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Abstract
Oscillation of solutions of f (k) + ak−2 f (k−2) + · · · + a1 f ′ + a0 f = 0 is studied in
domains conformally equivalent to the unit disc. The results are applied, for example,
to Stolz angles, horodiscs, sectors, and strips. The method relies on a new confor-
mal transformation of higher order linear differential equations. Information on the
existence of zero-free solution bases is also obtained.

Keywords Bell polynomial · Frequency of zeros · Linear differential equation ·
Oscillation theory · Zero distribution
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1 Introduction and Results

The classical univalence criterion due to Nehari [12] states that a locally univalent
meromorphic function f in the unit disc D is one-to-one if its Schwarzian derivative
S f = ( f ′′/ f ′)′ − (1/2)( f ′′/ f ′)2 satisfies |S f (z)|(1 − |z|2)2 ≤ 2 for all z ∈ D.
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Nehari’s proof is based on the representation a = S( f1/ f2)/2 of the analytic coefficient
of

f ′′ + a f = 0 (1)

in terms of the quotient of its two linearly independent solutions f1 and f2. The proof
further uses a transformation of (1) into

g′′ + bg = 0, b = (a ◦ T )(T ′)2 + ST /2, (2)

where T maps D conformally onto D and the functions ( f1 ◦ T )(T ′)−1/2 and ( f2 ◦
T )(T ′)−1/2 form a solution base of (2). In fact, this method is independent of the
underlying regions, and can be performed between any two conformally equivalent
domains. Such transformations have turned out fundamental in many applications in
the theory of differential equations, and appear in [8, p. 394] whose English edition
was published in 1926.

Our first objective is to transform the differential equation

f (k) + ak−2 f
(k−2) + ak−3 f

(k−3) + · · · + a1 f
′ + a0 f = 0, k ≥ 2, (3)

with analytic coefficients in a domain Ω1, to another differential equation

g(k) + bk−2g
(k−2) + bk−3g

(k−3) + · · · + b1g
′ + b0g = 0, (4)

where the coefficients are analytic in a domain Ω2, which is conformally equiva-
lent to Ω1. This transformation is given in terms of the incomplete exponential Bell
polynomials

Bi,n
(
z1, . . . , zi−n+1

) =
∑ i !

j1! j2! · · · ji−n+1!
( z1
1!

) j1 ( z2
2!

) j2 · · ·
(

zi−n+1

(i − n + 1)!
) ji−n+1

,

where i ≥ n and the sum is taken over all sequences j1, j2, . . . , ji−n+1 of non-negative
integers satisfying the equations

{
i = j1 + 2 j2 + · · · + (i − n + 1) ji−n+1,

n = j1 + j2 + · · · + ji−n+1.
(5)

For example, by a straight-forward computation

Bi,i (z1) = (z1)
i , Bi,i−1(z1, z2) = i(i − 1)

2
(z1)

i−2 z2

and

Bi,i−2(z1, z2, z3) = i(i − 1)(i − 2)

3
zi−3
1 z3 + i(i − 1)(i − 2)(i − 3)

4
zi−4
1 z22.
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Theorem 1 Let T mapΩ2 conformally ontoΩ1, and let h = (T ′)(1−k)/2. Suppose that
{ f1, . . . , fk} is a solution base of the differential equation (3), where the coefficients
a0, . . . , ak−2 are analytic in Ω1. Then {( f1 ◦ T )h, . . . , ( fk ◦ T )h} is a solution base
of (4), where the coefficients b0, . . . , bk−2 are analytic in Ω2. Moreover,

(a� ◦ T )(T ′)k−� =
k−1∑

j=�

b j

⎡

⎣
j∑

i=�

(
j

i

)
Bi,�

(
T ′, . . . , T (i−�+1)

)

(T ′)�
h( j−i)

h

⎤

⎦

+
k−1∑

i=�

(
k

i

)
Bi,�

(
T ′, . . . , T (i−�+1)

)

(T ′)�
h(k−i)

h
+ Bk,�

(
T ′, . . . , T (k−�+1)

)

(T ′)�

(6)

for any � ∈ {1, . . . , k − 2}, and

(a0 ◦ T ) (T ′)k = h(k)

h
+ bk−2

h(k−2)

h
+ · · · + b1

h′

h
+ b0.

(7)

With appropriate modifications, the method of proof of Theorem 1 applies, for
example, in the case of real differential equations.

The representation (6) for � = k − 2 simplifies to

(ak−2 ◦ T ) (T ′)2 = bk−2 + k(k − 1)

2

(
h′′

h

)
+ k(k − 1)(k − 2)

2

(
T ′′

T ′

) (
h′

h

)

+ k(k − 1)(k − 2)

3

(
T ′′′

T ′

)
+ k(k − 1)(k − 2)(k − 3)

4

(
T ′′

T ′

)2

.

The particular case k = 2 of this identity reduces to the situation in (2) and reveals
the well-known connection between Bell polynomials and Schwarzian derivatives.

Let T be a conformal map from D into C. The standard functions in Nevanlinna
theory for a function f meromorphic in T (D) are defined to be the corresponding
functions for f ◦ T . In particular,

N
(
T

(
D(0, r)

)
, 0, f

)
= N (r , 0, f ◦ T ), 0 < r < 1,

where N (r , a, g) is the standard integrated counting function for the a-points of g in
the disc D(0, r) = {z ∈ C : |z| < r}.

Our second objective is to quantify the phenomenon that local growth of any coef-
ficient of (3) implies local oscillation for some non-trivial solutions. In the proof we
apply Theorem 1 in the case when Ω2 = D.

