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Abstract
Smooth solutions of the equation

div

{
g′(|∇u|)

|∇u| ∇u

}
= 0

are considered generating nonparametric μ-surfaces in R
3, whenever g is a function

of linear growth satisfying in addition

∫ ∞

0
sg′′(s)ds < ∞.

Particular examples are μ-elliptic energy densities g with exponent μ > 2 (see Bild-
hauer and Fuchs in Rend Mat Appl 22(7):249–274, 2003) and the minimal surfaces
belong to the class of 3-surfaces. Generalizing the minimal surface case we prove the
closedness of a suitable differential form N̂∧dX . As a corollary we find an asymptotic
conformal parametrization generated by this differential form.
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1 Introduction

Starting with the variational point of view we like to mention three scenarios for
variational problems with linear growth conditions.

The most prominent representative is the area minimizing problem

J [∇w] :=
∫

�

F
(∇w

)
dx → min,

F(Z) :=
√
1 + |Z |2, Z ∈ R

2, (1.1)

within a suitable class of comparison functions w: R2 ⊃ � → R.
The are many contributions to the study of problem (1.1). We refer to the mono-

graphs [2–6] giving a detailed picture of this classical problem.
There is another well known application involving variational problems with linear

growth conditions: the theory of perfect plasticity. We just mention [7] as one of a
series of papers written by Seregin and the monograph of Temam [8] as well as the
book [9].

As a third class of variational problems with linear growth conditions we like to
mention the discussion of μ-elliptic integrands with linear growth introduced in [1].
Depending on the parameter μ, this family includes the minimal surface case as one
example with exponent μ = 3 and an approximation of perfect plasticity is covered
for large values of μ.

In [1] and in subsequent papers the question of existence and regularity of eventually
relaxed solutions was studied w.r.t. to different circumstances. These investigations
include also aspects from image analysis (see, e.g., [10]), where the model serves as an
appropriate TV-approximation. For an overview on the aspects of existence, relaxation
and regularity of solutions under the assumption of μ-ellipticity we refer to [11] or
[12].

While in the case of perfect plasticity and related applications the dual problem
formulated in terms the stress tensor plays the key role, various geometric features
are developed in the minimal surface case. Here the Euler–Lagrange equation for
C2-solutions of the variational problem (1.1), i.e. the minimal surface equation

uxx
(
1 + u2y

) + uyy
(
1 + u2x

) − 2uxuyuxy = 0 (1.2)

serves as a prototype for the study of elliptic PDEs arising in connectionwith problems
in geometry. In [13] the reader will find an exposition with a particular focus on the
geometric structure of equation (1.2).

Our note on geometrical properties of what we call nonparametric μ-surfaces is
also strongly influenced by the pioneering work on the minimal surface equation. To
be precise, we consider the following theorem formulated by Dierkes, Hildebrandt
and Sauvigny in the notion of differential forms.

Theorem 1.1 [6, Theorem Section 2.2] A nonparametric surface X(x, y)
= (

x, y, z(x, y)
)
, described by a function z = z(x, y) of class C2 on a simply con-

nected domain � ofR2, with the Gauss map N = (ξ, η, ζ ) is a minimal surface if and
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only if the vector-valued differential form N ∧ dX is a total differential, i.e., if and
only if there is a mapping X∗ ∈ C2(�,R3) such that

− dX∗ = N ∧ dX . (1.3)

If we write

X∗ = (a, b, c), N ∧ dX = (α, β, γ ),

Equation (1.3) is equivalent to

−da = α, −db = β, −dc = γ.

The particular importance of this theorem is evident by the fact, that it serves as the
main tool to prove that solutions of theminimal surface equation are analytic functions
and that X∗ induces a diffeomorphism leading to a conformal representation.

Motivated by the μ-elliptic examples with linear growth mentioned above, we are
faced with the question, whether C2-solutions of the corresponding Euler equations
can also be characterized by the closedness of suitable differential forms.

Remark 1.1 Let us shortly clarify the notion "nonparametric μ-surface”: μ-elliptic
energy densities gμ introduced in Example 1.2 provide a typical motivation for our
studies. Going through the details of the proofs it becomes evident, that we just have
to consider C2-solutions of (1.9) together with our assumption (1.8), which roughly
speaking corresponds to the case μ > 2.

The limit case μ = 2 also plays an important role in studying the regularity of
solutions. While our geometric considerations are based on the finiteness in condition
(1.8), we note that, e.g., in (1.9) of [14] the condition

∫ ∞

1
sg′′(s)ds = ∞

characterizes the existence of regular solutions assuming prescribed boundary val-
ues. We also like to refer to the introductory remarks of [14] and to the classical paper
[15], where related conditions can be found.

