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Abstract
We consider the existence and concentration properties of standing waves for a fourth-
order Schrödinger equation withmixed dispersion, which was introduced to regularize
and stabilize solutions to the classical time-dependent Schrödinger equation. This
leads to study multi-peak solutions to the following singularly perturbed fourth-order
nonlinear Schrödinger equation

ε4�2u − βε2�u + V (x)u = |u|p−2u in RN , u ∈ H2(RN ).

We first establish a local W 4,p-estimate for a class of fourth-order semilinear elliptic
equations, which is a key to get the uniform and global L∞-estimate of solutions to
the considered singularly perturbed equation above. Next, under certain assumptions
on β and the potential V (x), we construct a family of sign-changing multi-peak solu-
tions with a unique maximum (or minimum) point on each component. We prove that
these solutions concentrate around any prescribed finite set of local minima (possibly
degenerate) of the potential V (x). Compared with the classical singularly perturbed
Schrödinger equation, the presence of a fourth-order term in the problem above forces
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the development of new techniques to obtain qualitative properties of multi-peak solu-
tions.

Keywords Fourth-order Schrödinger equation · Mixed dispersion · Multi-peak
solutions · Concentration
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1 Introduction andMain Result

In this paper, we study the existence and the concentration behavior of multi-peak
solutions to the following singularly perturbed fourth-order nonlinear Schrödinger
equation with mixed dispersion:

ε4�2u − βε2�u + V (x)u = |u|p−2u in RN , u ∈ H2(RN ), (1.1)

where ε is a small positive parameter, N ≥ 5, 2 < p < 2∗ := 2N/(N − 4), and the
potential V : RN → R satisfies:
(V1) V ∈ C(RN ,R) ∩ L∞(RN ) and infx∈RN V (x) = V0 > 0;
(V2) there exist K mutually disjoint bounded domains �k (k = 1, 2, . . . , K ) such
that

mk := inf
�k

V < min
∂�k

V .

We set

Mk := {x ∈ �k : V (x) = mk}.

This kind of hypothesis was first introduced by del Pino and Felmer [1] and Gui [2].
Without loss of generality, we may assume that dist (�k1 ,�k2) > 0 for each k1 �= k2,
1 ≤ k1, k2 ≤ K ; this can be achieved by making �k smaller if necessary. Moreover,
denoting m := max1≤k≤Kmk , we also assume that β ≥ 2m1/2.

Problem (1.1) arises from seeking standing waves for the following time-dependent
fourth-order Schrödinger equation

i∂tψ − γ�2ψ + μ�ψ + |ψ |p−2ψ = 0, ψ(0, x) = ψ0(x), (t, x) ∈ R × R
N ,

(1.2)

which was introduced by Karpman [3] to regularize and stabilize the solutions of
classical Schrödinger equations. Locally well-posedness of the Cauchy problem (1.2)
in H2(RN ) if 2 < p < 2∗ was proved in [4]. We also refer the reader to [5–7] for
globally well-posedness and scattering, and [8,9] concerning the existence of finite-
time blow up solutions, stability on instability of standing wave solutions to (1.2).
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As it is shown in the above papers [8,9], the added defocusing fourth-order disper-
sion term (γ > 0 is small enough) clearly helps to stabilize the standing waves of
problem (1.2). The effect of the fourth-order dispersion term (focusing or defocusing)
depends on whether it is small or large compared with the Laplacian; see [9, Sect. 6]
for details. Thus, it is a natural question to consider the asymptotic behavior of stand-
ing waves of problem (1.2) as γ, μ → 0+ (this might depend on their comparison).
This is the main purpose of the present paper.

When the fourth-order dispersion term in (1.1) vanishes, it becomes the following
form of classical singularly perturbed Schrödinger equations, that is,

− ε2�u + V (x)u = f (u), x ∈ R
N , N ≥ 1. (1.3)

Floer and Weinstein [10] considered (1.3) in one dimension case, where f (u) = u3,
V ∈ L∞(R) with infR V > 0. They constructed a single-peak solution concentrating
around any given non-degenerate critical point of V (x). Next, this result was extended
by Oh [11] in higher dimensions when f (u) = u p−1(2 < p < 2N

N−2 ) and the potential
V belongs to a Kato class. Furthermore, Oh [12] proved the existence of multi-peak
solutions concentrating around any finite subsets of the non-degenerate critical points
of V . The arguments developed in [10–12] are mainly based on a Lyapunov–Schmidt
reduction which requires the uniqueness and non-degeneracy of ground state solutions
to the following “limiting equation”

⎧
⎨

⎩

−�u + mu = u p−1 in RN , m > 0,

u > 0, u ∈ H1(RN ), u(0) = max
x∈RN

u(x),
(
2 < p <

2N

N − 2

)
.

(1.4)

Namely, there exists a unique positive radially symmetric solution u ∈ H1(RN ) to
(1.4) and the kernel of the operator Lw = −�w + w − (p − 1)u p−2w in H1(RN ) is
spanned by {ux1, . . . , uxN }. However, the uniqueness and non-degeneracy of ground
state solutions to “limiting problem”

�2u − β�u + αu = |u|p−2u in RN , u ∈ H2(RN ), (Eβ,α)

corresponding to problem (1.1) are, in general, difficult to check. These properties
were partially proved by Bonheure et al. [8] only for the case 2 < p < 2+ 2

N . Notice
that in this present paper, we are in a wider range 2 < p < 2N

N−4 .
On the other hand, Rabinowitz [13] used the mountain pass theorem to show that

(1.3) possesses a positive ground state solution for ε > 0 small under the conditions:
(V3) V∞ = lim inf |x |→∞ V (x) > V0 = inf x∈RN V (x) > 0.
We also refer to Wang [14] who proved that the positive ground state solutions to
(1.3) obtained in [13] must concentrate at global minima of V as ε → 0. del Pino and
Felmer [15] studied (1.3) with the conditions on V replaced by
(V4) inf x∈RN V (x) > 0;
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(V5) There is a bounded domain � such that

inf
�

V < min
∂�

V .

They proved that (1.3) possesses a positive bound state solution for ε > 0 small which
concentrates around the local minima of V in � as ε → 0. del Pino and Felmer
[1], Gui [2] obtained multi-peak solutions to (1.3) which exhibit concentration at any
prescribed finite set of local minima, possibly degenerate, of the potential by gluing
localized solutions due to Coti Zelati and Rabinowitz [16, Proposition 3.4].

Although there are many works dealing with singularly perturbed Schrödinger
equations (1.3), just a few works can be found dealing with biharmonic semilinear
equations. Among them we shall just mention [17]. Pimenta and Soares [17] studied
the following biharmonic Schrödinger equation

ε4�2u + V (x)u = f (u) in RN , u ∈ H2(RN ). (1.5)

They developed the methods in [13,14] to obtain a family of solutions to (1.5) which
concentrates around the global minima of V as ε → 0, where f is of subcritical
growth.

To the best of our knowledge, the existence and concentration behavior of multi-
peak solutions to (1.1) has not ever been studied. It is worth pointing out that for the
fourth-order nonlinear Schrödinger equation (1.1), some of the methods used in the
literature have to be deeply modified. We first refer to the impossibility of splitting
u = u+ − u− in H2(RN ), which leads that the classical Nash–Moser type iteration
technique fails. Next, we point out the lack of a general maximum principle for the
operator �2 causes much trouble in finding multi-peak solutions to problem (1.1). On
the other hand, since for each ε > 0 fixed, the limit lim|x |→∞ V (εx) may not exist
(even if the limit exists, V (εx)may not necessarily converge uniformly for ε > 0 small
as |x | → ∞), the common method in [18] for dealing with the decay of solutions to
the biharmonic equations can not be applied. This implies that the classical global
penalization method due to Byeon and Wang [19], which highly relies on the uniform
exponential decay of solutions to (1.1), cannot be used directly. As we shall see later,
the above two aspects prevent us from using variational method in a standard way.

Our main result is stated in what follows.

Theorem 1.1 Assume that the potential V satisfies (V1), (V2), N ≥ 5 and β ≥ 2m1/2.
For any two positive integers K1, K2 with K1 + K2 = K, there exists an ε0 > 0
such that for every ε ∈ (0, ε0], (1.1) possesses a sign-changing bound state solution
uε ∈ H2(RN ) ∩C4(RN ). Moreover, for each 1 ≤ i ≤ K1, 1 ≤ j ≤ K2, uε possesses
exactly one maximum point x p(i)

ε in �p(i) and one minimum point xq( j)
ε in �q( j)

satisfying

lim
ε→0

dist (x p(i)
ε ,Mp(i)) = 0 and lim

ε→0
dist (xq( j)

ε ,Mq( j)) = 0,

where {p(1), . . . , p(K1), q(1), . . . , q(K2)} is a rearrangement of {1, 2, . . . , K }.
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To complete this section, we sketch our proof. First, we need to consider the “limit-
ing problem” (Eβ,α)with α, β > 0 and β ≥ 2α1/2. Whether the positive (or negative)
solution to (Eβ,α) is unique or not is unknown. Nevertheless we can prove that the set
of positive (or negative) ground state solutions to (Eβ,α) satisfies some compactness
properties (Proposition 2.2). This is crucial for finding multi-peak solutions which are
close to a set of prescribed functions. More precisely, we search for a solution of (1.1)
which consists essentially of K disjoints parts, each part being close to a ground state
solution of the “limiting equation” (Eβ,α) associated to the corresponding setMk .

To study (1.1), we work with the following equivalent equation

�2v − β�v + V (εx)v = |v|p−2v in RN , v ∈ H2(RN ). (1.6)

The corresponding energy functional to (1.6) is

Iε(v) = 1

2

∫

RN
|�v|2 + 1

2
β

∫

RN
|∇v|2 + 1

2

∫

RN
V (εx)v2 − 1

p

∫

RN
|v|p, v ∈ Hε,

where Hε is a class of weighted Sobolev spaces defined as follows:

Hε :=
{

v ∈ H2(RN ) :
∫

RN
V (εx)v2 < ∞

}

.

Unlike [13], where the minimum of V (x) is global, the mountain pass theorem can be
used globally, here in the present paper, the condition (V2) is local, we need to use a
penalization method introduced in [1,2,15], which helps us to overcome the difficulty
caused by the non-compactness due to the unboundedness of the domain RN . For this
purpose, we shall modify the functional Iε. Following [1,2,15], we define auxiliary
functionals Jε, J kε (k = 1, . . . , K ), respectively (see Sect. 3 for details). It will be
shown that this type of penalization will force the concentration phenomena to occur
inside � = ∪K

k=1�
k (Lemma 3.4).

