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Abstract

We develop product space theory of singular integrals with mild kernel regularity. We
study these kernel regularity questions specifically in situations that are very tied to
the T'1 type arguments and the corresponding structural theory. In addition, our results
are multilinear.
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1 Introduction

The usual definition of a singular integral operator (SIO)

Tf(x) = /R K(x. y)f () dy
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involves a Holder-continuous kernel K with a power-type continuity-modulus ¢ +— V.
However, many results continue to hold with significantly more general assumptions.
Such kernel regularity considerations become non-trivial especially in connection with
results that go beyond the classical Calder6n—Zygmund theory—an example is the A»
theorem of Hytonen [21] with Dini-continuous kernels by Lacey [24]. Estimates for
SIOs with mild kernel regularity are, for instance, linked to the theory of rough singular
integrals, see e.g. [22].

The fundamental question concerning the L? (or L?) boundedness of an SIO T is
usually best answered by so-called 7'1 theorems, where the action of the operator T
on the constant function 1 is key. We study kernel regularity questions specifically in
situations that are very tied to the 7'1 type arguments and the corresponding structural
theory—a big part of the modern product space theory of SIOs relies on such anal-
ysis. The proofs of T'1 theorems display a fundamental structural decomposition of
SIOs into their cancellative parts and so-called paraproducts. It is this structure that
is extremely important for obtaining further estimates beyond the initial scalar-valued
L? boundedness. Refined versions of 7'1 theorems provide exact identities in terms
of model operators and are called representation theorems, see [20,21,32].

A concrete definition of kernel regularity is as follows. It concerns the required
regularity of the continuity-moduli @ appearing in the various kernel estimates, such
as,

, |x — x| 1 ,
[K(x,y) — K&, )| <w Xy |x_y|d,|X—X|S|X—)’|/2-

Recently, Grau de 1a Herran and Hytonen [17] proved that the modified Dini condition

! 1\edt
lleo | Dini,, = a)(t)(l +log _) a
0 t 1t
1

with & = 7 is sufficient to prove a T'1 theorem even with an underlying measure u
that can be non-doubling. This matches the best known sufficient condition for the
classical homogeneous 7'1 theorem [10]—such results are implicit in Figiel [16] and
explicitin Deng etal. [11]. The exponent = 4 has a fundamental, even sharp, feeling
in all of the existing arguments.

In[17] anew type of representation theorem appears, where the key difference to the
original representation theorems [20,21] is that the decomposition of the cancellative
part is in terms of different operators that package multiple dyadic shifts into one and
offer more efficient bounds when it comes to kernel regularity. Some of the ideas of
the decomposition in [17] are rooted in the work of Figiel [15,16]. We simultaneously
extend [17] both to the multilinear [12—14,27,33] and multi-parameter [23,30,32,35]
settings. The proofs of the representation theorems appear to be now converging to
their final and most elegant form, and the arguments are simultaneously efficient and
sharp.

Linear bi-parameter SIOs, for example, have kernels with singularities on x; = y;
orxy = y», wherex, y € R are writtenas x = (x1, x2), y = (y1, y2) € R x R® for
a fixed partition d = dy +d>. For x, y € C = R x R, compare e.g. the one-parameter
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Beurling kernel 1/(x — y)2 with the bi-parameter kernel 1/[(x1 — y1)(x2 — y2)]—
the product of Hilbert kernels in both coordinate directions. In general, the product
space analysis is quite different from one-parameter analysis and seems to resist many
techniques—in part due to the failure of bi-parameter sparse domination methods,
see [3] (see also [4] however), representation theorems are even more important in
bi-parameter than in one-parameter. For example, the dyadic representation methods
have proved very fruitful in connection with bi-parameter commutators and weighted
analysis, see Holmes—Petermichl-Wick [19], Ou—Petermichl-Strouse [36] and [28].
See also [1,2].

We discuss various applications throughout. For example, we prove the following
two-weight estimate for commutators. The result (1) extends [29] and the result (2)
extends [19] and [28].

Theorem 1.1 Suppose that R? = R x R®% is the underlying bi-parameter space,
p € (1,00), u, A € Ap(Rd) are bi-parameter weights and v = p'/Pr=YP ¢ Ay(R?)
is the Bloom weight.

(D) If T;, i = 1,2, is a one-parameter w;-CZO on R%, where w; € Dinijz;, then
71, [T2, D1 Le uy—Lr Gy S 1D1IBMOoa(v)-

(2) Suppose that T is a bi-parameter (w1, w2)-CZO. Then we have
m
1B - b2, o1, T+ Mergo—rrey S [ [ 187 lomogwism
j=1

if one of the following conditions holds:

(a) T is paraproduct free and w; € Diniy,j241;
(b) m =1 and w; € Diniz s,
(¢) w; € Diniy41.

