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Abstract

We consider the existence and concentration properties of standing waves for a fourth-
order Schrodinger equation with mixed dispersion, which was introduced to regularize
and stabilize solutions to the classical time-dependent Schrodinger equation. This
leads to study multi-peak solutions to the following singularly perturbed fourth-order
nonlinear Schrddinger equation

e*A%u — B Au+ V()u = ul”>uinRY, u e H*(RV).

We first establish a local W* ?-estimate for a class of fourth-order semilinear elliptic
equations, which is a key to get the uniform and global L®°-estimate of solutions to
the considered singularly perturbed equation above. Next, under certain assumptions
on S and the potential V (x), we construct a family of sign-changing multi-peak solu-
tions with a unique maximum (or minimum) point on each component. We prove that
these solutions concentrate around any prescribed finite set of local minima (possibly
degenerate) of the potential V (x). Compared with the classical singularly perturbed
Schrodinger equation, the presence of a fourth-order term in the problem above forces
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the development of new techniques to obtain qualitative properties of multi-peak solu-
tions.
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1 Introduction and Main Result

In this paper, we study the existence and the concentration behavior of multi-peak
solutions to the following singularly perturbed fourth-order nonlinear Schrodinger
equation with mixed dispersion:

e*A%u — B Au+ V()u = ulP2uinRY, u e H*R"), (1.1)

where ¢ is a small positive parameter, N > 5,2 < p < 2* := 2N /(N — 4), and the
potential V : RV — R satisfies:

(Vi) Ve CRY, R) N L®RN) and inf gy V(x) = Vo > 0;

(V») there exist K mutually disjoint bounded domains A¥ (k = 1,2,...,K) such
that

mi:=inf V <minV.
AK ANk

We set
MK = {x e A*: V(x) = my).

This kind of hypothesis was first introduced by del Pino and Felmer [1] and Gui [2].
Without loss of generality, we may assume that dist (Akl , Akz) > ( for each k| # ko,
1 < ki1, ko < K; this can be achieved by making AF smaller if necessary. Moreover,
denoting m := max|<k<gmg, we also assume that § > 2m1/2,

Problem (1.1) arises from seeking standing waves for the following time-dependent
fourth-order Schrodinger equation

iy —y AR+ puAY + YIPRY =0, ¥(0,x) = Yox), (1,x) e RxRY,
(1.2)

which was introduced by Karpman [3] to regularize and stabilize the solutions of
classical Schrodinger equations. Locally well-posedness of the Cauchy problem (1.2)
in H Z(RN ) if 2 < p < 2* was proved in [4]. We also refer the reader to [5-7] for
globally well-posedness and scattering, and [8,9] concerning the existence of finite-
time blow up solutions, stability on instability of standing wave solutions to (1.2).
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As it is shown in the above papers [8,9], the added defocusing fourth-order disper-
sion term (y > 0 is small enough) clearly helps to stabilize the standing waves of
problem (1.2). The effect of the fourth-order dispersion term (focusing or defocusing)
depends on whether it is small or large compared with the Laplacian; see [9, Sect. 6]
for details. Thus, it is a natural question to consider the asymptotic behavior of stand-
ing waves of problem (1.2) as y, u — OV (this might depend on their comparison).
This is the main purpose of the present paper.

When the fourth-order dispersion term in (1.1) vanishes, it becomes the following
form of classical singularly perturbed Schrédinger equations, that is,

—Au+ V@ u=fu), xeR", N>1. (1.3)

Floer and Weinstein [10] considered (1.3) in one dimension case, where f (1) = us3,
V e L®(R) with infg V > 0. They constructed a single-peak solution concentrating
around any given non-degenerate critical point of V (x). Next, this result was extended
by Oh [11] in higher dimensions when f (#) = wP= 12 < p < %) and the potential
V belongs to a Kato class. Furthermore, Oh [12] proved the existence of multi-peak
solutions concentrating around any finite subsets of the non-degenerate critical points
of V. The arguments developed in [10—12] are mainly based on a Lyapunov—Schmidt
reduction which requires the uniqueness and non-degeneracy of ground state solutions
to the following “limiting equation”

—Au+mu=u"""inRY, m >0,

2N ) (1.4)

0, ue H'®RY), u(0) = ,(2
u>0,u (R™), u(0) ;relﬁ)ﬁlu(x) <p<N_2

Namely, there exists a unique positive radially symmetric solution u € H'(RV) to
(1.4) and the kernel of the operator Lw = —Aw +w — (p — Du?~2win H'(RY) is
spanned by {uy,, ..., ux,}. However, the uniqueness and non-degeneracy of ground
state solutions to “limiting problem”

A%u — BAu +au = [ulP2uinRY, u e H*RV), (Eg.a)

corresponding to problem (1.1) are, in general, difficult to check. These properties

were partially proved by Bonheure et al. [8] only forthecase 2 < p <2+ % Notice

that in this present paper, we are in a wider range 2 < p < %.

On the other hand, Rabinowitz [13] used the mountain pass theorem to show that
(1.3) possesses a positive ground state solution for € > 0 small under the conditions:
(V3) Vo = liminf |y 00 V(x) > Vo = inf gy V(x) > 0.

We also refer to Wang [14] who proved that the positive ground state solutions to
(1.3) obtained in [13] must concentrate at global minima of V as ¢ — 0. del Pino and
Felmer [15] studied (1.3) with the conditions on V replaced by

(V4) inf . gy V(x) > 0;
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(Vs) There is a bounded domain A such that

infV <minV.

A IA
They proved that (1.3) possesses a positive bound state solution for ¢ > 0 small which
concentrates around the local minima of V in A as ¢ — 0. del Pino and Felmer
[1], Gui [2] obtained multi-peak solutions to (1.3) which exhibit concentration at any
prescribed finite set of local minima, possibly degenerate, of the potential by gluing
localized solutions due to Coti Zelati and Rabinowitz [16, Proposition 3.4].

Although there are many works dealing with singularly perturbed Schrédinger

equations (1.3), just a few works can be found dealing with biharmonic semilinear
equations. Among them we shall just mention [17]. Pimenta and Soares [17] studied
the following biharmonic Schrédinger equation

AU+ Vu = fw) inRY, u e H*RV). (1.5)

They developed the methods in [13,14] to obtain a family of solutions to (1.5) which
concentrates around the global minima of V as ¢ — 0, where f is of subcritical
growth.

To the best of our knowledge, the existence and concentration behavior of multi-
peak solutions to (1.1) has not ever been studied. It is worth pointing out that for the
fourth-order nonlinear Schrodinger equation (1.1), some of the methods used in the
literature have to be deeply modified. We first refer to the impossibility of splitting
u=ut —u" in H*(RV), which leads that the classical Nash-Moser type iteration
technique fails. Next, we point out the lack of a general maximum principle for the
operator A% causes much trouble in finding multi-peak solutions to problem (1.1). On
the other hand, since for each ¢ > 0 fixed, the limit lim|y| oo V (6x) may not exist
(even if the limit exists, V (¢x) may not necessarily converge uniformly for e > 0 small
as |x| — 00), the common method in [18] for dealing with the decay of solutions to
the biharmonic equations can not be applied. This implies that the classical global
penalization method due to Byeon and Wang [19], which highly relies on the uniform
exponential decay of solutions to (1.1), cannot be used directly. As we shall see later,
the above two aspects prevent us from using variational method in a standard way.

Our main result is stated in what follows.