Now let us introduce a more precise notation: given a simply connected domain
� ⊂ R

2 and a C2-function u: � → R we consider the nonparametric surface X :
� → R

3

X(x, y) = (
x, y, u(x, y)

)
, (x, y) ∈ �,

and denote the asymptotic normal by

N̂ = (N̂1, N̂2, N̂3), (x, y) ∈ �,
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with components

N̂1 = −	
(|∇u|)ux , N̂2 = −	

(|∇u|)uy, N̂3 = 	
(|∇u|) + ϑ

(|∇u|). (1.4)

Here we let for g: [0,∞) → R and all t ≥ 0 (g ∈ C2
([0,∞)

)
, g′(0) = 0, g′′(t) > 0

for all t > 0)

	(t) := g′(t)
t

, (1.5)

ϑ(t) := g(t) − tg′(t) − 	(t). (1.6)

The main hypothesis throughout this paper are summarized in the following
Assumption.

Assumption 1.1 Let g: [0,∞) → R be a function of class C2
([0,∞)

)
such that

g′(0) = 0, g′′(t) > 0 for all t > 0 and such that with real numbers a, A > 0, b,
B ≥ 0

at − b ≤ g(t) ≤ At + B for all t ≥ 0 . (1.7)

Moreover, suppose that we have

∫ ∞

0
sg′′(s)ds < ∞. (1.8)

Before these hypotheses are discussed more detailed in Remark 1.2, we state our
main theorem:

Theorem 1.2 With the notation introduced above we suppose that the general Assump-
tion 1.1 is valid, in particular we have (1.8). Let u denote a function of class C2(�).

Then u is a solution of

div

{
g′(|∇u|)

|∇u| ∇u

}
= 0 (1.9)

on a simply connected domain � ⊂ R
2 if and only if the vector-valued differential

form satisfies

N̂ ∧ dX = −dX∗ (1.10)

for some mapping X∗ =: (a, b, c) ∈ C2
(
�;R3

)
, i.e. N̂ ∧ dX =: (α, β, γ ) is a total

differential.

Let us recall the geometrical meaning of the differential form N∧dX in theminimal
surface case by assuming that the surface is given w.r.t. isothermal parameters (v,w).
In this case we have

N ∧ dX = Xwdv − Xvdw
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and the closedness of N ∧ dX corresponds to the minimal surface characterization
�X = 0 whenever X is given in conformal parameters. In fact it turns out that
X∗ generates a diffeomorphism leading from the nonparametric representation to
conformal parameters and as a consequence to the analyticity of the solutions and to
Bernstein’s theorem.

As it is also emphasized in [6], this approach is of explicit geometrical nature
related to the particular kind of surfaces under consideration, which is in contrast to
the abstract application of Lichtenstein’s mapping theorem to ensure the existence of
a conformal representation. We refer to Hildebrandt’s beautiful overview [16] and the
relation to Plateau’s problem including quite recent results with von derMosel [17,18]
and Sauvigny [19].

In our setting we are not in the minimal surface case having the analyticity of
solutions, i.e. we cannot arguewith the help of suitably defined holomorphic functions.
Thus we change the point of view in the sense that we are not mainly interested
in conformal representations. As an application of our main theorem we are rather
interested in the question, which kind of representation is generated by the mapping
X∗ constructed in Theorem 1.2. This means that we are looking for some kind of
natural parametrisations for nonparametric μ-surfaces.

With the help of Theorem 1.2 it will turn that both of the conformality relations are
perturbed by the same function � and that asymptotically the conformality relations
are recovered.

Before giving a precise statement of this result, we like to include some additional
remarks on our assumptions.

Remark 1.2 (i) Observe that we have an equivalent formulation of the main hypoth-
esis (1.8): an integration by parts gives

∫ t

0
sg′′(s)ds = s · g′(s)

∣∣∣t
0
−

∫ t

0
g′(s)ds = tg′(t) − g(t) + g(0).

and we may write (1.8) in the form

lim
t→∞

[
g(t) − tg′(t)

]
= K := g(0) −

∫ ∞

0
sg′′(s)ds.

