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Abstract
Let (M, g) be a Riemannian manifold with boundary. We show that knowledge of
the length of each geodesic, and where pairwise intersections occur along the corre-
sponding geodesics allows for recovery of the geometry of (M, g) (assuming (M, g)
admits a Riemannian collar of a uniform radius). We call this knowledge the ‘stitching
data’. We then pose a boundary measurement problem called the ‘delayed collision
data problem’ and apply our result about the stitching data to recover the geometry
from the collision data (with some reasonable geometric restrictions on the manifold).
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1 Introduction

Let (M, g) be a Riemannian manifold with boundary. Imagine each geodesic of M is
a string of a length determined by the metric. Now, suppose that for each pair of inter-
secting geodesics, you know where they intersect and how intersection points on the
first geodesic correspond to intersection points on the second. With this information,
one could imagine gluing all of the strings together in the right places to reconstruct
the manifold. The image that comes to mind is that of stitching a collection of threads
together to form a piece of fabric. Thus, we will call the information described above
the ‘stitching data’. With reasonable geometric constraints, we will show that knowl-
edge of the stitching data does indeed allow us to recover the geometry of the manifold
it came from. In particular, we note that this result allows for non-compact manifolds,
unbounded manifolds and manifolds with empty boundary.
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Additionally, when every geodesic intersects the boundary, we can think of the
stitching data as a type of boundary data, and we can place this in the broader setting
of boundary rigidity problems. We describe a geometric data set called the delayed
collision data which encodes when two particles fired from different points on the
boundary at different times will first collide (if they collide at all). We show that the
delayed collision data determines the stitching data, and hence the geometry of the
manifold (again, with reasonable geometric assumptions). As with the stitching data,
this result applies to potentially non-compact and unbounded manifolds. However, the
boundary must not be empty, of course.

2 The Stitching Data

Let (M, g) be a Riemannian manifold with boundary. Let Xg be the geodesic vector
field on T M . Then for each vector v ∈ T M , there is an integral curve γ̂v : Iv → T M ,
where γ̂v(0) = v, and Iv is the maximal domain.

In general, Iv could be any type of interval (closed, open, infinite, half-open, etc.).
Additionally, Iv could be the singleton set {0}. We let γv : Iv → M be the projection
of γ̂v onto the base space M . (i.e. γv = π ◦ γ̂v where π : T M → M is the usual
surjection).

Let SM ⊂ T M denote the unit sphere bundle. For v,w ∈ SM , write v ∼SM

w if there exists t ∈ Iv such that w = γ̂v(t) or w = −γ̂v(t). Then it is easy to
verify that ∼SM is an equivalence relation on SM . Thus, ∼SM partitions SM into
equivalence classes. Let [v] ⊂ SM denote the equivalence class containing v. We let
G = SM/ ∼SM . G represents the space of geodesics.

We are now able to formally define the geodesic data described in the introduction:

Definition 2.1 Let (M, g) be aRiemannianmanifoldwith boundary. Let (G ,m•,C•,•)
be a triple where G is a set, mα is an interval for each α ∈ G , and Cα,β : mα → 2mβ

is a set-valued ifunction for each α, β ∈ G . We say (G ,m,C ) is a stitching data for
(M, g) if there exists a function f : G → SM satisfying

1. α �→ [ f (α)] is surjective from G to G.
2. For each α ∈ G , mα = I f (α).
3. For α, β ∈ G , then t ∈ Cα,β(s) if and only if γ f (α)(s) = γ f (β)(t).

In such a case, we call G the geodesic index set, we call m• the interval function,
and C•,• the crossover map.

Let (M, g) be a Riemannian manifold with boundary, and (G ,m,C ) be a stitching
data for (M, g). Intuitively, each element of G corresponds to a geodesic of (M, g).
Since the function f in the above definition must be surjective, multiple elements of
G may correspond to the same geodesic. For α ∈ G , the interval mα tells us how the
geodesicmay be parameterized. Finally, for two elements α, β ∈ G , the crossovermap
Cα,β tells us which points in the images of the two corresponding geodesics coincide.

Definition 2.2 Let (Mi , gi ) be Riemannian manifolds with boundary for i = 1, 2.
For each i = 1, 2, let (G i ,mi ,C i ) be a stitching data for (Mi , gi ). If there exists a
bijection � : G 1 → G 2 such that
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1. m2
�(α) = m1

α for all α ∈ G 1.

2. C�(α),�(β)(t) = Cα,β(t) for all α, β ∈ G 1 and t ∈ m1(α) = m2
�(α).

then we say that � conjugates the two stitching data, and we say that the stitching
data are equivalent.

We note here that equivalent stitching data are essentially just relabelings of each
other.

We recall that, for each x ∈ M , there is an exponential function, expx , defined on a
subset of TxM taking values in M . We call this subset dom(expx ) ⊂ TxM and define
it as follows: for v ∈ TxM , we write v ∈ dom(expx ) if [0, 1] ⊂ Iv . This lets us define
expx : dom(expx ) → M by expx (v) = γv(1).

When x is in the interior of M (i.e. x ∈ M \ ∂M) the exponential map is a local
diffeomorphism. Specifically there exists ε > 0 such that Bε(0) ⊂ dom(expx ) and
expx : Bε(0) → M is a diffeomorphism onto its image (where Bε(0) = {v ∈
TxM ||v|g ≤ ε}). We let injx be the supremum over all such ε. Note that injx may be
infinite.

For a full review of the exponential map, we refer readers to [1].
The following definition is adapted from [2].

Definition 2.3 Let (M, g) be a Riemannian manifold with boundary. For x ∈ ∂M , let
νx be the inward pointing unit normal vector at x . Let rC > 0. If the map K : (x, t) �→
expx (tνx ) from ∂M×[0, rC ) → M is defined and is a diffeomorphism onto its image,
we say that rC is a collar radius for (M, g). If there exists a collar radius for (M, g),
we say that (M, g) is collarable.

We also include manifolds with empty boundary to be collarable. If rC is a col-
lar radius for (M, g), we let N (rC ) denote the image K (M × [0, rC )). We call the
coordinates (x, t) �→ K (x, t) boundary normal coordinates for N (rC ).

We are now able to state our main result, which is that the geometry of a manifold
is determined by a stitching data.

Theorem 2.4 Let (Mi , gi ) be collarable Riemannian manifolds with (possibly empty)
boundary for i = 1, 2. For i = 1, 2, let (G i ,mi ,C i ) be a stitching data for (Mi , gi ).
If the two stitching data are equivalent, then there exists an isometry ϕ : M1 → M2.

We restate Theorem 2.4 as follows.

Theorem 2.5 Let (M, g) be a collarable Riemannian manifold with (possibly empty)
boundary. Then a stitching data for (M, g) determines the isometry class of (M, g).

When (M, g) is a compact manifold with boundary, there are always boundary
normal coordinates. Thus, we obtain the following corollary.

Corollary 2.6 Let (M, g) be a compact Riemannian manifold with boundary. Then a
stitching data for (M, g) determines its isometry class.