Theorem 2 Let T map D conformally into C, 0 < b < 1 and s(r) = 1− b(1− r) for
0 ≤ r < 1. Suppose that { f1, . . . , fk} is a solution base of (3), where a0, . . . , ak−2
are analytic in T (D). Then there exists a constant K = K (b) such that, for any
j ∈ {0, . . . , k − 2},
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∫

T (D(0,r))
|a j (z)|

1
k− j

dm(z)

|T ′(T−1(z))|

≤ K

( k∑

j=1

∫ s(r)

0

N
(
T (D(0, t)), 0, f j

)

1 − t
dt

+
k−1∑

j=1

∫ s(r)

0

N
(
T (D(0, t)), 0, f j + fk

)

1 − t
dt + log2

e

1 − r

)

outside a possible exceptional set E ⊂ [0, 1) for which ∫
E dt/(1 − t) < ∞.

By [1, Lemma C], for a sufficiently small 0 < b < 1 the statement of Theorem 2 is
valid without any exceptional set. We may also suppose

lim sup
r→1−

∫

T (D(0,r))
|a j (z)|

1
k− j

dm(z)

|T ′(T−1(z))|
log2(e/(1 − r))

= ∞, (8)

for some j ∈ {0, . . . , k − 2}, for otherwise the assertion is trivially valid. The condi-
tion (8) guarantees the existence of a solution of (3) having more zeros in T (D) than
any non-admissible analytic function in D. Recall that a function f is non-admissible
if T (r , f ) = O(log(e/(1 − r))) as r → 1−.

Corollary 3 Under the assumptions of Theorem 3, there exists 0 < b < 1 and K =
K (b) such that

∫

T (D(0,r))
|a j (z)|

1
k− j

dm(z)

|T ′(T−1(z))|
log(e/(1 − r))

≤ K

( k∑

j=1

N
(
T

(
D(0, s(r))

)
, 0, f j

)

+
k−1∑

j=1

N
(
T

(
D(0, s(r))

)
, 0, f j + fk

)
+ log

e

1 − r

)

for all 0 ≤ r < 1.

Connections between the oscillation of solutions and the growth of analytic coef-
ficients have been thoroughly studied in the cases of D and C. However, the existing
literature contains only scattered results on local oscillation of solutions in standard
regions such as Stolz angles, horodiscs, sectors, and strips. We next show that, for
appropriate choices of T , Theorem2yields new information in these particular regions.

Stolz angles. Fix 0 < α < 1 and ζ ∈ ∂D, and let T (z) = ζ(1 − (1 − zζ )α) for all
z ∈ D. Then T (D) ⊂ D and ∂T (D) takes the form of a petal which has a corner of
opening απ at T (ζ ) = ζ . In particular, the domain T (D) can be seen as a Stolz angle
with vertex at ζ . In this case |T ′(T−1(z))| = α |ζ − z|1−1/α for all z ∈ T (D).

Horodiscs. Fix ζ ∈ ∂D, and let T (z) = ζ +(1−|ζ |)z for all z ∈ D. Then T (D) ⊂ D

and ∂T (D) is a circle internally tangent to ∂D at ζ . Now |T ′(T−1(z))| = 1 − |ζ | for
all z ∈ T (D).
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Sectors. Fix ϕ ∈ R and 0 < α < 2, and let T (z) = eiϕ((1 + z)/(1 − z))α for all
z ∈ D. Then T (D) is a sector of opening απ/2, in the direction ϕ, and

∣∣T ′(T−1(z))
∣∣ = α

2
|z|1−1/α

∣∣z1/α + eiϕ/α
∣∣2, z ∈ T (D).

Strips. Fix ϕ ∈ R and 0 < α < ∞, and let T (z) = αeiϕ log((1 + z)/(1 − z)) for
all z ∈ D. Then T (D) is a strip of width απ , and

∣∣T ′(T−1(z))
∣∣ = α

2

∣∣ez/α + eiϕ
∣∣2 e−Re(z/α), z ∈ T (D).

The next result combined with [2, p. 356] shows that the solutions f1, . . . , fk in
Theorem 2 can be zero-free, while the coefficients may grow arbitrarily fast. This
implies, in particular, that the second sum in the upper bound cannot be removed.

Theorem 4 Suppose that f1 and f2 are linearly independent solutions of f ′′ +
a f = 0, where the coefficient a is analytic. For any k ≥ 2, the functions
f k−1
1 , f k−2

1 f2, . . . , f1 f
k−2
2 , f k−1

2 are linearly independent solutions of (3)with ana-
lytic coefficients a0, . . . , ak−2. Moreover,

ak−2 =
(
k + 1

k − 2

)
a = (k − 1)k(k + 1)

6
a. (9)

In general, if all solutions of

f (k) + ak−1 f
(k−1) + ak−2 f

(k−2) + · · · + a1 f
′ + a0 f = 0

are meromorphic, then the coefficients a0, . . . , ak−1 are uniquely determined mero-
morphic functions which can be represented in terms ofWronskian-type determinants
of any k linearly independent solutions [11, Proposition 1.4.6]. In particular, if f1 and
f2 are linearly independent solutions of f ′′ + a f = 0, then [9, Proposition D] implies
that f 21 , f1 f2, f 22 are linearly independent solutions of f ′′′ + 4a f ′ + 2a′ f = 0. By
a straight-forward computation, it can be verified that f 31 , f 21 f2, f1 f 22 , f 32 are linearly
independent solutions of

f (4) + 10a f ′′ + 10a′ f ′ + (3a′′ + 9a2) f = 0,

which reveals the exact coefficients in the case k = 4.
The remaining part of this paper is organized as follows. Theorem 1 is proved in

