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Abstract
Let X ⊂ P

N−1 be a smooth projective variety. To each g ∈ SL(N , C) which induces
the embedding g · X ⊂ P

N−1 given by the ambient linear action we can associate
a matrix μ̄X (g) called the centre of mass, which depends nonlinearly on g. With
respect to the probability measure on SL(N , C) induced by the Haar measure and the
Gaussian unitary ensemble, we prove that the expectation of the centre of mass is a
constant multiple of the identity matrix for any smooth projective variety.
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1 Introduction and the Statement of theMain Result

Let X be a complex smooth projective variety, and ι : X ↪→ P(H0(X , L)∨) ∼= P
N−1

be the Kodaira embedding defined with respect to a very ample line bundle L on
X , where N := dim H0(X , L). There is a natural SL(N , C)-action on the Kodaira
embedding ι �→ g · ι given by the ambient linear action SL(N , C) � P

N−1. For each
g ∈ SL(N , C) we can define an N × N hermitian matrix μ̄X (g), called the centre of
mass of the embedding g · ι : X ↪→ P(H0(X , L)∨) (see Sect. 2.2 for more details).
This plays an important role in Kähler geometry, and depends on g ∈ SL(N , C) in
a highly nonlinear manner. For example, when the automorphism group of (X , L)

is discrete, there exists g ∈ SL(N , C) such that μ̄X (g) is a constant multiple of the
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identity matrix if and only if the embedding ι : X ↪→ P
N−1 is Chow stable [1,2],

which is an important yet subtle algebro-geometric property of X ⊂ P
N−1.

The following seems to be a natural question to ask.

Problem 1 Let dσ be a probability measure on SL(N , C). Compute the expectation

E[μ̄X (g)] =
∫
g∈SL(N ,C)

μ̄X (g)dσ.

In spite of its apparent simplicity, this is a nontrivial problem since μ̄X (g) depends
nonlinearly on g. The main result of this paper is the following.

Theorem 1 Let X ⊂ P
N−1 be a smooth projective variety. With respect to the proba-

bility measure on SL(N , C) defined by theHaarmeasure on SU (N ) and an absolutely
continuous unitarily invariant measure of finite volume on B := SL(N , C)/SU (N )

via the natural fibration structure, E[μ̄X (g)] is a constant multiple of the identity
matrix.

See Sect. 2.1 for the details of the measure on SL(N , C) as stated in the above,
defined by the fibration SU (N ) → SL(N , C) → B; it is also discussed therein that
the measure on SL(N , C) induced by the Gaussian unitary ensemble on B (Example
1) satisfies all the properties stated in the theorem. We also note that the absolute
continuity of the measure on B is meant to be with respect to the Haar measure on B.

The study of Kähler and Fubini–Study metrics in connection to the probability
theory, such as the randommatrix theory, has been an active area of research. There are
works e.g. [3–7] by Berman, and [8–15] by Ferrari, Flurin, Klevtsov, Song, Zelditch.
On the other hand, probabilistic aspects of the centre of mass μ̄X (g) does not seem
to have been actively investigated in the aforementioned works, which is the focus of
the present paper.

As pointed out in the above, whether μ̄X (g) itself is a constant multiple of the
identity matrix depends on the Chow stability of X ⊂ P

N−1 by the result of Luo [1]
and Zhang [2]. Such subtleties disappear, however, when we take the average over
g ∈ SL(N , C) as in Theorem 1.

While the main point of Theorem 1 is that E[μ̄X (g)] is a constant multiple of the
identity for any smooth projective variety, it implies in particular that the expectation
E[μ̄X (g)] keeps being a constant multiple of the identity for the embedding X ↪→
P(H0(X , L⊗k)∨) for any higher exponent k 	 1. This may be interesting in the study
of the large N behaviour of random Kähler metrics, initiated by Ferrari–Klevtsov–
Zelditch [10]. One may hope, for example, that E[μ̄X (g)] keeps being a multiple of
the identity for k 	 1 gives a nontrivial constraint to the large N asymptotic behaviour
of their theory.

We also note thatwe can prove the following unitary version of Theorem1, although
the proof (given in §2.3) is much easier.