We pause here to discuss possible proofs of Theorem 2.4. First, one could argue
directly according to the definitions. To do this, we would take two Riemannian man-
ifolds with boundary with equivalent stitching data and use the conjugating bijection
to show that there is an isometry between the two manifolds.
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Alternatively, if we wish to work with a single manifold rather than two equivalent
manifolds, we have the following proof strategy: use the stitching data to construct a
metric space (X , dX )which is isometric to (M, dg). By “construct”, we mean to write
the set X and the distance function dX directly in terms of the objects in the triple
that make up the stitching data. This yields a proof of Theorem 2.4 in the following
way. Suppose we have two manifolds (Mi , gi )with equivalent stitching data. One can
construct metric spaces (Xi , dXi ) out of each stitching data. Since the two stitching
data are just relabelings of eachother, it follows that the two metric spaces will be
isometric. Thus (M1, dg1) is isometric to (X1, dX1), which is isometric to (X2, dX2),
which is isometric to (M2, dg2). By composing the isometries, we find that (M1, dg1)
is isometric to (M2, dg2).

3 Proof of Main Result

We prove Theorem 2.4 in two parts. In the first part, we put a length structure on M
where admissable curves are piecewise geodesic. We show that the distance function
induced by this length structure is equal to dg . For an overview of length spaces and
length structures, we refer readers to [3].

In the second part, we use the stitching data to construct a length space X . We
then show that the constructed length space is isomorphic to the piecewise geodesic
length space from the first part. If dX is the distance function on X induced by the
constructed length space, it follows that (X , dX ) is isometric to (M, dg). In addition,
since the induced metric can be constructed in terms of the length structure, and the
length structure can be constructed in terms of the stitching data, we conclude that the
metric space (X , dX ) can be constructed in terms of the stitching data.

3.1 The Piecewise Geodesic Length Structure

Let (M, Lg,A) be the standard length structure for (M, g). In particular, a continuous
curve η : [a, b] → M is in A if and only if η is piecewise smooth. Additionally, its
length is defined by Lg(η) = ∫ b

a |η̇(t)|gdt .
For x, y ∈ M , we denote the set of piecewise smooth curves which begin at x and

end at y by Ax,y . The length structure induces a distance function

dg(x, y) = inf
η∈Ax,y

Lg(η)

which is the standard Riemannian distance.

Definition 3.1 Let (M, g) be aRiemannianmanifoldwith boundary.We say a continu-
ous curve η : [a, b] → M is piecewise geodesic if there exists a partition {x1, . . . , xn}
of [a, b], vectors {v1, . . . , vn−1} ⊂ SM , and smooth functions {s1, . . . , sn−1} such that
1. vk ∈ Tη(xk)M .
2. sk : [xk, xk+1] → Ivk
3. η

∣
∣[xk ,xk+1](t) = γvk (sk(t)) for all t ∈ [a, b].
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For such a curve, we write η ∈ Ap.g..

We call the length structure (M, Lg,Ap.g.) the piecewise geodesic length structure.
This length structure induces the piecewise geodesic distance

dp.g.(x, y) = inf
η∈Ap.g.

x,y

Lg(η)

The goal of this section is to prove the following

Theorem 3.2 Let (M, g) be a collarable Riemannian manifold with (possibly empty)
boundary. Then dg = dp.g..

SinceAp.g. ⊂ A and the distance functions are defined by taking the infimum over
the corresponding sets of admissable curves, we easily obtain dg ≤ dp.g.. Thus, we
wish to show the opposite inequality. Specifically, we claim that dp.g. ≤ dg . We will
need a handful of lemmas to prove Theorem 3.2.

First, we show that piecewise smooth curves are Lipschitz with respect to the
distance function dg .

Lemma 3.3 Let η ∈ A. Then η is Lipschitz.

Proof Let η : [a, b] → M be in A. We must show that there exists N > 0 such that
dg(η(s), η(t)) ≤ N |s − t | for all s, t ∈ [a, b].

Let {x1, . . . , xn} be a partition of [a, b] such that η
∣
∣[xk ,xk+1] is smooth. Let ηk =

η
∣
∣[xk ,xk+1]. Then |η̇k | is continuous for each k. Thus, by the extreme value theorem,

there exists Nk > 0 such that |η̇k | ≤ Nk on [xk, xk+1]. Let N = max{N1, . . . , Nn−1}.
Then

dg(η(s), η(t)) ≤ Lg(η
∣
∣[s,t])

≤
∫ t

s
|η̇(r)|gdr

≤
∫ t

s
Ndr

≤ N |s − t |

as required. 	

Next, we show that if a piecewise smooth curve is contained in the interior of M ,

then there is a piecewise geodesic curve with the same endpoints whose length is no
greater than the original curve.

Lemma 3.4 Let (M, g) be a Riemannian manifold with boundary. Let x, y ∈ M \ ∂M
and η : [a, b] → M \ ∂M be in Ax,y . Then there exists η̃ ∈ Ap.g.

x,y such that Lg(η̃) ≤
Lg(η).
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Proof Let (M, g), x, y, η be as stated. Our strategy will be to find a partition {tk}nk=1
of [a, b] such that there is a minimizing geodesic between η(tk) and η(tk+1). Then we
will form η̃ by concatenating the minimizing geodesic segments.

From [4] Proposition 10.18, the injectivity radius on a manifold without boundary
is continuous. It follows from this that the injectivity radius is continuous on M \ ∂M .
Thus, by the extreme value theorem the function injη(t) achieves a positive minimum
on [a, b]. Let 0 < r < inf

t∈[a,b] injη(t). This implies that there is a unique unit speed,

minimizing geodesic from η(t) to η(s) whenever dg(η(t), η(s)) ≤ r .
ByLemma3.3, there exists N > 0 such that dg(η(s), η(t)) ≤ N |s−t |. In particular,

if |s − t | < r
N , then there is a minimizing geodesic segment from η(s) to η(t) [1].

Thus, let {t1, . . . , tn} be a partition of [a, b] such that |tk − tk+1| < r
N for k =

1, . . . , n − 1. For each such k, let ηk : [0, dg(η(tk), η(tk+1)] → M be the minimizing
geodesic segment connecting η(tk) to η(tk+1). We form η̃ by concatenating all of the
ηk .

It is clear that η̃ ∈ Ap.g.
x,y by construction. Additionally, since the ηk are minimizing,

Lg(ηk) ≤ Lg(η
∣
∣[tk ,tk+1]) for all k = 1, 2, . . . , n−1. Thus, Lg(η̃) ≤ Lg(η) as required.

	

In the following lemma, we construct a family of smooth maps field to push curves

away from the boundary.

Lemma 3.5 Let (M, g) be a collarable Riemannian manifold with boundary. Then,
there exists a smooth one parameter family of maps ϕ• : [0,∞) × M → M (i.e. for
t ∈ [0,∞) we have ϕt : M → M) such that

1. ϕ0 is the identity.
2. For all t > 0, ϕt (x) ∈ M \ ∂M.
3. For all x ∈ M, and all s > 0, the curve t �→ ϕt (x) from [0, s] → M is either

stationary or a parameterization of a geodesic segment whose length is less than
or equal to s.