Theorem 1.1 Assume that the potential V satisfies (V1), (V2), N > 5and 8 > 2ml/2,
For any two positive integers K1, Ko with K1 + Ky = K, there exists an g9 > 0
such that for every ¢ € (0, gol, (1.1) possesses a sign-changing bound state solution
Uy € HZ(RN) N C4(RN). Moreover, foreach 1 <i < Ky, 1 < j < K», ug possesses
exactly one maximum point xf(i) in APD and one minimum point xg(j) in A7)
satisfying

lim dist (xPD MPDY =0 and lim dist (x4 MIDy =0,
£— £—
where {p(1), ..., p(K1),q(1),...,q(K»2)} is a rearrangement of {1,2, ..., K}.
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To complete this section, we sketch our proof. First, we need to consider the “limit-
ing problem” (Eg o) withe, B > O and B > 2a'/2. Whether the positive (or negative)
solution to (Eg ) is unique or not is unknown. Nevertheless we can prove that the set
of positive (or negative) ground state solutions to (Eg ) satisfies some compactness
properties (Proposition 2.2). This is crucial for finding multi-peak solutions which are
close to a set of prescribed functions. More precisely, we search for a solution of (1.1)
which consists essentially of K disjoints parts, each part being close to a ground state
solution of the “limiting equation” (Eg ) associated to the corresponding set MK,

To study (1.1), we work with the following equivalent equation

A%v — BAv + V(ex)v = [v|P2vin RN, v € H*RY). (1.6)

The corresponding energy functional to (1.6) is

1 , 1 , 1 , 1
I(v) = 5 [Av|® + =B IVo|” + 5 V(ex)v® — — lv|?, v € He,
2 RN 2 RN 2 RN P JRN

where H, is a class of weighted Sobolev spaces defined as follows:
H, = {v € HZ(RN) : / V(zsx)v2 < oo}
RN

Unlike [13], where the minimum of V (x) is global, the mountain pass theorem can be
used globally, here in the present paper, the condition (V) is local, we need to use a
penalization method introduced in [1,2,15], which helps us to overcome the difficulty
caused by the non-compactness due to the unboundedness of the domain RY . For this
purpose, we shall modify the functional /.. Following [1,2,15], we define auxiliary
functionals Jg, Jsk (k = 1,..., K), respectively (see Sect. 3 for details). It will be
shown that this type of penalization will force the concentration phenomena to occur
inside A = UK | AF (Lemma 3.4).

In order to get a critical point v, of Jg, we use a version of quantitative deformation
lemma (Lemma 3.7) to construct a special convergent Palais-Smale sequence of J,
for ¢ > 0 small. To prove that v, is indeed a solution to the original problem (1.6),
we need to exhibit a uniform decay of v, at infinity. For this purpose, we establish
a local W*P-estimate and a global L>-estimate of the solutions to the fourth-order
semilinear elliptic equations (Proposition 2.3).

This paper is organized as follows, in Sect. 2, we give some preliminary results. In
Sect. 3, we prove the main result Theorem 1.1.

2 Auxiliary Results
The “limiting problem” to (1.1) is

A’u— BAu+oau = ulP*uinRY, u e H*RY), (Eg.a)
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where o, B > O and 8 > 20172, The functional corresponding to (Eg ) is defined
as

Iﬂ,a(u)

1 1 1 1
=—/ |Au|2+—ﬁf |w|2+—af |u|2——/ ul?, ue H*RY),
2 RN 2 RN 2 RN p RN

where
H>RY) :={ue L>(RY) : Vu € L>(RY), Au € L>(R")}

endowed with the equivalent norm

1/2
||u||H2(RN):=(/ |Au|2+/ |u|2> .
RN RN

Denoting cg  the ground state level of (Eg ), that is

Cgo = inf Igq(u),
ueGp.o

where Gg o 1= {u € HZRM)\{0}: I () = 0}. Arguing as in [13,20], we see that

cgq = Inf max 1 1) = inf sup Ig o (tu

po= it max o) = il supl(t)
= inf Igq(u) >0, 2.1
wonh. 5,a( ) 2.1

where the set of paths is defined as
Igo = [y € C([0, 11, H*RM)) : y(0) = 0 and Ig 4 (y (1)) < O] (2.2)
and Npg ¢ is the Nehari manifold defined by
Npo = {u € H*®RV\(0} : (I, (u), u) = O}

The following result on the ground state solutions of (Eg ) was proved in [21].

Proposition 2.1 ([21], Theorem 1) Assume that « > 0, B > 2a'/2, N > 5 and
2 < p <2:=2N/(N—4), then (Egy) has a nontrivial ground state solution
and any ground state solution of (Eg o) does not change sign, is radially symmetric
around some point and strictly decreasing.

Letting SJr «(0rSg ) the set of positive (or negative) ground state solutions U (or V)
of (Eg.a) satlsfymg U(O) = maxxeRN U (x)(or V(0) = min,cpn V(x)), we obtain
the following compactness of S 8o (or Sﬂ’ o)
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o

Proposition 2.2 Assume that « > 0, B > 2012, N > 5, then S;,
compact in H*(RN).

and S/; o are

Proof For any U € S/'; o

I
%a:@MU%Gﬂ%JULW

:(%—%)(ANMUF+ﬁANWUF+aANWV>

thus SZQ is bounded in HZ(RM).
For any sequence {U,}}2, C S;r’a, up to a subsequence, we may assume that there
isa Uy € H*(RY) such that
U,—Up in H*(R") (2.3)

and Uy satisfies (Eg o). Next, we claim that there exist a sequence {x,}°° | C R¥ and
R > 0, Bo > 0 such that

/ \Ual* = Bo. 2.4)
BRr(xn)
Otherwise, by the vanishing theorem (see [22, Lemma I.1]), it follows that

/ |Uyl? = 0asn — oofor2 < g < 2%, (2.5)
RN

(2.5) and <1”a(Un), Un> = 0 imply that [|Uy || y2gy) = o(1) which contradicts the
fact that I o (Uy) = cgo > 0, thus (2.4) holds. In view of Proposition 2.2, U, is
radially symmetric around 0 and strictly radially decreasing, we see from (2.4) that,

/ |Unl* = Bo. (2.6)
Br(0)
(2.3) and (2.6) imply that Uy is nontrivial, then

1
cga = Ig.a(Uo) — — <1,§,a(Uo), Uo)

= l_ l 2 2 2
=13 |AUol”+ 8| VUl +a [ [|Uol
li RN RN RN 2.7)

1
lim -——)</|Awﬁ+ﬂ/ Wwﬁ+a/|uM)
n—co\2 p RN RN RV

. 1
= lim <Iﬁ,a(Un) - ; <I//3,Q(Un)s Un>> = CB,a>»

IA

n—oo
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by (2.3) and (2.7), we obtain U, — Upin H 2(RN). This completes the proof that S +!a
is compact in H2(RV). Similarly, we also see that S/;a is compact in H2(RY). O

For u € L'(RY), we define its Fourier transform Fu = & by

1 .
— 7 . —ix-&
Fu) =u) = —(Zn)N/Z /RN e u(x)dx

and its inverse Fourier transform F~'u by
Flux) =) = L / €5 u(E)de.
@m)N/Z Jry

We recall that the fundamental solutions to the Helmholtz equation are solutions to

— AR, + uk, = 6(0), (2.8)
where u € C, y € R¥ and §(0) stands for the Dirac mass centered at 0. Of course,
KC,. is not uniquely determined, but in the following, we always choose those which
satisfy nice integrability condition, namely, we require that kC,, € L'(RV). Fixing a

co > 0 small such that 82 — 4co > 0 and ¢ < infgy V (x). Arguing as the Example
1 in Sect. 4.3.1. of [23], we see that

1 1 v 1 +oo e—kz‘f—%
K, = (2n)N/2<|s|2+x,») — (4n)N/2/0 A (A0,

where Ky, (i =1, 2) are the fundamental solutions to (2.8) with

_B— VB 4 B+ VB — 4co
- .

A
! 2

and Ap =

Here, we observe that Ky, € L'(RN) is radially symmetric, non-negative, non-
increasing in r = |x| and it decays exponentially at infinity. Moreover, it is
smooth in RV \{0}. Next, we denote by /C the fundamental solution to the operator
A2 — BA + cold, that is,

A’K — BAK + ok = 8(0). (2.9)

Taking the Fourier transform in (2.9), we get

1 1 v
=
(271)""/2(|’<5|4+/3|’<3|2 +Co)

1 1 1 1 v
BT —dcy Q)N <|s|2 A |5|2+>~z)

= m (ICAI — ’C)Lz) .
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Moreover, we see that 0 < K € LY (RN).

The following local W*P-estimate for fourth-order semilinear elliptic equations
with mixed dispersion is a key to get the uniform and global L°°-estimate of the
solutions to (1.1) and the proof is standard. Since we have not found a local whp-
estimate suitable for fourth-order semilinear elliptic equations with mixed dispersion,
for readers’ convenience, we give a detailed proof.