In order to get a critical point vε of Jε, we use a version of quantitative deformation
lemma (Lemma 3.7) to construct a special convergent Palais-Smale sequence of Jε
for ε > 0 small. To prove that vε is indeed a solution to the original problem (1.6),
we need to exhibit a uniform decay of vε at infinity. For this purpose, we establish
a local W 4,p-estimate and a global L∞-estimate of the solutions to the fourth-order
semilinear elliptic equations (Proposition 2.3).

This paper is organized as follows, in Sect. 2, we give some preliminary results. In
Sect. 3, we prove the main result Theorem 1.1.

2 Auxiliary Results

The “limiting problem” to (1.1) is

�2u − β�u + αu = |u|p−2u in RN , u ∈ H2(RN ), (Eβ,α)
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where α, β > 0 and β ≥ 2α1/2. The functional corresponding to (Eβ,α) is defined
as

Iβ,α(u)

= 1

2

∫

RN
|�u|2 + 1

2
β

∫

RN
|∇u|2 + 1

2
α

∫

RN
|u|2 − 1

p

∫

RN
|u|p, u ∈ H2(RN ),

where

H2(RN ) := {u ∈ L2(RN ) : ∇u ∈ L2(RN ),�u ∈ L2(RN )}

endowed with the equivalent norm

‖u‖H2(RN ) :=
(∫

RN
|�u|2 +

∫

RN
|u|2

)1/2

.

Denoting cβ,α the ground state level of (Eβ,α), that is

cβ,α := inf
u∈Gβ,α

Iβ,α(u),

where Gβ,α := {u ∈ H2(RN )\{0} : I ′
β,α(u) = 0}. Arguing as in [13,20], we see that

cβ,α = inf
γ∈
β,α

max
t∈[0,1] Iβ,α(γ (t)) = inf

u∈H2(RN )\{0}
sup
t>0

Iβ,α(tu)

= inf
u∈Nβ,α

Iβ,α(u) > 0, (2.1)

where the set of paths is defined as


β,α :=
{
γ ∈ C([0, 1], H2(RN )) : γ (0) = 0 and Iβ,α(γ (1)) < 0

}
(2.2)

and Nβ,α is the Nehari manifold defined by

Nβ,α := {u ∈ H2(RN )\{0} : 〈I ′
β,α(u), u〉 = 0}.

The following result on the ground state solutions of (Eβ,α) was proved in [21].

Proposition 2.1 ([21], Theorem 1) Assume that α > 0, β ≥ 2α1/2, N ≥ 5 and
2 < p < 2∗ := 2N/(N − 4), then (Eβ,α) has a nontrivial ground state solution
and any ground state solution of (Eβ,α) does not change sign, is radially symmetric
around some point and strictly decreasing.

Letting S+
β,α(or S

−
β,α) the set of positive (or negative) ground state solutionsU (or V )

of (Eβ,α) satisfying U (0) = maxx∈RN U (x)(or V (0) = minx∈RN V (x)), we obtain
the following compactness of S+

β,α (or S−
β,α).
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Proposition 2.2 Assume that α > 0, β ≥ 2α1/2, N ≥ 5, then S+
β,α and S−

β,α are

compact in H2(RN ).

Proof For any U ∈ S+
β,α ,

cβ,α = Iβ,α(U ) − 1

p

〈
I ′
β,α(U ),U

〉

=
(
1

2
− 1

p

)(∫

RN
|�U |2 + β

∫

RN
|∇U |2 + α

∫

RN
|U |2

)

,

thus S+
β,α is bounded in H2(RN ).

For any sequence {Un}∞k=1 ⊂ S+
β,α , up to a subsequence, we may assume that there

is a U0 ∈ H2(RN ) such that

Un⇀U0 in H2(RN ) (2.3)

andU0 satisfies (Eβ,α). Next, we claim that there exist a sequence {xn}∞n=1 ⊂ R
N and

R > 0, β0 > 0 such that

∫

BR(xn)
|Un|2 ≥ β0. (2.4)

Otherwise, by the vanishing theorem (see [22, Lemma I.1]), it follows that

∫

RN
|Un|q → 0 as n → ∞ for 2 < q < 2∗. (2.5)

(2.5) and
〈
I ′
β,α(Un),Un

〉
= 0 imply that ‖Un‖H2(RN ) = o(1) which contradicts the

fact that Iβ,α(Un) = cβ,α > 0, thus (2.4) holds. In view of Proposition 2.2, Un is
radially symmetric around 0 and strictly radially decreasing, we see from (2.4) that,

∫

BR(0)
|Un|2 ≥ β0. (2.6)

(2.3) and (2.6) imply that U0 is nontrivial, then

cβ,α ≤ Iβ,α(U0) − 1

p

〈
I ′
β,α(U0),U0

〉

=
(
1

2
− 1

p

)(∫

RN
|�U0|2 + β

∫

RN
|∇U0|2 + α

∫

RN
|U0|2

)

≤ lim
n→∞

(
1

2
− 1

p

)(∫

RN
|�Un|2 + β

∫

RN
|∇Un|2 + α

∫

RN
|Un|2

)

= lim
n→∞

(

Iβ,α(Un) − 1

p

〈
I ′
β,α(Un),Un

〉)

= cβ,α,

(2.7)
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by (2.3) and (2.7), we obtainUn → U0 in H2(RN ). This completes the proof that S+
β,α

is compact in H2(RN ). Similarly, we also see that S−
β,α is compact in H2(RN ). ��

For u ∈ L1(RN ), we define its Fourier transform Fu = û by

Fu(ξ) = û(ξ) := 1

(2π)N/2

∫

RN
e−i x ·ξu(x)dx

and its inverse Fourier transform F−1u by

F−1u(x) = ǔ(x) := 1

(2π)N/2

∫

RN
eiξ ·xu(ξ)dξ.

We recall that the fundamental solutions to the Helmholtz equation are solutions to

− �Kμ + μKμ = δ(0), (2.8)

where μ ∈ C, y ∈ R
N and δ(0) stands for the Dirac mass centered at 0. Of course,

Kμ is not uniquely determined, but in the following, we always choose those which
satisfy nice integrability condition, namely, we require that Kμ ∈ L1(RN ). Fixing a
c0 > 0 small such that β2 − 4c0 > 0 and c0 < infRN V (x). Arguing as the Example
1 in Sect. 4.3.1. of [23], we see that

Kλi := 1

(2π)N/2

(
1

|ξ |2 + λi

)∨
= 1

(4π)N/2

∫ +∞

0

e−λi t− |x |2
4t

t N/2 dt (x �= 0),

where Kλi (i = 1, 2) are the fundamental solutions to (2.8) with

λ1 = β − √
β2 − 4c0
2

and λ2 = β + √
β2 − 4c0
2

.

Here, we observe that Kλi ∈ L1(RN ) is radially symmetric, non-negative, non-
increasing in r = |x | and it decays exponentially at infinity. Moreover, it is
smooth in R

N\{0}. Next, we denote by K the fundamental solution to the operator
�2 − β� + c0 I d, that is,

�2K − β�K + c0K = δ(0). (2.9)

Taking the Fourier transform in (2.9), we get

K = 1

(2π)N/2

(
1

|ξ |4 + β|ξ |2 + c0

)∨

= 1
√

β2 − 4c0

1

(2π)N/2

(
1

|ξ |2 + λ1
− 1

|ξ |2 + λ2

)∨

= 1
√

β2 − 4c0

(Kλ1 − Kλ2

)
.
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Moreover, we see that 0 ≤ K ∈ L1(RN ).
The following local W 4,p-estimate for fourth-order semilinear elliptic equations

with mixed dispersion is a key to get the uniform and global L∞-estimate of the
solutions to (1.1) and the proof is standard. Since we have not found a local W 4,p-
estimate suitable for fourth-order semilinear elliptic equations with mixed dispersion,
for readers’ convenience, we give a detailed proof.

Proposition 2.3 Let h ∈ L p(RN ), 1 < p < ∞ and let u := K ∗ h. Then u ∈
W 4,p(RN ),

�2u − β�u + c0u = h a.e. RN (2.10)

and for any x ∈ R
N ,

‖u‖W 4,p(B1(x)) ≤ C
(
‖h‖L p(B2(x)) + ‖u‖L p(B2(x))

)
, (2.11)

where C > 0 depends only on N and p.

Proof Let us deal first with the case p = 2. If h ∈ C∞
c (RN ), since K ∈ L1(RN ), we

see from dominated convergence theorem that

u := K ∗ h = 1
√

β2 − 4c0

(Kλ1 ∗ h − Kλ2 ∗ h
)

:= 1
√

β2 − 4c0
(gλ1 − gλ2) ∈ C∞(RN ).

We claim that, u satisfies (2.10) in classical sense. To see this, for each i = 1, 2, fixing
δ > 0, then

−�gλi + λi gλi =
∫

Bδ(0)
Kλi (y)(−�xh(x − y) + λi h(x − y))dy

+
∫

RN \Bδ(0)
Kλi (y)(−�xh(x − y) + λi h(x − y))dy

= (I ) + (I I ).

(2.12)

We see that

|(I )| ≤ C
(
‖h‖L∞(RN ) + ‖∇2h‖L∞(RN )

) ∫

Bδ(0)
Kλi (y)dy = o(1) as δ → 0.

(2.13)

An integration by parts yields

∫

RN \Bδ(0)
Kλi (y)�xh(x − y)dy
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=
∫

RN \Bδ(0)
Kλi (y)�yh(x − y)dy

= −
∫

RN \Bδ(0)
∇Kλi (y)∇yh(x − y)dy +

∫

∂Bδ(0)
Kλi (y)

∂h

∂ν
(x − y)dS(y)

= (I I )1 + (I I )2, (2.14)

where ν denoting the inward pointing unit normal along ∂Bδ(0). Noting that

|(I I )2| ≤ ‖∇h‖L∞(RN )

∫

∂Bδ(0)
Kλi (y)dS(y)

≤ C
∫

∂Bδ(0)

⎛

⎝

∫ +∞

0

e−λi t− δ2
4t

t N/2 dt

⎞

⎠dS(y)

≤ CδN−1
∫ +∞

0

e− δ2
4t

t N/2 dt

t ′=t/δ2= Cδ

∫ +∞

0

e− 1
4t ′

(t ′)N/2 dt
′ ≤ Cδ.