Proof Let rC > 0 be a collar radius for (M, g). Let Xν be the vector field on N (rC )

which is given by ∂t in the boundary normal coordinates (x, t) �→ expx (tνx ). Let χ :
[0, rC ) → [0, 1] be a non-negative smooth functionwhich is identically one on [0, rC

3 ],
non-zero on [0, 2 rC

3 ), and identically zero on [ 2rC3 , rC ). Let V (x, t) = χ(t)Xν(x, t).

Then V extends to a smooth vector field which is identically zero on M \ N (
2rC
3 ). Let

ϕt be the flow generated by V . We claim that ϕ• has the desired properties.
The fact that ϕ0 is the identity is a property of all flows generated by vector fields,

so ϕ• has property 1.
Now, we prove that ϕ• has property 2. Let x ∈ M . Then either x ∈ N (

2rC
3 ) or

x /∈ N (
2rC
3 ). If x /∈ N (

2rC
3 ), then V (x) = 0 by construction, so the integral curve is

stationary. Thus, ϕt (x) = x ∈ M \ N (
2rC
3 ) ⊂ M \ ∂M .

If x ∈ N (
2rC
3 ), then let x = (x ′, s) in boundary normal coordinates. Let f solve the

initial value problem

{
f ′ = χ

f (0) = s
. In particular, χ > 0 on N (

2rC
3 ) so f is increasing.
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Additionally, by construction ϕt (x) = (x ′, f (t)), so for t > 0 we have f (t) > 0 and
(x ′, f (t)) /∈ ∂M . This proves that ϕ• has property 2.

Finally, we show that ϕ• has property 3. Let x ∈ M . Again, there are two possi-
bilities. Either x ∈ N (

2rC
3 ) or x /∈ N (

2rC
3 ). As before, if x /∈ N (

2rC
3 ), then ϕ•(x) is

stationary.
If x ∈ N (

2rC
3 ), then we have that ϕt (x) = (x ′, f (t)) in boundary normal coordi-

nates as before. This is a reparameterization of the unit speed geodesic t �→ (x ′, t).
It follows from properties of boundary normal coordinates that | ddt ϕt (x)|g = | f ′(t)|.
Since f ′(t) = χ(t) ≤ 1, we have that the length of ϕt (x)

∣
∣[0,s] is at most s as required.

	

Next, we show that we can push a curve away from the boundary in a controlled

way.

Lemma 3.6 Let (M, g)bea collarableRiemannianmanifoldwith boundary. Let x, y ∈
M, η ∈ Ax,y , and ε > 0. Then there exists x ′, y′ ∈ M \ ∂M and η̃ ∈ Ax ′,y′ such that

1. dp.g.(x, x ′) + dp.g.(y′, y) ≤ ε

2. The image of η̃ is contained in M \ ∂M.
3. Lg(η̃) ≤ Lg(η) + ε

Proof We use the flow constructed above to prove Lemma 3.6. Let x, y, η, ε be as
stated. Let 0 < rC < ε be a collar radius for (M, g) and let ϕ• be the flow constructed
in Lemma 3.5.

For δ ≥ 0, let ηδ(t) = ϕδ(η(t)). Then ηδ ∈ Aϕδ(x),ϕδ(y). Since ϕ• is smooth, we
have that δ �→ Lg(ηδ) is continuous and equal to Lg(η) when δ = 0. Thus, there exist
δ′ > 0 such that if δ < δ′, then Lg(ηδ) ≤ Lg(η) + ε.

Additionally, from the property 3 of ϕ•, we have that ϕ•(x)
∣
∣[0,δ] and ϕ•(y)

∣
∣[0,δ] are

piecewise geodesic, and Lg(ϕ•(x)
∣
∣[0,δ]), Lg(ϕ•(y)

∣
∣[0,δ]) ≤ δ. Thus, dp.g.(x, ϕδ(x))+

dp.g.(y, ϕδ(y)) ≤ 2δ. Choose δ < min{ε/2, δ′}. Let x ′ = ϕδ(x), y′ = ϕδ(y) and
η̃ = ηδ . Then, dp.g.(x, x ′) + dp.g.(y′, y) ≤ ε as required.

Finally, from property 2 of ϕ•, we have that the image of η̃ is contained in M \ ∂M
as required. 	


Finally, we use Lemmas 3.4 and 3.6 to prove Theorem 3.2

Proof of Theorem 3.2 Let (M, g) be a collarable Riemannian manifold with boundary.
Let x, y ∈ M and η ∈ Ax,y . Let ε > 0. Then by Lemma 3.6 there exists x ′, y′ ∈
M \ ∂M and η1 ∈ Ax ′,y′ such that

1. dp.g.(x, x ′) + dp.g.(y′, y) ≤ ε
3

2. The image of η1 is contained in M \ ∂M .
3. Lg(η1) ≤ Lg(η) + ε

3 .

From Lemma 3.4, there exists η2 ∈ Ap.g.
x ′,y′ such that Lg(η2) ≤ Lg(η1).

From the definition of dp.g., there exists η3 ∈ Ap.g.
x,x ′ and η4 ∈ Ap.g.

y′,y such that
Lg(η3) ≤ dp.g.(x, x ′) + ε

6 and Lg(η4) ≤ dp.g.(y′, y) + ε
6 . Combining this with (1.)

above, we obtain Lg(η3) + Lg(η4) ≤ 2 ε
3 .
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Thus, let η̃ ∈ Ap.g.
x,y be obtained by concatenating η3, η2 and η4. Then we have that

Lg(η̃) = Lg(η3) + Lg(η2) + Lg(η4)

≤ 2
ε

3
+ Lg(η2)

≤ 2
ε

3
+ Lg(η) + ε

3
≤ Lg(η) + ε

Thus, we have shown that for all ε > 0, there exist η̃ ∈ Ap.g.
x,y such that Lg(η̃) ≤

Lg(η) + ε. From this, it follows that dp.g.(x, y) ≤ dg(x, y).
Combining this with the trivial inequality that dg(x, y) ≤ dp.g.(x, y), we get the

desired equality dg(x, y) = dp.g.(x, y). 	


3.2 Constructing an Isomorphic Length Space

In the previous section, we showed that dp.g. = dg if (M, g) is collarable. In this
section, we show that knowledge of the stitching data allows us to form a length space
that is isomorphic to (M, Lg,Ap.g.). From this it follows that knowledge of the length
space allows us to construct a metric space which is isometric to (M, dg).

As before, let (M, g) be a Riemannian manifold with boundary, and let (G ,m,C )

be a stitching data for M . We form the stitching space by taking the disjoint union
S = 
α∈Gmα . For points in S, we use subscripts to make it explicit which mα they
come from. For instance, we would write aα ∈ mα ⊂ S.

In the following, we construct a length space (X , LX ,AX ). It is important to note
that we do this without reference to M ; all of the information required to carry out the
construction is contained in the stitching data.

Construction 3.7 Write aα ∼S bβ ifCα,β(aα) � bβ This forms an equivalence relation
on S. Let 〈aα〉 ⊂ S denote the equivalence class containing aα . Let X = S/ ∼S .