Proposition2.3 Let h € LP(RN), 1 < p < oo and let u = K % h. Then u €
WHPRN),

A%u — BAu+cou =ha.e. RN (2.10)

and for any x € RV,

el con < € (1o + lellLocacen ) @.11)

where C > 0 depends only on N and p.

Proof Let us deal first with the case p = 2. If h € C2° (RN), since K € L'(RN), we
see from dominated convergence theorem that

u::IC*hz;(lCM*h—lez*h)

VB* —4co

1
= ’32—4(&1 —gn) € COO(RN)~

We claim that, u satisfies (2.10) in classical sense. To see this, for each i = 1, 2, fixing
§ > 0, then

A + g, = / o OO A =) 4 2k — )y
Bs
+ K, () (= Arh(x — y) + Aih(x — y)dy
RN\ Bs(0)
— () + (I1).

(2.12)

We see that

(D] < C(IIhlle(RN) + ||V2h||Loo(RN)> /B o Ky, (y)dy = o(1) as § — 0.
$
(2.13)

An integration by parts yields
Lo K 08uhte =y
RN\ Bs(0)
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= [ KAkt
RN\ B3 (0)
ah
= —/ VI, ()Vyh(x — y)dy + / K () — (x — y)dS(y)
RN\ B;(0) 9B5(0) v
=D+ U1, (2.14)

where v denoting the inward pointing unit normal along d Bs(0). Noting that

()2 = IIVhIILoo(RN)fa 0 K (0)AS(y)

Bs

“+00 e*)\il*%
<C f / —dr |ds(y)
aBs(0) \ Jo 1N/2

P (2.15)

csN-1 /+OO ¢ Ty

=< t
0

N2
1
I_4/82 +00 L, a7
s "4 < cs.
0 (t/)N/2 -

We continue by integrating by parts once again in the term (/1) to get that

3IC;.
U = f AR, ()h(x — y)dy — / i (Mh(x — y)dS(y). (2.16)
RN\ B5(0) aB;(0) OV
Since
1 +00 e_)"'t_% y
V() = /0 S (-2)a 6 #0)

and v = —y/|y| = —y/8 on d Bs(0), consequently,

K,
3—(y) =V, () -v

v 2
1 +0o0 e—)uit—%
. - 5dt
2(4m)N/2 fo 13+
z/=L/52 1 /+oo e_AiSZI/_%t/

0

NN < dr’
2(4m)N /8N = )z t!

on d Bs(0). Hence we get

. K:)\,'
lim
§—0 9 Bs(0) v

li 1 /+OO e_ki(szy_ﬁdt’ 1 / h(y)dS(y)
= lim ————
5—02(4m)N2 \ Jo (t’)%+l N1 Ja By ' g

Mh(x —y)dS(y)
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(e dr' | Swh
= @) /0 (t/)¥+l 1) Snh(x)

—1/4¢ 1 “+00
' :/ ' 2—N/2 (/ e’l‘gldt> SNh(.x)
us 0

1 N
= sl <3> Snh(x) = h(x), 2.17)

where Sy is the surface area of the sphere 3 B (0) in R". Since —AKy, + 1K, =0
away from 0, plugging (2.13)—(2.17) into (2.12), we see that,

_Ag)»,' + A'ig)ul‘ = h,
then

A%y — BAu + cou

1
= —— ((—A+1dd)(—A + 1 1d)gy,

VB* —4co

—(=A+ M Id)(—~A +121d)g;,)

1
=’32—4()»2—)»1)h=h,
— 4o

this proves the claim. Consequently, for any ball B (0),

/ (A2u — BAu+ cou)” = / 2. (2.18)
Br(0)

Br(0)
integrating by parts, we obtain

5 5 JdAu
A“u - Au = — IV(Au)|~ + —Au, (2.19)
Br(0) Br(0) dBg(0) v

3
f Au-u= —/ |Vu|2+/ . (2.20)
Br(0) B (0) 3Bg(0) IV

and

A“u-u= |Aul® — —Au+ - u, (2.21)
BR(0) BR(0) 9BR(0) IV aBr(0) OV

where V' is the outward pointing unit normal vector field along d Bg(0). We assume
that supph C Bg,(0), for R > 2Ro, x € dBg(0), similar to the argument in (2.15),
we see that for k € N,

|D*u| < C /B o IDFIC(x — )| - [h(y)|dy < C/RN=*E,
Ro
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Letting R — oo in (2.18)—(2.21), we get
lull gany < ClibllL2@ny- (2.22)

Fixing 1 < i, j, k,I < N, we define the linear operator T : C®°(RV) — C®R")
by

Th := Djju (K * h).

Since C2° (RVN) is dense in LZ(RY), by approximation and (2.22), we see that T’
can be uniquely extended as a bounded linear operator from L2(RN) to L2(RN).
By the classical Calderon—Zygmund decomposition and Marcinkiewicz interpolation
theorem (see [24, Theorem 9.9]), we see that for 1 < p < oo,

IThlLr@yy < ClRNLr @YY

where C > 0 depends only on N and p. Moreover, since K € L!(R"), by Young’s
inequality for convolution, we have

1K hll Lo wyy < I L@y 1l Le @)

Hence

lullwar @y < CllallLe@ny- (2.23)
For any 1 < 51 < s» < 2, we define the cut-off function 0 < 1 < 1 such that n = 1
on B; (x),n =0o0n RN\BS2(X) and |D¥n| < C/(s2 — s1)¥, k € N. Letting v = nu,
then v satisfies

A%y — BAV + cov = h,

where

h = nh 4+ 4VyV(Au) + 6AnAu + 4V (An)Vu + Aznu —2B8VnVu — BAnu.

From (2.23) and the fact that 1 < 51 < sp < 2, we obtain

3
1 k
lllwsr s, oy < C | 1AllLrs, @y + D ———7 1P Lo, 0 ) -
k=0 (S2 - Sl)

By the interpolation inequality in Sobolev spaces (see [24, Theorem 7.28]), we see
that
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1 C
leellwa.r a0y = 5 5 lellwar(pg, () + _—s1)4”””LI’(BS2(x)) + CllhllLr By, x))-

(52
(2.24)

Lettingzg = land tj41 =t; + (1 — 7)7!, where 0 < 7 < 1 to be fixed later, by (2.24),

C
R lullzrs,,, ¢

(1
+ClihlLr s, @) (2.25)

1
||M||W4vp(3,i ) = §||M||W4'p(3ti+1(x)) +

Iterating (2.25) for n times, we have

1
||M||w4‘p(3,(x)) = ||'4||W4 P (Byy, (x))

n—1
! -t
+C 1 )4 lullLe (B, ooy + 12l Lr B, @) Z 5T
Choosing t > 0 such that 5 l7=4 < land letting n — oo, we get (2.11). O

3 The Singularly Perturbed Problem
Problem (1.1) can be rewritten as
A%v — BAvV + V(ex)v = |v|P2vin RN, v € H*RY). (3.1

The corresponding energy functional to (3.1) is

1 , 1 , 1 , 1
Ie(v) = 5 [Av["+ B | Voo + 5 | V(ex)v” — — [v|”, v € H,,
2 JrN 27 JrN 2 JrN P JRN

where H, be a class of weighted Sobolev space as follows:

{v e H*®RY) : / V(ex)v? < oo}
RN

and the norm of the space H; is denoted by

12
Iolla, :=<f IAv|2+/ V(sx)v2> .
RN RN

Moreover, we see that H, is equivalent to H*(R") owingto0 < Vo < V € L¥RM).
It will be convenient to consider mutually disjoint open set A¥ compactly con-

taining AX satisfying V (x) > infgo ok V(§) for all x € ;\7‘\Ak. We assume that
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dist (1f\7‘/1, /F\\k;) > 0 for k; # k», this can be achieved by mg\lldng AK smaller if nec-
essary. From now on, we define A = UK_ A%, A = UK Ak and M = UK | MK,
Letting Vp be as in (V) and choosing a > 0 such that alP~? < %Vo with [y > ﬁ.
Following [1,2,15] with minor modification, we define the truncated function

ge(x, u) i= x(ex)|ul”"2u + (1 — x(ex)) min{|u|P =2, aP~*}u
and
ghe,u) = )M e ulP72u + (1 — x*(ex)) min{|ul?~2, aP"2u (1 < k < K),

respectively, where 0 < x¥(x) < 1is a smooth function such that x*(x) = 1 on A,
Xk(x) =0on RN\A" and x (x) := Zle Xk(x). Moreover, we set

u u
Ge(x,u) = / ge(x, t)dt and Glg‘(x, u) = / g'g(x, 7)dt
0 0

accordingly. Finally, the penalized functionals J, Jsk (k=1,..., K)on H, are defined
as

1 1 1
Jo(v) := E/RN |Av|* + oL A;{N |Vo|? + E/RN V(ex)v> — /RN Ge(x,v)

and

k 1 2 1 2 1 2 k
Jo(v) i= = |Av|” + =8 Vo= 4+ = V(ex)v® — G (x,v).
2 RN 2 RN 2 RN RN

As we shall see, this type of modification will act as a penalization to force the
concentration phenomena to occur inside A. It is standard to see that the func-
tionals Jg, Jgk(k = 1,...,K) are in C'(H;,R). To find solutions to (3.1) which
concentrate around M as ¢ — 0, we shall search critical points v, of J, for which
ge(x,ve) = |v8|P’2v8. The following lemma says that J, Jek (k=1,..., K) satisfy
Palais Smale condition and can be proved as Lemma 1.1 of [15], we omit the proof.