(2.15)

We continue by integrating by parts once again in the term (I I )1 to get that

(I I )1 =
∫

RN \Bδ(0)
�Kλi (y)h(x − y)dy −

∫

∂Bδ(0)

∂Kλi

∂ν
(y)h(x − y)dS(y). (2.16)

Since

∇Kλi (y) = 1

(4π)N/2

∫ +∞

0

e−λi t− |y|2
4t

t N/2

(
− y

2t

)
dt (y �= 0)

and ν = −y/|y| = −y/δ on ∂Bδ(0), consequently,

Kλi

∂ν
(y) = ∇Kλi (y) · ν

= 1

2(4π)N/2

∫ +∞

0

e−λi t− δ2
4t

t
N
2 +1

δdt

t ′=t/δ2= 1

2(4π)N/2δN−1

∫ +∞

0

e−λi δ
2t ′− 1

4t ′

(t ′)
N
2 +1

dt ′

on ∂Bδ(0). Hence we get

lim
δ→0

∫

∂Bδ(0)

∂Kλi

∂ν
(y)h(x − y)dS(y)

= lim
δ→0

1

2(4π)N/2

(∫ +∞

0

e−λi δ
2t ′− 1

4t ′

(t ′)
N
2 +1

dt ′
)

1

δN−1

∫

∂Bδ(x)
h(y)dS(y)
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= 1

2(4π)N/2

(∫ +∞

0

e− 1
4t ′

(t ′)
N
2 +1

dt ′
)

SNh(x)

t=1/4t ′= 1

2πN/2

(∫ +∞

0
e−t t

N
2 −1dt

)

SNh(x)

= 1

2πN/2


(
N

2

)

SNh(x) = h(x), (2.17)

where SN is the surface area of the sphere ∂B1(0) in RN . Since −�Kλi + λiKλi = 0
away from 0, plugging (2.13)–(2.17) into (2.12), we see that,

−�gλi + λi gλi = h,

then

�2u − β�u + c0u

= 1
√

β2 − 4c0

(
(−� + λ2 I d)(−� + λ1 I d)gλ1

−(−� + λ1 I d)(−� + λ2 I d)gλ2

)

= 1
√

β2 − 4c0
(λ2 − λ1) h = h,

this proves the claim. Consequently, for any ball BR(0),

∫

BR(0)
(�2u − β�u + c0u)

2 =
∫

BR(0)
h2. (2.18)

integrating by parts, we obtain

∫

BR(0)
�2u · �u = −

∫

BR(0)
|∇(�u)|2 +

∫

∂BR(0)

∂�u

∂ν′ �u, (2.19)

∫

BR(0)
�u · u = −

∫

BR(0)
|∇u|2 +

∫

∂BR(0)

∂u

∂ν′ u, (2.20)

and
∫

BR(0)
�2u · u =

∫

BR(0)
|�u|2 −

∫

∂BR(0)

∂u

∂ν′ �u +
∫

∂BR(0)

∂�u

∂ν′ u, (2.21)

where ν′ is the outward pointing unit normal vector field along ∂BR(0). We assume
that supph ⊂ BR0(0), for R > 2R0, x ∈ ∂BR(0), similar to the argument in (2.15),
we see that for k ∈ N,

|Dku| ≤ C
∫

BR0 (0)
|DkK(x − y)| · |h(y)|dy ≤ C/RN−2+k .
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Letting R → ∞ in (2.18)–(2.21), we get

‖u‖H4(RN ) ≤ C‖h‖L2(RN ). (2.22)

Fixing 1 ≤ i, j, k, l ≤ N , we define the linear operator T : C∞
c (RN ) → C∞(RN )

by

Th := Di jkl(K ∗ h).

Since C∞
c (RN ) is dense in L2(RN ), by approximation and (2.22), we see that T

can be uniquely extended as a bounded linear operator from L2(RN ) to L2(RN ).
By the classical Calderon–Zygmund decomposition and Marcinkiewicz interpolation
theorem (see [24, Theorem 9.9]), we see that for 1 < p < ∞,

‖Th‖L p(RN ) ≤ C‖h‖L p(RN ),

where C > 0 depends only on N and p. Moreover, since K ∈ L1(RN ), by Young’s
inequality for convolution, we have

‖K ∗ h‖L p(RN ) ≤ ‖K‖L1(RN )‖h‖L p(RN ).

Hence

‖u‖W 4,p(RN ) ≤ C‖h‖L p(RN ). (2.23)

For any 1 < s1 < s2 < 2, we define the cut-off function 0 ≤ η ≤ 1 such that η = 1
on Bs1(x), η = 0 on R

N\Bs2(x) and |Dkη| ≤ C/(s2 − s1)k , k ∈ N. Letting v = ηu,
then v satisfies

�2v − β�v + c0v = h̄,

where

h̄ = ηh + 4∇η∇(�u) + 6�η�u + 4∇(�η)∇u + �2ηu − 2β∇η∇u − β�ηu.

From (2.23) and the fact that 1 < s1 < s2 < 2, we obtain

‖u‖W 4,p(Bs1 (x)) ≤ C

(

‖h‖L p(Bs2 (x)) +
3∑

k=0

1

(s2 − s1)4−k
‖Dku‖L p(Bs2 (x))

)

.

By the interpolation inequality in Sobolev spaces (see [24, Theorem 7.28]), we see
that
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‖u‖W 4,p(Bs1 (x)) ≤ 1

2
‖u‖W 4,p(Bs2 (x)) + C

(s2 − s1)4
‖u‖L p(Bs2 (x)) + C‖h‖L p(Bs2 (x)).

(2.24)

Letting t0 = 1 and ti+1 = ti + (1−τ)τ i , where 0 < τ < 1 to be fixed later, by (2.24),

‖u‖W 4,p(Bti (x))
≤ 1

2
‖u‖W 4,p(Bti+1 (x)) + C

(1 − τ)4τ 4i
‖u‖L p(Bti+1 (x))

+C‖h‖L p(Bti+1 (x)). (2.25)

Iterating (2.25) for n times, we have

‖u‖W 4,p(B1(x)) ≤ 1

2n
‖u‖W 4,p(Btn (x))

+C

[
1

(1 − τ)4
‖u‖L p(Btn (x)) + ‖h‖L p(Btn (x))

] n−1∑

i=0

1

2i
τ−4i .

Choosing τ > 0 such that 1
2τ

−4 < 1 and letting n → ∞, we get (2.11). ��

3 The Singularly Perturbed Problem

Problem (1.1) can be rewritten as

�2v − β�v + V (εx)v = |v|p−2v in RN , v ∈ H2(RN ). (3.1)

The corresponding energy functional to (3.1) is

Iε(v) = 1

2

∫

RN
|�v|2 + 1

2
β

∫

RN
|∇v|2 + 1

2

∫

RN
V (εx)v2 − 1

p

∫

RN
|v|p, v ∈ Hε,

where Hε be a class of weighted Sobolev space as follows:

{

v ∈ H2(RN ) :
∫

RN
V (εx)v2 < ∞

}

and the norm of the space Hε is denoted by

‖v‖Hε :=
(∫

RN
|�v|2 +

∫

RN
V (εx)v2

)1/2

.

Moreover, we see that Hε is equivalent to H2(RN ) owing to 0 < V0 ≤ V ∈ L∞(RN ).
It will be convenient to consider mutually disjoint open set �̃k compactly con-

taining �k satisfying V (x) > infξ∈�k V (ξ) for all x ∈ �̃k\�k . We assume that
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dist (�̃k1 , �̃k2) > 0 for k1 �= k2, this can be achieved by making �k smaller if nec-
essary. From now on, we define � = ∪K

k=1�
k , �̃ = ∪K

k=1�̃
k and M = ∪K

k=1Mk .
Letting V0 be as in (V1) and choosing a > 0 such that a p−2 < 1

l0
V0 with l0 >

p
p−2 .

Following [1,2,15] with minor modification, we define the truncated function

gε(x, u) := χ(εx)|u|p−2u + (1 − χ(εx))min{|u|p−2, a p−2}u

and

gkε (x, u) := χk(εx)|u|p−2u + (1 − χk(εx))min{|u|p−2, a p−2}u (1 ≤ k ≤ K ),

respectively, where 0 ≤ χk(x) ≤ 1 is a smooth function such that χk(x) = 1 on �k ,
χk(x) = 0 on RN\�̃k and χ(x) := ∑K

k=1 χk(x). Moreover, we set

Gε(x, u) :=
∫ u

0
gε(x, τ )dτ and Gk

ε(x, u) :=
∫ u

0
gkε (x, τ )dτ

accordingly. Finally, the penalized functionals Jε , J kε (k = 1, . . . , K ) on Hε are defined
as

Jε(v) := 1

2

∫

RN
|�v|2 + 1

2
β

∫

RN
|∇v|2 + 1

2

∫

RN
V (εx)v2 −

∫

RN
Gε(x, v)

and

J kε (v) := 1

2

∫

RN
|�v|2 + 1

2
β

∫

RN
|∇v|2 + 1

2

∫

RN
V (εx)v2 −

∫

RN
Gk

ε(x, v).

As we shall see, this type of modification will act as a penalization to force the
concentration phenomena to occur inside �. It is standard to see that the func-
tionals Jε, J kε (k = 1, . . . , K ) are in C1(Hε,R). To find solutions to (3.1) which
concentrate around M as ε → 0, we shall search critical points vε of Jε for which
gε(x, vε) = |vε|p−2vε. The following lemma says that Jε, J kε (k = 1, . . . , K ) satisfy
Palais Smale condition and can be proved as Lemma 1.1 of [15], we omit the proof.

Lemma 3.1 For each ε > 0 fixed, letting {un}∞n=1 be a sequence in Hε such that

Jε(un)(or J kε (un)) is bounded and J ′
ε(un)(or

(
J kε

)′
(un))→ 0, then {un}∞n=1 has a

convergent subsequence in Hε.

Defining S+
β,mp(i)

(or S−
β,mq( j)

) by the set of positive (or negative) ground state
solutions U (V ) to (Eβ,mp(i) )(or (Eβ,mq( j) )) satisfying U (0) = maxx∈RN U (x)(or
V (0) = minx∈RN V (x)) and

δ0 := 1

10
min

{

dist {M,RN\�}, min
k1 �=k2

dist (�̃k1 , �̃k2)

}

,
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we fix a cut-off function ϕ ∈ C∞
c (RN , [0, 1]) such that ϕ(x) = 1 for |x | ≤ δ0,

ϕ(x) = 0 for |x | ≥ 2δ0, |∇ϕ| ≤ C/δ0 and |�ϕ| ≤ C/(δ0)
2. For ε > 0 small, we will

find a solution of (3.1) near the set

Xε :=
{ K1∑

i=1
ϕ(εx − z̄i )Ui (x − (z̄i/ε)) +

K2∑

j=1
ϕ(εx − z̃ j )V j (x − (z̃ j/ε))

: z̄i ∈ (Mp(i))δ0 ,z̃ j ∈ (Mq( j))δ0 and Ui ∈ S+
β,mp(i)

, V j ∈ S−
β,mq( j)

}
.

where (Mk)δ0 := {
y ∈ R

N : inf z∈Mk |y − z| ≤ δ0
}
. Similarly, for A ⊂ Hε, we use

the notation

Aa := {
u ∈ Hε : inf

v∈A
‖u − v‖Hε

≤ a
}
.

