and (34) and the Lemma of Schur both homomorphism
spaces

HomSpin(V ,−gV )( R, Sym2◦�∗ ) HomSpin(V ,−gV )( R, � )

are one-dimensional, in particular the Frobenius reciprocal extension Fext of every
non-zero

F ∈ HomSpin(V ,−gV )( R, Sym2◦�∗ ) ∼= HomF4( R, �(Sym2◦T ∗
OP2 ) )

identifies R with the only eigenspace of the Lichnerowicz Laplacian �L on the trace-
free symmetric 2-tensors on OP2 with eigenvalue below 2 scal

16 . In light of Corollary
2.3, we need to verify that the prototypical divergence operator D∗

R associated to R is
injective

D∗
R : HomSpin(V ,−gV )( R, Sym2◦�∗ ) −→ HomSpin(V ,−gV )( R, � ) (35)

in order to prove that the Cayley projective plane OP2 is stable. A suitable non-zero
element F ∈ HomSpin(V ,−gV )( R, Sym2◦�∗ ) is provided by the symmetric spinor
multiplication �

F( a ⊕ A ⊕ α ) := 1

2

∑
μν

gV ( A, ξμ � ξν ) dξμ · dξν ,

where { ξμ } is some basis of the isotropy representation� and { dξμ } denotes the dual
basis of �∗. Using the musical isomorphism � : �∗ −→ � with respect to g� , we
calculate

trg� F( a ⊕ A ⊕ α ) = gV
(
A,

∑
μ

dξ�
μ � ξμ

)

and conclude that the composition trg ◦ F is effectively a Spin( V , −gV )-invariant
and, thus, vanishing linear functional on the irreducible representation V . In conse-
quence, the linear map F : R −→ Sym2◦�∗ takes values in the trace-free symmetric
2-forms as claimed and

∑
μ

dξ�
μ � ξμ = 0 . (36)
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Before proceeding to calculate D∗
RF , we want to point out the following identity in

α, β ∈ �

2 ( β � α ) • β + ( β � β ) • α = 2 g�( β, α ) β + g�( β, β ) α ,

which is a partial polarization of the identity (α � α) • α = g�(α, α) α mentioned
above. Specifically, we replace α in equation (29) by the expression β + tα and take
the derivative of the resulting identity in t = 0 using trilinearity and the symmetry
of � and g� . Tracing the partially polarized identity over β with a view on equation
(36), we conclude

2
∑
μ

( dξ�
μ � α ) • ξμ = 2

∑
μ

g�( dξ�
μ, α ) ξμ +

∑
μ

g�( dξ�
μ, ξμ ) α = 18α .

(37)

In light of the decomposition (32), the subspace � ⊆ f4 of the Lie algebra of F4 =
AutA acts on theAlbert algebraA and its invariant subspace R ⊆ A by the derivations
(31), to wit ξ � = ϑξ for all ξ ∈ �. In consequence the general description (14) of the
prototypical divergence operator associated to the finite dimensional representation R
becomes

( D∗
RF )( a ⊕ A ⊕ α ) =

∑
λ

(
dξ

�
λ � F( ϑξλ

( a ⊕ A ⊕ α ) )
)�

=
∑
λ

(
dξ

�
λ � F( ( . . . ) ⊕ ( ξλ � α ) ⊕ ( . . . ) )

)�

= 1

2

∑
λμ ν

gV ( ξλ � α, ξμ � ξν ) dξλ � ( dξ
�
μ · dξ

�
ν )

=
∑
μν

g�( ( dξ
�
μ � α ) • ξμ, ξν ) dξ

�
ν = 9α ,

where we have used gV ( A, ξμ � ξν ) = g�( A • ξμ, ξν ) and the trace (37) in the last
line. In particular the prototypical divergence operator (35) is injective and the Cayley
projective plane OP2 is stable in the sense of Koiso as stipulated in Theorem 1.1.

5 Einstein Deformations of the Grassmannians

In analogy to our discussion of the stability of the Cayley projective plane OP2 in
Sect. 4, we analyze the stability of the family of quaternionic Grassmannians GrrHr+s

of r -dimensional quaternionic subspaces in H
r+s in this section for all parameters

r , s ≥ 1. Needless to say this family includes the quaternionic projective spaces
HPs = Gr1Hs+1 and S4 = HP1, whose stability had been settled by Koiso except
for the case s = 2. Calculating the prototypical divergence operator, wewill show that
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the quaternionicGrassmanniansGrrHr+s are stable, if andonly if they are quaternionic
projective spaces in the sense r = 1 or s = 1.