Lemma 3.1 For each ¢ > 0 fixed, letting {u,}7>, be a sequence in Hy such that

Je(up)(or Jak(un)) is bounded and J!(uy)(or (Jsk)/(u”))—> 0, then {u,};° | has a
convergent subsequence in Hp.

. + - .o . .
Defining Sﬁ’mp(l_)(or Sﬁ,m,,(,-)) by the set of positive (or negative) ground state

solutions U(V) to (Eg,m i) 0r (Egmy;))) satisfying U(0) = max,pn U (x)(or
V(0) = min, cpy V (x)) and

1 —~ —_~
8 == M min {dist (M, RN\ A}, krln;’igllgz dist (AR, Akz)} ,
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we fix a cut-off function ¢ € Cé’o(RN, [0, 1]) such that ¢(x) = 1 for |x] < &,
@(x) = 0 for |x| > 280, [Vp| < C/8p and |Ap| < C/(8p)>. For & > 0 small, we will
find a solution of (3.1) near the set

K L . K> L .
Xe = {Z plex —Z2HU'(x — (T'/e)) + X plex =) VI (x — (Z/ /¢))
i=1 Jj=1

e (MPDY 2T e (MIDY and U € ST jes-
2 e (MPOYnE e (MDY and U e sF, Ve sy, L

where (MFK)do .= {y eRN: inf ek |y —zl < 80}. Similarly, for A C Hg, we use
the notation

A =lue H, :inf |lu—v <at.
{ & veA” ”Hg_ }

Foreach1 <i < K1, 1 < j < K>, letting Uj;(or V*j ) a positive (or negative) ground
state solution of (E,g,mpm)(or (E,g,mq(j))), then there is a S; > O(or 7; > 0) such that

Ip,m ) (Si U;) < —lor 1g.my ;) (T V) < —1). Moreover, we choose Zf‘k e M* for
1 <k < K. We define
Ul () = pex — 2250 (x — 2D e, V(o)
= plex — AV (x = 1V /) (3.2)

foreache > Oand§,7 > 0. Noting that suppU; ; ¢ AP®) /& and suppVSjt— c A1) /g,
direct calculations show that foreach 1 <i < K, '

. . . . 1
TEOW ) = W 5) = Ty (SU2) +0(D) < =l o) < =5 (33

for ¢ > 0 small. Similarly, we also see that for each 1 < j < K»,

) ) 1
J
HOWVin) <=5 (3.4)
for ¢ > 0 small. We define
Ce 1= max  Je(ye(s, 1)),
(s,0)€[0,11¥
where
K K> )
vels,0):= ) U os+ ) Viir (3.5)
i=1 j=1
for (s, t) == (s1,...,8k,, t1, ..., tk,) € [0, I]K, we have the following estimates:
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K
Lemma3.2 (i) im ¢, = ) cgm,;
e—0 k=1
K
(ii) lim  max  Je(ye(s. 1)) < D cpm — O,
£=>0 (5,1 ed[0,11¥ k=1
where 0 < o < min{cgm, : k=1,2,..., K} is a fixed number.

Proof Since foreach 1 < ki, ko < K withk| # kp, AN AR = gand suppUé ss C
APD /g, SUPPVSJ;II.T, C A?Y) /e, we see that

Ce = Z max Jsp(l)(U’ S)+ Z max Jq(])(VJlT)
i=15i€ ,1 j= llf
K

= Zl max_ Ig.m ) (5iSiUL) + Zl []m[ax Ig.my (4 Tj Vi 'y +o(1)

= Z CBmy + o(1),
k=1

(1) holds. Moreover, by (3.3) and (3.4), (ii) is obvious. O
Letting
clg := inf max J (y (),
yerk relo,
where

={y@) e C([O 1], Hy) : y(0) =0and y(1) = U’ 5 ifk=p@),i=1,...K;
ory(l)=1V Tlfk—q(])]—] .. Ky}

We have the following estimates:

Lemma3.3 Foreachl <k <K,

. k _
lim ¢ = cgm-

Proof For each 1 < k < K, the upper estimate of the form

Tim c* < cgm, (3.6)

e—0

follows immediately from the use of a test path constructed as in the proof of
Lemma 3.2 (i).

On the other hand, we see from Lemma 3.1 that Jg" satisfies Palais Smale condition
on H,. By (3.3) and (3.4), the mountain pass theorem implies that for ¢ > 0 small, c’g
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is a critical value for Jgk. Letting w’g be an associated critical point. Using the definition
of gif and (3.6), we see that for ¢ > 0 small,

/ |Aw’g|2+ﬁ/ |Vw’;|2+/ V (ex)|wk|?
RN RN RN

< c+2/ G (x, wh)
RN
2
< C+—/ x"(sx)lw’glera”*zf (= x*(ex)wil?
p Jry RN

2 1
sc+—f gi‘(x,w’g)w’g+—/ V(e w2,
p Jr¥ lo Jry

combining with ((Jgk)’(w/g), wlg‘) = 0, we obtain

r=2_1 / |Aw’;|2+ﬁ/ |Vw’;|2+/ Viex)wi?) < ¢ 3.7
p lo RN RN RN

for ¢ > 0 small.
For any sequence {e,};° | with &, — 0, we claim that, up to a subsequence, 3
{yn}22; C RN and R > 0, By > 0 such that

o
Br(yn)

Otherwise, by vanishing theorem (see [22, Lemma I.1]), it follows that

w
RN

asn — oo forall 2 < ¢ < 2*. Combining ((JX)'(w¥), w¥) = 0 and the definition of
gls‘, we see that || wls‘n ||H = 0(1), which contradicts Jsk(wé‘) = clg‘ > cp,v, > 0.
Moreover, we also hanve

2

> fo. (3.8)

k

e -0

dist (€4 yn, AK) < enR. (3.9)
Indeed, for any 6 > O fixed, we define a smooth cut-off fuﬂr\l/ction 0<vyx <1
such that ¥ (x) = 0 for x € Ak, ¥(x) = 1 forx € R¥N\(AK)®, |Vy| < C/8 and
|AY| < C /8% Using ((JX )/ (wk ), wk v (e,x)) = 0, the definition of g¥ and the fact
that suppyr (s,x) N (AKX /e) = @, we get

(1 - li) Vo / [wE 29 (enx)
0 RN
- (1 - 1) / V(ean)[wh P9 (enx)
10 RN n

@ Springer



30 Page180f36 Y.Heetal.

< —2/ Awk (Vwk Vi (e,x)) —/ Awk wk Ay (e,x)
]RN n n RN n n
-B / wh (Vwl - Vi (e,x))
RN
c c ,

S EEn + 8—2(9".