See the main text for all of the definitions and for additional results. These Bloom-
style two-weight estimates have recently been one of the main lines of development
concerning commutators, see e.g. [1,2,18,19,25,26,28,29] for a non-exhaustive list.

2 Basic Notation and Fundamental Estimates

Throughout this paper A < B means that A < CB with some constant C that we
deem unimportant to track at that point. We write A ~ Bif A < B < A.

Dyadic Notation. Given a dyadic grid D, I € D and k € Z, k > 0, we use the
following notation:

(1) £(1) is the side length of 1.

(2) I® € D s the kth parent of I,1i.e., I  I® and (1) = 2k¢(I).

(3) ch([) is the collection of the children of I, i.e.,ch(l) ={J e D: J = [}.
(4) E;f = (f)r1; is the averaging operator, where (f); = f, f = |17|f, f.
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(5) Ejf is defined via

Erxf= )Y Eif.

JeD
JO=1

(6) Ay f is the martingale difference A; f =3 ;cny Esf — Eif.
(7) Ay f is the martingale difference block

Arxf= Y AJf.

JeD
J®O=1

(8) Pirf is the following sum of martingale difference blocks

k
Piaf=) Arjf= Y, Asf

j=0 JeD
JClI
oy=2"ken)

A fundamental fact is that we have the square function estimate

172
ISpfllee ~ 1 fllLe, pe(l,00), Spf:= (Z |A1f|2> . 2.1

1€D
See e.g. [7,8] for even weighted || Sp fllLrw) ~ I fllLrw), w € Ap, square function

estimates and their history. A weight w (i.e. a locally integrable a.e. positive function)
belongs to the weight class A, RY, 1 < p < o0, if

1 1 AT
[w] dy = sup—/ w(—/ w p) < 00,
B 101 g \iol o

where the supremum is taken over all cubes Q C RY.

Lemma 2.2 Let p € (1, 00). There holds that
1/2
(Z |Pk,kf|2) ~Vk+ 1 fllee,  ke{0,1,2,..).
KeD Lp

Proof If f; € L? then

00 1/2 00 12
(Z > |A1ﬁ|2) ~ (Z |ﬁ|2) : 2.3)
i=0 IeD i=0

Lr LP

@ Springer



Product Space Singular Integrals with Mild Kernel Regularity Page50f49 24

This follows by extrapolating the corresponding weighted L? version of (2.3), which, in
turn, simply follows from [|Sp f [l .2y ~ I/ | 22wy w € A2. Recall that the classical
extrapolation theorem of Rubio de Francia says that if [|A||Lro@w) S llgllzro) for
some pg € (1,00) and all w € A, then ||hllzr@w) S gllLrw) forall p e (1, 00)
andallw € Aj.

Let K € D. We have that

k
Do IArPkifP =) 1Ak
j=0

1€D

Thus, (2.3) gives that

172 k 1/2
(Z |PK,kf|2) ~ DS D 1Ak P
KeD Lp KeD j=0 I
. 1/2
=|[d>> 1A ~VE+ 10 f Lo
j=01eD I

We will also have use for the Fefferman—Stein inequality

(o

where M is the Hardy-Littlewood maximal function. Often, the lighter Stein’s inequal-
ity

1/2 1/2
(Z|E1f1|2> S (Zmﬁ) . pe(l,o0),we A,

1€D LP(w) 1€D LP(w)

1/2
S (Zmﬂ) . pe(l,oo),weAy,
k

LP(w) LP(w)

is sufficient.

For an interval J C R we denote by J; and J, the left and right halves of J,
respectively. We define h(} = |J|_1/211 and hb = |J|_1/2(11, — 1;,). Let now
I=Ix---xI; C R4 be a cube, anddeﬁnetheHaarfunctionh”,n =M,.--,Nd) €
{0, 1}¢, by setting

hj=hj'®---@hj.
If n # 0 the Haar function is cancellative: [ h"! = 0. We exploit notation by suppress-

ing the presence of 7, and write /7 for some i, n # 0. Notice that for I € D we have
Arf ={f,hr)h; (where the finite n summation is suppressed), ( f, hy) := [ fhj.
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Bi-parameter Variants A weight w(xy, x2) (i.e. a locally integrable a.e. positive
function) belongs to the bi-parameter weight class A ,(R% x R®2), 1 < p < oo, if

1 1 A
[w] dy ydyy i= sup—/w(—/ w _p) < 00,
ApEER TR R \IRI R

where the supremum is taken over R = I'' x I? and each I' C R% is a cube. Thus,
this is the one-parameter definition but cubes are replaced by rectangles.
We have