For the time being, we interpret the unitary symplectic groups Sp(n) as the groups
of unitary n×n-matrices with coefficients in the quaternionsH, which act naturally on
the spacesHn of column vectors considered as right vector spaces overH = Mat1×1H

by right matrix multiplication. For all r , s ≥ 1 the induced action of Sp(r + s) on
the Grassmannian

GrrH
r+s = Sp( r + s )/Sp( r ) × Sp( s )

of r -dimensional subspaces of Hr+s is transitive as well with stabilizer in the base
point Hr ⊆ H

r+s given by the diagonal subgroup Sp(r) × Sp(s) ⊆ Sp(r + s).
Under restriction to the stabilizer of the base point the defining representation V :=
H

r+s decomposes into the direct sum V = H ⊕ E of the defining representations
H := H

r and E := H
s of Sp(r) and Sp(s). In general, we will consider V as a

complex vector space via the obvious inclusion C ⊆ H endowed with the Sp(r +
s)-equivariant, conjugate linear map C : V −→ V of right multiplication with j
satisfying C2 = −idV ; analogous remarks apply to both H and E . The adjoint
representation of the symplectic Lie groups equals the second symmetric power of its
defining representation, in turn the decomposition V = H ⊕ E implies

sp( r + s ) ⊗R C = Sym2V = Sym2H ⊕ ( H ⊗ E ) ⊕ Sym2E

= sp( r ) ⊗R C ⊕ ( H ⊗ E ) ⊕ sp( s ) ⊗R C

so that H ⊗ E ∼= THr M ⊗RC equals the complexified isotropy representation of the
irreducible symmetric space M := GrrHr+s . Its trace-free second symmetric power
decomposes into

Sym2◦( H ⊗ E ) = ( Sym2H ⊗ Sym2E ) ⊕ (�2◦H ⊗ �2◦E ) ⊕ ( �2◦H ) ⊕ (�2◦E ) .

(38)

En nuce the all important difference between the projective spaces with min{ r , s } =
1 and the general Grassmannians with r , s ≥ 2 derives from this decomposition,
after all �2◦H = { 0 } or �2◦E = { 0 } vanish for r = 1 or s = 1, respectively.

According to the classification of critical representations of the symplectic Lie alge-
bras sp(2n,C) = sp(n)⊗RC in Sect. 3 the only critical irreducible representations of
sp(r+s) besides the trivial and adjoint representations are V ,�2◦V together with�3◦V
for r +s = 3. In light of the decomposition (38) the Frobenius reciprocity (7) ensures
that neither V nor �3◦V occurs in the trace-free symmetric 2-tensors �(Sym2◦T ∗M ),
and so we are left with

R ⊗R C := �2◦V = C ⊕ (�2◦H ) ⊕ ( H ⊗ E ) ⊕ (�2◦E ) (39)
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as the only candidate, where R ⊆ �2◦V equals the subspace of real elements with
respect to the equivariant real structure. Using Schur’s Lemma, we conclude from (38)
and (39) that

have dimension 2 and 1, respectively, unless M is a quaternionic projective space.
In consequence the prototypical divergence operator associated to the critical repre-
sentation �2◦V

D∗
�2◦V

: HomSp(r)×Sp(s)( �2◦V , Sym2◦( H ⊗ E ) ) −→ HomSp(r)×Sp(s)( �2◦V , H ⊗ E )

(40)

cannot be injective in general, because its domain has dimension 2 and is range
dimension 1. According to Corollary 2.3 the Einstein metrics on the quaternionic
Grassmannians GrrHr+s with parameters r , s ≥ 2 are, thus, unstable in the sense of
Koiso.