For η : [c, d] → X, write η ∈ AX if there exists a partition {x1, . . . , xn} of [c, d],
a subset {α1, . . . , αn−1} ⊂ G , and smooth curves {η1, . . . , ηn−1} such that

1. ηk : [xk, xk+1] → mαk , for k = 1, 2, . . . , n − 1.
2. η

∣
∣[xk ,xk+1](t) = 〈ηk(t)〉, for k = 1, 2, . . . , n − 1

3. 〈ηk(xk+1)〉 = 〈ηk+1(xk+1)〉 for k = 1, 2, . . . , n − 2.

For η ∈ AX , with {η1, . . . , ηn−1} as above, define

LX (η) =
n−1∑

1

L(ηk)

where L(ηk) = ∫ xk+1
xk

|η′
k(s)|ds

Lemma 3.8 The relation ∼S defined in Construction 3.7 is in fact an equivalence
relation.

123



Stitching Data: Recovering a Manifold’s Geometry Page 9 of 22 95

Proof Wemust show that∼S is reflexive, symmetric and transitive. Let f : G → SM
satisfy the hypotheses of Definition 2.1.

First, we show that ∼S is reflexive. Let aα ∈ mα ⊂ S. Then γ f (α)(aα) =
γ f (α)(mα), so aα ∈ Cα,α(aα). Thus, aα ∼S aα as required.

Now, we show that ∼S is symmetric. Let aα, bβ ∈ S. Suppose aα ∼ Sbβ . Then,
bβ ∈ Cα,β(aα). Thus, γ f (α)(aα) = γ f (β)(bβ). This implies that aα ∈ Cβ,α(bβ), so
bβ ∼S aα as required.

Finally, we show that ∼S is transitive. Let aα, bβ, cζ ∈ S. Suppose that aα ∼S bβ

and bβ ∼S cζ . Then it follows that γ f (α)(aα) = γ f (β)(bβ) = γ f (ζ )(cζ ). Thus,
cζ ∈ Cα,ζ (aα). This implies that aα ∼S cζ as required. 	

Definition 3.9 Let (Yi , Li ,Ai ) be length spaces for i = 1, 2. We say that the length
spaces are isomorphic if there exists a bijection ϕ : Y1 → Y2 such that

1. The map η �→ η ◦ ϕ is a bijection from A1 → A2

2. L2(η ◦ ϕ) = L1(η) for all η ∈ A1.

Clearly the metric spaces generated by isomorphic length spaces are isometric.
Thus, we wish to show the following:

Theorem 3.10 The length structure (X , LX ,AX ) is isomorphic to (M, Lg,Ap.g.).

To prove Theorem 3.10 we will need the following two facts, which follow directly
from basic properties of the geodesic flow:

Lemma 3.11 Let (M, g) be a Riemannian manifold with boundary. Suppose v,w ∈
SM and v ∼SM w. Then, there exists an isometry s : Iv → Iw such that γ̂v = γ̂w ◦ s,
and γv = γw ◦ s.

Lemma 3.12 Let (M, g) be a Riemannian manifold with boundary. Suppose v ∈ SM
and η : [a, b] → Iv is smooth. Let μ : [a, b] → M be defined by μ(t) = γv(η(t)).
Then |η′(t)| = |μ̇(t)|g.
Proof of Theorem 3.10 Let (G ,m,C ) be the stitching data for (M, g) from which
(X , LX ,AX ) was constructed. Then, there exists f : G → SM satisfying the con-
straints of Definition 2.1.

Let ϕ̃ : S → M be defined by ϕ̃(aα) = γ f (α)(aα). If 〈aα〉 = 〈bβ〉, then γ f (α)(aα) =
γ f (β)(bβ). Thus, ϕ̃(aα) = ϕ̃(bβ), so ϕ̃ is constant on the equivalence classes of ∼S .
This implies that ϕ̃ passes to the quotient space. Specifically, there exists ϕ : X → M
satisfying ϕ(〈aα〉) = ϕ̃(aα). We claim that ϕ satisfies the constraints of Definition 3.9.

First, we show that ϕ is surjective. Let y ∈ M . We must show that there exists
〈aα〉 ∈ X such that ϕ(〈aα〉) = y. Let v ∈ SyM . Since α �→ [ f (α)] is surjective,
there exists α ∈ G such that [ f (α)] = [v]. By the definition of ∼SM , there exists
aα ∈ I f (α) = mα such that γ f (α)(aα) = y. Thus, ϕ̃(aα) = y, so ϕ(〈aα〉) = y as
required.

Next, we show that ϕ is injective. Let 〈aα〉, 〈bβ〉 ∈ X . Suppose ϕ(〈aα〉) = ϕ(〈bβ〉).
We must show that aα ∼S bβ . The fact that ϕ(〈aα〉) = ϕ(〈bβ〉) implies that
γ f (α)(aα) = γ f (β)(bβ). Thus, bβ ∈ Cα,β(aα), so aα ∼S bβ as required. Thus, we
have that ϕ is surjective and injective, so it is a bijection.
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Let � : AX → Ap.g. be defined by �(η) = η ◦ ϕ. We claim that � is a bijection.
First, we show that � is surjective. Let η̃ : [a, b] → M be a piecewise geodesic

path. We must show that there exists η ∈ AX such that �(η) = γ̃ . Since η̃ is piece-
wise geodesic, there exists a partition {x1, . . . , xn} of [a, b] such that η̃

∣
∣[xk ,xk+1](t) =

γvk (sk(t)) for vk ∈ SM and sk : [xk, xk+1] → Ivk smooth.
There exists {α1, . . . , αn−1} ⊂ G such that [ f (αk)] = [vk], since α �→ [ f (α)] is

surjective. Let s̃k : Ivk → mαk be the isometry guaranteed in Lemma 3.11. Then, let
γk : [xk, xk+1] → mαk be defined by γk(t) = 〈s̃k(sk(t))〉.

Observe that ϕ(ηk(t)) = γ f (αk )(sk(t)) = η̃
∣
∣[xk ,xk+1](t). Thus, if we form η by

concatenating the ηk , we get that η̃ = �(η) as required.
Now, we show that � is injective. Suppose η1, η2 ∈ AX , and �(η1) = �(η2). We

must show that η1 = η2. This follows from the fact that ϕ is injective. Thus, we have
that � is a bijection.

Finally, we wish to show that � preserves lengths. Let η ∈ AX . Suppose η :
[a, b] → X , {x1, . . . , xn} is a partition of [a, b], and {α1, . . . , αn−1} ⊂ G such that
η
∣
∣[xk ,xk+1](t) = 〈ηk(t)〉 for paths ηk : [xk, xk+1] → mαk . Letμk(t) = γ f (αk )(ηk(t)) =

ϕ(〈ηk(t)〉). Then by Lemma 3.12

LX (η) =
n−1∑

k=1

L(ηk)

=
n−1∑

k=1

∫ xk+1

xk
|η′

k(s)|ds

=
n−1∑

k=1

∫ xk+1

xk
|μ′

k(s)|ds

=
n−1∑

k=1

Lg(�(η)
∣
∣[xk ,xk+1])

= Lg(�(η))

as required. 	

We summarize our prior constructions in the proof of our first main theorem.