[U)]AP(RdIXRdz) < oo iff max | esssup [w(xy, ')]Ap(Rdz)’ ess sup [w(~,x2)]Ap(Rdl) < 00,
x1eR41 xpeR%

and that

max | esssup [w(xy, ')]AP(RdZ)7 esssup [w(., x2)]AP(Rd1) = [w]Ap(]Rdl xR
x1eR% xR

while the constant [w]a » is dominated by the maximum to some power. For basic
bi-parameter weighted theory see e.g. [19]. We say w € Ao (R? x R®) if

1 1
[w] d] ydyy i = sup—/ w exp (—/10g(w‘1)> < 0.
A @A IR SR IRl /&

It is well-known that

Aw® xR2) = [ ] A,R" xR®).

l<p<oo

We do not have any important use for the A, constant. The w € A, assumption can
always be replaced with the explicit assumption w € A; for some s € (1, 00), and
then estimating everything with a dependence on [w]a4, .

We denote a general dyadic grid in R% by D. We denote cubes in D by I, Ji, K",
etc. Thus, our dyadic rectangles take the forms IV x 12, J x J2, K! x K2 etc.

If A is an operator acting on R?, we can always let it act on the product space
R? = R% x R% by setting A' f(x) = A(f(-, x2))(x1). Similarly, we use the notation
A f(x) = A(f(x1,))(xp) if A is originally an operator acting on R4, Qur basic
bi-parameter dyadic operators — martingale differences and averaging operators—are
obtained by simply chaining together relevant one-parameter operators. For instance,
abi-parameter martingale difference is Ar f = A}l A?z f, R = I' x I?. Bi-parameter
estimates, such as the square function bound

1/2 172
D 1ArSP =\ D 1aLanfP ~ 1 FlLr),
ReD!'xD? lieDi
LP(w) LP(w)

@ Springer



Product Space Singular Integrals with Mild Kernel Regularity Page70f49 24

where p € (1,00) and w is a bi-parameter A, weight, are easily obtained using
vector-valued versions of the corresponding one-parameter estimates. The required
vector-valued estimates, on the other hand, follow simply by extrapolating the obvious
weighted L?(w) estimates.

We systematically collect maximal function and square function bounds now. First,
some notation. When we integrate with respect to only one of the parameters we may
e.g. write

(f, hp)1(x2) 1=/ f(x1, x2)hy, (x1) dx;.
R4

If D = D! x D? we define the dyadic bi-parameter maximal function

Mp f = sup 1g(|f1)5-
ReD

Now define the square functions

172

1/2
Spf = (Z |ARf|2> CSpif = D 1AL fP

ReD IleD!

and define S2D2 f analogously. Define also

12
1
St = [ 2 @ [upalrng) )
I'eD!
12
2 1,2
Soauf = | 2 [Moilf kel ®
12eD?

Letk = (k1, k»), where k; € {0,1,2,...,},and K = K' x K? € D. We set

1 _ 1
PKl,klf - Z AIlf
1'eD!
I'ck!
e(1hH=2"k1¢(k)

2
K2.ky

2

and define similarly P . Then, we define Pk ; := P11<',k1 PKZ,kz'

Lemma 2.4 For p € (1, 00) and a bi-parameter weight w € A, we have

I £llzeay ~ USDFllLra) ~ USp f ey ~ 185 fllLr -
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Fork = (k1,kp), ki € {0, 1, ..., }, we have the estimates

1/2
(Z |PK,kf|2) SV + Wy + 1| flle -

KeD LP(w)
1/2

Z |P11(1,k1f|2 < \/mllfllu’(w)

KleD!

LP(w)

and the analogous estimate with PIZ(2 k'

Moreover, for p, s € (1, 00) we have the Fefferman—Stein inequality

1/s /s
> IMfle S
J J

LP(w) LP(w)

Here M can e.g. be Mlljl or Mp. Finally, we have

||S11),Mf||LP(w) + ||S%,Mf||u’(w) S e -

3 Bi-parameter Singular Integrals

Bi-parameter SIOs We say that @ is a modulus of continuity if it is an increasing
and subadditive function with w(0) = 0. A relevant quantity is the modified Dini
condition

! 1\edt
lolbin, = [ o®(1+log-)" = az0. G.1)
0
In practice, the quantity (3.1) arises as follows:

2—k+1 Inad

> =1 dt ! t
27Mer =y — 2Ry — </ H(1+1log~) —.
> e glogz/z_k 0@ 5 [Con(1+10e7)"]

(3.2)

For many standard arguments o = 0 is enough. For the 7'1 type arguments we will
always need o = 1/2. Some further applications can require a higher «.