Replacing the function g by the function g−K (not changing Eq. (1.9)), we may
replace w.l.o.g. assumption (1.8) by

lim
t→∞

[
g(t) − tg′(t)

]
= 0 (1.11)

and in the following (1.11) can be taken as general assumption.
(ii) The convexity of g immediately gives for all t ≥ 0

g(0) ≥ g(t) − tg′(t). (1.12)
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Moreover, the function g(t) − tg′(t) is a decreasing function in [0,∞) since we
have for all t ≥ 0

d

dt

[
g(t) − tg′(t)

]
= −tg′′(t) ≤ 0 . (1.13)

Thus, by (1.12), (1.13) and (1.11)

g(0) ≥ g(t) − tg′(t) ≥ 0 for all t ≥ 0 , (1.14)

(iii) From the convexity of g and the linear growth in the sense of (1.7) we obtain the
existence of

lim
t→∞ g′(t) =: g′∞ = lim

t→∞
g(t)

t
.

Writing

g(t)g′(t)
t

− (
g′(t)

)2 = R(t), i.e g′(t)
[
g(t) − tg′(t)

]
= t R(t),

assumption (1.11) in addition gives

R(t) = o
(
t−1). (1.15)

(iv) W.l.o.g. let us suppose g′∞ = 1 and define for t ≥ 0 the functions

g′(t) =: 1 − h(t), 	(t) = 1

t

[
1 − h(t)

] = g′(t)
t

≥ 0. (1.16)

Then 0 ≤ h(t) < 1 for all t ∈ R and limt→∞ h(t) = 0.

Now we formulate

Theorem 1.3 Suppose that g: [0,∞) → R satisfies Assumption 1.1 and suppose that
u: R2 ⊃ � → R is a C2-solution of (1.9), where � now in addition is assumed to be
convex.

Then the function X∗ described in Theorem 1.2 generates an asymptotically con-
formal parametrization χ : �̂ → R

3 of the surface graph u in the following sense:

(i) There is a function �: [0,∞) → R such that � ≡ 0 in the case g(t) = √
1 + t2

and such that

∂x̂χ · ∂ŷχ = 1(
det D�

)2�
(|∇u|)uxuy,

|∂x̂χ |2 − |∂ŷχ |2 = 1(
det D�

)2�
(|∇u|)[u2x − u2y

]
.
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Here the diffeomorphism �: � → �̂ ⊂ R
2 is given by

�(x, y) =
(
x
y

)
+

(
b(x, y)

−a(x, y)

)
, (x, y) ∈ �, (1.17)

and we define χ : �̂ → R
3 by

χ : (x̂, ŷ) �→
(
�−1(x̂, ŷ), u ◦ �−1(x̂, ŷ)

)
. (1.18)

(ii) There is a constant c > 0 such that for all (x, y) ∈ �

det D� ≥ c
(
1 + |∇u|). (1.19)

(iii) If we suppose for some μ > 2 that for all t ≥ 0

∣∣g(t) − tg′(t)
∣∣ ≤ c1t

2−μ, 0 ≤ 1 − g′(t) ≤ c2t
1−μ, (1.20)

with constants c1, c2 > 0, then we have for all t � 1

|�(t)| ≤ d1t
2−μ + d2t

−1 (1.21)

with some real numbers d1, d2 > 0.

Let us close this introduction with three intuitive examples we have in mind.

Example 1.1 The most prominent one is the minimal surface example given by

g(t) =
√
1 + t2,

for which

	(t) = 1√
1 + t2

,

g(t) − tg′(t) = 1√
1 + t2

= 	(t),

h(t) = 1 − t√
1 + t2

= 1

t
√
1 + t2 + (1 + t2)

.

With the help of this example we can always check our results by comparing to the
classical ones.

Example 1.2 We fix μ > 1, μ �= 2, and consider

gμ(t) = t + 1

μ − 2
(1 + t)2−μ, t ≥ 0. (1.22)

123



113 Page 8 of 20 M. Bildhauer, M. Fuchs

The particular choice gμ is suitable for image analysis problems discussed in [10],
since for large μ we have convergence to the total variation energy.

For gμ we have

	μ(t) = 1

t

[
1 − (1 + t)1−μ

]
, hμ(t) = (1 + t)1−μ.

We note that the growth of hμ corresponds to the minimal surface case if μ = 3.
Moreover, we may use direct calculations to obtain

gμ(t) − tg′
μ(t) = t + 1

μ − 2
(1 + t)2−μ − t

[
1 − (1 + t)1−μ

]

= (1 + t)1−μ

[
1

μ − 2
(1 + t) + t

]

= (1 + t)1−μ

[
μ − 1

μ − 2
t + 1

μ − 2

]
.