Sect. 2. Section 3 contains auxiliary results,which are needed in the proof of Theorem2
in Sect. 4. Sharpness of Theorem 2 is illustrated in Sect. 5. Theorem 4 is proved in
Sect. 6.
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2 Proof of Theorem 1

In the following argument some details related to straight-forward calculations are
omitted. Let f be a solution of (3) and let g = ( f ◦ T )h, where h = (T ′)(1−k)/2.
Since

g( j) =
j∑

i=0

(
j

i

)
( f ◦ T )(i)h( j−i), j ∈ N,

by the general Leibniz rule, Faà di Bruno’s formula gives

g( j) = ( f ◦ T )h( j) +
j∑

i=1

(
j

i

) (
i∑

n=1

( f (n) ◦ T ) Bi,n
(
T ′, . . . , T (i−n+1))

)

h( j−i), j ∈ N.

(10)

We proceed to determine the coefficients b0, . . . , bk−1 such that

g(k) + bk−1g
(k−1) + bk−2g

(k−2) + · · · + b1g
′ + b0g = 0. (11)

On one hand, the differential equation (11) implies

−g(k) =
k−1∑

j=1

b j

⎡

⎣( f ◦ T )h( j) +
j∑

i=1

(
j

i

) (
i∑

n=1

( f (n) ◦ T ) Bi,n
(
T ′, . . . , T (i−n+1))

)

h( j−i)

⎤

⎦

+ b0
[
( f ◦ T )h

]
.

On the other hand, by applying (10) for g(k) and then taking advantage of (3), we
deduce

−g(k) = −( f ◦ T )h(k) −
k−1∑

i=1

(
k

i

) (
i∑

n=1

( f (n) ◦ T ) Bi,n
(
T ′, . . . , T (i−n+1))

)

h(k−i)

−
(

k−1∑

n=1

( f (n) ◦ T ) Bk,n
(
T ′, . . . , T (k−n+1))

)

h − ( f (k) ◦ T ) Bk,k
(
T ′)h

= −( f ◦ T )h(k) −
k−1∑

i=1

(
k

i

) (
i∑

n=1

( f (n) ◦ T ) Bi,n
(
T ′, . . . , T (i−n+1))

)

h(k−i)

−
(

k−1∑

n=1

( f (n) ◦ T ) Bk,n
(
T ′, . . . , T (k−n+1))

)

h +
k−2∑

j=0

(a j ◦ T )( f ( j) ◦ T )Bk,k
(
T ′)h.

By comparing the coefficients of f (k−1) ◦ T , we get

bk−1

(
k − 1

k − 1

)
Bk−1,k−1

(
T ′) h = −

(
k

k − 1

)
Bk−1,k−1

(
T ′)h′ − Bk,k−1

(
T ′, T ′′) h,

123
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where the right-hand side reduces to

− k (T ′)k−1h′ − (k − 1)(k − 2)

2
(T ′)k−3 T ′′ h

= −k (T ′)k−1 1 − k

2
(T ′)

1−k
2 −1T ′′ − k(k − 1)

2
(T ′)k−2 T ′′ (T ′)

1−k
2 ≡ 0.

Therefore bk−1 ≡ 0 and (11) reduces to (4). By comparing the coefficients of f (�) ◦T
for � ∈ {1, . . . , k − 2}, we get

k−1∑

j=�

b j

⎡

⎣
j∑

i=�

(
j

i

)
Bi,�

(
T ′, . . . , T (i−�+1))h( j−i)

⎤

⎦

= −
k−1∑

i=�

(
k

i

)
Bi,�

(
T ′, . . . , T (i−�+1))h(k−i) − Bk,�

(
T ′, . . . , T (k−�+1))h

+ (a� ◦ T )Bk,k(T
′)h.

Since Bk,k(T ′) = (T ′)k−�(T ′)�, we deduce (6) for any � ∈ {1, . . . , k − 2}. By com-
paring the coefficients of f ◦ T , we get

bk−2 h
(k−2) + · · · + b1h

′ + b0h = −h(k) + (a0 ◦ T ) Bk,k(T
′) h,

which implies (7). Since the statement concerning solution bases is trivial, Theorem 1
is now proved.

3 Auxiliary Results

The proof of Theorem 2 depends on three auxiliary results, which are considered next.

Lemma 5 Let j and k be integers with k > j ≥ 0, and let f be a meromorphic
function in D such that f ( j) �≡ 0. Let 0 < b < 1, and write s(r) = 1 − b(1 − r) for
0 ≤ r < 1. Then there exists a constant K = K (b) > 0 such that

∫

D(0,r)

∣
∣∣∣
f (k)(z)

f ( j)(z)

∣
∣∣∣

1
k− j

dm(z)

≤ K

(
max

j≤m≤k−1

∫ s(r)

0

T (t, f (m))

1 − t
dt + log

e

1 − r

)
, 0 ≤ r < 1.