Let R = R% x R% and consider an n-linear operator 7 on R?. We define what
it means for T to be an n-linear bi-parameter SIO. Let w; be a modulus of continuity
onR%. Let fj=f/ ® f7,j=1,....n+1
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First, we set up notation for the adjoints of 7. We let T7*, j €1{0,...,n}, denote
the full adjoints, i.e., T% = T and otherwise

(T(fh ce fi‘l)v fn—i—l) = <T]*(flv e fj—lv fn+ls fj+lv e fn)7 fj)

A subscript 1 or 2 denotes a partial adjoint in the given parameter—for example, we
define

(T(froeeon ) fue) =T o ot L ® FR figte oo f)s Fl @ F2).

Finally, we can take partial adjoints with respect to different parameters in different
slots also—in that case we denote the adjoint by 7;5"/**. It simply interchanges

the functions f j]1 and fn1 1 and the functions f j22 and fnz—i-l' Of course, we e.g. have
le; ;’j - TJ* and Tl();’j - sz * 50 everything can be obtained, if desired, with the
most general notation le; 12*’j2*. In any case, there are (n + 1)? adjoints (including T
itself). Similarly, the dyadic model operators that we later define always have (n 4 1)

different forms.
Full Kernel Representation Here we assume that given m € {1, 2} there exists ji, j» €

{1,...,n+ 1} so that spt f;’f N spt fgl = (. In this case we demand that

n+1
(T(fisooos fo)s fur) = /( o K (Xp41, X1, -+ .y Xpn) Hfj(xj)dx,
RO ,

Jj=1

where

K: ROV (g, xp, oo, x) € ROVl = o= 51 or
x%=-~-=x3+1}—>(c

is a kernel satisfying a set of estimates which we specify next.
The kernel K is assumed to satisfy the size estimate

1

2
K Gt S T :
n m m dmn

m=1 (Zj:l Iy — ] |)

We also require the following continuity estimates—to which we continue to refer to
as Holder estimates despite the general continuity moduli. For example, we require
that we have

1.2
K (1, X1, -0 X)) — K(Xp1, X1, -0, X1, (€, X))

1 2 1 2 1 .2
_K((xn+1ﬂc )5'x17"'5xn) +K((~xn+1’c )7x1’ s Xn—1, (C ’xn))l
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1
X, —¢C 1
S ( | | T ) am
Z i=1 |xn+l xj' (Z'% 1 —x1.|)

j=1 |xn+l Jj

|xn+1 1

62|
ey — x| 20
Z j=11"n4+1 j Z 1 |xn+1 jl

X w)

whenever |x —cll<2” max1<,<n Ian xi1| and |x,21+1 — % <27! max|<j<n

|x w1l — X | Of course, we also require all the other natural symmetric estimates,

where ¢! can be in any of the given n + 1 slots and similarly for ¢2. There are, of

course, (n + 1)2 different estimates.
Finally, we require the following mixed Holder and size estimates. For example,
we ask that

1 2
|K(xn+13x17 "'1xn) - K(xn—i-l’xls e Xn—1, (C 1xn))|

I
X, —¢C 1 1
e (Z | I, | x1.|> n 1 N (s 2 21\ 2"
=1 Xng1 =%, (Zj:l g1 = xj') (Zj:l X1 _xj|)

whenever |x —cll<2- max1<,<n Ixl, . — xil |. Again, we also require all the other
natural symmetric estimates.
Partial Kernel Representations Suppose now only that there exists ji, j» € {1,...,n+

1} so that spt f jll Nspt f ,’12 = ). Then we assume that

n+1

n+1

(T(f1, -y fn)s fug1) Z/R("‘H)dl (f2)(xn+1’x]v--~ l)nf (X )dx

j=

where K 2) is a one-parameter w1-Calderén—Zygmund kernel as e.g. in [17] but with
)

a constant depending on the fixed functions flz, . fn 1~ For example, this means
that the size estimate takes the form

1
din’
n 1 1
(Zj:l 1Xp1 — xj')

K (g2 Gns X1 5)| < OO flD)

The continuity estimates are analogous.

We assume the following 7'1 type control on the constant C( flz, ceey fn2 ). We
have
Clp,....1p0) < |17 (3.3)
and

C(a12,112,...,112)+C(112,(112,112,...,112)+"'+C(112,...,1[2,(1]2)5 |12|
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for all cubes 12 € R% and all functions a2 satisfying a2 = 1,2a,2, |a;2| < 1 and

f ap = 0.
Analogous partial kernel representation on the second parameter is assumed when
spt szl N spt szz = () for some ji, ja.

Definition 3.4 If T is an n-linear operator with full and partial kernel representations
as defined above, we call 7 an n-linear bi-parameter (w1, w2)-SIO.