Proof of Theorem 2.4 Let (M, g) be a collarable Riemannian manifold with (possibly
empty) boundary. Fix a stitching data (G ,m,C ) for (M, g). We claim that we can
provide a sequence of sets and mathematical objects starting with (G ,m,C ) and
ending with (X , dX ) such that each object can be written directly in terms of the
objects before it. It follows from Theorems 3.10 and 3.2 that (M, dg) is isometric to
(X , dX ). Thus, as discussed at the end of Sect. 2, such a sequence would constitute a
proof of Theorem 2.4.

First, we provide the sequence, then we make explicit the relationship described in
each arrow.

(G ,m,C ) �⇒ S �⇒ ∼S �⇒ X �⇒ AX �⇒ LX �⇒ (X , dX )
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[ �⇒ S ]S can bewritten in terms ofG andm as the disjoint unionS = ⊔
α∈G mα .

[ �⇒ ∼S ] For aα ∈ mα ⊂ S and bβ ∈ mβ ⊂ S, then aα ∼S bβ if and only if
bβ ∈ Cα,β(aβ).

[ �⇒ X ] X is just the quotient S/ ∼S .
[ �⇒ AX ] We break up the description of AX into a few parts. First, observe that

the set

A = {η : [a, b] → mα|a ≤ b, ηk is smooth, α ∈ G }

can be written in terms of m and G . Then, observe that the set

B = {η̃ : [a, b] → X |η̃(t) = 〈η(t)〉 for some η ∈ A}

can bewritten in terms of A and∼S . Next, for two curves η1 : [a, b] → X
and η2 : [c, d] → X , we can form their concatenation (η1&η2) : [a, b +
d − c] → X by

(η1&η2)(t) =
{

η1(t) t ∈ [a, b]
η2(t + c − b) t ∈ [a, b + d − c]

whenever η1(b) = η2(c). This condition, where the end of one curve is
equal to the beginning of another curve is just the property of being able
to identify when two elements of a set. Thus, it is describable in terms of
X . Finally, we may write AX in the following way

AX = {(η1&η2& · · ·&ηN )|ηk ∈ B ∀k = 1, 2, . . . , N

and the right endpoint of ηk is compatible

with the left end point of ηk+1 ∀k = 1, 2, . . . , N − 1}

[ �⇒ LX ] Fix η ∈ AX . We will show that we can describe LX (η) in terms of
the previous sets and mathematical objects. As described in the previous
section, η is the concatenation of curves of the form t �→ 〈ηk(t)〉 where
ηk : [a, b] → mα is smooth. The particular decomposition of η into such
segments is describable in terms of η itself, m, G and ∼S . Thus, we may
identify the ηk : [ak, bk] → mαk . Once this is done, we simply have

LX (η) =
N∑

k=1

∫ bk

ak
|η′

k(s)|ds

[ �⇒ dX ] For p, q ∈ X , dX (p, q) = inf
η∈AX

p,q

L X (η)

Thus, we have constructed a metric space isometric to (M, dg) as required. 	
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4 Review of Boundary Measurement Problems

Many seismic and medical imaging problems can be framed as taking measurements
of a geometric system from the boundary and trying to recover the interior geometry
from these measurements. Thus, we would like to frame the stitching data in these
terms. Before we do this, we review two of the standard boundary measurement
inverse problems: boundary rigidity and lens rigidity, and two boundary measurement
problems that are directly related to geodesic intersections: broken scattering rigidity
and internal scattering rigidity.

For all of the following problems, the given measurements do not change under an
isometry that fixes the boundary. We call this the ‘natural obstruction’.

For a more complete review of current results on boundary measurement problems,
we refer readers to [5].

4.1 Boundary Rigidity

Distance is perhaps the simplest geometric quantity. Thus, the first boundary mea-
surement we will discuss is the distance between boundary points. Seismically, this
corresponds to measuring how long it takes an earthquake wave to propagate from
the earthquake epicenter to different seismometers set up around the globe. Mathe-
matically, let (M, g) be a Riemannian manifold with boundary. Suppose we are given
(∂M, dg

∣
∣
∂M×∂M ). The boundary rigidity problem is to determine when this informa-

tion allows us to recover (M, g) up to the natural obstruction.
Let M be a class of Riemannian manifolds with boundary. We say that M is

boundary rigid if the following holds: For all pairs of manifolds (M1, g1), (M2, g2) ∈
M such that there exists a diffeomorphism of the boundaries ϕ∂ : ∂M1 → ∂M2
satisfying dg2(ϕ

∂(x), ϕ∂(y)) = dg1(x, y) for all x, y ∈ ∂M1, then ϕ∂ extends to a
diffeomorphism ϕ : M1 → M2 such that g1 = ϕ∗g2.

Not all classes of Riemannian manifolds are boundary rigid. Consider the class of
compact Riemannian manifolds with boundary. One can construct a compact Rieman-
nian manifold with boundary (M, g) that has an open subset U ⊂ M such that no
distance-minimizing geodesics between boundary points pass throughU . Thus, g

∣
∣
U is

invisible to the boundary distance data. In particular, we can perturb g onU such that
the boundary distances remain the same, but the isometry class of M is altered. For a
specific example, take the round sphere and remove an open geodesic disk properly
contained in one of the hemisphere.

One class of manifolds that avoids the above issue is simplemanifolds. A compact,
connected Riemannian manifold is simple if ∂M is strictly convex (i.e. the second
fundamental formon the boundary is everywhere positive definite), andpairs of distinct
points are connected by a unique geodesic; furthermore, all geodesics are minimizing.
In [6], Michel conjectured that the class of simple manifolds is boundary rigid. It is
not known whether the entire class of simple manifolds is boundary rigid, however
the following subclasses are known to be boundary rigid:

1. Simple 2-dimensional manifolds [7]
2. Simple subspaces of Euclidean space [8]
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3. Simple subspaces of an open 2-dimensional hemisphere [9]
4. Simple subspaces of symmetric spaces of constant negative curvature [10]

4.2 Lens Rigidity

In the previous subsection, an issue arosewhen therewas an open subset throughwhich
no length-minimizing geodesics between boundary points pass. We addressed this
issue by restricting to a class of manifolds for which this does not occur. Alternatively,
one might hope to address this issue by considering geodesics which are not length-
minimizing. In the current subsection, and the two subsections that follow, we consider
geometric data object that, in principle, contain information about every part of a
connected manifold with non-empty boundary.

Let (M, g) be a compact Riemannian manifold with boundary which is a codi-
mension 0 subspace of a complete Riemannian manifold without boundary (M̃, g̃). In
other words, M ⊂ M̃ and g̃

∣
∣
M = g. Define the exit time function τ : SM → [0,∞]

by τ(v) = ∞ if γv(t) ∈ M for all t ≥ 0, otherwise τ(v) = inf{t ≥ 0|γv(t) ∈ M̃ \M}.
We note that the values of τ on SM do not depend on the specific extension of M to
a manifold M̃ . Intuitively τ(v) is the first time that γv exits the manifold M . When
τ(v) �= ∞ for all v ∈ ∂SM , we say (M, g) is non-trapping.