Theorem 2 Let X ⊂ P
N−1 be a smooth projective variety. With respect to the Haar

measure dσSU on SU (N ), the expectation
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ESU [μ̄X (u)] :=
∫
u∈SU (N )

μ̄X (u)dσSU

of the centre of mass of X ⊂ P
N−1is a constant multiple of the identity matrix.

We can also define a variant μ̄X ,ν of the centre of mass, as in Definition 4, by
fixing a volume form dν on X . It turns out that Theorems 1 and 2 easily extend to
this variant, as explained in Remarks 5 and 6, essentially because μ̄X ,ν(g) depends on
g ∈ SL(N , C) in a much less nonlinear manner than μ̄X (g). The author is grateful to
the anonymous referee for suggesting this point to him.

Remark 1 Although we shall only treat SL(N , C) and SU (N ) throughout this paper,
the determinant one condition does not play any significant role. We can run exactly
the same argument for GL(N , C) and U (N ) to get the same results, in fact with a
slightly simpler proof.

2 Preliminaries

2.1 RandomMatrices

Our aim is to define a class of probability measures on SL(N , C) which has some
good properties as in the statement of Theorem 1. The precise description of such
measures is given in Definition 1, but that needs to be accompanied by a review of
some elementary results in the theory of random matrices; the details can be found
e.g. in [16–19] or any other standard textbooks on random matrices.

Let B := SL(N , C)/SU (N ) be the left coset space, which can be naturally iden-
tified with the set of all positive definite hermitian matrices (of determinant one) on
C

N , which gives SL(N , C) a natural structure of a principal SU (N )-bundle

SU (N ) SL(N , C)

π

B

by the projection

π : SL(N , C) 
 g �→ gg∗ ∈ B, (1)

where g∗ stands for the hermitian conjugate of g with respect to the hermitian form
represented by the identity matrix onC

N . Throughout, we shall write e for the identity
in SL(N , C) or SU (N ).

Definition 1 We set our notational convention, and the definition of the measure dσ
on SL(N , C), as follows.

– We write dσSU for the Haar measure on SU (N ) of unit volume.
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– Wefix ameasure dσB onB, and assume that dσB is absolutely continuous, unitarily
invariant, and of finite volume.

– Given ameasure dσB onB and dσSU on SU (N ), themeasure defined on SL(N , C)

via the fibration structure (1) is denoted by dσ .

Given any measure dσ on SL(N , C) as defined above, it is immediate that dσ is
of finite volume (see also Lemma 1). Henceforth without loss of generality we shall
assume

∫
SL(N ,C)

dσ = 1 (2)

by scaling, i.e. dσ is a probability measure on SL(N , C).
We have amore explicit formula for dσ , which follows immediately from the above

definition.

Lemma 1 Suppose that dσ is a probability measure on SL(N , C) defined as in Defi-
nition 1. If φ : SL(N , C) → R is a bounded measurable function, we have

∫
SL(N ,C)

φ(g)dσ(g) = 1

Vol(B)

∫
B
dσB(hh∗)

∫
π−1(hh∗)

φ(hu)dσSU (u),

where Vol(B) := ∫
B dσB is the volume of B with respect to dσB, and h ∈ SL(N , C)

is a hermitian matrix such that π(g) = hh∗.

We now recall some basic facts on the Euclidean volume form (or its associ-
ated Lebesgue measure) on the N × N hermitian matrices (not necessarily positive
definite or of determinant one), induced by the natural Euclidean metric. By uni-
tarily diagonalising a hermitian matrix H̃ as H̃ = u−1�u for u ∈ U (N ) and
� = diag(λ1, . . . , λN ) ∈ R

N , we can write (see e.g. [20, §2], [17, Chap. 5], [18,
Chap. 2])

dH̃ = 
2(λ)

N∏
i=1

dλi dσU ,

where dσU is the Haar measure onU (N ) and
2(λ) is the square of the Vandermonde
determinant


(λ) :=
∏

1≤i = j≤N

(λi − λ j ).