Bi-parameter CZOs We say that T satisfies the weak boundedness property if
KT (g, ..., 1r), 1r)| S IR (3.5
for all rectangles R = I'' x 1> ¢ R? = R% x R%.
An SIO T satisfies the diagonal BMO assumption if the following holds. For all
rectangles R = I' x I ¢ R? = R% x R% and functions a;i with a;i = 1ia;i,

lajil < 1land [a; =0 we have

HT(ap @ 12, 15y 1R AR+ -+ T g, ... 1R), apn ® 1,2)] < |R|
(3.6)

and

KT(p ®ap, 1g, ..., 1p), IR) + -+ + (T (1g, ..., 1p), 1 ®ap)| S IR
The product BMO space is originally by Chang and Fefferman [5,6], and it is the right
bi-parameter BMO space for many considerations. An SIO T satisfies the product

BMO assumption if it holds

S1 € BMOprod

for all the (n + 1)? adjoints S = TI{E*’jZ*. Here S1 := S(1,...,1). This can be
interpreted in the sense that

1/2
1
ISUleMOpoy = sup sup | o o uSLARP | <o,
D=D'xD? & R=I'x1%eD
RCQ

where hg = h;1 ® h 2, the supremum is over all dyadic grids D on R% and open sets
Q c R4 =R% x R with 0 < || < oo, and the pairings (S1, hg) can be defined,
in a natural way, using the kernel representations.

Definition 3.7 An n-linear bi-parameter (w, wy)-SIO T satisfying the weak bound-
edness property, the diagonal BMO assumption and the product BMO assumption
is called an n-linear bi-parameter (w1, w;)-Calderén—Zygmund operator ((w1, w2)-
CZ0).
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Bi-parameter Model Operators For hybrid operators we will use suggestive notation,
such as, (S7); to denote a bi-parameter operator that behaves like an ordinary n-linear
shift S; on the first parameter and like an n-linear paraproduct 7 on the second—but
this is just notation and our operators are not of tensor product form.

Shifts Let i = (i1, ..., int+1), Where i; = (i}, i]2.) € {0,1,...}%. An n-linear bi-
parameter shift S; takes the form

n+1
(SiCfisees b ) =D Y ak.wy [ [ r))-
K Ry...Rysi j=1
R<.lj)=K
J
-1 2
Here K. Ry.....Ri1 € D=D' x D, R; = 1} x I, R} := 1)@ x 1)@
and h R = =h 1! Qh 12 Here we assume that for m € {l 2} there exist two 1ndrces
Jjos j1 € {1, .. n+1} Jo # jl,sothathlm = h,m h,m = h,m and for the remaining

indices j ¢ {jo, j1} we have h,r_n € {hlm,hlm}. Moreover, AK,(Rj) = AK,Ry,....Ryp1 1 is
Jj j Jj

a scalar satisfying the normalization

lak,(rj)| < —|K|" . (3.8)

We continue to define modified shifts—they are important for the weak kernel regu-
larity. Let

n+l

AR e (e ) = AR = T By (3.9)
=1

where g, = E,l ®Z,2 7111 =y ,h,1 = hll,J # ji,h ,2 =hp2, hlz = hlz,
Jj# . Amodlﬁedn 11near b1 parameter Shlft Qk, k = (ki, k2) takes the form '

J J2 JisJ2
(Qk(f1o s fu)s 1) = ) > ak.rp[AR Rost — A2 1 xr?
J1 1200 n+1
K Ry,.., Rn+l
(k) _
Rj K
Ji.J2 Ji.J2
— AN 1 » AT 1 2]
I ><Ij2 ..... In+| ><Ij2 I/l XI, ..... 111 ><Ij2

for some ji, j». Moreover, aK,(Rj) = 4K,R
normalization (3.8).

We now define the hybrid operators that behave like a modified shift in one of
the parameters and like a standard shift in the other. A modified/standard n-linear

R,y 18 @ scalar satisfying the usual

.....
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bi-parameter shift (QS)x i, 1 = (i1, ...,ix41), k,i; € {0, 1, ...}, takes the form

(OS)k,i (frse-vs fu)s fug1)

n+1 n+l1
=> Y akw H(fj,hR,-)—l_[U/»hIJ!OxI})
K Ri,...Ruq1 Jj=1 j=1
(k,ij)
R =k

J

for some jy. Here we assume that h,1 = h,1 , h,l = h  for j # jo, and that there
exist two indices ji, jo € {l,...,n + 1}, j1 # j2, SO that h12 =hp, hlg =hp
J1

and for the remaining indices j ¢ {ji, jo} we have h I € {h h;2}. Moreover,
J

1%
AK (Rj) = AK,Ry,....Rys1 is a scalar satisfying the usual normallzatlc;n (3.8). Of course,
(SQ)i k is defined symmetrically.
Partial Paraproducts Partial paraproducts are hybrids of = and S or 7 and Q.