Hence, condition (1.11) is satisfied whenever μ > 2.

Example 1.3 In [1] a variant of the above family is introduced by letting (again μ > 1
is fixed)

ĝμ(t) :=
∫ t

0

∫ s

0

(
1 + τ 2

)− μ
2 dτds, t ≥ 0.

This variant is of particular interest in our context since the case μ = 3 exactly
corresponds to the minimal surface case.

Here we immediately verify (1.8) if we again have μ > 2.

2 The �-Surface Equation

We suppose that a F : R2 → R is given by

F(Z) = g
(|Z |),

where the function g: [0,∞) → R satisfies the main Assumption 1.1. We observe
that

∇F(Z) = g′(|Z |)
|Z | Z = 	

(|Z |)Z .

and note that the variational problem

J [w] :=
∫

�

F
(∇w

)
dx → min
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w.r.t. a suitable class of comparison functions leads to the Euler equation

div
{
∇F(∇u)

}
= div

{
	

(|∇u|)∇u
}

= 0. (2.1)

Here and in the following we suppose that we have a solution u: R2 ⊃ � → R to
(2.1) which is at least of class C2(�), � denoting an open set in R2.

We write (2.1) in an explicit way:

�u 	
(|∇u|) + ux∂x	

(|∇u|) + uy∂y	
(|∇u|)

= �u 	
(|∇u|)

+ux

[
	′(|∇u|)

|∇u| (uxuxx + uyuxy)

]
+ uy

[
	′(|∇u|)

|∇u| (uxuxy + uyuyy)

]
,

which shows

div
{
	

(|∇u|)∇u
}

= uxx

[
	

(|∇u|) + 	′(|∇u|)
|∇u| u2x

]

+uyy

[
	

(|∇u|) + 	′(|∇u|)
|∇u| u2y

]

+uxyuxuy2
	′(|∇u|)

|∇u| . (2.2)

Example 2.1 In the minimal surface case we have the expressions

	
(|∇u|) + 	′(|∇u|)

|∇u| u2x = 1 + u2y(
1 + |∇u|2)3/2 ,

	
(|∇u|) + 	′(|∇u|)

|∇u| u2y = 1 + u2x(
1 + |∇u|2)3/2 ,

2
	′(|∇u|)

|∇u| = −2
1(

1 + |∇u|2)3/2 ,

thus (2.2) is equivalent to Eq. (1.2).

3 Proof of theMain Theorem

With the definition of the asymptotic normal N̂ one computes N̂ ∧ dX = (α, β, γ )

with components

α = −	
(|∇u|)uy du −

[
	

(|∇u|) + ϑ
(|∇u|)]dy

β =
[
	

(|∇u|) + ϑ
(|∇u|)]dx + 	

(|∇u|)uxdu
123
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γ = 	
(|∇u|)uydx − 	

(|∇u|)uxdy. (3.1)

We observe

du = uxdx + uydy

and obtain

α = −	
(|∇u|)uyux dx − 	

(|∇u|)uyuydy −
[
	

(|∇u|) + ϑ
(|∇u|)]dy

= −	
(|∇u|)uxuydx −

[
	

(|∇u|)(1 + u2y
) + ϑ

(|∇u|)]dy. (3.2)

In the same way we get

β =
[
	

(|∇u|)(1 + u2x
) + ϑ

(|∇u|)]dx + 	
(|∇u|)uxuydy. (3.3)

From (3.1) – (3.3) we obtain the equation

dα = ∂y

[
	

(|∇u|)uxuy

]
dx ∧ dy

−∂x

[
	

(|∇u|)(1 + u2y
) + ϑ

(|∇u|)]dx ∧ dy

=: [
∂yψ1 − ∂xψ2

]
dx ∧ dy. (3.4)

The exterior derivative of the form β is given by

dβ = −∂y

[
	

(|∇u|)(1 + u2x
) + ϑ

(|∇u|)]dx ∧ dy

+∂x

[
	

(|∇u|)uxuy

]
dx ∧ dy

=: [ − ∂yϕ1 + ∂xϕ2

]
dx ∧ dy. (3.5)

Finally we have for dγ

dγ = −∂y

[
	

(|∇u|)uy

]
dx ∧ dy − ∂x

[
	

(|∇u|)ux
]
dx ∧ dy. (3.6)

Let us first consider (3.6) by computing

∂y

[
	

(|∇u|)uy

]
+ ∂x

[
	

(|∇u|)ux
]