We consider the volume form on B, which consists of positive definite hermitian
matrices H of determinant one, induced by the Euclidean metric as above. Setting
λN = ∏N−1

i=1 λ−1
i and carrying out the computation exactly as in [20, Sect. 2], we find

dH = 
2(λ)γ (λ)

N−1∏
i=1

dλi dσSU , (3)
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for some smooth positive function γ ∈ C∞(RN−1
>0 , R>0) on the (N − 1)-fold direct

product of positive real numbers R
N−1
>0 . The notation δ(log det H̃)dH̃ using the delta

function is also used e.g. in [10, Sect. 4.1] to denote dH as in (3).
Now returning to our original setting, we note that the measure dσB on B being

absolutely continuous means that we can write

dσB = ρ(H)dH , (4)

where dH is as defined in (3) and ρ : B → [0,+∞) is a measurable function
(called the Radon–Nikodym density) which is known to exist by the Radon–Nikodym
theorem. Moreover, dσB being of finite volume implies

∫
B

ρ(H)dH < +∞. (5)

Finally, dσB being unitarily invariant means that dσB(H) = dσB(uHu−1) for all
H ∈ B and u ∈ SU (N ), which is equivalent to saying that ρ(H) depends only on the
eigenvalues λ1, . . . , λN of H (where λN = ∏N−1

i=1 λ−1
i ). By abuse of notation we also

write ρ(λ1, . . . , λN−1) for ρ(H). With this notation, the finite volume condition (5)
translates to

∫
R
N−1
>0

ρ(λ1, . . . , λN−1)

2(λ)γ (λ)

N−1∏
i=1

dλi < +∞. (6)

Example 1 An example of the measure as defined in Definition 1 can be given by the
Gaussian unitary ensemble on B (or more precisely, the Gaussian unitary ensemble
restricted to the set of positive definite hermitian forms B) defined by the following
Radon–Nikodym density

ρ(H) = exp

(
−1

2
tr(H2)

)
.

Recalling (3), the Gaussian unitary ensemble dσB can be written more explicitly as

dσB = const.
2(λ)γ (λ) exp

(
−1

2

N∑
i=1

λ2i

)
N−1∏
i=1

dλi dσSU ,

with λN = ∏N−1
i=1 λ−1

i , up to an overall positive constant. With the Haar measure
dσSU on the fibres of π , the Gaussian unitary ensemble defines a probability measure
dσ on SL(N , C) satisfying all the properties of Definition 1.

Remark 2 Awell-known theorem [19,Chap. 2] in fact shows that, ifρ(H) is absolutely
continuous, unitarily invariant, and moreover the diagonal entries and the real and
imaginary parts of the off-diagonal entries of H are statistically independent, ρ(H)

must be of the form exp(−(atr(H2)+btr(H)+c)) for some constants a > 0, b, c ∈ R.
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Example 2 Yet another example of the measure dσB on B is given by the heat kernel
measure, which is defined by the heat kernel on the homogeneous manifold B =
SL(N , C)/SU (N ). More explicitly, the heat kernel measure dσB,t , defined for each
t > 0, can be written in terms of the Lebesgue measure dH on B and the eigenvalues
λ′
1, . . . , λ

′
N of log H (i.e. the R

N -part of the polar coordinates on B) as

dσB,t := const.

(λ′)

(eλ′

)
exp

(
− 1

4t

N∑
i=1

(λ′
i )
2

)
dH ,

up to an overall positive constant. The above measure satisfies all the properties in
Definition 1 for each t > 0. See [21, Proposition 3.2] and [14, Sect. 3.1] for more
details.

Remark 3 Klevtsov–Zelditch [13, Sect. 5] considered themeasure exp(−γ Sν(H))dH ,
where γ > 0 is a constant and Sν is a certain functional defined on B with respect
to a volume form ν on X , for the study of the partition function of some field theory.
Interesting as it is, the unitary invariance Sν(H) = Sν(uHu−1) (for all u ∈ SU (N ))
does not seem to hold for Sν , so Theorem 1 does not seem to apply to the case when
we use exp(−γ Sν(H))dH as a measure on B.
Remark 4 Note that the measure dσB or dσ as discussed in the above depends on the
fixed hermitian form on C

N , represented by the identity matrix. This corresponds to
the choice of the reference basis {Zi }Ni=1 that we take to identify H0(X , L) with C

N

in Sect. 2.2.

2.2 Moment Maps and the Centre of Mass

We review the ingredients from complex geometry that we need in this paper. Let X
be a complex smooth projective variety of complex dimension n, with a very ample
line bundle L and the associated embedding ι : X ↪→ P(H0(X , L)∨).