If there is a subsequence, still denote itby {e,}° |, such that B (y,)N ((ﬁ‘)é/sn) =0,
then

C C
/ w, I < S + 53em,
Br(yn)

which contradicts (3.8). Thus, for ¢, > 0 small, Br(y,) N ((ﬁ‘)a/en) # (J, which
means that dist (&, y,, A¥) < &, R + 8. Letting § — 07, we obtain (3.9).
Letting vlgn = w’gn (x + yn), by (3.7), (3.8) and (3.9), we see that, up to a sub-

sequence, &,y, — yk c [7‘, vé‘”—\vk in H 2(]RN ), where v* is a nontrivial solution
of
A%u— BAu+ V(oM = gfw), (3.10)
where
g4 @) = }* OO u 4+ (1= x5O min{lul? 2, a2y
We denote

1
o= 5 (1808, 12+ BIVUE 124 V(e + ey o, 1) = GE (x4 3ok ).

Standard argument shows that v]&fn — v¥in HI%)C (]RN ). Thus, for each R > 0 fixed,

1
lim hy = -/ <|Avk|2 + BIVUH ) + V(yk)lvklz) —f GF b,
n—00 Jp.(0) 2 JBr(0) Br(0)
3.11)
where G¥(u) := [, g"(s)ds. Letting 0 < gz < 1 be a smooth cut-off function such

that g = 0 on Bg_1(0), pr = 1 on RV\Bg(0), [Vpgr| < C and |Agg| < C.
Choosing ¢g vls‘" as a test function for

szg — ﬁAvlg‘n + V(epx + enyn)v‘];n = glg‘n (x + yn, vé‘n
to get
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En—i—Z/ hn—i—/ 2GE (x + yu. 08 ) — gk (x 4 yu, vE V5 =0,
RN\Bg(0) RN\Bg(0)

(3.12)

where

E, = / Avf Aprvi) — B Vol Vigrvt)
Br(0)\Br-1(0) Br(0)\Br-1(0)

+ V(enx + enyn) vl Por
Br(0)\Br-1(0) . ek
- fBR(0>\BR_1 (0) 8e, (X F Yy Vg, JVg, @R

The fact that v'gn — v*in HI%C(RN) and v¥ € H?(RV) imply that for any § > 0,
3R > 0 such that lim,_, o |E,| < 8. On the other hand, the definition of gif gives that
2G1§n (x+ yu, vlg‘n) — gé‘n x+yn, vé‘n)v‘é‘n < 0. Using this in (3.12) and combining with
(3.11), wehavelim,,_, Jgkn (w’g‘n) > Jk ("), where J* is the corresponding functional

to (3.10). Since V (y*) > my and G¥(v¥) < %|vk|1’, we have J¥(v%) > cg . The

arbitrariness of {¢,}°° | implies that lim,_,cX > cg . This finishes the proof. O
The following lemma is a key for the proof of Theorem 1.1:
Lemma 3.4 Foreach dy > 0 small and {e,}2 |, {ug,}o | satisfying
K

. _ d, . . / _
lim e, = 0,up, € X0, lm_J,, (ue,) <D cpmg and Tm_ [} (ue,) g, 1 =0,
k=1

there exists, up to a subsequence, {y;';(i)},‘;il C RN, zp® e MPD Ul € S;m,,(;)

(=i = Kpand 4712, R, 210 e a0, vie sy, (<)< Ka)
such that '
lim |e,y?@ — 27D =0, lim |g,y?YP — 29D =0
n—00 " n—00 n
and
K
nli)ngo Ug, — Z(P(Enx - Enyézl(l))Ul()C — yépn(l))
i=1
K>
= plenx — enyi WV (x — 31Dy =0.
j=1 H,,

Proof For notational simplicity, we write ¢ for &, and still use ¢ after taking a sub-
.. do + —
sequence. By the definition of X’ and the compactness of S B piy? S By and

@ Springer



30 Page20o0f36 Y.Heetal.

(MFK)%_ we see that there exist W e S;,Wlp(,')’ Wi e Sgmyi) {22 om0 € (MPD)D,
{zZ‘”}DO C (M2U))% sych that fore > Osmalland 1 <i < K, 1 < j < K>,

K
e — Y _glex — XYW (x — 227 /e))
i=1

K>
= plex — AW (x = 1V /e))| < 2do (3.13)
j:1 H,

and
Zf(i) N ZP(l') e (Mp(i))50 and Zg(j) — Zq(j) e (Mq(j))50 ase — 0. (3.14)

Step 1: We claim that

lim sup/ lug|> =0, (3.15)
e=>0yeA, JB ()

where Ae = UL, (B3s/e (2£/€)\ Bsy 26 (2£/€)).
Assuming on the contrary that there exists » > 0 such that

lim sup / lug|> =2r > 0,
e—>0yeA; IB1(y)

then there exists y. € A such that for ¢ > 0 small,
/ luel> > r > 0. (3.16)
B1(ye)

Letting ve (x) := u,(x + y,), up to a subsequence, there exists v € H2(RY)\{0} such
that v,—v in H*(RY) and ey, — xo € UK (Bss,()\Bs/2(2¥)) € M*0 € A.
Moreover, we see that v satisfies (Eg, v (xy)). Since

1
cp.Vxo) = Ip.vig) (W) — — (%,v(xo)(v), v>

= (l - l) (/ |Av|2+ﬂ/ Vol + V(xo)/ |U|2)
2 p RN RN RN

then for R > 0 large,

fim (L - |Aug > + B Vi |> + V(x 2
am E — & & 0) 17
e—0 p Br(Ye) BRr(ye) Bg(ye)
—im (L -1 |Ave|” + B |V |? + V(x0) AR
=ami5 e e 0 Vel
e—0 )4 Br(0) Br(0) Br(0)
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11 5 5 5 1
> -—- [Av|” + B [Vul” + V(xo0) v* ) = ¢ vixg
2 p Br(0) Br(0) Br(0) 2

> 0. (3.17)

On the other hand, by (3.13) and Sobolev’s imbedding theorem, we have

/ |Aug|* + B |Vue|* + V (x0) lue|?
Br(ye) BRr(ye) Br(ye)
K
ch/ AW VW WP
=7 I BrO—GLV e))
K>
+C / AW PP VWP 4+ (W2 + Cdy + 0(1)
j=1 BR()’E—(ZZ(J)/S))

= Cdp +o(1),

where 0o(1) — 0 as & — 0 and we have used the fact that |y, — (z’g/e)| > 80/2¢. This
leads to a contradiction for dy small. Hence, (3.15) holds.
Since

2 2
sup/ |ug|” > sup / [neue|”,
YE€Ae J Bi(y) yeRN J Bi(y)

where 1, € CSO(RN, [0, 1]) such that n.(x) = 1 for x € Ule(B@(so/g)_z(Z]g/s)\

B(sy26)+2(2k /€)). suppns € UK, (Basyje)—1(25/€)\B(syj2e)+1 (@5 /e)), [Vne| < C
and |Ang| < C. By (3.15) and the boundedness of {n,u,}e~0 in H>(RY), we derive
from vanishing theorem (see [22, Lemma I.1]) that for 2 < ¢ < 2%,

lim |, lug|? — 0. (3.18)
e—>0 kg](sto/g(z’g/s)\Bso/e(Z'g‘/e))

Step 2: Let u. 1 (x) := Z,{;l u’s"l(x) = Z,le pex — zlg)ug(x), Ue2(x) 1= ug(x) —
ug.1(x), by (3.18), we see that

/ |Au8|22/ |Au8,1|2+/ |Autsal? + o(1), (3.19)
RN RN RN
/ |Vug|zz/ |Vus,1|2+f Vite 2 + o(1), (3.20)
RN RN RN
/ V(sx>|ug|zz/ v<ex>|ue,1|2+/ V(ex) e, (321)
RN RN RN

/ Gg<x,u8)=/ Gg<x,us,1)+/ Gelrouten) +o(l),  (322)
RN RN RN
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From (3.19)—(3.22), we infer that

Je(ug) > Js(“s,l) + JS(MS,Z) +o(1).