For each 1 ≤ i ≤ K1, 1 ≤ j ≤ K2, letting Ui∗(or V
j∗ ) a positive (or negative) ground

state solution of (Eβ,mp(i) )(or (Eβ,mq( j) )), then there is a Si > 0(or Tj > 0) such that

Iβ,mp(i) (SiU
i∗) < −1(or Iβ,mq( j) (Tj V

j∗ ) < −1). Moreover, we choose zk∗ ∈ Mk for
1 ≤ k ≤ K . We define

Ui
ε,s̄(x) := ϕ(εx − z p(i)∗ )s̄U i∗(x − (z p(i)∗ /ε)), V j

ε,t̄ (x)

:= ϕ(εx − zq( j)∗ )t̄ V j∗ (x − (zq( j)∗ /ε)) (3.2)

for each ε > 0 and s̄, t̄ > 0. Noting that suppUi
ε,s̄ ⊂ �p(i)/ε and suppV j

ε,t̄ ⊂ �q( j)/ε,
direct calculations show that for each 1 ≤ i ≤ K1,

J p(i)
ε (Ui

ε,Si ) = Iε(U
i
ε,Si ) = Iβ,mp(i) (SiU

i∗) + o(1) < −1 + o(1) < −1

2
(3.3)

for ε > 0 small. Similarly, we also see that for each 1 ≤ j ≤ K2,

Jq( j)
ε (V j

ε,Tj
) < −1

2
(3.4)

for ε > 0 small. We define

c̃ε := max
(s,t)∈[0,1]K

Jε(γε(s, t)),

where

γε(s, t) :=
K1∑

i=1

Ui
ε,si Si +

K2∑

j=1

V j
ε,t j Tj

(3.5)

for (s, t) := (s1, . . . , sK1 , t1, . . . , tK2) ∈ [0, 1]K , we have the following estimates:
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Lemma 3.2 (i) lim
ε→0

c̃ε =
K∑

k=1
cβ,mk ;

(ii) lim
ε→0

max
(s,t)∈∂[0,1]K

Jε(γε(s, t)) ≤
K∑

k=1
cβ,mk − σ ,

where 0 < σ < min{cβ,mk : k = 1, 2, . . . , K } is a fixed number.

Proof Since for each 1 ≤ k1, k2 ≤ K with k1 �= k2,�k1 ∩�k2 = ∅ and suppUi
ε,si Si

⊂
�p(i)/ε, suppV j

ε,t j Tj
⊂ �q( j)/ε, we see that

c̃ε =
K1∑

i=1
max

si∈[0,1] J
p(i)
ε (Ui

ε,si Si
) +

K2∑

j=1
max

t j∈[0,1] J
q( j)
ε (V j

ε,t j Tj
)

=
K1∑

i=1
max

si∈[0,1] Iβ,mp(i) (si SiU
i∗) +

K2∑

j=1
max

t j∈[0,1] Iβ,mq( j) (t j Tj V
j∗ ) + o(1)

=
K∑

k=1
cβ,mk + o(1),

(i) holds. Moreover, by (3.3) and (3.4), (ii) is obvious. ��

Letting

ckε := inf
γ∈
k

ε

max
r∈[0,1] J

k
ε (γ (r)),

where


k
ε := {γ (r) ∈ C([0, 1], Hε) : γ (0) = 0 and γ (1) = Ui

ε,Si
if k = p(i), i = 1, . . . K1

or γ (1) = V j
ε,Tj

if k = q( j), j = 1, . . . K2}.

We have the following estimates:

Lemma 3.3 For each 1 ≤ k ≤ K,

lim
ε→0

ckε = cβ,mk .

Proof For each 1 ≤ k ≤ K , the upper estimate of the form

lim
ε→0

ckε ≤ cβ,mk (3.6)

follows immediately from the use of a test path constructed as in the proof of
Lemma 3.2 (i).

On the other hand, we see from Lemma 3.1 that J kε satisfies Palais Smale condition
on Hε. By (3.3) and (3.4), the mountain pass theorem implies that for ε > 0 small, ckε
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is a critical value for J kε . Lettingwk
ε be an associated critical point. Using the definition

of gkε and (3.6), we see that for ε > 0 small,

∫

RN
|�wk

ε |2 + β

∫

RN
|∇wk

ε |2 +
∫

RN
V (εx)|wk

ε |2

≤ C + 2
∫

RN
Gk

ε(x, w
k
ε )

≤ C + 2

p

∫

RN
χk(εx)|wk

ε |p + a p−2
∫

RN
(1 − χk(εx))|wk

ε |2

≤ C + 2

p

∫

RN
gkε (x, w

k
ε )w

k
ε + 1

l0

∫

RN
V (εx)|wk

ε |2,

combining with
〈
(J kε )′(wk

ε ), w
k
ε

〉 = 0, we obtain

(
p − 2

p
− 1

l0

)(∫

RN
|�wk

ε |2 + β

∫

RN
|∇wk

ε |2 +
∫

RN
V (εx)|wk

ε |2
)

≤ C (3.7)

for ε > 0 small.
For any sequence {εn}∞n=1 with εn → 0, we claim that, up to a subsequence, ∃

{yn}∞n=1 ⊂ R
N and R > 0, β0 > 0 such that

∫

BR(yn)

∣
∣
∣w

k
εn

∣
∣
∣
2 ≥ β0. (3.8)

Otherwise, by vanishing theorem (see [22, Lemma I.1]), it follows that

∫

RN

∣
∣
∣w

k
εn

∣
∣
∣
q → 0

as n → ∞ for all 2 < q < 2∗. Combining
〈
(J kε )′(wk

ε ), w
k
ε

〉 = 0 and the definition of
gkε , we see that

∥
∥wk

εn

∥
∥
Hεn

= o(1), which contradicts J kε (wk
ε ) = ckε ≥ cβ,V0 > 0.

Moreover, we also have

dist (εn yn, �̃k) ≤ εn R. (3.9)

Indeed, for any δ > 0 fixed, we define a smooth cut-off function 0 ≤ ψ(x) ≤ 1
such that ψ(x) = 0 for x ∈ �̃k , ψ(x) = 1 for x ∈ R

N\(�̃k)δ , |∇ψ | ≤ C/δ and
|�ψ | ≤ C/δ2. Using

〈
(J kεn )

′(wk
εn

), wk
εn

ψ(εnx)
〉 = 0, the definition of gkε and the fact

that suppψ(εnx) ∩ (�̃k/ε) = ∅, we get
(

1 − 1

l0

)

V0

∫

RN
|wk

εn
|2ψ(εnx)

≤
(

1 − 1

l0

)∫

RN
V (εnx)|wk

εn
|2ψ(εnx)
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≤ −2
∫

RN
�wk

εn
(∇wk

εn
· ∇ψ(εnx)) −

∫

RN
�wk

εn
wk

εn
�ψ(εnx)

−β

∫

RN
wk

εn
(∇wk

εn
· ∇ψ(εnx))

≤ C

δ
εn + C

δ2
ε2n .

If there is a subsequence, still denote it by {εn}∞n=1, such that BR(yn)∩((�̃k)δ/εn) = ∅,
then

∫

BR(yn)
|wk

εn
|2 ≤ C

δ
εn + C

δ2
ε2n,

which contradicts (3.8). Thus, for εn > 0 small, BR(yn) ∩ ((�̃k)δ/εn) �= ∅, which
means that dist (εn yn, �̃k) ≤ εn R + δ. Letting δ → 0+, we obtain (3.9).

Letting vkεn := wk
εn

(x + yn), by (3.7), (3.8) and (3.9), we see that, up to a sub-

sequence, εn yn → yk ∈ �̃k , vkεn⇀vk in H2(RN ), where vk is a nontrivial solution
of

�2u − β�u + V (yk)u = gk(u), (3.10)

where

gk(u) = χk(yk)|u|p−2u + (1 − χk(yk))min{|u|p−2, a p−2}u.

We denote

hn := 1

2

(
|�vkεn |2 + β|∇vkεn |2 + V (εnx + εn yn)|vkεn |2

)
− Gk

εn
(x + yn, v

k
εn

).

Standard argument shows that vkεn → vk in H2
loc(R

N ). Thus, for each R > 0 fixed,

lim
n→∞

∫

BR(0)
hn = 1

2

∫

BR(0)

(
|�vk |2 + β|∇vk |2 + V (yk)|vk |2

)
−

∫

BR(0)
Gk(vk),

(3.11)

where Gk(u) := ∫ u
0 gk(s)ds. Letting 0 ≤ ϕR ≤ 1 be a smooth cut-off function such

that ϕR = 0 on BR−1(0), ϕR = 1 on R
N\BR(0), |∇ϕR | ≤ C and |�ϕR | ≤ C .

Choosing ϕRvkεn as a test function for

�2vkεn − β�vkεn + V (εnx + εn yn)v
k
εn

= gkεn (x + yn, v
k
εn

)

to get
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En + 2
∫

RN \BR(0)
hn +

∫

RN \BR(0)
2Gk

εn
(x + yn, v

k
εn

) − gkεn (x + yn, v
k
εn

)vkεn = 0,

(3.12)

where

En =
∫

BR(0)\BR−1(0)
�vkεn�(ϕRvkεn ) − β

∫

BR(0)\BR−1(0)
∇vkεn∇(ϕRvkεn )

+
∫

BR(0)\BR−1(0)
V (εnx + εn yn)|vkεn |2ϕR

− ∫

BR(0)\BR−1(0)
gkεn (x + yn, vkεn )v

k
εn

ϕR .