We fix a basis for H0(X , L) once and for all and identify P(H0(X , L)∨) ∼= P
N−1,

where N := dim H0(X , L); we also note that the basis we fixed here can be identified
with an orthonormal basis for the hermitian form represented by the identity matrix on
C

N ∼= H0(X , L) (see also Remark 4). With respect to such a reference basis, we write
[Z1 : · · · : ZN ] for the homogeneous coordinates for P

N−1. Furthermore, by abuse of
terminology, we also write {Zi }Ni=1 for the reference basis itself. Pick g ∈ SL(N , C)

and write

Zi (g) :=
N∑
j=1

gi j Z j , (7)

where gi j is the matrix representation of g with respect to the basis {Zi }Ni=1. Note that
{Zi (g)}Ni=1 defines a new basis for H0(X , L). Throughout, we shall write

Hg := (g−1)∗g−1 = (gg∗)−1
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for the positive definite hermitian matrix on H0(X , L) that has {Zi (g)}Ni=1 as its
orthonormal basis. The hermitian conjugate (with respect to the basis {Zi }Ni=1) will be
denoted by ∗, and the special unitary group SU (N ) is always meant to preserve the
hermitian form He which has {Zi }Ni=1 as its orthonormal basis.

For each positive definite hermitian form on C
N , it is a foundational result in

complex geometry that we have a Kähler metric on P
N−1 called the Fubini–Study

metric (see e.g. [25, Chap. 0, Sect. 2] for more details).

Definition 2 The Fubini–Study metric ω̃He on P
N−1 defined by He is an SU (N )-

invariant Kähler metric on P
N−1, whose explicit formula on C

N−1 = {Z1 = 0} ⊂
P
N−1 is given by

ω̃He =
√−1

2π
∂∂̄ log

(
1 +

N∑
i=2

|zi |2
)

where zi := Zi/Z1 for i = 2, ldots, N . By abuse of terminology, the restriction of
ω̃He to ι(X) ⊂ P

N−1 is also called the Fubini–Study metric on ι(X), and written
ωHe := ι∗ω̃He .

While the above definition is often stated for a fixed hermitian matrix, different
hermitian matrices lead to different Fubini–Study metrics; for the hermitian matrix
Hg , the associated Fubini–Study metric ω̃Hg can be written, on C

N−1 = {Z1(g) =
0} ⊂ P

N−1, as

ω̃Hg =
√−1

2π
∂∂̄ log

(
1 +

N∑
i=2

|zi (g)|2
)

by replacing zi with zi (g) := Zi (g)/Z1(g). While the isometry group of ω̃Hg is
isomorphic to SU (N ), it is not the same SU (N ) that we fixed above; while the SU (N )

as above preserves the hermitian form He, in general it does not preserve Hg if g = e.
Recall also that ωHg := ι∗ω̃Hg ∈ c1(L) for all g ∈ SL(N , C).

From the above definition, by writing in terms of polar coordinates zi (g) =
ri (g)e

√−1θi (g) we have

ω̃N−1
Hg

= 1(
1 + ∑N−1

i=2 ri (g)2
)N−1

N∏
i=2

ri (g)dri (g) ∧ dθi (g)

2π
. (8)

Note also that the restriction of ω̃n
Hg

to ι(X) defines a volume form on ι(X), which we
write as

dνHg :=
ωn
Hg

n! .
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The total volume of X with respect to dνHg can be computed as

∫
X
dνHg =

∫
X
c1(L)n/n! =: Vol(X , L), (9)

which depends only on (X , L) and is independent of g ∈ SL(N , C).
Recall that (

√−1 times) the moment map μSU : P
N−1 → √−1su(N ) for the

SU (N )-action on P
N−1 is given by

μSU ([x1 : · · · : xN ])i j = xi x̄ j∑N
l=1 |xl |2

− δi j

N
,

where δi j is the Kronecker delta and the subscript i j stands for the (i, j)th entry of
the N × N matrix. The second term δi j/N is just to make μSU trace-free. Observing
that SU (N ) acts transitively on P

N−1, we find that μSU naturally defines a map
μSU ,p : SU (N ) → √−1su(N ) by μSU ,p(u) := μSU (up) where p ∈ P

N−1 is a
fixed reference point.