By (3.13), it follows that

Jue2 s,
K
e — ) plex — LYW (x — (29 /e))

i=1

=

K>
=Y glex — YW (x = (24D /e)) |+ 2do

Jj=1 H,

< Juez| + 4do

& k
e kL—Jl BZ(SO/S(ZS/‘C")

<Cluel /x| L\ +4do
Hs(kL:Jl(Bzao/s(ZS/S)\Bao/s(Zg/s)))

plex —LOWix = 20 /e))|

K
<Cy

i=1
K>

+Cy

j=1

K
<Ccy® H W'
i=1

+Cdy = Cdp + o(1),

@(ex — Z4YWJ (x — (Zf(i)/8))H

where o(1) — 0 as & — 0. Thus, @) lue 2|l < Cdo.
E—>

H2(Basye (22 /e)\Bsy e L7 /)
) , +C
H2(Basy/e (24 /6)\Bsy e (22 /)

K>
+e ||
H2(Basy /e (0\Bsy /e (0)) ]z—:l H2(Bagy /e (0\Bsy /6 (0))

(3.23)

On the other hand, since (J/(u¢), us2) — 0as e — 0, we deduce from (3.18) and

Sobolev’s imbedding theorem that

2 P
lue2ly, < Cllue2lly, +o(1).

Choosing dy > 0 small, we see that [|ug2||lp, = o(1), by (3.23),

Je(ug) > Js(us,l) +o(D).

(3.24)

Step 3: For each 1 < k£ < K, letting 11}’8‘(x) = ulg’l(x + (zif/s)) = @(ex)us(x +

k

(zf,f/e)), up to a subsequence, as ¢ — 0, Jwk € HZ(RY) such that 1D’§—\1Z1 in

H?(RM). Next, we claim that
Wk — @* in LYRY) for g € (2,2%).
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If not, by vanishing theorem (see [22, Lemma I.1]), 3r > 0 such that

lim sup f |111if—11)k|2=2r>0,
Bi(x)

e—>0xeRN

then for & > 0 small, 3x* € RV such that
/ [k — %2 =r>o0. (3.26)
B1(xk)

There are two cases:
Case 1: {X§}5>0 is bounded, that is, |x’8‘| < Ry for some Ry > 0, then for ¢ > 0 small,

f [k — k)2 > r >0,
BR,+1(0)

which contradicts that w* — @ in L] (RM).

Case 2: {x§}5>o is unbounded, by (3.26),

lim lp(ex)us (x + (zE/e)* = 1 > 0. (3.27)
e—0J By (xk)

Since ¢(x) = 0 for |x| > 289, we see that |x§| < 38p/¢ for ¢ > 0 small. Moreover,
we see that |x¥| < 89/2e for e > 0 small. If not, xX € B3y, (0)\Bs, 26 (0), by (3.15),

lim lp(ex)ue: (x + (25 /e)))?
e—0J By (xk)

stim s [ eGP
£—=>02€B35/: (0)\Bsj2:(0) 7 B1(2)

= lim sup / Juz |?
£=>0 yeB3s /e (2K /6)\ B 2e (<K /&) Y B1(Y)

< lim sup / luel* =0,
e—>0yeA; IB1(y)

which contradicts (3.27). Up to a subsequence, exf — xk e Bs,/2(0) and 11118‘ (x) :=
Wk (x +xF)—wk in H2(RY), by (3.27), w* # 0 and satisfies (Eg y (k). Arguing
as in Step 1, we get a contradiction for dy > 0 small. (3.25) follows.

Similar to the argument in Lemma 3.2(i), we have Jg(u, 1) = Z,le Je (u’;l(x)).
Recalling that foreach | <k < K,z& — zFand w¥(x) = u* | (x + (£ /e)), by (3.24)
and (3.25), we obtain ’

K K
D vk @) <Y cpmg- (3.28)
k=1 k=1
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For any ¢y € C?O(RN), letting ¥ (x — (zlg/s)) as a test function for J/(u.). Since for
& > 0 small, suppyr (x — (z'g/e)) C A/e, we see that WX is a solution of (Eg v (k)
Moreover, thanks to (3.25) and (Jg(ug), ”§,1> — 0, lug2llg, = Oase — 0, we have

/IAwk|2+ﬂ/ |vwk|2+/ V(o

RN RN RN

sLm[/ |Aw’;|2+ﬂ/ |Vuv§|2+/ v<sx+z’;>|vw§|2]
e—0 LJRN RN RN

— lim |w’;|P=/ |w’<|P=/ IAtDk|2+ﬂ/ |vw"|2+/ VP
e—0 JRN RN RN RN RN

thenas ¢ — 0,
/ |AwE? — / VNTALRS
RN RN
/ IV§|* — / VK2, (3.29)
RN RN
/ V(ex 4+ 20wk — / V(5 wk 2.
RN RN
By (3.13), (3.25) and ||us 2 ||y, = o(1), we see that w* # 0 for dy > 0 small. Thus

Iﬁ,V(z")(i’k) Z CRV (k) (3.30)

Since z¥ € (M5)% < Ak, (3.28) and (3.30) imply that V (%) = my, Z¥ € M¥ and
1, (W*) = cp m, . Moreover

me [ VitP = [ v+ ke,
RN RN
by (3.29), w* — @k in H2(RV). At this point, it is clear that for dy > 0 small and

eachl1 <i < Ky, 1<) <Ky, A" € Spm,). VI € Spm,, and 2P0, 240 ¢ RN
such that WP® (x) = Ul (x —zP®), 1) (x) = VJ/ (x — 74)). Therefore, as ¢ — 0,

K
ue = gex = @V +ePONUI(x = (@ e) +270))
i=1

K>
_ Zw(gx _ (Zg(j) + SZQ(j)))Vj(x _ ((Zg(j)/é") + zq(j)))‘ 0.
j=1 e
This completes the proof. O

We define J& C H; by

JY ={ueH :J@u) <a}
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Lemma 3.5 Letting dy be the number given in Lemma 3.4, then for any d € (0, dp),
there exist g4 > 0, pg > 0 and wy > 0 such that

1@ gy 1 = @a

215:1 Cmﬁ,k +pd

forallu € J; N (XI\XT) with & € (0, £4).

Proof Assuming on the contrary that, there exist d € (0, do), {e,}7> ;. {on},2; With
K
— m + n

e o — Oand uy € J T ) (xdoy xd ) such that

”Jg/,l(un)H(HS )y~ — 0asn — oo.

By Lemma 3.4, foreach 1 <i < K|, 1 < j < K», we find {yf(i)}oo {yZ(j)}Zozl -

n=1"

RN, 270 e MPD, 21D € MID, U" € Sg i, V! € Sgm,;, such that

lim |,/ — 27D =0, lim |yl — 9P| =0
n—oo n—oo

and
K1 ) )
lim (un =Y @(enx — eayh U (x = 7
n—o0 iz
K> ) )
=3 plenx — el Vi -yl =o,
Jj=1 He,
which gives that u,, € X gn for large n. This contradicts that u,, ¢ X gn. O

Lemma 3.6 There exists Ty > 0 with the following property: for any § > 0 small,

there exist oy > 0 and ¢5 > 0 such that if J.(y:(s,t)) > Zle Cgm; — as and
Tod

e € (0, ¢5), then y:(s,t) € X;°°, where y:(s, t) has been mentioned in (3.5).
Proof First, there is a Ty > 0 such that foreach 1 <k < K andu € H 2(]RN ),

lp(ex — ZDux — @5/ H, < Tollu@)ll 2w, (3.31)
where z’; € M¥ has been mentioned in (3.2). We define

K K K>

I . . .

oy = 7 mln{ E CBmy — E Iﬂsmp(i) (siS;Uy) — E Iﬁ,mq(j) ;T; v
k=1 f =1

K . K> .
Ssioty €10,11 3 Ity = WU ey + 2 16575 = Vil gz, 2 8] = 0,
i=1 j=1
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we have
K\
> pm e (5 SiUD + Z Lpmgg, (4T V) = Zcﬂ m, — 2as implies
i=1 j=1 k=1

(3.32)

<$

K

Q. i
2;|s,sz 1| v 4 -
=

K>
RN + Zl |7;T;
j=

Similar to the proof of Lemma 3.2(i), we see that there exists an &5 > 0 such that

K K>
omax e 0) = D gy (iU = D gy @ T; V)| S e (333)
$ED, i=1 j=1

for all ¢ € (0, &5). Thus if ¢ € (0, g5) and J¢ (e (s, 1)) > Zle cg,m; — s, by (3.32)
and (3.33), we have

K K>

D o lsiSi = UIUL aany + D 16T = WV o gany <8,
i=1 j=I

by (3.31), we have

K1 ) -
ve(s.0) = Y glex — UL — @2V /e))

i=1

— > plex — VI (x = 1YV /e))

Jj=1 H,

K\
<3 lsisi— 1| Hgo(ex — 2Oy — (2D
i=1

K>
+ 3015 = et - £V @ - Y
j=1

K K>
=) IR (7 IS (5 Y7E /Rl L) O (1}
i=1 j=1
Thus y.(s,t) € x[od, O

Choosing §; > 0 to ensure that 7981 < dp/4, letting & = min{ws,, o'} and fixing
d = dy/4 := dy in Lemma 3.5. To prove the next lemma, we use the idea developed
in [25]. However, for constructing multi-peak solutions, we give a proof which is
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slightly different from the one given in [25], where only the single-peak solution was
considered.