= uyy	
(|∇u|) + uy	

′(|∇u|)uxuxy + uyuyy

|∇u|
+uxx	

(|∇u|) + ux	
′(|∇u|)uxuxx + uyuxy

|∇u|
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= uxx

[
	

(|∇u|) + 	′(|∇u|)
|∇u| u2x

]
+ uyy

[
	

(|∇u|) + 	′(|∇u|)
|∇u| u2y

]

+uxy

[
2uxuy

	′(|∇u|)
|∇u|

]
,

hence we have recalling (2.2)

dγ = 0. (3.7)

Next we discuss (3.5). Direct calculations show

∂yϕ1 = 	′(|∇u|)
|∇u| (uxuxy + uyuyy)

(
1 + u2x

) + 	
(|∇u|)2uxuxy

+ϑ ′(|∇u|)
|∇u| (uxuxy + uyuyy)

and in addition

−∂xϕ2 = −	′(|∇u|)
|∇u| (uxuxx + uyuxy)uxuy − 	

(|∇u|)(uxxuy + uxuxy).

Combining these equations one obtains

∂yϕ1 − ∂xϕ2 = −uyuxx

[
	

(|∇u|) + 	′(|∇u|)
|∇u| u2x

]

−uyuyy

[
− 	′(|∇u|)

|∇u|
(
1 + u2x

) − ϑ ′(|∇u|)
]

−uxy

[
− 	′(|∇u|)

|∇u| ux
(
1 + u2x

) − 	
(|∇u|)ux

−ϑ ′(|∇u|)
|∇u| ux + uxu

2
y
	′(|∇u|)

|∇u|
]

=: −uyuxx T1 − uyuyyT2 − uxyT3. (3.8)

Now we compare (3.8) with Eq. (2.2) and observe that T1 is the first coefficient on
the right-hand side of (2.2).

If we can show in additon that

T2 = 	
(|∇u|) + 	′(|∇u|)

|∇u| u2y, (3.9)

T3 = uy

[
2uxuy

	′(|∇u|)
|∇u|

]
. (3.10)
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then we obtain

∂yϕ1 − ∂xϕ2 = 0, hence dβ = 0. (3.11)

For discussing (3.9), i.e. the validity of the equation

−	′(|∇u|)
|∇u|

(
1 + u2x

) − ϑ ′(|∇u|)
|∇u| = 	

(|∇u|) + 	′(|∇u|)
|∇u| u2y,

we observe that the latter identity is equivalent to

− ϑ ′(|∇u|)
|∇u| = 	

(|∇u|) + 	′(|∇u|)
|∇u|

(
1 + |∇u|2). (3.12)

The definition of ϑ (recall (1.6)) now yields

ϑ ′(t) = −
[
t	(t) + 	′(t)

(
1 + t2

)]
. (3.13)

which immediately gives (3.12).
Equation (3.10) takes the form

2u2yux
	′(|∇u|)

|∇u| = −	′(|∇u|)
|∇u| ux

(
1 + u2x

) − 	
(|∇u|)ux

−ϑ ′(|∇u|)
|∇u| ux + uxu

2
y
	′(|∇u|)

|∇u| ,

i.e.

u2yux
	′(|∇u|)

|∇u| = −	′(|∇u|)
|∇u| ux

(
1 + u2x

) − 	
(|∇u|)ux − ϑ ′(|∇u|)

|∇u| ux

and this relation is equivalent to

ux

[
	′(|∇u|)

|∇u|
(
1 + |∇u|2) + ξ(|∇u|)

]
= −ϑ ′(|∇u|)

|∇u| ux .

Again we end up with (3.13), hence we also have (3.10) and finally (3.11).
It remains to consider (3.4) and to show

dα = 0. (3.14)

However this can be done using the same arguments leading to (3.11).
With (3.7), (3.11) and (3.14) it is shown that N̂∧dX is a closed differential form and

we have (1.10) on the simply connected domain �, thus Theorem 1.2 is established.
��
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4 A Parametrization Generated by X∗

In the minimal surface case, Theorem 1.2 implies the conformal representation and
the analyticity of nonparametric minimal surfaces as outlined, e.g., in Sect. 2.3 of [6].
The approach given there can be done by just varying the second surface-parameter.

Here we do not expect analytic solutions in general and we prefer to follow a variant
given in, e.g., [3], which yields Lemma 4.1 in its symmetric formulation.

Given b(x, y), a(x, y) according to Theroem 1.2 we consider the differential form

ω := b(x, y)dx − a(x, y)dy.