The fact that vkεn → vk in H2
loc(R

N ) and vk ∈ H2(RN ) imply that for any δ > 0,
∃R > 0 such that limn→∞ |En| ≤ δ. On the other hand, the definition of gkε gives that
2Gk

εn
(x + yn, vkεn )− gkεn (x + yn, vkεn )v

k
εn

≤ 0. Using this in (3.12) and combining with
(3.11), we have limn→∞ J kεn (w

k
εn

) ≥ J k(vk), where J k is the corresponding functional

to (3.10). Since V (yk) ≥ mk and Gk(vk) ≤ 1
p |vk |p, we have J k(vk) ≥ cβ,mk . The

arbitrariness of {εn}∞n=1 implies that limε→0 c
k
ε ≥ cβ,mk . This finishes the proof. ��

The following lemma is a key for the proof of Theorem 1.1:

Lemma 3.4 For each d0 > 0 small and {εn}∞n=1, {uεn }∞n=1 satisfying

lim
n→∞ εn = 0, uεn ∈ Xd0

εn
, lim
n→∞ Jεn (uεn ) ≤

K∑

k=1

cβ,mk and lim
n→∞ ‖J ′

εn
(uεn )‖(Hεn )−1 = 0,

there exists, up to a subsequence, {y p(i)εn }∞n=1 ⊂ R
N , z p(i) ∈ Mp(i), U i ∈ S+

β,mp(i)

(1 ≤ i ≤ K1) and {yq( j)
εn }∞n=1 ⊂ R

N , zq( j) ∈ Mq( j), V j ∈ S−
β,mq( j)

(1 ≤ j ≤ K2)

such that

lim
n→∞ |εn y p(i)εn

− z p(i)| = 0, lim
n→∞ |εn yq( j)

εn
− zq( j)| = 0

and

lim
n→∞

∥
∥
∥
∥
∥
uεn −

K1∑

i=1

ϕ(εnx − εn y
p(i)
εn

)Ui (x − y p(i)εn
)

−
K2∑

j=1

ϕ(εnx − εn y
q( j)
εn

)V j (x − yq( j)
εn

)

∥
∥
∥
∥
∥
∥
Hεn

= 0.

Proof For notational simplicity, we write ε for εn and still use ε after taking a sub-
sequence. By the definition of Xd0

ε and the compactness of S+
β,mp(i)

, S−
β,mq( j)

and
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(Mk)δ0 , we see that there exist W̄ i ∈ S+
β,mp(i)

, W̃ j ∈ S−
β,mq( j)

, {z p(i)ε }ε>0 ⊂ (Mp(i))δ0 ,

{zq( j)
ε }ε>0 ⊂ (Mq( j))δ0 such that for ε > 0 small and 1 ≤ i ≤ K1, 1 ≤ j ≤ K2,

∥
∥
∥
∥
∥
uε −

K1∑

i=1

ϕ(εx − z p(i)ε )W̄ i (x − (z p(i)ε /ε))

−
K2∑

j=1

ϕ(εx − zq( j)
ε )W̃ j (x − (zq( j)

ε /ε))

∥
∥
∥
∥
∥
∥
Hε

≤ 2d0 (3.13)

and

z p(i)ε → z p(i) ∈ (Mp(i))δ0 and zq( j)
ε → zq( j) ∈ (Mq( j))δ0 as ε → 0. (3.14)

Step 1: We claim that

lim
ε→0

sup
y∈Aε

∫

B1(y)
|uε|2 = 0, (3.15)

where Aε = ∪K
k=1(B3δ0/ε(z

k
ε/ε)\Bδ0/2ε(z

k
ε/ε)).

Assuming on the contrary that there exists r > 0 such that

lim
ε→0

sup
y∈Aε

∫

B1(y)
|uε|2 = 2r > 0,

then there exists yε ∈ Aε such that for ε > 0 small,

∫

B1(yε)
|uε|2 ≥ r > 0. (3.16)

Letting vε(x) := uε(x + yε), up to a subsequence, there exists v ∈ H2(RN )\{0} such
that vε⇀v in H2(RN ) and εyε → x0 ∈ ∪K

k=1(B3δ0(z
k)\Bδ0/2(z

k)) ∈ M4δ0 ∈ �.
Moreover, we see that v satisfies (Eβ,V (x0)). Since

cβ,V (x0) ≤ Iβ,V (x0)(v) − 1

p

〈
I ′
β,V (x0)(v), v

〉

=
(
1

2
− 1

p

)(∫

RN
|�v|2 + β

∫

RN
|∇v|2 + V (x0)

∫

RN
|v|2

)

then for R > 0 large,

lim
ε→0

(
1

2
− 1

p

)(∫

BR(yε)
|�uε|2 + β

∫

BR(yε)
|∇uε|2 + V (x0)

∫

BR(yε)
|uε|2

)

= lim
ε→0

(
1

2
− 1

p

)(∫

BR(0)
|�vε|2 + β

∫

BR(0)
|∇vε|2 + V (x0)

∫

BR(0)
|vε|2

)
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≥
(
1

2
− 1

p

)(∫

BR(0)
|�v|2 + β

∫

BR(0)
|∇v|2 + V (x0)

∫

BR(0)
|v|2

)

≥ 1

2
cβ,V (x0)

> 0. (3.17)

On the other hand, by (3.13) and Sobolev’s imbedding theorem, we have

∫

BR(yε)
|�uε|2 + β

∫

BR(yε)
|∇uε|2 + V (x0)

∫

BR(yε)
|uε|2

≤ C
K1∑

i=1

∫

BR(yε−(z p(i)ε /ε))

|�W̄ i |2 + |∇W̄ i |2 + |W̄ i |2

+C
K2∑

j=1

∫

BR(yε−(zq( j)
ε /ε))

|�W̃ j |2 + |∇W̃ j |2 + |W̃ j |2 + Cd0 + o(1)

= Cd0 + o(1),

where o(1) → 0 as ε → 0 and we have used the fact that |yε − (zkε/ε)| ≥ δ0/2ε. This
leads to a contradiction for d0 small. Hence, (3.15) holds.

Since

sup
y∈Aε

∫

B1(y)
|uε|2 ≥ sup

y∈RN

∫

B1(y)
|ηεuε|2,

where ηε ∈ C∞
c (RN , [0, 1]) such that ηε(x) = 1 for x ∈ ∪K

k=1(B(3δ0/ε)−2(zkε/ε)\
B(δ0/2ε)+2(zkε/ε)), suppηε ⊂ ∪K

k=1(B(3δ0/ε)−1(zkε/ε)\B(δ0/2ε)+1(zkε/ε)), |∇ηε| ≤ C
and |�ηε| ≤ C . By (3.15) and the boundedness of {ηεuε}ε>0 in H2(RN ), we derive
from vanishing theorem (see [22, Lemma I.1]) that for 2 < q < 2∗,

lim
ε→0

∫

K∪
k=1

(B2δ0/ε(zkε/ε)\Bδ0/ε(zkε/ε))
|uε|q → 0. (3.18)

Step 2: Let uε,1(x) := ∑K
k=1 u

k
ε,1(x) := ∑K

k=1 ϕ(εx − zkε)uε(x), uε,2(x) := uε(x)−
uε,1(x), by (3.18), we see that

∫

RN
|�uε|2 ≥

∫

RN
|�uε,1|2 +

∫

RN
|�uε,2|2 + o(1), (3.19)

∫

RN
|∇uε|2 ≥

∫

RN
|∇uε,1|2 +

∫

RN
|∇uε,2|2 + o(1), (3.20)

∫

RN
V (εx)|uε|2 ≥

∫

RN
V (εx)|uε,1|2 +

∫

RN
V (εx)|uε,2|2, (3.21)

∫

RN
Gε(x, uε) =

∫

RN
Gε(x, uε,1) +

∫

RN
Gε(x, uε,2) + o(1), (3.22)
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From (3.19)–(3.22), we infer that

Jε(uε) ≥ Jε(uε,1) + Jε(uε,2) + o(1). (3.23)

By (3.13), it follows that

∥
∥uε,2

∥
∥
Hε

≤
∥
∥
∥
∥
∥
uε,1 −

K1∑

i=1

ϕ(εx − z p(i)ε )W̄ i (x − (z p(i)ε /ε))

−
K2∑

j=1

ϕ(εx − zq( j)
ε )W̃ j (x − (zq( j)

ε /ε))

∥
∥
∥
∥
∥
∥
Hε

+ 2d0

≤ ∥
∥uε,2

∥
∥
Hε

(
K∪

k=1
B2δ0/ε(zkε/ε)

) + 4d0

≤ C‖uε‖
Hε

(
K∪

k=1

(
B2δ0/ε(zkε/ε)\Bδ0/ε(zkε/ε)

)
) + 4d0

≤ C
K1∑

i=1

∥
∥
∥ϕ(εx − z p(i)ε )W̄ i (x − (z p(i)ε /ε))

∥
∥
∥
H2(B2δ0/ε(z

p(i)
ε /ε)\Bδ0/ε(z

p(i)
ε /ε))

+C
K2∑

j=1

∥
∥
∥ϕ(εx − zq( j)

ε )W̃ j (x − (z p(i)ε /ε))

∥
∥
∥
H2(B2δ0/ε(z

q( j)
ε /ε)\Bδ0/ε(z

q( j)
ε /ε))

+ Cd0

≤ C
K1∑

i=1

∥
∥
∥W̄ i

∥
∥
∥
H2(B2δ0/ε(0)\Bδ0/ε(0))

+ C
K2∑

j=1

∥
∥
∥W̃ j

∥
∥
∥
H2(B2δ0/ε(0)\Bδ0/ε(0))

+Cd0 = Cd0 + o(1),

where o(1) → 0 as ε → 0. Thus, lim
ε→0

‖uε,2‖Hε ≤ Cd0.

On the other hand, since 〈J ′
ε(uε), uε,2〉 → 0 as ε → 0, we deduce from (3.18) and

Sobolev’s imbedding theorem that

‖uε,2‖2Hε
≤ C‖uε,2‖p

Hε
+ o(1).

Choosing d0 > 0 small, we see that ‖uε,2‖Hε = o(1), by (3.23),

Jε(uε) ≥ Jε(uε,1) + o(1). (3.24)

Step 3: For each 1 ≤ k ≤ K , letting w̃k
ε (x) := ukε,1(x + (zkε/ε)) := ϕ(εx)uε(x +

(zkε/ε)), up to a subsequence, as ε → 0, ∃w̃k ∈ H2(RN ) such that w̃k
ε⇀w̃k in

H2(RN ). Next, we claim that

w̃k
ε → w̃k in Lq(RN ) for q ∈ (2, 2∗). (3.25)
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If not, by vanishing theorem (see [22, Lemma I.1]), ∃r > 0 such that

lim
ε→0

sup
x∈RN

∫

B1(x)
|w̃k

ε − w̃k |2 = 2r > 0,

then for ε > 0 small, ∃xkε ∈ R
N such that

∫

B1(xkε )

|w̃k
ε − w̃k |2 ≥ r > 0. (3.26)

There are two cases:
Case 1: {xkε }ε>0 is bounded, that is, |xkε | ≤ Rk for some Rk > 0, then for ε > 0 small,

∫

BRk+1(0)
|w̃k

ε − w̃k |2 ≥ r > 0,

which contradicts that w̃k
ε → w̃k in L2

loc(R
N ).