Lemma 3.7 3& > O such that for each & € (0, &), there exists a sequence {v, ¢} | C
Jeten Xg“ such that J!(vy.¢) — 0in (Ho)~! asn — oo.
Proof Assuming on the contrary that there always exist ¢ > 0 small and y(¢) > 0

such that

1) )1 = 7€) > 0 (3.34)

foru e JS 0 x%,
Letting ¥ be a pseudo-gradient vector field for J/ in H,, that is, H, — H, is a
locally Lipschitz continuous vector field such that for every u € Hg,
1Y @), < 200, g1+ (3.35)
(L0, Y @) = 1@, - (336)

Letting 11, Y2 be locally Lipschitz continuous functions in H such that0 < yr1, ¥p <
1 and

K 1 B
1, Z CBmy — E& < Je(u) < cs,
Yiu) =4 = "
0, Je(u) < Z CB.my —aorce+e=< Je(u,
oy = | e x20,
700, u ¢ x,

Considering the following ordinary differential equations:

4wy = ——2OCD) e )yt ),
dr 1Y (n(r, w)ll g, (3.37)
n(0, u) = u.

By (3.35), (3.36) and (3.37), we have

;—rfe(n(r, u))

d
= <Jg/(n(ra u))’ 577(”, M)>

, Y ((r, 1))
=(J s ,
< e =y o) I,
_ O ) ()
- 1Y (r, w)ll g,

Y@, u))y2(n(r, u))>

’ 2
[RACIEN)] -
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1
< — V1 )V DI ) g

and combining with Lemma 3.2(i), Lemma 3.5, (3.34), (3.37) and the definition of
Y1, Yo, it is standard to show that n € C([0, 400) x H, H) and satisfies that for
& > 0 small,

(1) %Jg(n(r, u)) < 0foreachr € [0, +00) and u € H,;

K l- —
.. . Ge —1CBmp— 73 3do /4, + do/4
(i) L Je(n(r, ) < —wa, /2 n(r,u) € JS \JEA B2 3R ydo/A,

- K . _lg
(i) o (n(r, 1)) < —y (&)/21E n(r, ) € JENJZI P2 x 3,
Wv) 00 ) = wif Jow) < Sf, cpm — &
Setting 71 := wq,do/y () and & (s, t) = n(r1, y:(s, 1)), we have the following
cases:

K . =
Case 1: y:(s, 1) € ngk=l #mY By (iv), we see that

n(r, ve(s, 1)) = ye(s, ). (3.38)

K
2 k=18,

Case 2: y;(s, 1) ¢ J¢ e By Lemma 3.6 and the definition of ¢, we see that

- K &
Ye(s, 1) € JfS\JgZ"=‘ Pomic™%  x Do/,

Moreover, we have
n(r, ve(s, 1)) € X% for r € [0, r1]. (3.39)
Indeed, if not, 3r' € [0, r1] such that n(r’, y. (s, 1)) ¢ X2. Denote

r” :=sup {r €[0,r1:n(r, ye(s, 1) € Xf"} )

then by (3.37) and the definition of ¥, we see (', s (s, 1)) = n(r", ye (s, 1)) € XD,
which leads to a contradiction.
Next, we divide Case 2 into the following three subcases:

K e
Case 2.1: 5(ry, y.(s, 1)) € ngkzl Chmy =73

Case 2.2: 1(r1, ye (s, 1)) € J&\
rel0,r];

K ’71—
JE=reema® g NG, ve(s.1) ¢ X2 for some

- K _ 1l
Case 2.3: 5(r1, ye (s, 1)) € JENTZT P2 00 p(r, ye(s, 1)) € X207 for all

rel0,r].
In Case 2.2, denote

ry = inf {r €10, r1]: n(r, ye(s, 1)) & Xg’do/“}
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and
- . do/4
r3 i= sup {r € [0, ] :n(r, ve(s, 1) € X; } ,

then by (3.37), 72 — r3 = Ldo and n(r, ye (s, 1)) € X2\ X% foreach r € [r3, r21.

By (i), (i) and Lemma 3.2(i), we obtain

Je(m(r1, ve(s, 1))
nod
= Je(¥e (s, 1)) +f d—Js(n(r, Ye(s,1)))ds
0 r

IA

Ly
c8+/ I, yets, )
r3 r

o1 K 1
<cCe — chhdo = I;Cﬂ’mk — deldo + o(1),

where o(1) - 0as e — 0.
In Case 2.3, by (iii) and the definition of r|, we have

rnog
Je((r1, ve(s, 1)) = Je(ve(s, 1)) +/(‘) Ejs(n(ra ve(s,1)))ds
K

- 1 1
< Ce — EwdldO = ;Cﬁ,mk — Ewd1d0 4+ o(1).
To sum up, choosing &t = min {6{/2, W4, d0/4} > 0, we see that, for
(s, 1) € [0, 11%,

K
JeEe(s, 1) <Y cpmy — it +o(1). (3.40)

k=1

From (3.38) and (3.39), we have

I (s, )||a, < C for e > 0 small and (s, t) € [0, 11%. (3.41)

Letting k. € N such that kg < 80/ (5¢), ke — oo0,and putting
Aj,s = (A/8)280/8+5(j+1)k8\(A/8)280/8+5jk5,j — O, 1’ o kg —1.

By (3.41), we see that

ke—1

> /A | A& (s, DI + BIVE:(s, NP + V(ex)|E(s, DI < C.
— ;.
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Thus, there exists a j. € {0, 1, ..., k. — 1} such that
/~ |AE (s, D> + BIVE(s, DI* + V(ex)|&: (s, DI < Clhke — 0 (3.42)
Ajsvé‘

uniformly for (s, t) € [0, 11%. Choosing cut-off functions ¢ 1 and ¢ > such that

1, if x € (A/g)?%0/e+CletDke
0, if x € RV\(A/g)200/e+CletDke
0, if x € (A/g)?0/eTCitIke

1, if x € RV\(A/g)20/e+Cletke

le1(x) = {

CS,Z(X) = {

and & ; (s, 1) := C.i&e (s, 1), i = 1,2. By (3.42), we have

[§e(s. 1) = &1 (5. 1) = Gea(s, 1)y, — Oase — 0 (3.43)
uniformly for (s, t) € [0, 11X, (3.43) implies that

Je(e(s, 1) 2 Je (5,1 (5.1) + Je(Ee2(s, D) +o(1). (3.44)
In Case 1, by (3.38), & 2(s, 1) = c2&:(s, t) = 0. In Case 2, by (3.39),

|&e265. D)y, = [6e28: (5, D]y, = Cllge(s, DI 29/6, < Cdlp.