If τ(v) �= ∞, define �(v) = γ̇v(τ (v)). Intuitively, �(v) is the direction that γv

is traveling when it exits the manifold M . If τ(v) = ∞, we leave �(v) undefined.
Thus, we obtain a partially defined function� : SM → SM . We call� the scattering
relation, and the pair (∂SM, �

∣
∣
∂SM ) is the scattering data.

If, in addition to the scattering relation, we are given the exit times, what we have is
the lens data. Specifically, the lens data is the triple (∂SM, �

∣
∣
∂SM , τ

∣
∣
∂SM ). Observe

that, when M is connected with non-empty boundary, every point in M has a geodesic
which passes through it and originates at the boundary. Thus, in principle the lens
data may contain information about portions of the manifold which are invisible to the
boundary distance data.Note that if v ∈ SxM is outward pointing (i.e. 〈v, νx 〉 < 0),
then τ(v) = 0 and �(v) = v. In most of the literature, the scattering and exit time
relation are initially defined only for inward pointing directions, and then extended to
be defined on all of ∂SM . For expositional simplicity, wewill stick with our definition.
While this definition differs from the extensions in the literature, one can be obtained
from the other, so all of the results are equivalent. As with the boundary rigidity, we
say a class of manifolds is lens rigid if the lens data determines the metric up to an
isometry which fixes the boundary.

The lens data determine the boundary distance data, and when the manifold is sim-
ple, they are equivalent [6]. Thus, one may ask if the additional information contained
in the lens data provides us with anything useful in the non-simple case.

Guillarmou, Mazzucchelli and Tzou showed in [11] that the class of non-trapping,
oriented compact Riemannian surfaces is boundary rigid. This class is larger than the
class of simple 2-dimensional Riemannian manifolds, since it replaces the convex
restriction with a non-trapping restriction, and simple manifolds are already non-
trapping.
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In [12], Lassas, Sharafutdinov, and Uhlmann show that the boundary distances
for a simple Riemannian manifold (and hence the lens data) determine the jets of
the metric at the boundary in boundary normal coordinates. In [13], Stefanov and
Uhlmann extend this result to manifolds without conjugate points (thus, lifting the
convex boundary assumption).

In [14], Stefanov, Uhlmann, and Vasy show that manifolds which satisfy a convex
foliation condition are lens rigid.

4.3 Broken Scattering Rigidity

Let (M, g) be a compact Riemannian manifold with boundary. A piecewise geodesic
curve that starts and ends at the boundary is a curve η : [0, Lg(η)] → M such that

η(t) =
{

γv(t) t ∈ [0, s]
γw(t − s) t ∈ (s, Lg(η)]

For some v ∈ ∂SM and w ∈ SM , such that γv(s) = π(w) and η(Lg(η)) ∈ ∂M .
The broken scattering relation for (M, g) is the set

Rg = {(v,�(w), Lg(η))|there exists v,w, η as above} ⊂ ∂SM × ∂SM × [0,∞)

Physically, one can think of the broken scattering relation as measuring the input
directions, output directions, and travel times of a particle moving through a diffuse
medium that gets scattered one time in an arbitrary direction.

In [15], Kurylev, Lassas, and Uhlmann consider the problem of recovering the
geometry of a manifold from its broken scattering relation. They show that the bro-
ken scattering relation of a compact Riemannian manifold with non-empty boundary
determines the isometry class of the manifold, as long as the manifold is at least
three-dimensional.

In [16], de Hoop, Ilmavirta, and Saksala extend the broken scattering relation from
Riemannian manifolds to Finsler manifolds. They prove that two Finsler manifolds
with broken scattering relations that conjugate via a diffeomorphism of the boundary,
and a diffeomorphism of the tangent bundle restricted to the boundary are isometric,
provided

• both manifolds admit a particular foliation by convex hypersurfaces
• both finsler functions are reversible
• the manifolds are at least three-dimensional

4.4 Internal Scattering Rigidity

Let (M, g) be a Riemannian manifold with boundary. For x ∈ M , define

star(x) = {v ∈ ∂SM |∃w ∈ SpM and t ∈ [0,∞) ∩ Iw such that v = γ̂w(t)}

Intuitively, star(x) is the set of exit directions (or glancing directions) of geodesics
emanating from x . One can flip this around and say that if w ∈ ∂SM , then (−w) ∈
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star(x) if and only if γw(t) = x for some t ≥ 0, to consider entering directions that
pass through x . Define the collection of sets

STARg = {star(x)}x∈M

We will call the pair (∂M,STARg) the internal scattering data. In [17], Lassas,
Saksala, and Zhou consider the problem of recovering the geometry of a Rieman-
nian manifold with boundary. They show that for a particular generic class of (M, g)
satisfying

• (M, g) is non-trapping
• ∂M is strictly convex

the internal scattering data allows for recovery of the isometry class of themanifold.

5 The Delayed Collision Data

Now, we develop a boundary measurement type problem from which we will recover
the stitching data.

Imagine, for each point in on the boundary of M , we can choose an inward pointing
direction and shoot a particle at unit speed along the geodesic in that direction. Imagine
further, that at another point on the boundary, you can wait any amount of time from
when the first particle was released, and fire another particle at unit speed along a
geodesic in any inward pointing direction. Then, you can detect whether the two fired
particles collide and how long it took for the collision to occur.

In this section,we formalize the data set described above and show that it determines
the stitching data (and hence the geometry of themanifold) under reasonable geometric
assumptions.

To encode the geodesic information described above as boundary data, we would
like all geodesics to reach the boundary in at least one direction. The following defi-
nition captures this idea

Definition 5.1 Let (M, g) be a Riemannian manifold with boundary. If the map v �→
[v] from ∂+SM to G is surjective, we say that (M, g) is semi-nontrapping.

where

∂+SM =
⋃

x∈∂M

{v ∈ SxM |〈νx , v〉 > 0}

∂+SM =
⋃

x∈∂M

{v ∈ SxM |〈νx , v〉 ≥ 0}

Let (M, g) be a Riemannian manifold with boundary. Let v,w ∈ ∂+SM and
D ≥ 0. If γv(t) �= γw(t + D) for all t ≥ 0, then write D(v,w, D) = ∞, otherwise
write D(v,w, D) = inf{t ∈ Iv|γv(t) = γw(t + D)}. We call D the delayed collision
operator. We define the delayed collision dataD = {(v,w, s, D) ∈ ∂+SM×∂+SM×
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Fig. 1 (a) (v, w, s, D) ∈ D (b) One intersection point is ‘hiding’ another, because both geodesic segments
have length r

Iv × [0,∞)|D(v,w, D) = s}. Intuitively (v,w, s, D) ∈ D if we fire a particle in
direction w, wait D units of time, then fire a particle in direction v and the first
collision occurs after s more units of time. See Fig. 1 for an illustration of this.

5.1 Relation to Lens Data

We briefly discuss the relationship between the delayed collision data and the lens
data. Namely, that the delayed collision data is stronger than the lens data.

Let v ∈ ∂SM . We start by dealing with the edge case �(v) = v (i.e. v is out-
ward pointing or tangent to the boundary at a convex point such that the geodesic γv

immediately exits M). This occurs if and only if all collisions with γv occur at γv(0).
Specifically, that {s > 0|(v,w, s, D) ∈ D for some w, s, d} = ∅. Thus, the delayed
collision data allows us to identify the set �(v) = v. Thus, in what follows, we will
assume that if �(v) = w, then v �= w.