In order to study the prototypical divergence operator D∗
�2◦V

in somewhat more

detail, we recall that H and E come along with complex bilinear, invariant symplectic
formsσH andσE , respectively,which give rise to themusical isomorphisms � : H −→
H∗, h 
−→ σH ( h, · ) and � := �−1 as well as the analogous musical isomorphisms
� and � for E . Choosing pairs of dual bases { hα }, { dhα } and { eμ }, { deμ } for H and
E , we define the two linear maps

FH ( a ∧ â ) =
∑
μ

(a� ⊗ deμ) · (â� ⊗ e�μ) − σ( a, â )

2 r

∑
αμ

(dhα ⊗ deμ) · (h�
α ⊗ e�μ)

FE ( f ∧ f̂ ) =
∑
α

(dhα ⊗ f �) · (h�
α ⊗ f̂ �) − σ( f , f̂ )

2 s

∑
αμ

(dhα ⊗ deμ) · (h�
α ⊗ e�μ)

from �2H and �2E , respectively, to Sym2(H ⊗ E)∗. Both maps are evidently equiv-
ariant under Sp(r) × Sp(s) and send the bivectors

∑
α dh

�
α ∧hα and

∑
μ de�

μ ∧ eμ to

zero. In essence, they, thus, factorize through linear maps �2◦H −→ Sym2◦(H ⊗ E)∗
and �2◦E −→ Sym2◦(H ⊗ E)∗, which we may precompose with the corresponding
projections in (39) to linear maps

FH : �2◦V −→ Sym2◦( H ⊗ E )∗ FE : �2◦V −→ Sym2◦( H ⊗ E )∗ ,

which generate the domain HomSp(r)×Sp(s)(�2◦F, Sym2◦(H ⊗ E)∗ ) of D∗
�2◦V

due

to the decomposition (38). Needless to say the special case min{ r , s } = 1 of
quaternionic projective spaces is reflected by FH = 0 or FE = 0 for r = 1
or s = 1. Without loss of generality, we may assume that the symplectic forms σH

and σE are normalized to make their tensor product agree with the Riemannian metric
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g = σH ⊗ σE in the base point Hr ∈ M so that

∑
λ

Eλ ⊗ Eλ =
∑
αμ

( dh�
α ⊗ de�

μ ) ⊗ ( hα ⊗ eμ )

holds true for every orthonormal basis { Eλ } of THr M ⊗R C ∼= H ⊗ E . Replacing
the sum over the orthonormal basis { Eλ } in formula (14) by the sum on the right-hand
side of this identity, we calculate in a first step

( D∗
�2◦V

FH )( a ⊗ f )� =
∑
αμ

( dh�
α ⊗ de�

μ ) � FH
(

( hα ⊗ eμ ) ��2◦V ( a ∧ f )

)

=
∑
αμ

( dh�
α ⊗ de�

μ ) � FH
(

σH ( hα, a ) eμ ∧ f + σE ( eμ, f ) a ∧ hα

)

= −
∑
α

( dh�
α ⊗ f ) � FH ( a ∧ hα ) =

∑
α

( hα ⊗ f ) � FH ( a ∧ dh�
α )

due to the antisymmetry
∑

dh�
α⊗hα = −∑

hα⊗dh�
α and the definition of the repre-

sentation ��2◦V of the Lie algebra sp(r + s)⊗RC = Sym2V . Using this intermediate
result, we conclude

( D∗
�2◦V

FH )( a ⊗ f )� =
∑
αμ

( hα ⊗ f ) �
(

( a� ⊗ deμ ) · ( dhα ⊗ e�
μ )

)

+
∑
αβμ

σH ( dh�
α, a )

2 r
( hα ⊗ f ) �

(
( dhβ ⊗ deμ ) · ( h�

β ⊗ e�
μ )

)

= ( 1 − 2 r + 1

r
) ( a� ⊗ f � ) = − (r − 1)(2r + 1)

r
( a� ⊗ f � ) .

The completely analogous calculation for the linear map FE results in

( D∗
�2◦V

FE )( a ⊗ f ) = + (s − 1)(2s + 1)

s
( a ⊗ f ) ,

where the sign change is effectively caused by the reversed order of the product eμ ∧ f
compared to a ∧ hα in the formula for ( hα ⊗ eμ ) ��2◦V ( a ∧ f ). In consequence the
prototypical divergence operator (40) always has maximal rank for all r , s ≥ 1, in
particular D∗

�2◦V
is injective for r = 1 or s = 1 proving the stability of the Einstein

metric on all quaternionic projective spaces including S4 = HP1 and HP2 in the
sense of Koiso.
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