H RN\(A/e)™") =

Choosing dy > 0 small, we see from Sobolev’s imbedding theorem that

JeEea(s,0) = [&eats, 0}, (% - azg”) > 0.
No matter which case occurs, we always have
Je(€e(s. 1)) = Je(§e1(s. 1)) + o(D). (3.45)
Next, defining £° (s, 1)(x) = &.1(s. 1)(x) for x € (AF/e)30/¢ gk (s, 1)(x) = 0 for

X ¢ (117‘/8)350/5 for each 1 < k < K. Arguing as in the proof of Lemma 3.2(i), we
get

K K
JeEea(s,1) = DT €l (s, 0) + o) =Y JEEE (s,0) +0(1). (3.46)

k=1 k=1
Next, we introduce some notations as in [16]. For (s, #) € [0, 11X, let
OS,‘ = (s]5'5si71507 si+17'7sK|’t1"’tK2)
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and 1Sl' = (sls o Si—1, 17 Si41, s SKq» 1, . th)

Similarly, we can also define O,j and 1,j. We see from Lemma 3.2(ii) and (iv)
in the proof of Lemma 3.7 that §(05) = y(0y), &(O0;) = 7(0;) and
§&(15) = ve(ly), §(1) = ye(l;). By the definition of ?;f,l(s,t), we see
that Jap(l)(ép(l)(ov,)) — Jap(l)(o) — 0 Jé](])(g‘](])(o )) q(])(o) — 0 and
Jé‘ (l)(sp(l)(li,)) — Js (l)(Ul S) < 0 J (])(Eq(])(l )) — Jg(])(V}T ) <0Ofore >0
small by (3.3) and (3.4). Using the celebrated glulng method due to Coti Zelati and
Rabinowitz (see [16, Proposition 3.4]), there exists (3¢, f) € [0, 11¥ such that

JEEE (e te)) = cf foreach 1 <k < K. (3.47)

(3.45), (3.46), (3.47) and Lemma 3.3 yield

K
max  Je(5:(s.0) = Y cpmy +o(1),

(s.0)€l0,11¥ 1

which contradicts (3.40) for £ > 0 small. m]

Proof of Theorem 1.1 By Lemma 3.7, 3¢ > 0 such that for each & € (0, £], there exists
a sequence {v,,,g}g"=l C J§£+£ N X?O such that J/ (v, ¢) — 0in (H)lasn —> oo.

By Lemma 3.1, v, € J§8+8 N X;‘O such that, up to a subsequence, v,  — ve in H;
and v, satisfies

Avg — BAv, + V(ex)v, = go(x, ve) in RY. (3.48)

Since cgm, > 0(1 <k < K), we see that 0 ¢ X‘il0 for dy > 0 small. Thus v, # 0.
For any sequence {¢,}°2 | with &, — 0, by Lemma 3.4, there exist, up to a sub-

sequence, {ygn(l)}oo1 C RN, 270 ¢ MPO Uyl ¢ Sﬁm o) (1 <i < Kj) and

{ygn(J)};.lo:1 C RN, 740 ¢ M9 VI ¢ Sﬁ,mq(,») (1 < j < K3)suchthatasn — oo,

Isnyﬁf” _ Z17(1')| -0, |8ny;]n(j) _ Zq(j)| =0 (3.49)

and

K1
Ve, = Y @(enx — eqyL YU (x — yP©)

i=1

K>
J=! H,

n

@ Springer



30 Page32of36 Y.Heetal.

For each R > 0, we have

Vg K
” n LZ(RN\kB|BR(y§”))

K
Ve, = Y @(enx — ayL U (x — y2O)

i=1

K>
=Y (enx — eV (x — yiD)
Jj=1 LZ(RN)

K K>
Ui H v ‘ . 351
+ 21: H L2(RN\Bg(0)) + 2} L2(RN\Bg(0)) ( )
i= j=

On the other hand, since v,, € X;{?, then v, is bounded in H>(RV). Writing (3.48)
as

A%v,, — BAV, + cove, = (co — V(€2X)) Ve, + 8o, (X, Vg,) in RY,

where cp > 0 has been mentioned in (2.9). Observing that i, := (co — V (g,x))ve, +

8s, (X, 0g,) € LI RNyforl <gq < we deduce from Sobolev’s imbed-

2N
loc (N=-4)(p—-1)°

ding theorem and classical bootstrap technique based on the local W*7-estimates for

fourth-order semilinear elliptic equations (Proposition 2.3) that v, € Wli’cq (RN) for

every ¢ > 1 with a uniform estimate on unit balls. Given ¢ > N /4, by Morrey’s
inequality, we infer that {vg, }3° | is bounded in L>°(RY). Letting p = N in (2.11),

we see that for any x € RV,

2/N
el o = € (”h””LN(Bz(x)) + [ve, LN(Bz(x))) = C|w,, HL/Z(Bz(x))’
by Morrey’s inequality,
2/N
” Ve, L>®(B1(x)) = C ” Ve, L/Z(Bz(x)) ) (352)

where C > 0 depends only on N. We obtain from (3.50), (3.51) and (3.52) that for
any § > 0, there exists Rs > 0 such that

K
|vg, (x)| < & uniformly for x € RN\kU1 Brg; (yé‘n) and g, > O small. (3.53)

Choosing 6 = a in (3.53), by (3.49), we have U,le Bpg, (yé‘”) C AJe, fore, > 0
small. Thus, we see from the definition of g that v, is a solution to (3.1). Moreover,
by Proposition 2.3, Morrey’s inequality and Schauder’s estimate, we see that v,, €
C*(RN). Therefore u e, (X) 1= vg, (x/&,) is a classical solution to the original problem
(1.1) with € replaced by &,,.
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Since {vg, }2 ; is bounded in L>° (RM), by Proposition 2.3 and Morrey’s inequality,
we see that foreach 1| <i < Kj, 1 < j < Kp, {vg, (x + )’5,,(1))}2021 and {vg, (x +

(] ))}n | is bounded in Cfog (RN) for some 0 < o < 1. It follows from Arzeli-
Ascoh s theorem and (3.50) that,

Ve, (¥ + yPD) — U (x) and v, (x + y2) — VI (x) in C}(R") as n — oo.
(3.54)

In particular,

ve, 02 D) — U'(0) > 0 and ve, ¥Y)) — V/(0) <Oasn — oco.  (3.55)

Letting xgn(l) (or xq(J )) be a maximum (or minimum) point of u,, in APW (or A9W)),
we obtain from (3. 55) that for &, > 0 small,

Ui
e, (2D) = v, (2D ) = v5, (G2 = % -0 (3.56)
and
Vi
Ug, (xg,,m) = Vg, (xq(])/sn) < v, (qu) < © <0. (3.57)

Given § = § := min {{U"(O)/z};’il1 U {—V7(0) /2}f;1} in (3.53), then there exists

Rs > 0 such that |v,, (x)| < & for all x € RN\ UK | Bg. (3% ). Recalling (3.49), we
have

(X Jen) — ¥ | < Ry, (3.58)

thusxk —FeMkasn — oo.

We only need to prove the uniqueness of xp @ and x 9U) For each 1 <i<Kjp,we

assume on the contrary that, up to a subsequence, Ug, possesses at least two maximum
points xp<l) in AP¥ (I = 1,2). By (3.58), for each [ = 1,2, after passing to a

subsequence, (x”) /e,) — yo — Py € Br,(0). Let vy, 1(x) = ug, (enx + 7)., by

(3.54), we see that

Ve, 1 (X)=U' (x + P) in H*(RY) and v, ;(x) — U'(x + P)) in Cp,.(RY). (3.59)
The function U’ has a unique local maximum point at zero, it is radially symmetric
and strictly decreasing as Proposition 2.1 shows, then P; = 0.

Next, we claim that

AU 0) < 0. (3.60)
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Suppose not, we assume that AU/ (0) = 0. Set W' := —AU' + gUi, we see that
(U, W) satisfies

—AU' + gUi — Wi =0,

. . 2 . . . (3'61)
—AW' 4+ ng + <mp(i) - 'BZ) Ul —utiP2ut =o.

Since U > 0 and %2 > mp(), by (3.61) and strong maximum principle, Wi > 0.
In view of Theorem 1 in [26] or proof of Theorem 1.1 continued in [21], we see
that U, W/ must be radially symmetric and strictly decreasing respect to zero. Let
o(r) =Ul(r) — U'(0) and ¥ (r) = Wi(r) — Wi(0), we compute

8(r) = AU () = B ) + UF0) — i) + W 0)
= Lo~y + AU 0,

then

—Ap(r) + gfp(r) =y(@r) =0.

By strong maximum principle, either ¢ = 0 or ¢ < 0, which is impossible. Hence,
(3.60) holds. Therefore, we can choose ry > 0 such that (U")"(r) < 0for0 < r < ry.
By (3.59) and [27, Lemma 4.2], we see that

p() p(i)
|xa,, 1~ X2
>ro >0,
&n

which contradicts the fact that (xpn (il) /en) — Vb l(i) — P; = 0. This proves the unique-

&
ness of xgl(‘). The uniqueness of xgn(J ) is similar, we omit it here.

Since {g,};° , is arbitrary, we obtain all the results in Theorem 1.1. O
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