Proof For 0 < r1 < r2 < 1, let A(r1, r2) = {z ∈ D : r1 < |z| ≤ r2}. Let 0 < d < 1
be a constant which will be fixed later, and define Rν = Rν(d) = 1 − dν for ν ∈ N.
The proof of [6, Theorem 2.3(b)] gives

∫

|z|≤R1

∣
∣∣∣
f (k)(z)

f ( j)(z)

∣
∣∣∣

1
k− j

dm(z) ≤ C1,
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where C1 = C1(d, j, k) is a constant. Let R1 < r < 1 and take μ = μ(d) ∈ N such
that Rμ < r ≤ Rμ+1, which is equivalent to

μ log
1

d
< log

1

1 − r
≤ (μ + 1) log

1

d
. (12)

The reasoning used in the proof of [4, Theorem 5] yields

∫

A(Rν ,Rν+1)

∣∣
∣∣
f ′(z)
f (z)

∣∣
∣∣ dm(z) ≤ C2

(
T (Rν+3, f ) + 1

)
, ν ∈ N, (13)

where C2 = C2(d) is a constant independent of ν. By (12) and (13), we deduce

∫

A(R1,r)

∣∣∣
∣
f ′(z)
f (z)

∣∣∣
∣ dm(z) ≤ C2

μ∑

j=1

(
T (R j+3, f ) + 1

)

= C2

(
1

1 − d

μ∑

j=1

T (R j+3, f )

1 − R j+3

(
R j+4 − R j+3

) + μ

)

≤ C3

(∫ Rμ+4

R1

T (t, f )

1 − t
dt + log

1

1 − r

)
,

(14)

where C3 = C3(d) is a constant such that C3 = C2 · max{1/(1 − d),−1/ log d}.
Next we use the Hölder inequality and (14) to conclude that

∫

A(R1,r)

∣
∣∣∣
f (k)(z)

f ( j)(z)

∣
∣∣∣

1
k− j

dm(z) =
∫

A(R1,r)

k−1∏

m= j

∣
∣∣∣
f (m+1)(z)

f (m)(z)

∣
∣∣∣

1
k− j

dm(z)

≤
k−1∏

m= j

(∫

A(R1,r)

∣
∣∣∣
f (m+1)(z)

f (m)(z)

∣
∣∣∣ dm(z)

) 1
k− j

≤ C4

k−1∏

m= j

(∫ Rμ+4

R1

T (t, f (m))

1 − t
dt + log

1

1 − r

) 1
k− j

≤ C4

(

max
j≤m≤k−1

∫ Rμ+4

R1

T (t, f (m))

1 − t
dt + log

1

1 − r

)

,

where C4 = C4(d, j, k) is a constant. Note that

Rμ+4 = 1 − d4dμ = 1 − d4(1 − Rμ) < 1 − d4(1 − r).

Choose 0 < d < 1 such that b = d4. The assertion follows. �
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For 1 ≤ α < ∞, let

f (z) = exp

(
−

(
1 + z

1 − z

)α )
, z ∈ D.

If α = 1, then f is an atomic singular inner function and the Nevanlinna characteristic
of f and all its derivatives are bounded.Therefore all terms in the statement ofLemma5
are asymptotically comparable to − log(1− r) as r → 1−. Meanwhile, if α > 1, then
both sides are of growth (1 − r)1−α as r → 1−. This illustrates the sharpness of
Lemma 5.

The following result allows us to represent the coefficients in terms of quotients of
linearly independent solutions.

Theorem A ([10, Theorem 2.1]) Let g1, . . . , gk be linearly independent solutions of
(4), where b0, . . . , bk−2 are analytic in D. Let

y1 = g1
gk

, . . . , yk−1 = gk−1

gk
, (15)

and

Wj =

∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

y′
1 y′

2 · · · y′
k−1

...
...

. . .
...

y( j−1)
1 y( j−1)

2 · · · y( j−1)
k−1

y( j+1)
1 y( j+1)

2 · · · y( j+1)
k−1

...
...

. . .
...

y(k)
1 y(k)

2 · · · y(k)
k−1

∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

, j = 1, . . . , k. (16)

Then

b j =
k− j∑

i=0

(−1)2k−iδki

(
k − i

k − i − j

)
Wk−i

Wk

(
k
√
Wk

)(k−i− j)

k
√
Wk

, j = 0, . . . , k − 2,

(17)

where δkk = 0 and δki = 1 otherwise.

We also need an estimate in the spirit of Frank–Hennekemper and Petrenko.

Lemma 6 Let g1, . . . , gk be linearly independent meromorphic solutions of (11) with
coefficients b0, . . . , bk−1 meromorphic in D, and let 0 < b < 1. Then there exists a
constant K = K (b) > 0 such that

123
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∫

D(0,r)
|b j (z)|

1
k− j dm(z)

≤ K

(

max
1≤l≤k

∫ s(r)

0

T
(
t, gl

)

1 − t
dt + log2

e

1 − r

)

, 0 ≤ r < 1,

for all j = 0, . . . , k − 1.

The statement in Lemma 6 for the equation g(k) + b0g = 0 follows immediately
from Lemma 5 and the fact that

T (r , g( j)) ≤ ( j + 1)N (r , g) + m
(
r , g( j)) ≤ ( j + 1)T (r , g) + m

(
r , g( j)/g

)

� T
(
s(r), g

) + log
e

1 − r
, j ∈ N.

(18)

The general case is a modification of [3, Lemma 11] or of [11, Lemma 7.7]. Recall
that the notation a � b is equivalent to the conditions a � b and b � a, where the
former means that there exists a positive constant C such that a ≤ Cb and the latter
is defined analogously.