Leti = (i1, ...,in+1), where i; € {0, 1,...}. An n-linear bi-parameter partial
paraproduct (S7); with the paraproduct component on R?? takes the form

n+1
(Smifof) = D0 D0 agan [y ®uj ),
K=K'xKk2 1 1! Jj=1
(1/)(” _K!
(3.10)
where the functions i 1] and u ; g satisfy the following. There are jo, ji1 € {1,...,n+

1}, jo # ]1,sothath 1 = h11 ,hll = h11 and for the remaining indices j ¢ {jo, j1}

we have hl} € {hl},h ,-}' There 1S jo € {1, ...,n+ 1} sothatu; x> = hg> and for
the remaining indices j # j» we have u; g2 = K2 Moreover, the coefficients are
assumed to satisfy
+1
¢ Ko |l =< =i 117
ag —_—
K.(1}))K2[IBMO = |K1|n

Of course, (75); is defined symmetrically.
A modified n-linear partial paraproduct (Qm ), with the paraproduct component on
R% takes the form

(@) (f1s -1 fn)s Jag1)

n+1 n+1
= Z Z ag (1! 1_[<fj’hlj1®uj,K2>_l_[(fj’hl}o®uj,K2>
K=K!xK? },.. n+1 Jj=1 Jj=1
(1,><k> K!
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for some jo—here E,; =hp ,El; = h(l)1 for j # joand u; g2 arelike in (3.10). The
J Jo J j 7

constants satisfy the same normalization.

Full Paraproducts An n-linear bi-parameter full paraproduct IT takes the form

n+1

((f1s s S for) = Y ak [{f5 uj k0 ®uj g2,
=1

K=K!xK?

where the functions u jK! and u j K2 are like in (3.10). The coefficients are assumed
to satisfy

1/2
1
l@r)llBMOye = sup [ = Y lax*] <1,
prod Q |Q| Z

KcQ

where the supremum is over open sets 2 C R? = R% x R® with 0 < |Q| < oo.
Comparison to the Usual Model Operators The modified model operators can be
written as suitable sums of the standard operators. This is practical when one is willing
to lose % of kernel regularity or if some estimates are too difficult to carry out for the
more complicated modified operators. However, some regularity is always lost if this
decomposition is used, so it is preferable to make do without it. To communicate the
gist we only give the following formulation.

Lemma 3.11 Let Qy, k = (k1, k2), be a modified n-linear bi-parameter shift. Then
¢ ki—1lky—1
0= Y Y s

u=1i1=0 i=0

where each S = S*V2 s a standard n-linear bi-parameter shift of complexity ig”j,
je{l,....,n+ 1}, m € {1, 2}, satisfying

~m
ig; < k.

Similarly, a modified/standard shift can be represented using standard shifts and a
modified partial paraproduct can be represented using standard partial paraproducts.

Proof For notational convenience we consider a shift Qy of the particular form

1,n+1 1,n+1
(Ok(fis s ) frtd = Y aK,m,)[A';g o — AT

1
) r AT 1+|><1| ,,,,, 1 X
----- n+1
R =k (3.12)
n+1,n+1 n+1,n+1
A
- 1,72 1 2 1 2 1 2 .
Il ><[rHrl """ 1n+1 ><errl 1n+1 ><InJrl """ In+l ><In+1

There is no essential difference in the general case.
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We define
bk.(rj)) = |R1|n/2aK,(Rj)

and
n
n+l,n+1 )
Br e = L1y s )
j=1

We can write the shift with these similarly as in (3.12) just by replacing a with b and
A with B.

For the moment we define the following shorthand. For a cube I and integers
L, jo € {1,2,...} we define

E;, if j e{l,...,jo— 1},
Dyi(j, jo) = Pri—1, if j = jo, (3.13)
id, ifje{jo+1,jo+2,...},

where id denotes the identity operator.

Let Ry, ..., R,+1 be as in the summation of Q. We use the above notation in both
parameters, and we denote this, as usual, with superscripts D,l’ 1 (J» Jo) and D%’ 1(Js Jo)-
With some work (we omit the details) it can be shown that

n+l1 n
1 1
Bl = Y TPk, Gom)Dgay Guma) fi) R, et hiry),

my,mpy=1 j=1

which gives that

n+l1
n+1, n+l _
Z Z BRI ----- Ryt1 ™ Z Eml my*
K RI’-I-(anJrl my,my=1
(k) _
Rj =K
Also, we have that
n+1 n
+1,n+1
By = > [[0x:,,Gm2) 2(fat1s PRy
JATERY RN S K2k ff +1%1; Jnvts ARy
mo=1 j=1
and
n+l1 n
n+1,n+1 1 .
BﬂxIHZH ,,,,, Il <12, Z H<DK1J<1(]’ml)fﬂ’}xlfﬂ<f"+1’hR"+1>’
mi=1j=1
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which gives that

n+1
n+1,n+1 . 2
Z Z B, B GRNAIRE S Z X
% Rl,...,Rn+1 n+ n+ n+ ma=1
(k) _
Rj =K
and
n+l
n+1,n+1 . 3
Z Z Bﬂxﬂ PR AY SR Z oy
% Rl,-.-,Rn+1 n+ n+ n+ mi=1
R¥=k
J