We now consider the “complexified” version of the above moment map, defined
for SL(N , C) = SU (N )C. We fix a reference point p ∈ P

N−1 represented by the
homogeneous coordinates [Z1 : · · · : ZN ], and observe that for each g ∈ SL(N , C)

the point gp ∈ P
N−1 is represented by [Z1(g) : · · · : ZN (g)] in terms of the notation

(7). We then define an N × N hermitian matrix μp(g) ∈ √−1u(N ) whose (i, j)th
entry is given by

μp(g)i j = Zi (g)Z j (g)∑N
l=1 |Zl(g)|2

. (10)

This corresponds to the first termofμSU at the point gp; note that gp is in the SU (N )C-
orbit of p. We choose not to normalise the trace of μp(g) to be zero, to be consistent
with the notation in the literature. The centre of mass, which plays an important role
in this paper, is defined for g ∈ SL(N , C) and the embedded variety ι : X ↪→ P

N−1

as the integral

μ̄X (g) :=
∫
p∈ι(X)

μp(g)dνHg . (11)

We summarise the above in the following formal definition.

Definition 3 The centre of mass μ̄X (g), defined for g ∈ SL(N , C) and ι : X ↪→
P
N−1, is a hermitian matrix of size N whose (i, j)th entry is given in terms of the

notation (7) by

μ̄X (g)i j :=
∫

ι(X)

Zi (g)Z j (g)∑N
l=1 |Zl(g)|2

dνHg ,
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where dνHg is the measure on ι(X) defined by the Fubini–Study metric on P
N−1

with respect to Hg , and integrates with respect to the variables {Zi }Ni=1 over the locus
{[Z1 : · · · : ZN ] ∈ ι(X)} ⊂ P

N−1.

It is easy to see how μp(g) in (10) changes when g is pre-multiplied by a unitary
matrix u, as in the following lemma.

Lemma 2 For any g ∈ SL(N , C), u ∈ SU (N ), and p ∈ P
N−1, we have

μp(ug) = u · μp(g) · u∗

Proof It is an obvious consequence of
∑N

l=1 |Zl(g)|2 = ∑N
l=1 |Zl(ug)|2 for any uni-

tary matrix u. ��
Note, on the other hand, that we do not have an analogous formula for μp(gu).

Remarks 3 We observe some other elementary properties of the centre of mass which
immediately follow from the definition.

1. Both μp(g) and μ̄X (g) are positive definite as a hermitian matrix for each g ∈
SL(N , C).

2. We observe that μ̄X (g) is nothing but the integral of μp(e) over p ∈ g · ι(X)

with respect to dνHg ; μ̄X (g) can be regarded as the centre of mass of the Kodaira
embedding g · ι(X) ⊂ P

N−1.
3. μ̄X (g) is independent of the overall scaling of g, so depends only on its class in

PSL(N , C). Moreover, we observe that each entry of the integrand μp(g) of the
centre of mass is manifestly bounded as a function of g ∈ SL(N , C) for each
p ∈ P

N−1.

Computing the centre of mass is in general difficult since μ̄X (g) depends on g ∈
SL(N , C) (and the embedding ι : X ↪→ P

N−1) in a highly nonlinear manner and
the size N of the matrices is typically large. However, there are some special cases in
which we can explicitly compute it.

Example 3 Take X := P
N−1 and L := OPN−1(1). Then, by using (8) and the polar

coordinates for C
N−1, we find that μ̄PN−1(g) is a constant multiple of the identity

matrix for all g ∈ SL(N , C); this computation is well-known to the experts and
reduces to the periodicity of the angle coordinates, but the details can be found e.g. in
[26, Lemma 2.7]. In particular, E[μ̄PN−1(g)] is a constant multiple of the identity
matrix for any probability measure dσ on SL(N , C).

Example 4 The above method using the polar coordinates also work for the case when
P
n is embedded in a higher dimensional projective space by the Veronese embedding,

i.e. when L = OPn (m) for m > 1, and {Zi (g)}Ni=1 is given by the monomial basis
for H0(Pn,OPn (m)), where N = dimC H0(Pn,OPn (m)). As in the previous exam-
ple, μ̄Pn (g) can be easily seen to be a diagonal matrix for g ∈ SL(N , C) such that
{Zi (g)}Ni=1 is a monomial basis. By appropriately scaling the monomial basis, we find
that there exists g ∈ SL(N , C) such that μ̄Pn (g) is a constant multiple of the identity,
and the explicit scaling can be written down as in [27, Example 2.4].
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We also have a variant of the centre of mass, introduced by Donaldson [28, Sect.
2] as follows.