4 Proof of Theorem 2

Let h = (T ′)(1−k)/2. If f is a solution of (3), then g = ( f ◦ T )h is a solution of (4).
Based on this transformation, let {g1, . . . , gk} be a solution base of (4) corresponding
to the solution base { f1, . . . , fk} of (3). By the conformal change of variable,

∫

T (D(0,r))
|a j (z)|

1
k− j

dm(z)

|T ′(T−1(z))| =
∫

D(0,r)

∣∣a j (T (z))
∣∣

1
k− j

|T ′(z)|2
|T ′(z)| dm(z)

=
∫

D(0,r)

∣∣a j (T (z)) T ′(z)k− j
∣∣

1
k− j dm(z)

(19)

for j = 0, . . . , k − 2.
Case j = 0. From (7), we have

∣
∣(a0 ◦ T ) (T ′)k

∣
∣
1
k ≤

∣∣
∣∣
h(k)

h

∣∣
∣∣

1
k +

∣∣
∣∣bk−2

h(k−2)

h

∣∣
∣∣

1
k + · · · +

∣∣
∣∣b1

h′

h

∣∣
∣∣

1
k + |b0| 1k . (20)

Since T is univalent, it belongs to the Hardy space H p for 0 < p < 1/2 by [5,
Theorem 3.16], and hence T is of bounded Nevanlinna characteristic. Therefore all
derivatives are non-admissible in the sense that

T
(
r , T ( j)) = O

(
log

e

1 − r

)
, j ∈ N.
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Thus h and all of its derivatives are non-admissible as well. Using Lemma 5, we obtain

∫

D(0,r)

∣∣∣∣
h( j)(z)

h(z)

∣∣∣∣

1
j

dm(z) = O

(
log2

e

1 − r

)
, j ∈ N.

Hence, making use of (20) and Hölder’s inequality with conjugate indices p = k/(k−
j) and q = k/ j , we infer

∫

D(0,r)

∣∣a0(T (z)) T ′(z)k
∣∣
1
k dm(z)

≤
k−2∑

j=1

(∫

D(0,r)
|b j (z)|

1
k− j dm(z)

) k− j
k

(∫

D(0,r)

∣∣∣
∣
h( j)(z)

h(z)

∣∣∣
∣

1
j

dm(z)

) j
k

+
∫

D(0,r)
|b0(z)| 1k dm(z) + O

(
log2

e

1 − r

)

≤
k−2∑

j=1

(∫

D(0,r)
|b j (z)|

1
k− j dm(z)

) k− j
k

O

(
log

2 j
k

e

1 − r

)

+
∫

D(0,r)
|b0(z)| 1k dm(z) + O

(
log2

e

1 − r

)
, (21)

where the sums are empty if k = 2. Let y1, . . . , yk−1 be defined by (15). By restating
[11, Proposition 1.4.7] with the aid of some basic properties satisfied by Wronskian
determinants [11, Chap. 1.4], we see that the functions 1, y1, . . . , yk−1 are linearly
independent meromorphic solutions of the differential equation

y(k) − Wk−1(z)

Wk(z)
y(k−1) + · · · + (−1)k+1W1(z)

Wk(z)
y′ = 0,

where Wj are defined by (16). From Lemma 6 we now conclude

∫

D(0,r)

∣∣∣∣
Wk−i (z)

Wk(z)

∣∣∣∣

1
i

dm(z) � max
1≤l≤k−1

∫ s(r)

0

T (t, yl)

1 − t
dt + log2

e

1 − r
(22)

for i = 1, . . . , k − 1. Moreover, Lemma 5 yields

∫

D(0,r)

∣∣
∣∣∣

(
k
√
Wk

)(k−i− j)
(z)

k
√
Wk(z)

∣∣
∣∣∣

1
k−i− j

dm(z) �
∫ s(r)

0

T (t,Wk)

1 − t
dt + log2

e

1 − r

� max
1≤l≤k−1

∫ s(r)

0

T (t, yl)

1 − t
dt + log2

e

1 − r
,

(23)
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where i and j are as in (17), and where (18) has been used with yl in place of g.
Writing the coefficients b j in the form (17), we deduce

|b j |
1

k− j �
∣∣
∣∣∣

(
k
√
Wk

)(k− j)

k
√
Wk

∣∣
∣∣∣

1
k− j

+
k− j∑

i=1

∣
∣∣∣
Wk−i

Wk

∣
∣∣∣

1
k− j

∣∣
∣∣∣

(
k
√
Wk

)(k−i− j)

k
√
Wk

∣∣
∣∣∣

1
k− j

.

Finally, wemake use of (22) and (23) together with Hölder’s inequality with conjugate
indices p = (k − j)/i and q = (k − j)/(k − i − j), 1 ≤ i < k − j , (i = k − j is a
removable triviality), and conclude

∫

D(0,r)
|b j (z)|

1
k− j dm(z) � max

1≤l≤k−1

∫ s(r)

0

T (t, yl)

1 − t
dt + log2

e

1 − r
, j = 0, . . . , k − 2.

Substituting this into (21) we obtain

∫

D(0,r)
|a0(T (z))T ′(z)k | 1k dm(z) � max

1≤l≤k−1

∫ s(r)

0

T (t, yl)

1 − t
dt + log2

e

1 − r
. (24)

According to the second main theorem of Nevanlinna,

T (r , yl) ≤ N (r , 0, yl) + N (r ,∞, yl) + N (r ,−1, yl) + S(r , yl), r /∈ E,

where S(r , yl) = O
(
log+ T (r , yl) − log(1 − r)

)
, l ∈ {1, . . . , k − 1} and the excep-

tional set E satisfies
∫
E dt/(1 − t) < ∞. Thus

T (r , yl) ≤ 2N (r , 0, gl) + 2N (r , 0, gk) + 2N (r , 0, gl + gk) + O

(
log

e

1 − r

)

≤ 2N
(
T

(
D(0, r)

)
, 0, fl

)
+ 2N

(
T

(
D(0, r)

)
, 0, fk

)

+ 2N
(
T

(
D(0, r)

)
, 0, fl + fk

)
+ O

(
log

e

1 − r

)
, r /∈ E,

for l ∈ {1, . . . , k − 1}. Combining this with (24), the assertion in the case j = 0
follows.