Then we have on account of −da = α, −db = β and recalling (3.2), (3.3)

dω = −by(x, y)dx ∧ dy − ax (x, y)dx ∧ dy = 0,

which means that the form is closed and we may define the line integral

E(x, y) :=
∫ (x,y)

(x0,y0)
ω, (4.1)

where we have

∇E(x, y) =
(

b(x, y)

−a(x, y)

)
. (4.2)

With the notation of (3.4) and (3.5) one obtains

(
ϕ1

ϕ2

)
= ∇b,

(
ψ1

ψ2

)
= −∇a. (4.3)

Combining (4.2) and (4.3) finally gives

D2E =
(

ϕ1 ϕ2
ψ1 ψ2

)
. (4.4)

Discussing D2E the relevance of condition (1.11) becomes obvious.

Proposition 4.1 Consider the function E: � → R given in (4.1) and suppose that
(1.11) holds.

Then for any (x, y) ∈ � the bilinear form D2E(x, y) is positive definite.

Proof of Proposition 4.1. Fix some (x, y) ∈ � and abbreviate D2E(x, y) through
D2E . Observe that (4.4) implies for all η = (η1, η2) ∈ R

2 − {0}:

D2E(η, η) = 	
(|∇u|)[η21(1 + u2x

) + 2η1η2uxuy + η22
(
1 + u2y

)]
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+ϑ
(|∇u|)(η21 + η22

)
. (4.5)

Considering (4.5) we note

|2η1η2uxuy | ≤ η21u
2
x + η22u

2
y,

hence the definition (1.6) of the function ϑ shows

D2E(η, η) ≥
[
	

(|∇u|) + ϑ
(|∇u|)]|η|2

=
[
g(|∇u|) − |∇u|g′(|∇u|)

]
|η|2.

Thus we can apply hypothesis (1.11) to see that D2E is positive definite. ��
In the next step we introduce a diffeomorphism generated by the gradient field∇E ,

i.e. by X∗ (recall (1.17)) :

�(x, y) =
(
x
y

)
+ ∇E(x, y), (x, y) ∈ �. (4.6)

As shortly outlined in the appendix, well-known arguments show that � in fact is
a diffeomorphism onto its image.

A more refined analysis of � of course depends on the underlying function X∗. In
the classical minimal surface case we are directly led to a conformal parametrization
without referring to Lichtenstein’smapping theorem (see, e.g., [6], Sect. 2.3 for further
comments).

Here we expect the asymptotic correspondence to this method as a natural conse-
quence of our main Theorem 1.2.

We start with an estimate for the Jacobianwhich proves the claim (1.19) of Theorem
1.3.

Proposition 4.2 Suppose that we have Assumption 1.1 and consider the diffeomorhism
� defined in (4.6).

Then we have for all (x, y) ∈ �

det D� ≥ 1 + 	
(|∇u|)(1 + |∇u|2).

Proof of Proposition 4.2. The Jacobian of � is given by

det D� = ∂x�1∂y�2 − ∂x�2∂y�1

=
[
1 + [

	
(|∇u|)(1 + u2x ) + ϑ

(|∇u|)]]

×
[
1 + [

	
(|∇u|)(1 + u2y) + ϑ

(|∇u|)]]

−	2(|∇u|)u2xu2y
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= 1 + 	
(|∇u|)(2 + |∇u|2) + 	2(|∇u|)(1 + |∇u|2)

+ϑ
(|∇u|) + ϑ

(|∇u|)	(|∇u|)(2 + |∇u|2)
+ϑ2(|∇u|). (4.7)

Moreover, the definition (1.6) of ϑ shows

ϑ
(|∇u|) + ϑ

(|∇u|)	(|∇u|)(2 + |∇u|2) + ϑ2(|∇u|)
=

[
g
(|∇u|) − |∇u|g′(|∇u|)] − 	

(|∇u|)

+
[
g
(|∇u|) − |∇u|g′(|∇u|)]	(|∇u|)(2 + |∇u|2)

−	2(|∇u|)(2 + |∇u|2) +
[
g
(|∇u|) − |∇u|g′(|∇u|)]2

−2	
(|∇u|)[g(|∇u|) − |∇u|g′(|∇u|)] + 	2(|∇u|). (4.8)

Combining (4.7) and (4.8) yields

det D� = 1 + 	
(|∇u|)(1 + |∇u|2)

+
[
g
(|∇u|) − |∇u|g′(|∇u|)]

×
[
1 + 	

(|∇u|)|∇u|2 +
[
g
(|∇u|) − |∇u|g′(|∇u|)]

]
. (4.9)