Case 2: {xkε }ε>0 is unbounded, by (3.26),

lim
ε→0

∫

B1(xkε )

|ϕ(εx)uε(x + (zkε/ε))|2 ≥ r > 0. (3.27)

Since ϕ(x) = 0 for |x | ≥ 2δ0, we see that |xkε | ≤ 3δ0/ε for ε > 0 small. Moreover,
we see that |xkε | ≤ δ0/2ε for ε > 0 small. If not, xkε ∈ B3δ0/ε(0)\Bδ0/2ε(0), by (3.15),

lim
ε→0

∫

B1(xkε )

|ϕ(εx)uε(x + (zkε/ε))|2

≤ lim
ε→0

sup
z∈B3δ0/ε(0)\Bδ0/2ε(0)

∫

B1(z)
|uε(x + (zkε/ε))|2

= lim
ε→0

sup
y∈B3δ0/ε(zkε/ε)\Bδ0/2ε(zkε/ε)

∫

B1(y)
|uε|2

≤ lim
ε→0

sup
y∈Aε

∫

B1(y)
|uε|2 = 0,

which contradicts (3.27). Up to a subsequence, εxkε → xk ∈ Bδ0/2(0) and w̄k
ε (x) :=

w̃k
ε (x + xkε )⇀w̄k in H2(RN ), by (3.27), w̄k �= 0 and satisfies (Eβ,V (zk+xk )). Arguing

as in Step 1, we get a contradiction for d0 > 0 small. (3.25) follows.
Similar to the argument in Lemma 3.2(i), we have Jε(uε,1) = ∑K

k=1 Jε(u
k
ε,1(x)).

Recalling that for each 1 ≤ k ≤ K , zkε → zk and w̃k
ε (x) = ukε,1(x + (zkε/ε)), by (3.24)

and (3.25), we obtain

K∑

k=1

Iβ,V (zk)(w̃
k) ≤

K∑

k=1

cβ,mk . (3.28)
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For any ψ ∈ C∞
c (RN ), letting ψ(x − (zkε/ε)) as a test function for J ′

ε(uε). Since for
ε > 0 small, suppψ(x − (zkε/ε)) ⊂ �/ε, we see that w̃k is a solution of (Eβ,V (zk)).
Moreover, thanks to (3.25) and 〈J ′

ε(uε), ukε,1〉 → 0, ‖uε,2‖Hε → 0 as ε → 0, we have
∫

RN
|�w̃k |2 + β

∫

RN
|∇w̃k |2 +

∫

RN
V (zk)|w̃k |2

≤ lim
ε→0

[∫

RN
|�w̃k

ε |2 + β

∫

RN
|∇w̃k

ε |2 +
∫

RN
V (εx + zkε)|∇w̃k

ε |2
]

= lim
ε→0

∫

RN
|w̃k

ε |p =
∫

RN
|w̃k |p =

∫

RN
|�w̃k |2 + β

∫

RN
|∇w̃k |2 +

∫

RN
V (zk)|w̃k |2,

then as ε → 0,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫

RN
|�w̃k

ε |2 →
∫

RN
|�w̃k |2,

∫

RN
|∇w̃k

ε |2 →
∫

RN
|∇w̃k |2,

∫

RN
V (εx + zkε)|w̃k

ε |2 →
∫

RN
V (zk)|w̃k |2.

(3.29)

By (3.13), (3.25) and ‖uε,2‖Hε = o(1), we see that w̃k �= 0 for d0 > 0 small. Thus

Iβ,V (zk )(w̃
k) ≥ cβ,V (zk ). (3.30)

Since zk ∈ (Mk)δ0 ⊂ �k , (3.28) and (3.30) imply that V (zk) = mk , zk ∈ Mk and
Iβ,mk (w̃

k) = cβ,mk . Moreover

mk

∫

RN
|w̃k

ε |2 ≤
∫

RN
V (εx + zkε)|w̃k

ε |2,

by (3.29), w̃k
ε → w̃k in H2(RN ). At this point, it is clear that for d0 > 0 small and

each 1 ≤ i ≤ K1, 1 ≤ j ≤ K2, ∃Ui ∈ Sβ,mp(i) , V
j ∈ Sβ,mq( j) and z̄ p(i), z̄q( j) ∈ R

N

such that w̃ p(i)(x) = Ui (x − z̄ p(i)), w̃q( j)(x) = V j (x − z̄q( j)). Therefore, as ε → 0,

∥
∥
∥uε −

K1∑

i=1

ϕ(εx − (z p(i)ε + εz̄ p(i)))Ui (x − ((z p(i)ε /ε) + z̄ p(i)))

−
K2∑

j=1

ϕ(εx − (zq( j)
ε + εz̄q( j)))V j (x − ((zq( j)

ε /ε) + z̄q( j)))

∥
∥
∥
Hε

→ 0.

This completes the proof. ��
We define Jα

ε ⊂ Hε by

Jα
ε := {u ∈ Hε : Jε(u) ≤ α}.
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Lemma 3.5 Letting d0 be the number given in Lemma 3.4, then for any d ∈ (0, d0),
there exist εd > 0, ρd > 0 and ωd > 0 such that

‖J ′
ε(u)‖(Hε)

−1 ≥ ωd

for all u ∈ J
∑K

k=1 cmβ,k+ρd
ε ∩ (Xd0

ε \Xd
ε ) with ε ∈ (0, εd).

Proof Assuming on the contrary that, there exist d ∈ (0, d0), {εn}∞n=1, {ρn}∞n=1 with

εn , ρn → 0 and un ∈ J
∑K

k=1 cmβ,k+ρn
εn ∩ (Xd0

εn \Xd
εn

) such that

‖J ′
εn

(un)‖(Hεn )−1 → 0 as n → ∞.

By Lemma 3.4, for each 1 ≤ i ≤ K1, 1 ≤ j ≤ K2, we find {y p(i)n }∞n=1, {yq( j)
n }∞n=1 ⊂

R
N , z p(i) ∈ Mp(i), zq( j) ∈ Mq( j), Ui ∈ Sβ,mp(i) , V

j ∈ Sβ,mq( j) such that

lim
n→∞ |εn y p(i)n − z p(i)| = 0, lim

n→∞ |εn yq( j)
n − zq( j)| = 0

and

lim
n→∞

∥
∥
∥
∥
∥
un −

K1∑

i=1

ϕ(εnx − εn y
p(i)
n )Ui (x − y p(i)n )

−
K2∑

j=1

ϕ(εnx − εn y
q( j)
n )V j (x − yq( j)

n )

∥
∥
∥
∥
∥
∥
Hεn

= 0,

which gives that un ∈ Xd
εn

for large n. This contradicts that un /∈ Xd
εn
. ��

Lemma 3.6 There exists T0 > 0 with the following property: for any δ > 0 small,
there exist αδ > 0 and εδ > 0 such that if Jε(γε(s, t)) ≥ ∑K

k=1 cβ,mk − αδ and

ε ∈ (0, εδ), then γε(s, t) ∈ XT0δ
ε , where γε(s, t) has been mentioned in (3.5).

Proof First, there is a T0 > 0 such that for each 1 ≤ k ≤ K and u ∈ H2(RN ),

‖ϕ(εx − zk∗)u(x − (zk∗/ε))‖Hε ≤ T0‖u(x)‖H2(RN ), (3.31)

where zk∗ ∈ Mk has been mentioned in (3.2). We define

αδ = 1

4
min

{ K∑

k=1

cβ,mk −
K1∑

i=1

Iβ,mp(i) (si SiU
i∗) −

K2∑

j=1

Iβ,mq( j) (t j Tj V
j∗ )

: si , t j ∈ [0, 1],
K1∑

i=1
|si Si − 1|‖Ui∗‖H2(RN ) +

K2∑

j=1
|t j Tj − 1|‖V i∗‖H2(RN ) ≥ δ

}
> 0,
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we have

K1∑

i=1

Iβ,mp(i) (si SiU
i∗) +

K2∑

j=1

Iβ,mq( j) (t j Tj V
j∗ ) ≥

K∑

k=1

cβ,mk − 2αδ implies

K1∑

i=1

|si Si − 1|
∥
∥
∥Ui∗

∥
∥
∥
H2(RN )

+
K2∑

j=1

|t j Tj − 1|
∥
∥
∥V i∗

∥
∥
∥
H2(RN )

≤ δ.

(3.32)

Similar to the proof of Lemma 3.2(i), we see that there exists an εδ > 0 such that

max
(s,t)∈[0,1]K

∣
∣
∣
∣
∣
∣
Jε(γε(s, t)) −

K1∑

i=1

Iβ,mp(i) (si SiU
i∗) −

K2∑

j=1

Iβ,mq( j) (t j Tj V
j∗ )

∣
∣
∣
∣
∣
∣
≤ αδ (3.33)

for all ε ∈ (0, εδ). Thus if ε ∈ (0, εδ) and Jε(γε(s, t)) ≥ ∑K
k=1 cβ,mk − αδ , by (3.32)

and (3.33), we have

K1∑

i=1

|si Si − 1|‖Ui∗‖H2(RN ) +
K2∑

j=1

|t j Tj − 1|‖V i∗‖H2(RN ) ≤ δ,

by (3.31), we have

∥
∥
∥
∥
∥
γε(s, t) −

K1∑

i=1

ϕ(εx − z p(i)∗ )Ui∗(x − (z p(i)∗ /ε))

−
K2∑

j=1

ϕ(εx − zq( j)∗ )V j∗ (x − (zq( j)∗ /ε))

∥
∥
∥
∥
∥
∥
Hε

≤
K1∑

i=1

|si Si − 1|
∥
∥
∥ϕ(εx − z p(i)∗ )Ui∗(x − (z p(i)∗ /ε))

∥
∥
∥
Hε

+
K2∑

j=1

|t j Tj − 1|
∥
∥
∥ϕ(εx − zq( j)∗ )V j∗ (x − (zq( j)∗ /ε))

∥
∥
∥
Hε

≤ T0

K1∑

i=1

|si Si − 1|
∥
∥
∥Ui∗

∥
∥
∥
H2(RN )

+ T0

K2∑

j=1

|t j Tj − 1|
∥
∥
∥V

j∗
∥
∥
∥
H2(RN )

≤ T0δ.

Thus γε(s, t) ∈ XT0δ
ε . ��

Choosing δ1 > 0 to ensure that T0δ1 < d0/4, letting ᾱ = min{αδ1, σ } and fixing
d = d0/4 := d1 in Lemma 3.5. To prove the next lemma, we use the idea developed
in [25]. However, for constructing multi-peak solutions, we give a proof which is
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slightly different from the one given in [25], where only the single-peak solution was
considered.