Case j = �, 1 ≤ � ≤ k − 2. From (6), we have

∣∣(a� ◦ T ) (T ′)k−�
∣∣

1
k−�

≤
k−1∑

j=�

∣∣b j
∣∣

1
k−�

⎛

⎝
j∑

i=�

(
j

i

) ∣∣∣
∣∣
Bi,�

(
T ′, . . . , T (i−�+1)

)

(T ′)�

∣∣∣
∣∣

1
k−�

∣∣∣
∣∣
h( j−i)

h

∣∣∣
∣∣

1
k−�

⎞

⎠
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+
k−1∑

i=�

(
k

i

) ∣∣∣
∣∣
Bi,�

(
T ′, . . . , T (i−�+1)

)

(T ′)�

∣∣∣
∣∣

1
k−�

∣∣∣
∣∣
h(k−i)

h

∣∣∣
∣∣

1
k−�

+
∣
∣∣∣∣
Bk,�

(
T ′, . . . , T (k−�+1)

)

(T ′)�

∣
∣∣∣∣

1
k−�

. (25)

We apply Hölder’s inequality to estimate

∫

D(0,r)

∣∣a�

(
T (z)

)
T ′(z)k−�

∣∣
1

k−� dm(z),

and content ourselves with writing details on the integration of the final term (25) only.
Since the Bell indices j1, j2, . . . , jk−�+1 satisfy (5) for i = k and n = �, we obtain

∫

D(0,r)

∣∣∣
∣∣
Bk,�

(
T ′, . . . , T (k−�+1)

)

(T ′)�

∣∣∣
∣∣

1
k−�

dm(z)

≤
∑ k!

j1! . . . jk−�+1!
∫

D(0,r)

∣
∣∣∣
T ′′(z)
2! T ′(z)

∣
∣∣∣

j2
k−�

. . .

∣
∣∣∣∣

T (k−�+1)(z)

(k − � + 1)! T ′(z)

∣
∣∣∣∣

jk−�+1
k−�

dm(z).

Note that k−� = j2+2 j3+· · ·+(k−�) jk−�+1. The following application of Hölder’s
inequality is presented in the case that all Bell indices j1, j2, . . . , jk−�+1 are non-zero.
If there are zero indices, then the argument should be modified appropriately. Choose
the Hölder exponents

p1 = k − �

j2
≥ 1, p2 = k − �

2 j3
≥ 1, . . . , pk−� = k − �

(k − �) jk−�+1
= 1

jk−�+1
≥ 1,

which satisfy

1

p1
+ · · · + 1

pk−�

= j2 + 2 j3 + · · · + (k − �) jk−�+1

k − �
= 1.

By Hölder’s inequality,

∫

D(0,r)

∣∣
∣∣
T ′′(z)
T ′(z)

∣∣
∣∣

j2
k−�

. . .

∣∣
∣∣∣
T (k−�+1)(z)

T ′(z)

∣∣
∣∣∣

jk−�+1
k−�

dm(z)

≤
(∫

D(0,r)

∣∣∣
∣
T ′′(z)
T ′(z)

∣∣∣
∣ dm(z)

) j2
k−� · · ·

⎛

⎝
∫

D(0,r)

∣
∣∣
∣∣
T (k−�+1)(z)

T ′(z)

∣
∣∣
∣∣

1
k−�

dm(z)

⎞

⎠

(k−�) jk−�+1
k−�

.

The remaining part of the proof is similar to that above. This completes the proof of
Theorem 2.
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5 Sharpness Discussion

The following examples illustrate the sharpness of Theorem 2.

Example 1 For α > 1, let

a(z) = 1 − α2

4z2
− α2z2α−2, �(z) > 0.

Then a is analytic in the right half-plane, and f ′′ + a f = 0 has linearly independent
zero-free solutions

f j (z) = z
1−α
2 exp

(
(−1) j+1zα

)
, j = 1, 2.

The function T (z) = (1+ z)/(1− z) maps D onto the right half-plane, and it is clear
that its Schwarzian derivative vanishes identically. Moreover, by (2), the functions

g j (z) = f j (T (z)) T ′(z)−1/2

= 1√
2

(1 − z)
1+α
2 (1 + z)

1−α
2 exp

(
(−1) j+1

(
1 + z

1 − z

)α)
, j = 1, 2,

are linearly independent zero-free solutions of g′′ + bg = 0, where

b(z) = a
(
T (z)

)
T ′(z)2 + ST (z)/2 = 1 − α2

(1 − z2)2
− α2 (1 + z)2α−2

(1 − z)2α+2 , z ∈ D.

From (19),

∫

T (D(0,r))
|a(z)| 12 dm(z)

|T ′(T−1(z))| =
∫

D(0,r)

∣∣a(T (z)) T ′(z)2
∣∣
1
2 dm(z)

=
∫

D(0,r)
|b(z)| 12 dm(z)

�
∫

D(0,r)

dm(z)

|1 − z|α+1 � 1

(1 − r)α−1 , r → 1−.