Definition 4 Let dν be a fixed volume form on ι(X). We define a variant μ̄X ,ν(g) of
(11) by the following formula

μ̄X ,ν(g) :=
∫
p∈ι(X)

μp(g)dν,

in which we replaced dνHg in (11) by the fixed volume form dν.

As we shall see later, it is straightforward to extend the results for μ̄X (g) to the
variant μ̄X ,ν(g); indeed, the volume form dν not depending on g means that μ̄X ,ν(g)
depends on g in a much less nonlinear manner than μ̄X (g), and the proof turns out to
be simpler.

2.3 Proof of Theorem 2

The properties of the centre of mass presented in Sect. 2.2 are sufficient for the proof
of Theorem 2, which is elementary. We compute

ESU [μ̄X (u)] :=
∫
u∈SU (N )

μ̄X (u)dσSU =
∫
u∈SU (N )

dσSU

∫
p∈ι(X)

μp(u)dνHu .

Note first that dνHu = dνHe for all u ∈ SU (N ) since Hu = (uu∗)−1 = He. Lemma 2
further implies that the above is equal to

ESU [μ̄X (u)] =
∫
u∈SU (N )

dσSU

(
u ·

∫
p∈ι(X)

μp(e)dνHe · u∗
)

.

We pick and fix an arbitrary η ∈ SU (N ), and observe that the group invariance of the
Haar measure implies

∫
u∈SU (N )

dσSU (u)

(
u ·

∫
p∈ι(X)

μp(e)dνHe · u∗
)

=
∫

ηu∈SU (N )

dσSU (ηu)

(
ηu ·

∫
p∈ι(X)

μp(e)dνHe · u∗η∗
)

=
∫
u∈SU (N )

dσSU (u)

(
ηu ·

∫
p∈ι(X)

μp(e)dνHe · u∗η∗
)

= η ·
∫
u∈SU (N )

dσSU (u)

(
u ·

∫
p∈ι(X)

μp(e)dνHe · u∗
)

· η∗,

which implies that we have

ESU [μ̄X (u)] = η · ESU [μ̄X (u)] · η∗
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for any η ∈ SU (N ). Recalling that the centre of mass μ̄X (u) is an N × N hermitian
matrix, this implies thatESU [μ̄X (u)]must be a constant multiple of the identitymatrix
since it is a hermitian matrix that commutes with all elements of SU (N ). Noting that
tr(μ̄X (u)) = Vol(X , L) for all u ∈ SU (N ), we find more explicitly that

ESU [μ̄X (u)] = Vol(X , L)

N
· idN×N ,

which completes the proof of Theorem 2.

Remark 5 Note that the above proof applies word by word to prove

ESU [μ̄X ,ν(u)] = Vol(X , L)

N
· idN×N

for the variant in Definition 4, by noting that dν is fixed and remains invariant under
the SU (N )-action.

3 Proof of Theorem 1

Observe first that the definition of the centre of mass (11) implies

E[μ̄X (g)] =
∫
SL(N ,C)

dσ(g)
∫
x∈ι(X)

μx (g)dνHg

=
∫
SL(N ,C)

dσ(g)
∫
x∈ι(X)

μx (g)
ωn
Hg

ωn
He

dνHe ,

where μx is as defined in (10) and we endow SL(N , C) × ι(X) with the product
measure dσ × dνHe . We swap the order of the above integrals by Fubini’s theorem to
find

E[μ̄X (g)] =
∫
x∈ι(X)

dνHe

∫
SL(N ,C)

μx (g)
ωn
Hg

(x)

ωn
He

(x)
dσ(g).