Lemma 3.7 ∃ε̄ > 0 such that for each ε ∈ (0, ε̄], there exists a sequence {vn,ε}∞n=1 ⊂
J c̃ε+ε
ε ∩ Xd0

ε such that J ′
ε(vn,ε) → 0 in (Hε)

−1 as n → ∞.

Proof Assuming on the contrary that there always exist ε > 0 small and γ (ε) > 0
such that

‖J ′
ε(u)‖(Hε)

−1 ≥ γ (ε) > 0 (3.34)

for u ∈ J c̃ε+ε
ε ∩ Xd0

ε .
Letting Y be a pseudo-gradient vector field for J ′

ε in Hε, that is, Hε → Hε is a
locally Lipschitz continuous vector field such that for every u ∈ Hε,

‖Y (u)‖Hε ≤ 2‖J ′
ε(u)‖(Hε)

−1 , (3.35)

〈J ′
ε(u),Y (u)〉 ≥ ‖J ′

ε(u)‖2
(Hε)

−1 . (3.36)

Lettingψ1,ψ2 be locally Lipschitz continuous functions in Hε such that 0 ≤ ψ1, ψ2 ≤
1 and

ψ1(u) =

⎧
⎪⎪⎨

⎪⎪⎩

1,
K∑

k=1
cβ,mk − 1

2
ᾱ ≤ Jε(u) ≤ c̃ε,

0, Jε(u) ≤
K∑

k=1
cβ,mk − ᾱ or c̃ε + ε ≤ Jε(u),

ψ2(u) =
{
1, u ∈ X3d0/4

ε ,

0, u /∈ Xd0
ε .

Considering the following ordinary differential equations:

⎧
⎪⎨

⎪⎩

d

dr
η(r , u) = − Y (η(r , u))

‖Y (η(r , u))‖Hε

ψ1(η(r , u))ψ2(η(r , u)),

η(0, u) = u.

(3.37)

By (3.35), (3.36) and (3.37), we have

d

dr
Jε(η(r , u))

=
〈

J ′
ε(η(r , u)),

d

dr
η(r , u)

〉

=
〈

J ′
ε(η(r , u)),− Y (η(r , u))

‖Y (η(r , u))‖Hε

ψ1(η(r , u))ψ2(η(r , u))

〉

≤ −ψ1(η(r , u))ψ2(η(r , u))

‖Y (η(r , u))‖Hε

‖J ′
ε(η(r , u))‖2

(Hε)
−1
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≤ −1

2
ψ1(η(r , u))ψ2(η(r , u))‖J ′

ε(η(r , u))‖(Hε)
−1

and combining with Lemma 3.2(i), Lemma 3.5, (3.34), (3.37) and the definition of
ψ1, ψ2, it is standard to show that η ∈ C([0,+∞) × Hε, Hε) and satisfies that for
ε > 0 small,
(i) d

dr Jε(η(r , u)) ≤ 0 for each r ∈ [0,+∞) and u ∈ Hε;

(ii) d
dr Jε(η(r , u)) ≤ −ωd1/2 if η(r , u) ∈ J c̃εε \J

∑K
k=1 cβ,mk− 1

2 ᾱ
ε ∩ X3d0/4

ε \Xd0/4
ε ;

(iii) d
dr Jε(η(r , u)) ≤ −γ (ε)/2 if η(r , u) ∈ J c̃εε \J

∑K
k=1 cβ,mk− 1

2 ᾱ
ε ∩ X3d0/4

ε ;

(iv) η(r , u) = u if Jε(u) ≤ ∑K
k=1 cβ,mk − ᾱ.

Setting r1 := ωd1d0/γ (ε) and ξε(s, t) := η(r1, γε(s, t)), we have the following
cases:

Case 1: γε(s, t) ∈ J
∑K

k=1 cβ,mk−ᾱ
ε . By (iv), we see that

η(r , γε(s, t)) = γε(s, t). (3.38)

Case 2: γε(s, t) /∈ J
∑K

k=1 cβ,mk−ᾱ
ε . By Lemma 3.6 and the definition of c̃ε, we see that

γε(s, t) ∈ J c̃εε \J
∑K

k=1 cβ,mk−ᾱ
ε ∩ Xd0/4

ε .

Moreover, we have

η(r , γε(s, t)) ∈ Xd0
ε for r ∈ [0, r1]. (3.39)

Indeed, if not, ∃r ′ ∈ [0, r1] such that η(r ′, γε(s, t)) /∈ Xd0
ε . Denote

r ′′ := sup
{
r ∈ [0, r ′] : η(r , γε(s, t)) ∈ Xd0

ε

}
,

then by (3.37) and the definition ofψ2, we see η(r ′, γε(s, t)) = η(r ′′, γε(s, t)) ∈ Xd0
ε ,

which leads to a contradiction.
Next, we divide Case 2 into the following three subcases:

Case 2.1: η(r1, γε(s, t)) ∈ J
∑K

k=1 cβ,mk− 1
2 ᾱ

ε ;

Case 2.2: η(r1, γε(s, t)) ∈ J c̃εε \J
∑K

k=1 cβ,mk− 1
2 ᾱ

ε and η(r , γε(s, t)) /∈ X3d0/4
ε for some

r ∈ [0, r1];
Case 2.3: η(r1, γε(s, t)) ∈ J c̃εε \J

∑K
k=1 cβ,mk− 1

2 ᾱ
ε and η(r , γε(s, t)) ∈ X3d0/4

ε for all
r ∈ [0, r1].

In Case 2.2, denote

r2 := inf
{
r ∈ [0, r1] : η(r , γε(s, t)) /∈ X3d0/4

ε

}
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and

r3 := sup
{
r ∈ [0, r2] : η(r , γε(s, t)) ∈ Xd0/4

ε

}
,

then by (3.37), r2 − r3 ≥ 1
2d0 and η(r , γε(s, t)) ∈ X3d0/4

ε \Xd0/4
ε for each r ∈ [r3, r2].

By (i), (i i) and Lemma 3.2(i), we obtain

Jε(η(r1, γε(s, t)))

= Jε(γε(s, t)) +
∫ r1

0

d

dr
Jε(η(r , γε(s, t)))ds

≤ c̃ε +
∫ r2

r3

d

dr
Jε(η(r , γε(s, t)))ds

≤ c̃ε − 1

4
ωd1d0 =

K∑

k=1

cβ,mk − 1

4
ωd1d0 + o(1),

where o(1) → 0 as ε → 0.
In Case 2.3, by (i i i) and the definition of r1, we have

Jε(η(r1, γε(s, t))) = Jε(γε(s, t)) +
∫ r1

0

d

dr
Jε(η(r , γε(s, t)))ds

≤ c̃ε − 1

2
ωd1d0 =

K∑

k=1

cβ,mk − 1

2
ωd1d0 + o(1).

To sum up, choosing μ̄ = min
{
ᾱ/2, ωd1d0/4

}
> 0, we see that, for

(s, t) ∈ [0, 1]K ,

Jε(ξε(s, t)) ≤
K∑

k=1

cβ,mk − μ̄ + o(1). (3.40)

From (3.38) and (3.39), we have

‖ξε(s, t)‖Hε ≤ C for ε > 0 small and (s, t) ∈ [0, 1]K . (3.41)

Letting kε ∈ N such that k2ε ≤ δ0/(5ε), kε → ∞,and putting

Ã j,ε := (�̃/ε)2δ0/ε+5( j+1)kε\(�̃/ε)2δ0/ε+5 jkε , j = 0, 1, . . . , kε − 1.

By (3.41), we see that

kε−1∑

j=0

∫

Ã j,ε

|�ξε(s, t)|2 + β|∇ξε(s, t)|2 + V (εx)|ξε(s, t)|2 ≤ C .
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Thus, there exists a jε ∈ {0, 1, . . . , kε − 1} such that

∫

Ã jε,ε

|�ξε(s, t)|2 + β|∇ξε(s, t)|2 + V (εx)|ξε(s, t)|2 ≤ C/kε → 0 (3.42)

uniformly for (s, t) ∈ [0, 1]K . Choosing cut-off functions ζε,1 and ζε,2 such that

ζε,1(x) =
{

1, if x ∈ (�̃/ε)2δ0/ε+(5 jε+1)kε ,

0, if x ∈ R
N\(�̃/ε)2δ0/ε+(5 jε+2)kε ,

ζε,2(x) =
{

0, if x ∈ (�̃/ε)2δ0/ε+(5 jε+3)kε ,

1, if x ∈ R
N\(�̃/ε)2δ0/ε+(5 jε+4)kε

and ξε,i (s, t) := ζε,iξε(s, t), i = 1, 2. By (3.42), we have

∥
∥ξε(s, t) − ξε,1(s, t) − ξε,2(s, t)

∥
∥
Hε

→ 0 as ε → 0 (3.43)

uniformly for (s, t) ∈ [0, 1]K . (3.43) implies that

Jε(ξε(s, t)) ≥ Jε(ξε,1(s, t)) + Jε(ξε,2(s, t)) + o(1). (3.44)

In Case 1, by (3.38), ξε,2(s, t) = ζε,2ξε(s, t) = 0. In Case 2, by (3.39),

∥
∥ξε,2(s, t)

∥
∥
Hε

= ∥
∥ζε,2ξε(s, t)

∥
∥
Hε

≤ C‖ξε(s, t)‖Hε(RN \(�̃/ε)
2δ0/ε

)
≤ Cd0.

Choosing d0 > 0 small, we see from Sobolev’s imbedding theorem that

Jε(ξε,2(s, t)) ≥ ∥
∥ξε,2(s, t)

∥
∥2
Hε

(
1

2
− Cd p−2

0

)

≥ 0.

No matter which case occurs, we always have

Jε(ξε(s, t)) ≥ Jε(ξε,1(s, t)) + o(1). (3.45)

Next, defining ξ kε,1(s, t)(x) = ξε,1(s, t)(x) for x ∈ (�̃k/ε)3δ0/ε, ξ kε,1(s, t)(x) = 0 for

x /∈ (�̃k/ε)3δ0/ε for each 1 ≤ k ≤ K . Arguing as in the proof of Lemma 3.2(i), we
get

Jε(ξε,1(s, t)) ≥
K∑

k=1

Jε(ξ
k
ε,1(s, t)) + o(1) =

K∑

k=1

J kε (ξ kε,1(s, t)) + o(1). (3.46)

Next, we introduce some notations as in [16]. For (s, t) ∈ [0, 1]K , let

0si = (s1, ., si−1, 0, si+1, ., sK1 , t1, ., tK2)
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and 1si = (s1, ., si−1, 1, si+1, ., sK1 , t1, ., tK2).