Meanwhile, the zeros of g1 + g2 = (g1/g2 + 1)g2 are the points zn ∈ D at which

exp

(
2

(
1 + zn
1 − zn

)α)
= −1 = eπ i ,

or equivalently

(
1 + zn
1 − zn

)α

= (2n + 1)π i

2
=: wn, n ∈ Z.
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In particular, the points wn are located on the imaginary axis. This means that the
points (1+ zn)/(1− zn) are located on a finite number of rays on the right half-plane
emanating from the origin, which in turn implies that the points zn lie in a Stolz angle
with vertex at 1. Thus

1 − |zn| � |1 − zn| =
∣
∣∣∣∣
1 − w

1/α
n − 1

w
1/α
n + 1

∣
∣∣∣∣

= 2
∣∣w1/α

n + 1
∣∣

� 1

|n|1/α + 1
, n ∈ Z,

where the comparison constants are independent of n. It follows that the small counting
function n(r) for the points {zn} satisfies n(r) � (1 − r)−α, so that

N
(
T

(
D(0, s(r)

)
, 0, f1 + f2

)
= N

(
s(r), 0, g1 + g2

)

�
∫ s(r)

0

n(t)

t
dt � 1

(1 − r)α−1 , r → 1−.

This shows that Theorem 2 is sharp up to a multiplicative constant in this case. �
Example 2 Let a0, . . . , ak−2 ∈ R \ {0} be such that the characteristic equation

rk + ak−2r
k−2 + · · · + a1r + a0 = 0

has k distinct roots r1, . . . , rk ∈ C\{0}. Then the functions f j (z) = er j z , j = 1, . . . , k,
form a zero-free solution base for (3) with constant coefficients. For α ∈ (1, 2], let

T (z) =
(
1 + z

1 − z

)α

, z ∈ D.

Then T maps D onto the sector | arg(z)| < απ/2 for α ∈ (1, 2), and onto C minus
the real interval (−∞, 0] for α = 2. Now the functions g j = ( f j ◦ T ) (T ′)(1−k)/2,
j = 1, . . . , k, form a zero-free solution base for (4) in D. From (19) we find

∫

T (D(0,r))
|a j |

1
k− j

dm(z)

|T ′(T−1(z))| � 1

(1 − r)α−1 , r → 1−, (26)

for j ∈ {0, . . . , k − 2}.
Let f be a non-trivial linear combination of at least two exponential terms f j .

Without loss of generality, we may suppose that f = C1 f1 + · · · + Cm fm , where
2 ≤ m ≤ k and C1, . . . ,Cm ∈ C \ {0}. Let

g = C1g1 + · · · + Cmgm = (
(C1( f1 ◦ T ) + · · · + Cm( fm ◦ T )

)
(T ′)(1−k)/2

denote the corresponding solution of (4).
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Let W = {r1, . . . , rm}, and let co(W ) denote the convex hull of W . Then co(W )

is either a line segment or a closed convex polygon in C. Let Θ ⊂ (−π, π ] denote
the set of angles that the outer normals of co(W ) form with the positive real axis. If
co(W ) has s vertex points, then it has s outer normals, and Θ has s elements, say

Θ = {
θ1, . . . , θs

}
, −π < θ1 < θ2 < · · · < θs ≤ π.

For example, if r1, . . . , rm ∈ R, then Θ = {±π/2}. In general 2 ≤ s ≤ m, and if
s = m, then each point r j is a vertex point of co(W ). Set θs+1 = θ1 + 2π . Since
clearly θ j+1 − θ j ≤ π for all j ∈ {1, . . . , s}, and since

∑s
j=1(θ j+1 − θ j ) = 2π , it

follows that at least one of the rays arg(z) = θ j lies entirely in T (D). We also point
out that, for a suitable set of roots r1, . . . , rm , all of the rays arg(z) = θ j lie in T (D).

Based on the work of Pólya and Schwengeler in the 1920s, we state some facts
about the zero distribution of the exponential sum f . The exact references as well
as the proofs can be found in [7]. For any ε > 0, the zeros of f are in the union of
ε-sectors Wj = {z ∈ C : | arg(z) − θ j | < ε}, with finitely many possible exceptions.
In fact, the zeros of f are in logarithmic strips around the rays arg(z) = θ j . Each sector
Wj is zero-rich in the sense that the number of zeros inWj ∩D(0, r) is asymptotically
comparable to r . In particular, the exponent of convergence for the zeros of f in each
sector Wj is equal to one, same as the order of f .

Let arg(z) = θ j be one of the rays that lies in T (D). Taking ε > 0 small enough, the
sector Wj lies in T (D) as well. The pre-image of Wj is a circular wedge in D having
vertices of opening ε/α at the points z = ±1. Thus all zeros of g are in such wedges,
except possibly finitely many. The zeros of g can accumulate to 1 and nowhere else.
Since g has Nevanlinna order α − 1 and finite type, it follows that

N (r , 0, g) ≤ T (r , 1/g) = T (r , g) + O(1) = O
(
(1 − r)1−α

)
, r → 1−.