Let v ∈ ∂+SM and �(v) = w. Then γv and γ−w are parameterizations of the same
geodesic but in opposite directions. In particular, there are a continuum of intersection
points between γv and γ−w. All of these points will show up in the delayed collision
data: if γv(s) = γ−w(t) and s ≤ t , then (v,−w, s, t − s) ∈ D.

Conversely, if�(v) �= w then γv and γ−w intersect at discrete points. Thus, we have
�(v) = w if and only if the set {s|(v,−w, s, D) ∈ D or (w,−v, s, D) ∈ D} contains
an interval. Thus, the delayed collision data determines the scattering relation.

Now, we wish to recover the exit times. Observe that τ(v) = ∞ if and only if
there does not exist any w such that �(v) = w. Thus, we restrict our attention to
non-trapped geodesics. Suppose that �(v) = w. Then, observe that τ(v) = D if
and only if σ(v,−w, 0, D) ∈ D. Thus, the delayed collision data determines the exit
times.
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5.2 Relation to Broken Scattering Data

Let us now discuss the relationship between the delayed collision data and the bro-
ken scattering data. Of course, in three and higher dimensions, the broken scattering
relation determines the entire geometry, and thus is at least as strong as the delayed
collision data. In the other direction, we show that the delayed intersection data deter-
mines the broken scattering relation when (M, g) is simple. For the remainder of this
subsection, we will assume (M, g) is simple.

For simple manifolds, all entry directions of geodesics are elements of ∂+SM and
all exit directions are elements of ∂−SM = {−v|v ∈ ∂+SM}. Thus, if (v,w, l) ∈ Rg ,
then we have v ∈ ∂+SM and w ∈ ∂−SM . We will show that we can identify whether
or not (v,w, l) is an element of Rg from the delayed collision data. We will break this
analysis up into two lemmas. In the first case, we consider when π(v) = π(w), and
in the second, we consider when π(v) �= π(w).

Lemma 5.2 Let (M, g) be a simple Riemannian manifold with boundary. Let v ∈
∂+SM, w ∈ ∂−SM and l ∈ [0,∞) be such that π(v) = π(w). Then (v,w, l) ∈ Rg

if and only if w = −v and l ≤ 2τ(v).

Proof First, we note that this “if and only if” constraint can be written in terms of the
delayed collision data, since we showed in the previous subsection that the exit time
function can be written in terms of the delayed collision data.

Next, we recall one of the primary properties of simple manifolds: between any
two points there is a unique minimizing geodesic. Thus, if a broken geodesic enters
and exits at the same point, the only way for this to occur is if it enters the manifold
in one direction and leaves it in the opposite direction (i.e., it travels for some time,
then gets scattered in the opposite direction and travels back along the same geodesic
segment in reverse).

Finally, observe that the geodesic can be broken at any point, and then travel back
along the same geodesic. Thus, any length between 0 and 2τ(v) is possible. 	


Next, we consider the situation where π(v) �= π(w).

Lemma 5.3 Let (M, g) be a simple Riemannian manifold with boundary. Let v ∈
∂+SM, w ∈ ∂−SM and l ∈ [0,∞) be such that π(v) �= π(w). Then (v,w, l) ∈ Rg if
and only if there exists s, D ≥ 0 such that l = 2s + D and one of the following hold

1. (v,−w, s, D) ∈ D
2. (−w, v, s, D) ∈ D
Proof Let v ∈ ∂+SM , w ∈ ∂−SM and l ∈ [0,∞) be such that π(v) �= π(w). First,
suppose that (v,w, l) ∈ Rg . Let η : [0, l] → M be defined by

η(t) =
{

γv(t) t ∈ [0, t∗]
γz(t) t ∈ (t∗, l]

be a broken geodesic that corresponds to (v,w, l). Observe then, that γv(t∗) =
γ−w(l − t∗). If t∗ ≥ l − t∗, then let s = l − t∗ and D = t∗ − s. It follows that
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γv(s + D) = γ−w(s), and l = 2s + D. It follows straightforwardly from the fact
that any two points have a unique geodesic connecting them, that two intersecting
geodesics either intersect at a single point or are reparameterizations of eachother.
Since π(v) �= π(w), we have that γv either intersects γ−w at a single point or γv is
the “reverse” of γ−w (i.e. the same geodesic, but in the opposite direction. Thus, it
follows that the equation

γv(x + D) = γ−w(x)

has exactly one solution x = s. Thus, (−w, v, s, D) ∈ D.
Similarly, if t∗ < l − t∗, let s = t∗ and D = (l − t∗) − t∗. Then l = 2s + D and

(v,−w, s, D) ∈ D.
Conversely, suppose that there exists s, D ≥ 0 such that (v,−w, s, D) ∈ D, and

l = 2s + D (the analysis of the (−w, v, s, D) ∈ D will be nearly identical, so we
will not include it). Since (M, g) is simple, we know that two intersecting geodesics
intersect at a single point or have identical images. It follows that the infimum in the
definition inD is saturated. Thus, γ−w(s + D) = γv(s). Let z = −γ̂−w(s + D). Then
�(z) = w. It follows that η : [0, l] → M defined by

η(t) =
{

γv(t) t ∈ [0, s]
γz(t − s) t ∈ (s, l]

is a broken geodesic corresponding to (v,w, l). Thus, (v,w, l) ∈ Rg as required.
	


We note here that the fact that the delayed collision data determines the broken
scattering relation when (M, g) is simple also follows from Theorem 5.10. However,
the relationship is less clear when one uses Theorem 5.10 as an intermediate. We also
note that it is certainly plausible that the delayed collision data determines the broken
scattering relation in settings that are more general than simple manifolds.

5.3 Relation to Internal Scattering Data

In this subsection, we show that the delayed collision data determines the internal
scattering data when (M, g) is simple. As in the previous subsection, we assume
that (M, g) is simple for the entirety of this subsection. For x ∈ ∂M , observe that
star(x) = �(SxM). Thus, since the delayed collision data determines �, we are
able to identify all such sets. Thus, we restrict our attention to identifying when a set
S ⊂ ∂SM is a star set star(x) for some x ∈ M \ ∂M .

Observe that for all such sets, the fact that geodesics between distinct points are
unique implies that there is exactly one element of star(x) based at each point in ∂M .
Additionally, it follows from the properties of simple manifolds that all exit directions
of geodesics which start on the interior are strictly outward directions (i.e. elements
of ∂−SM).

Lemma 5.4 Let (M, g) be a simple Riemannian manifold with boundary. Let S ⊂
∂−SM be such thatπ : S → ∂M is a bijection. Then S = star(x) for some x ∈ M\∂M
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if and only if there exists v0 ∈ S and r0 > 0 such that for all w ∈ S \ {v0} one of the
following hold.

1. (−v0,−w, r0, D) ∈ D for some D ≥ 0
2. (−w,−v0, s, r0 − s) ∈ D for some s ≥ 0.