We first fix x ∈ ι(X), pick a hermitian h ∈ SL(N , C) such that π(g) = hh∗, and
compute the second integral in the above as

∫
SL(N ,C)

μx (g)
ωn
Hg

(x)

ωn
He

(x)
dσ(g)

= 1

Vol(B)

∫
B
dσB(hh∗)

∫
SU (N )

μx (hu)
ωn
Hhu

(x)

ωn
He

(x)
dσSU (u)

by using Lemma 1, where we note that each entry of μx (g) is bounded (Remark 3)
and that π−1(hh∗) = h · SU (N ). Observe that we may write h = η�η∗ for some
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η ∈ SU (N ) and a diagonal matrix � = diag(�1, . . . , �N ) which we can identify
with a vector in R

N . With this notation we may write

π(g) = (hu) · (hu)∗ = hh∗ = η�2η∗,

where u ∈ SU (N ). We also note

ωHg = ωHhu = ι∗
(√−1∂∂̄ log

(
N∑
i=1

�2
i |Zi (η

−1u)|2
))

,

which implies thatωn
Hg

(x)/ωn
He

(x) is bounded over SL(N , C), since an overall scaling
of � leaves the above metric invariant.

Thus, by writing �̃ := �2, the above integral may be written as

1

Vol(B)

∫
�̃∈RN−1

>0


2(�̃)γ (�̃)ρ(�̃)d�̃

∫
SU (N )

dσSU (η)

∫
SU (N )

μx (η�η−1u)�x (�, η−1u)dσSU (u),

by (3) and (4), where we set

�x (�, η−1u) := ωn
Hhu

(x)

ωn
He

(x)
=

ι∗
(√−1∂∂̄ log

(∑N
i=1 �2

i |Zi (η
−1u)|2

))n
(x)

ωn
He

(x)
,

ρ(�̃) is the Radon–Nikodym density of dσB , and 
, γ are as in (3). By the group
invariance of the Haar measure, we have

∫
u∈SU (N )

μx (η�η−1u)�x (�, η−1u)dσSU (u)

=
∫

ηu∈SU (N )

μx (η�u)�x (�, u)dσSU (ηu)

=
∫
u∈SU (N )

μx (η�u)�x (�, u)dσSU (u)

= η

(∫
u∈SU (N )

μx (�u)�x (�, u)dσSU (u)

)
η∗

by recalling Lemma 2 and noting that

�x (�, u) =
ι∗

(√−1∂∂̄ log
(∑N

i=1 �2
i |Zi (u)|2

))n
(x)

ωn
He

(x)
(12)

does not depend on η, where the homogeneous coordinates [Z1 : · · · : ZN ] are
evaluated at x ∈ ι(X).
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We are thus reduced to first computing

∫
SU (N )

μx (�u)�x (�, u)dσSU (u). (13)

We claim that the off-diagonal entries of the above integral are zero. Since any x ∈
ι(X) ⊂ P

N−1 can be moved to p0 = [1 : 0 : · · · : 0] by the SU (N )-action, for
the moment we assume without loss of generality that x = p0, by using the SU (N )-
invariance of the Haarmeasure. Since p0 is fixed by the subgroup S(U (1)×U (N−1))
of SU (N ), the integral (13) is in fact an integral over P

N−1 = SU (N )/S(U (1) ×
U (N −1)). We now recall that a group invariant measure on a homogeneous space (if
exists) is unique up to an overall positive multiplicative constant by [30, Chapter III,
§4, Theorem 1], which is a result credited to Weil in [30]. Thus, the measure on P

N−1

induced by the Haar measure dσSU agrees, up to an overall constant multiple, with
the SU (N )-invariant Fubini–Study measure ω̃N−1

He
. Thus, by using the homogeneous

coordinate system [Z1 : · · · : ZN ] given by the reference basis, we find that the
(i, j)-th entry of (13) is equal to

∫
PN−1

�i� j Zi Z̄ j∑
l=1 �2

l |Zl |2
�x (�, [Z1 : · · · : ZN ])ω̃N−1

He
(14)

up to an overall constant multiple, where �x (�, [Z1 : · · · : ZN ]) stands for �x (�, u)

with the identification given by P
N−1 = SU (N )/S(U (1) × U (N − 1)) as above.

By recalling the formula (8) for the Fubini–Study volume form on C
N−1 ⊂ P

N−1

and writing the above integral in terms of polar coordinates, we find that (14) is
zero if i = j because of the periodicity of the angle coordinates, by performing the
computation as in [26, Lemma 2.7] (and as pointed out in Examples 3 and 4), since
�x (�, [Z1 : · · · : ZN ]) does not depend on the angle coordinates as we can see from
the formula (12).