Combining this with (26) shows that in this case Theorem 2 is sharp up to a multi-
plicative constant. In addition, since the functions f1, . . . , fk are zero-free, the second
sum in Theorem 2 involving the linear combinations f j + fk is necessary. �

6 Proof of Theorem 4

The proof relies on elementary properties of Wronskian determinants, which can be
found, for example, in [11, Chap. 1.4]. We first show that W ( f k−1

1 , f k−2
1 f2, . . . ,

f1 f
k−2
2 , f k−1

2 ) is a non-zero complex constant, in which case { f k−1
1 , f k−2

1 f2, . . . ,
f1 f

k−2
2 , f k−1

2 } forms a solution base of (3) with analytic coefficients by [11, Propo-
sitions 1.4.6 and 1.4.8]. In fact, we prove that

W ( f k−1
1 , f k−2

1 f2, . . . , f1 f
k−2
2 , f k−1

2 ) = ck W ( f1, f2)
sk , (27)
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where W ( f1, f2) ∈ C \ {0} and

ck =
k−1∏

j=2

j k− j = 2k−23k−3 · · · (k − 1), sk =
k−1∑

j=1

j = k(k − 1)

2
.

Weproceed by induction. The identity (27) is clearly true for k = 2 as both sides reduce
to W ( f1, f2). Suppose that (27) is valid for some k ≥ 2. It is well known that w =
f1/ f2 is a locally univalent meromorphic function such that w′ = −W ( f1, f2)/ f 22 .
Then

W ( f k1 , f k−1
1 f2, . . . , f1 f

k−1
2 , f k2 )

= (
f k2

)k+1
W

(
wk, wk−1, . . . , w, 1

)

= (
f k2

)k+1
(−1)k W

(
(wk)′, (wk−1)′, . . . , w′)

= (
f k2

)k+1
(−1)k W

(
kwk−1w′, (k − 1)wk−2w′, . . . , w′),

and the substitution back gives

W ( f k1 , f k−1
1 f2, . . . , f1 f

k−1
2 , f k2 )

= (
f k+1
2

)k
W

(
k

f k−1
1

f k−1
2

· W ( f1, f2)

f 22
, (k−1)

f k−2
1

f k−2
2

· W ( f1, f2)

f 22
, . . . ,

W ( f1, f2)

f 22

)

= W ( f1, f2)
k W

(
k f k−1

1 , (k − 1) f k−2
1 f2, . . . , f k−1

2

)

= k!W ( f1, f2)
k W

(
f k−1
1 , f k−2

1 f2, . . . , f k−1
2

)
.

The induction hypothesis (27) gives

W ( f k1 , f k−1
1 f2, . . . , f1 f

k−1
2 , f k2 ) = k!W ( f1, f2)

k ck W ( f1, f2)
sk

= ck+1 W ( f1, f2)
sk+1 .

Therefore (27) holds for all k ≥ 2.
Let h1, . . . , hk−1 be functions such that each is either f1 or f2. The products

h1 · · · hk−1 give a complete description for functions in the solution base obtained
above, and hence

(h1 · · · hk−1)
(k) + ak−2(h1 · · · hk−1)

(k−2) + · · · + a1(h1 · · · hk−1)
′ + a0h1 · · · hk−1 = 0,

(28)

for any choices of h1, . . . , hk−1. Recall that the coefficients a0, . . . , ak−2 are uniquely
determined by the solution base. We compare the representation

(h1 · · · hk−1)
(k) =

∑ k!
s1! · · · sk−1! h

(s1)
1 · · · h(sk−1)

k−1 , (29)
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obtained by the general Leibniz rule, to the other terms in (28). The sum in (29) extends
over all non-negative integers s1, . . . , sk−1 for which s1 + · · · + sk−1 = k. Similarly,

(h1 · · · hk−1)
(k−2) =

∑ (k − 2)!
j1! · · · jk−1! h

( j1)
1 · · · h( jk−1)

j−1 , (30)

where the sum is taken over all non-negative integers j1, . . . , jk−1 for which j1+· · ·+
jk−1 = k−2. The sum (30) contains termswhich are exceptional in relation to the other
terms. For example, consider the term corresponding to indices j1 = · · · = jk−2 = 1
and jk−1 = 0. Since j1 + · · · + jk−1 = k − 2, the analogous representations for
(h1 · · · hk−1)

(n), 0 ≤ n ≤ k − 3, do not have terms of the type h′
1h

′
2 · · · h′

k−2hk−1.
This means that all other terms of this type are obtained from (29) by using the fact

h(n)
i = (h′′

i )
(n−2) = −(ahi )

(n−2) = −
(
a(n−2)hi + · · · + ah(n−2)

i

)
,

i = 1, . . . , k − 1, n ≥ 2.

There are k − 1 possible sets of indices in (29) which are transformed to (1, . . . , 1, 0)
in this way, and they are

(3, 1, 1 . . . , 1, 1, 0), (1, 3, 1, . . . , 1, 1, 0), . . . ,

(1, 1, 1, . . . , 1, 3, 0), (1, 1, 1, . . . , 1, 1, 2).

By a careful comparison of (29) and (30), and then taking (28) into account, we see
that the coefficient of h′

1h
′
2 · · · h′

k−2hk−1 must satisfy

−a

(
(k − 2)

k!
3! 1! 1! . . . 0! + k!

1! · · · 1! 2!
)

+ ak−2
(k − 2)!
1! · · · 1! 0! = 0.

Solving this identity for ak−2 gives (9) and completes the proof.
We point out that the Theorem 4 admits the following meromorphic counterpart:

suppose that f1 and f2 are linearly independent meromorphic solutions of f ′′ +
a f = 0, where the coefficient a is meromorphic. For any k ≥ 2, the functions
f k−1
1 , f k−2

1 f2, . . . , f1 f
k−2
2 , f k−1

2 are linearly independent meromorphic solutions
of (3) with meromorphic coefficients a0, . . . , ak−2 whose poles are among the poles
of f1 and f2, ignoring multiplicities. The identity (9) extends also to the meromorphic
case.
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