Finally, we write that

Z Z n+l:jl iz, T =,
+1 1o 1
K RisosRugi AR
R;k)=K

Using the above decompositions we have the identity

(Qu(f1e - fu)s far1) = Z Sy F Z(EnHm— )

mi,mo=1 mo=1

3 1 2 3 4
+ Z (Eml n+l1 — Em1)+(2n-ﬁ-1,n+1 - 2:n+1 - 2:n—k—l_"z )

mi=1
The terms E,}q Lo withmy, my € {1, ..., n} and the terms inside the parentheses will
be written as sums of standard shifts.
First, we take one 2,11 Lo with m, my € {1, ..., n}. For convenience of notation

we choose the case m| = my =: m. Recall that

m—1 n

=Y Y brw H Nk Pr -tk Sk [ ] )Ry (ks Ry )-
K Ry,...R+1 j=m+1
RY=k

Expanding
ki—1ky—1
(PR —1ko D) f) Ry = D D D {fus i) ki),

i1=0 i=0 [ G1.i0) =K
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there holds that

T = bk (&) (L),
m = Z Z Z Z Z Z Z |K[m=D/2[ Ry | 1=m)/2

i1=0 ir=0 K pG1-2)=K Ru+1,--»Rut1 | Ri ... R—1 RnCL

R(ik)=K R_(ik)—K R(k> K
m—1 n
[T 5 b TT i ) St By
j=1 Jj=m+1
Since
D3 br.wp (LR, | _ K" TDRIL| 2 Ry gy 7D
(m—1)/2 (n—m)/2 | — n ?
Ry Rt Recl |K| [Rnt1l |K]
R(k) =K R“‘) K
we see that
ki—1ky—1
1
=D D A8 0utir i) keend) (1o s f)s g,
i1=0 i,=0

where S(,....0,(i1,i2).k.....k) 1S a standard n-linear bi-parameter shift. The case of general
m1, my is analogous.
We turn to the terms T !

2 e . The terms ! 23 are symmetrical. Let

n+l,my mi,n+1
my € {1, ..., n}. After expanding P K2 ko | inthe slotmy we have that En-H o 2,2,,2
can be written as
ko—1
2.0 XX brapthg,
i»=0 K (12)2)=K2 Ri,....Rn+1
RP=k
J
mo—1 1 n
Kl
[T a{fms. v @hz) [T e
Jj=1 j=ma+1
moy—1 n
- l_[ fj +1><K2<fm2’ |Il | ® L2> 1_[ f/ II_HXI2 <fn+1’hRn+l)'
j= j=mo+1
This splits the difference En oy 2312 as
ky—1
1 2 . 1,2
z:nJrl,mz - 2:mz - Z z:mz,iz’
ip=0
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We fix one i; at this point.
Letg;f12 =g = (fj)%(2 forje{l,...,mp— 1},g31’§ ‘= 8my, = (fmy, hy2)2 and
g;’.” =g = (fj)?2 for j € {my + 1, ..., n}. Using this notation we have that the

term inside the brackets is ]_[ e ]_[;le (g)) I We write that
n n ki—1 n n
[T —TTeny, == [TTena, oo =TT, yore
j=1 j=1 i1=0 \j=1 j=1

Then, we write []" _1<gj>(11+ YD — H?zl(gj)(lrll+l)(il+l) as the sum

n mp—1 n
Z l_[<g/>(l,f+1)<il+‘)<A(I,}+.)("1“>gml>l,f+] 1_[ (gj>(]nl+|)(i1)-
mp=1 j=1 Jj=mi+1

Expanding

<A([nl+1)([1+l)gml>1:1+1 = {gm, h([nl+1)(il+l))(h(lr}+1)(i1+])>[nl+1

we get that [T, (g;) k1 — [T} (gj)InI_H equals

n mp—1 n
_Z 2 [T ena oo teme by o o) T @ar, yo-
i1=0m=1 j=1 j=mi+1
_ ki1—1 1,2
This identity splits Em i, further as Emz i =t 2= - o it ia

We fix some m| and 11 and consider the correspondlng term. For convenience of
notation we look at the case m| = m, =: m. There holds that

mm11 i Z Z Z bk, (R)h(l1 )<'1+1)xL2> | x12

K (12)i)=K2 Ri,....Rnt1
(k)