Thus we find
∫
SU (N )

μx (�u)�x (�, u)dσSU (u) = diag(α1(�), . . . , αN (�))

for some maps αi : R
N → R≥0 (i = 1, . . . , N ); observe that each αi depends

smoothly on � and is bounded over R
N , since the (i, i)-th entry of the integrand is

�2
i |(ux̃)i |2∑N

j=1 �2
j |(ux̃) j |2

�ux̃ (�, e),

where x̃ ∈ C
N is any nonzero lift (i.e. the homogeneous coordinates) of x ∈ ι(X) ⊂

P
N−1. We further observe that each αi does not depend on x ∈ ι(X), since for any

x ′ ∈ ι(X) there exists u′ ∈ SU (N ) such that x ′ = u′x (as SU (N ) acts transitively
on the ambient P

N−1) and hence the dependence on x is integrated out by the group
invariance of the Haar measure. Moreover, the above formula and (12) imply that each
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αi can be naturally regarded as a function of �̃ = �2, and hence by abuse of notation
we shall writeαi (�̃) forαi (�), which can be considered as a smooth bounded function
on R

N
>0.

Let CN := {η1, . . . , ηN } be the group of cyclic permutations of N letters, which is
naturally a subgroup of U (N ). We then find

N∑
i=1

ηi

(∫
SU (N )

μx (�u)�x (�, u)dσSU (u)

)
η∗
i = α(�̃) · idN×N ,

withα(�̃) := ∑N
i=1 αi (�̃); we also note that in the abovewemay assumeηi ∈ SU (N )

for i = 1, . . . , N by dividing them by an N -th root of det(ηi ) ∈ U (1) which leaves
the above integral invariant. Thus we get, again by the group invariance of the Haar
measure,

∫
η∈SU (N )

dσSU (η)

∫
u∈SU (N )

ημx (�u)η∗�x (�, u)dσSU (u)

= 1

N

N∑
i=1

∫
ηη−1

i ∈SU (N )

(ηη−1
i )ηi

(∫
u∈SU (N )

μx (�u)�x (�, u)dσSU (u)

)
η∗
i (ηη−1

i )∗dσSU (ηη−1
i )

=
∫

η∈SU (N )

η

(
1

N

N∑
i=1

ηi

(∫
u∈SU (N )

μx (�u)�x (�, u)dσSU (u)

)
η∗
i

)
η∗dσSU (η)

= α(�̃)

N
· idN×N ,

and hence, by recalling that α(�̃) does not depend on x ∈ X as pointed out in the
above, we find

E[μ̄X (g)] = 1

Vol(B)

∫
x∈ι(X)

dνHe

∫
�̃∈RN−1

>0


2(�̃)γ (�̃)ρ(�̃)d�̃

∫
η∈SU (N )

dσSU (η)

∫
u∈SU (N )

μx (η�u)�x (�, u)dσSU (u)

=
(
Vol(X , L)

NVol(B)

∫
�̃∈RN−1

>0

α(�̃)
2(�̃)γ (�̃)ρ(�̃)d�̃

)
· idN×N .

Since α(�̃) is bounded over R
N
>0, the integral

∫
�̃∈RN−1

>0

α(�̃)
2(�̃)γ (�̃)ρ(�̃)d�̃
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is a well-defined real number by (6) because dσB is of finite volume. In fact, the above
integral is equal to Vol(B), by observing

tr(E[μ̄X (g)]) = Vol(X , L)

since tr(μ̄X (g)) = Vol(X , L) for all g ∈ SL(N , C) and dσ is assumed to have unit
volume as in (2). Thus we finally get

E[μ̄X (g)] = Vol(X , L)

N
· idN×N

as claimed, with respect to the fixed reference basis {Zi }Ni=1 (see Remark 4). This
completes the proof of Theorem 1.

Remark 6 It is straightforward to extend the above proof to the variant μ̄X ,ν in Defi-
nition 4. First note that we have

E[μ̄X ,ν(g)] =
∫
SL(N ,C)

dσ(g)
∫
x∈ι(X)

μx (g)dν,

by definition. Noting that dν is fixed and does not depend on g ∈ SL(N , C), we again
apply Fubini’s theorem to SL(N , C) × ι(X) with the product measure dσ × dν, to
find

E[μ̄X ,ν(g)] =
∫
x∈ι(X)

dν

∫
SL(N ,C)

μx (g)dσ(g) (15)

and repeat the argument presented above.
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