Proof Let S ⊂ ∂−SM be such that π : S → ∂M is a bijection. First, suppose
S = star(x) for x ∈ M \ ∂M . Let v0 ∈ S be arbitrary and let r0 = dg(π(v0), x). Then
γ−v0(r0) = x . Let w ∈ S \ {v0}. If dg(π(w), x) ≥ r0, then let D = r0 − dg(π(w), x).
It follows that γ−w(r0 + D) = x . Thus, by a similar argument as in Lemma 5.3, we
have that (−v0,−w, r0, D) ∈ D.

If dg(π(w), x) < r0, let s = r0−dg(π(w), x). Then similar to the argument above,
we get (−w,−v0, s, r0 − s) ∈ D.

Conversely, suppose that there exists v0 ∈ S and r0 > 0 such that for allw ∈ S\{v0}
(1.) or (2.) holds. We claim that S = star(γ−v0(r0)). Let w ∈ S \ {v0}. We must
show that γ−w passes through γ−v0(r0). First, suppose that (1.) is satisfied. Since
(−v0,−w, r0, D) ∈ D, we know that γ−v0(r0) = γ−w(r0 + D), so γ−w passes
through γ−v0(r0). If (2.) is satisfied, then γ−w(s) = γ−v0(s + r0 − s) = γ−v0(r0) as
required. 	


Just as with the broken scattering relation, it is certainly plausible that the delayed
collision data determines the internal scattering data.

5.4 Recovery of Stitching Data

In this subsection, we show that the delayed collision data determines a stitching
data, and hence the geometry, if the manifold (M, g) is what we will call ‘generically
delayed’ and ‘semi-nontrapping’.

As an intermediate between the delayed collision data and stitching data, we define
the stitching boundary relation to be the set B = {(v,w, s, t) ∈ ∂+SM × ∂+SM ×
[0,∞) × [0,∞)|γv(s) = γw(t)}. The stitching boundary relation is essentially a
repackaged stitching data where the index set, G , is just ∂+SM .

Lemma 5.5 Let (M, g) be semi-nontrapping. Then, the stitching boundary relation
determines a stitching data for (M, g).

Proof We let G = ∂+SM . Then let f : ∂+SM → SM be the obvious injection. Since
(M, g) is semi-nontrapping, f is surjective. For v ∈ G , we define mv = {t ≥ 0|∃w ∈
G , s ∈ R such that (v,w, t, s) ∈ B}. It is clear that mv = Iv .

Finally, we define Cv,w(s) = {t ∈ mw|(v,w, s, t) ∈ B}. 	

We would like to recover the stitching boundary relation from the delayed colli-

sion data. Observe that, a sufficient condition for γv(s) = γw(t) is that t ≥ s and
(v,w, s, t − s) ∈ D (or if t ≤ s then (w, v, t, s − t) ∈ D). However, this is not a
necessary condition. In particular if γv(s) = γw(t) and t ≥ s, but (v,w, s, t − s) /∈ D,
then there exists t ′ ≥ s′ and r > 0 such that (v,w, s′, t ′ − s′) ∈ D and t = t ′ + r ,
s = s′ + r . Geometrically, this occurs when two geodesics have an intersection point,
and then you travel the same length along each geodesic to reach another intersection
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point. Intuitively, this means that any delayed pair of particles that “would” collide
at the second intersection point, collide at the first intersection point instead. This
situation should be rare, since the length between intersection points measured along
both geodesics would have to be exactly the same.

Definition 5.6 Let (M, g) be a Riemannian manifold with boundary. A pair of vectors
(v,w) ∈ ∂+SM is generically delayed if γv(s) = γw(t) implies (v,w, s, t − s) ∈ D
or (w, v, t, s − t) ∈ D.

When (v,w) are not generically delayed, we have one intersection point ‘hiding’
intersection points past it. If the ‘hidden’ intersection points can be reached by a third
geodesic which does not have the original issue, we can overcome this obstruction.
This third geodesic is confirming the existence of the hidden intersection points. The
following definition formalizes this.

Definition 5.7 Let (M, g) be a Riemannian manifold with boundary. We say that
(M, g) confirms intersections (or that it is intersection-confirming) if for all
(v,w, s, t) ∈ B, there exists z ∈ ∂+SM such that

1. γz passes through γv(s)
2. (v, z) and (w, z) are generically delayed.

In such a case, we say that z confirms the intersection (v,w, s, t).

Lemma 5.8 Let (M, g) be a semi-nontrapping Riemannian manifold that confirms
intersections. Then (v,w, s, t) ∈ B if and only if there exists z ∈ ∂+SM and r ∈ Iz
such that

1. (z, v, r , s − r) ∈ D or (v, z, s, r − s) ∈ D.
2. (z, w, r , t − r) ∈ D or (w, z, t, r − t) ∈ D.

Proof First, suppose that (v,w, s, t) ∈ B. Suppose z confirms the intersection
(v,w, s, t). This implies that γz passes through γv(s) = γw(t) and that (v, z), (w, z)
are generically delayed. Let r ∈ Iz be such that γz(r) = γv(s) = γw(t). By the
definition of generically delayed we have that

1. (z, v, r , s − r) ∈ D or (v, z, s, r − s) ∈ D.
2. (z, w, r , t − r) ∈ D or (w, z, t, r − t) ∈ D.

as required.
Conversely, suppose that there exists z ∈ ∂+SM and r ∈ Iz such that

1. (z, v, r , s − r) ∈ D or (v, z, s, r − s) ∈ D.
2. (z, w, r , t − r) ∈ D or (w, z, t, r − t) ∈ D.

Then (1.) implies that γz(r) = γv(s), and (2.) implies that γz(r) = γw(t). Thus, by
transitivity γv(s) = γw(t), so (v,w, s, t) ∈ B as required. 	


As a direct corollary of Lemmas 5.8 and 5.5 we obtain

Theorem 5.9 Let (M, g) be a semi-nontrapping Riemannian manifold that confirms
intersections. Then the delayed collision data determines a stitching data for (M, g).
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Since a stitching data allows for the construction of ametric spacewhich is isometric
to (M, dg) we obtain

Theorem 5.10 Let (M, g) be a semi-nontrapping Riemannian manifold that confirms
intersections. Then the delayed collision data determines the isometry class of (M, g).

6 Discussion

A stitching data is quite a lot of information. It contains very detailed knowledge of all
intersections of all geodesics. Thus, it allows for recovery of the geometry in a very
general setting. We do not view the stitching data as an inverse problem on its own,
but more as a target for geodesic inverse problems in general. In other words, rather
than trying to recover the metric g directly as a tensor field on a manifold, it seems
logical that trying to construct a stitching data may be an easier path if your starting
point is a geodesic data set. The delayed collision data was chosen to demonstrate this
strategy.

In addition to demonstrating the strategy of constructing a stitching data from
geodesic boundary data, it seems reasonable that the delayed collision data could yield
a practical experiment. To find an application of the delayed collision data, one should
consider a non-linear PDEwhere information can be propagated along geodesics. The
non-linearity would be essential to measure if two packets of information propagating
along different geodesics interact or not.A similar strategywas employed in [18]where
four waves are propagated to produce a non-linear interaction that can be measured to
recover information about the structure of a spacetime.
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