Similarly, we can also define 0t j and 1t j . We see from Lemma 3.2(ii) and (iv)

in the proof of Lemma 3.7 that ξε(0si ) = γε(0si ), ξε(0t j ) = γε(0t j ) and
ξε(1si ) = γε(1si ), ξε(1t j ) = γε(1t j ). By the definition of ξ kε,1(s, t), we see

that J p(i)
ε (ξ

p(i)
ε,1 (0si )) = J p(i)

ε (0) = 0, Jq( j)
ε (ξ

q( j)
ε,1 (0t j )) = Jq( j)

ε (0) = 0 and

J p(i)
ε (ξ

p(i)
ε,1 (1si )) = J p(i)

ε (Ui
ε,Si

) < 0, Jq( j)
ε (ξ

q( j)
ε,1 (1t j )) = Jq( j)

ε (V j
ε,Tj

) < 0 for ε > 0
small by (3.3) and (3.4). Using the celebrated gluing method due to Coti Zelati and
Rabinowitz (see [16, Proposition 3.4]), there exists (s̄ε, t̄ε) ∈ [0, 1]K such that

J kε (ξ kε,1(s̄ε, t̄ε)) ≥ ckε for each 1 ≤ k ≤ K . (3.47)

(3.45), (3.46), (3.47) and Lemma 3.3 yield

max
(s,t)∈[0,1]K

Jε(ξε(s, t)) ≥
K∑

k=1

cβ,mk + o(1),

which contradicts (3.40) for ε > 0 small. ��

Proof of Theorem 1.1 By Lemma 3.7, ∃ε̄ > 0 such that for each ε ∈ (0, ε̄], there exists
a sequence {vn,ε}∞n=1 ⊂ J c̃ε+ε

ε ∩ Xd0
ε such that J ′

ε(vn,ε) → 0 in (Hε)
−1 as n → ∞.

By Lemma 3.1, ∃vε ∈ J c̃ε+ε
ε ∩ Xd0

ε such that, up to a subsequence, vn,ε → vε in Hε

and vε satisfies

�2vε − β�vε + V (εx)vε = gε(x, vε) in R
N . (3.48)

Since cβ,mk > 0(1 ≤ k ≤ K ), we see that 0 /∈ Xd0
ε for d0 > 0 small. Thus vε �= 0.

For any sequence {εn}∞n=1 with εn → 0, by Lemma 3.4, there exist, up to a sub-

sequence, {y p(i)εn }∞n=1 ⊂ R
N , z p(i) ∈ Mp(i), Ui ∈ S+

β,mp(i)
(1 ≤ i ≤ K1) and

{yq( j)
εn }∞n=1 ⊂ R

N , zq( j) ∈ Mq( j), V j ∈ S−
β,mq( j)

(1 ≤ j ≤ K2) such that as n → ∞,

|εn y p(i)εn
− z p(i)| → 0, |εn yq( j)

εn
− zq( j)| → 0 (3.49)

and

∥
∥
∥
∥
∥
vεn −

K1∑

i=1

ϕ(εnx − εn y
p(i)
εn

)Ui (x − y p(i)εn
)

−
K2∑

j=1

ϕ(εnx − εn y
q( j)
εn

)V j (x − yq( j)
εn

)

∥
∥
∥
∥
∥
∥
Hεn

→ 0. (3.50)
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For each R > 0, we have

∥
∥vεn

∥
∥
L2(RN \ K∪

k=1
BR(ykεn ))

≤
∥
∥
∥
∥
∥
vεn −

K1∑

i=1

ϕ(εnx − εn y
p(i)
εn

)Ui (x − y p(i)εn
)

−
K2∑

j=1

ϕ(εnx − εn y
q( j)
εn

)V j (x − yq( j)
εn

)

∥
∥
∥
∥
∥
∥
L2(RN )

+
K1∑

i=1

∥
∥
∥Ui

∥
∥
∥
L2(RN \BR(0))

+
K2∑

j=1

∥
∥
∥V j

∥
∥
∥
L2(RN \BR(0))

. (3.51)

On the other hand, since vεn ∈ Xd0
εn , then vεn is bounded in H2(RN ). Writing (3.48)

as

�2vεn − β�vεn + c0vεn = (c0 − V (εnx))vεn + gεn (x, vεn ) in R
N ,

where c0 > 0 has been mentioned in (2.9). Observing that hn := (c0 − V (εnx))vεn +
gεn (x, vεn ) ∈ Lq

loc(R
N ) for 1 ≤ q ≤ 2N

(N−4)(p−1) , we deduce from Sobolev’s imbed-

ding theorem and classical bootstrap technique based on the local W 4,p-estimates for
fourth-order semilinear elliptic equations (Proposition 2.3) that vεn ∈ W 4,q

loc (RN ) for
every q ≥ 1 with a uniform estimate on unit balls. Given q > N/4, by Morrey’s
inequality, we infer that {vεn }∞n=1 is bounded in L∞(RN ). Letting p = N in (2.11),
we see that for any x ∈ R

N ,

∥
∥vεn

∥
∥
W 4,N (B1(x))

≤ C
(
‖hn‖LN (B2(x)) + ∥

∥vεn

∥
∥
LN (B2(x))

)
≤ C

∥
∥vεn

∥
∥2/N
L2(B2(x))

,

by Morrey’s inequality,

∥
∥vεn

∥
∥
L∞(B1(x))

≤ C
∥
∥vεn

∥
∥2/N
L2(B2(x))

, (3.52)

where C > 0 depends only on N . We obtain from (3.50), (3.51) and (3.52) that for
any δ > 0, there exists Rδ > 0 such that

|vεn (x)| < δ uniformly for x ∈ R
N\ K∪

k=1
BRδ (y

k
εn

) and εn > 0 small. (3.53)

Choosing δ = a in (3.53), by (3.49), we have ∪K
k=1 BRa (y

k
εn

) ⊂ �/εn for εn > 0
small. Thus, we see from the definition of gε that vεn is a solution to (3.1). Moreover,
by Proposition 2.3, Morrey’s inequality and Schauder’s estimate, we see that vεn ∈
C4(RN ). Therefore uεn (x) := vεn (x/εn) is a classical solution to the original problem
(1.1) with ε replaced by εn .
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Since {vεn }∞n=1 is bounded in L
∞(RN ), by Proposition 2.3 andMorrey’s inequality,

we see that for each 1 ≤ i ≤ K1, 1 ≤ j ≤ K2, {vεn (x + y p(i)εn )}∞n=1 and {vεn (x +
yq( j)
εn )}∞n=1 is bounded in C3,α

loc (RN ) for some 0 < α < 1. It follows from Arzelá-
Ascoli’s theorem and (3.50) that,

vεn (x + y p(i)εn
) → Ui (x) and vεn (x + yq( j)

εn
) → V j (x) in C3

loc(R
N ) as n → ∞.

(3.54)

In particular,

vεn (y
p(i)
εn

) → Ui (0) > 0 and vεn (y
q( j)
εn

) → V j (0) < 0 as n → ∞. (3.55)

Letting x p(i)
εn (or xq( j)

εn ) be a maximum (or minimum) point of uεn in �p(i) (or �q( j)),
we obtain from (3.55) that for εn > 0 small,

uεn (x
p(i)
εn

) = vεn (x
p(i)
εn

/εn) ≥ vεn (y
p(i)
εn

) ≥ Ui (0)

2
> 0 (3.56)

and

uεn (x
q( j)
εn

) = vεn (x
q( j)
εn

/εn) ≤ vεn (y
q( j)
εn

) ≤ V j (0)

2
< 0. (3.57)

Given δ = δ̄ := min
{
{Ui (0)/2}K1

i=1 ∪ {−V j (0)/2}K2
j=1

}
in (3.53), then there exists

Rδ̄ > 0 such that |vεn (x)| < δ̄ for all x ∈ R
N\∪K

k=1 BRδ̄
(ykεn ). Recalling (3.49), we

have

|(xkεn/εn) − ykεn | ≤ Rδ̄ , (3.58)

thus xkεn → zk ∈ Mk as n → ∞.

We only need to prove the uniqueness of x p(i)
εn and xq( j)

εn . For each 1 ≤ i ≤ K1, we
assume on the contrary that, up to a subsequence, uεn possesses at least two maximum

points x p(i)
εn ,l

in �p(i) (l = 1, 2). By (3.58), for each l = 1, 2, after passing to a

subsequence, (x p(i)
εn ,l

/εn) − y p(i)εn → Pl ∈ BRδ̄
(0). Let vεn ,l(x) = uεn (εnx + x p(i)

εn ,l
), by

(3.54), we see that

vεn ,l(x)⇀Ui (x + Pl) in H2(RN ) and vεn ,l(x) → Ui (x + Pl) in C
3
loc(R

N ). (3.59)

The function Ui has a unique local maximum point at zero, it is radially symmetric
and strictly decreasing as Proposition 2.1 shows, then Pl = 0.

Next, we claim that

�Ui (0) < 0. (3.60)
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Suppose not, we assume that �Ui (0) = 0. Set Wi := −�Ui + β
2U

i , we see that
(Ui ,Wi ) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−�Ui + β

2
Ui − Wi = 0,

−�Wi + β

2
Wi +

(

mp(i) − β2

4

)

Ui − |Ui |p−2Ui = 0.
(3.61)

Since Ui > 0 and β2

4 ≥ mp(i), by (3.61) and strong maximum principle, Wi > 0.
In view of Theorem 1 in [26] or proof of Theorem 1.1 continued in [21], we see
that Ui , Wi must be radially symmetric and strictly decreasing respect to zero. Let
ϕ(r) = Ui (r) −Ui (0) and ψ(r) = Wi (r) − Wi (0), we compute

�ϕ(r) = �Ui (r) = β

2
(ϕ(r) +Ui (0)) − (ψ(r) + Wi (0))

= β

2
ϕ(r) − ψ(r) + �Ui (0),

then

−�ϕ(r) + β

2
ϕ(r) = ψ(r) ≤ 0.

By strong maximum principle, either ϕ = 0 or ϕ < 0, which is impossible. Hence,
(3.60) holds. Therefore, we can choose r0 > 0 such that (Ui )′′(r) < 0 for 0 ≤ r ≤ r0.
By (3.59) and [27, Lemma 4.2], we see that

|x p(i)
εn ,1

− x p(i)
εn ,2

|
εn

≥ r0 > 0,

which contradicts the fact that (x p(i)
εn ,l

/εn) − y p(i)εn → Pl = 0. This proves the unique-

ness of x p(i)
εn . The uniqueness of xq( j)

εn is similar, we omit it here.
Since {εn}∞n=1 is arbitrary, we obtain all the results in Theorem 1.1. ��
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