With (4.9) the proof of Proposition 4.2 again follows from (1.11). ��
Let us now rewrite the functions ϕ1 and ψ2 in the following form

ϕ1 = 	
(|∇u|)(1 + u2x

) + g
(|∇u|) − 	

(|∇u|)|∇u|2 − 	
(|∇u|)

= g
(|∇u|) − 	

(|∇u|)u2y ,

ψ2 = g
(|∇u|) − 	

(|∇u|)u2x . (4.10)

Using (4.10) we recall the definition of � and (4.4), hence

D� =
(
1 + ϕ1 ϕ2

ψ1 1 + ψ2

)
,

and we calculate for all (x̂, ŷ) ∈ �̂ ((x, y) := �−1(x̂, ŷ))

D
(
�−1)(x̂, ŷ) = (

D�(x, y)
)−1

=
(
1 + g

(|∇u|) − 	
(|∇u|)u2y 	

(|∇u|)uxuy

	
(|∇u|)uxuy 1 + g

(|∇u|) − 	
(|∇u|)u2x

)−1

= 1

det D�

(
1 + g

(|∇u|) − 	
(|∇u|)u2x −	

(|∇u|)uxuy

−	
(|∇u|)uxuy 1 + g

(|∇u|) − 	
(|∇u|)u2y

)

=: 1

det D�
�(x, y). (4.11)

123



113 Page 16 of 20 M. Bildhauer, M. Fuchs

In addition we compute

D
(
u ◦ �−1

)
(x̂, ŷ) = Du(x, y) D

(
�−1)(x̂, ŷ)

= 1

det D�
�(x, y)∇u(x, y)

= 1

det D�

[
1 + g − |∇u|2	(|∇u|)]∇u

=: 1

det D�
π(x, y). (4.12)

After these preparations we consider the parametrization of the surface graph(u)

already introduced in (1.18):

χ : (x̂, ŷ) �→
(
�−1(x̂, ŷ), u ◦ �−1(x̂, ŷ)

)
, (x̂, ŷ) ∈ �̂.

Then (4.11) and (4.12) yield

Dχ(x̂, ŷ) =: 1

det D�

(
X Y

) = 1

det D�

(
�(x, y)

π(x, y)

)
, (4.13)

where (4.11), (4.12) and the definition (4.13) of X , Y imply

X =
⎛
⎝ 1 + g

(|∇u|) − 	
(|∇u|)u2x

−	
(|∇u|)uxuy

ux
[
1 + g

(|∇u|) − 	
(|∇u|)|∇u|2]

⎞
⎠ ,

Y =
⎛
⎝ −	

(|∇u|)uxuy

1 + g
(|∇u|) − 	

(|∇u|)u2y
uy

[
1 + g

(|∇u|) − 	
(|∇u|)|∇u|2]

⎞
⎠ .

Now we come to the last part of Theorem 1.3:

Lemma 4.1 If X and Y are given as above, then we have the equations

X · Y = uxuy�
(|∇u|) ,

|X |2 − |Y |2 = [
u2x − u2y

]
�

(|∇u|),
where the function �: [0,∞) → R is given by

�(t) =
[
1 − g(t)g′(t)

t

]
+

[(
g(t) − tg′(t)

) − g′(t)
t

][
2 + (

g(t) − tg′(t)
)]

.
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Proof of Lemma 4.1. By elementary calculations we obtain

X · Y = uxuy

[
− 	

(|∇u|)[2(1 + g
(|∇u|) − 	

(|∇u|)|∇u|2
]

+
[
1 + g

(|∇u|) − 	
(|∇u|)|∇u|2

]2]

=: uxuy �̃
(|∇u|). (4.14)

as well as

|X |2 − |Y |2 = [
u2x − u2y

]
�̃

(|∇u|) (4.15)

with the same function �̃.

Let us write the function �̃(t) from (4.14) and (4.15) in a more convenient form.
We have

2
(
1 + g(t)

) − 	(t)t2 = (
2 + g(t)

) + (
g(t) − tg′(t)

)
,

hence

−	(t)

[
2
(
1 + g(t)

) − 	(t)t2
]

= −
(
2 + g(t)

)
g′(t)

t
− g′(t)

t

(
g(t) − tg′(t)

)
. (4.16)

Moreover, we note

[
1 + g(t) − tg′(t)

]2 = 1 + 2
(
g(t) − tg′(t)

) + (
g(t) − tg′(t)

)2
. (4.17)

Adding (4.16) and (4.17) we obtain

�̃(t) =
[
1 − g(t)g′(t)

t

]
− 2g′(t)

t
+

[
2 − g′(t)

t

](
g(t) − tg′(t)

)

+(
g(t) − tg′(t)

)2
=

[
1 − g(t)g′(t)

t

]

+
[(
g(t) − tg′(t)

) − g′(t)
t

][
2 + (

g(t) − tg′(t)
)] = �(t),

hence we have proved Lemma 4.1. ��
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Example 4.1 We recall that in the minimal surface case we have for all t ≥ 0

g(t) − tg′(t) = g′(t)
t

and
g(t)g′(t)

t
≡ 1.

As a consequence of Lemma 4.1 we obtain an explicit asymptotic expansion for
the function �.

Corollary 4.1 Suppose that we have the assumptions of Theorem 1.3. Then we have
(1.21), i.e. for all t > 0

|�(t)| ≤ d1|t |2−μ + d2|t |−1

with some real numbers d1, d2 > 0.

Proof of Corollary 4.1. As in Remark 1.2, (ii), we now have using (1.20)

g′(t)
[
g(t) − tg′(t)

]
= t R(t), i.e. R(t) = O

(
t1−μ

)
.

By Remark 1.2, (ii), we obtain in addition

1 − g(t)g′(t)
t

=
[
1 − (

g′(t)
)2] + O

(
t1−μ

)
= h(t)

(
1 + g′(t)

) + O
(
t1−μ

)
.

This, together with the boundedness of g′ and once more applying (1.20) gives the
corollary. ��

We finally note that Proposition 4.2, Lemma 4.1 and Corollary 4.1 together yield
the proof of Theorem 1.3. ��
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5 Appendix

For the sake of completeness we append Proposition 5.1 which guarantees the fact
that the function � defined in (4.6) is a diffeomorhism onto its image. The relation
(5.1) is of particular interest if � = R

2. The short proof is outlined below following
Osserman’s book [3].
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Proposition 5.1 With the hypotheses of Proposition 4.1 we suppose that � is a convex
open set and let �: � → G := �(�),

�(x, y) =
(
x
y

)
+ ∇E(x, y), (x, y) ∈ �,

with E defined in (4.1).

Then � is a diffeomorphism, moreover we have for any Br (x0, y0) ⊂ �

Br
(
�

(
(x0, y0)

)) ⊂ G. (5.1)

Proof of Proposition 5.1. For x �= y from Br (0) we let

e(t) := E
(
t x + (1 − t)y

)
, t ∈ [0, 1].

Then

e′′(t) = D2E
(
t x + (1 − t)y

)(
x − y, x − y

)
> 0 for all t ∈ (0, 1),

which shows that e′(t) is an increasing function, i.e.

0 < e′(1) − e′(0) =
[
∇E(x) − ∇E(y)

]
· (x − y). (5.2)

By the definition of � and by (5.1), (5.2) we obtain

[
�(x1, y1) − �(x2.y2)

] · [
(x1, y1) − (x2, x2)

]
= |(x1, y1) − (x2, y2)|2

+
[
∇E(x1, y1) − ∇E(x2, y2)

]
· [

(x1, y1) − (x2, x2)
]

> |(x1, y1) − (x2, y2)|2,

and by the Cauchy–Schwarz inequality this implies

∣∣�(x1, y1) − �(x2, y2)
∣∣ > |(x1, y1) − (x2, y2)|. (5.3)

Observe that (5.3) gives the injectivity of � and since in addition

det D�(x, y) > 0 for (x, y) ∈ Br (0) ,

�: Br (0) → G := �
(
Br (0)

)
is a global diffeomorphism andwe have (5.1) ifG = R

2.
In the case G �= R

2 there exists (x̂, ŷ) ∈ ∂
(
R
2 \ G

) = ∂G, such that

∣∣∣(x̂, ŷ) − �
(
(x0, y0)

)∣∣∣ = inf
η∈R2\G

∣∣∣η − �
(
(x0, y0)

)∣∣∣.
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This means that we find sequences {(x, y)(k)}, {(x̂, ŷ)(k) = �
(
(x, y)(k)

)} such that
as k → ∞

(x, y)(k) → (x, y) ∈ ∂Br (x0, y0) and (x̂, ŷ)(k) → (x̂, ŷ).

The definition of (x̂, ŷ) finally yields

inf
η∈R2\G

∣∣∣η − �
(
(x0, y0)

)∣∣∣ ≥ r ,

hence (5.1) and the proof of Lemma 5.1 is complete. ��
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