R]. =K
m—1
[T ookl v gy ez
,
[T Uidar e st g
j=m+1

This is seen as a standard shift once we reorganize the summation and verify the
normalization. We take (I; +1)(”+1) as the new “top cube” in the first parame-

ter ((In1 +l)(il+1) corresponds to (L' in the summation below). There holds that
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xh2 equals

m,m,iy,12

Crl g1l 2 2
> X )ORED DI DD DI AN 2N I

1 1y(k1—i1) — 1 — 2 2 2
KU h®=o=kt ), H)iw=L! K* L) D=K212 | .17 |

(H*)=k?

m—1 n
l_[<fj>(L1)<1)><K2<fm7h(L1)<1>><L2> l_[ (fj>L1X1JZ(fn+1,hRn+1),
j=1 Jj=m+1
where
CRILLLIY, K2 L2 02 D2
= 2 Z > brwpthanmae)y -
2 2
II """ n Il """ m 1 ImcL

([ )(kl) =K! (12)(k2) K2 (12)(k2)_K2

We have the estimate

|CK1vL]’1nl+1>K2vL2 EARRY |
- |(L1)(1)|n/2|[’}+1|1/2 |K2|(m71)/2|L2|1/2|13+1|(n7m+1)/2
- (DD |K2|"

Notice that the term in the first line in the right hand side is 241 "="/2 times the right
normalization of the shift, since in Em m.ir.in W€ have the cubes L! related to fj with
je{m+1,...,n}. Also, the terrn in the second line is almost cancelled out when
one changes the averages in ! into pairings against non-cancellative Haar
functions.

We conclude that for some C > 1 we have

m,m,iy,ip

C1wl2
C X iy = (50,..0,00,i2), (Lk2), .. (1K), i1 +1,k2) (1o -5 )y fat1)s

where S is a standard n-linear bi-parameter shift of the given complexity. The case of
general m1, my is analogous.
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Finally, we look at the term En o En -3 PR %4 which by definition is

> > bk

K Ri,..,Ru+1
RP -k
J
n
H ) K—Hm ek = [ Uik, (3.14)
j=1 j=1 j=1

+ [ R | (Frtrs hry)-
=1

Consider the rectangles K, Ry, ..., R, as fixed for the moment. There holds that

(fidk — H?}:l(fj>1'}+lx[(2 equals

ki—1 n
=2 D kg i)
i1=0m=1
. (3.15)
my— 1 n
l_[ (f])(]l )(11+1)XK2<fm1a (11 ])(11+1)® |K2|> l_[ <fj)(1nl+|)(il)XK2'
Jj=1 j=mi+1
Similarly, we have that — [T}_ (f}) k1 <2, F [Tj=i(fi) Ry, equals
ki—1 n
D D (hgy o)y
i1=0m=1
mip—1 112 n
l_[ {(Fida IR AN <fmw (l,pi+n @ 2 +1|> l_[ ff)(l,}+1)(i1)xl.12+1
Jj=1 n+1l j=m+1
(3.16)
Let gmu A (f./>211+1)(,~1+1) for j € {1, .. -1}, gm1 J1 (fnll,h(llg+l)(i1+l))l
and g’”l A1 (fj)(lll S for j € {m; +1,...,n}. The sum of (3.15) and (3.16) can
n+1

similarly be split as

ki—1ky—1 n

S5 Y g,
n

i1=0 iz=0 m,mr=1

" ) (3.17)
[T 47" Dz, oo tem™ gz, yasn) [T (67" M2, e
j= Jj=ma+1
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When one recalls the definition of the functions g"'" ‘I and writes this in terms of
the functions f;, one has that in the first parameter f; is paired with 1 PR /
|(Inl+1)(l1+l)| for j =1,...,m; — 1, fi,, with h(1y3+1)(i1+1) and f; with 1(1nl+|)(11)/
|(1L, )| for j = mi+1, ..., n.Each f;is paired similarly in the second parameter.
In the case m| = my =: m the summand in (3.17) can be written as

m—1

(R 1 +1i24+1) ) Ry l_[ (fi) e 1+t (fin h R i+1) 1_[ (fi RIL2): (3.18)
Jj=1

n+1 j=m+1
The splitting in (3.17) gives us the identity
ki—1ky—1 n
1 2 4 _ l ,2,3,4
2n+1,n+1 - En-l—l - n+1 +X Z Z Z ml,mz,il,iz'
i1=0 ip=0 m{,my=1

We fix some i; and i» and consider the case m| = my =: m. From (3.18) we see that

51234
X i, i Z Z Z CK.L Ry

K [ Gy—iykp—ip) — KR(l] ,i2) —L

n+1
m—1 n
[T an Fmhpan)y TT () etfarss hra),
j=1 j=m+1

where

CKLRiit = D DER)BLAD) Ry
Ri,....Ry
RY=k

The coefficient satisfies the estimate

|Rug1"/2  [LODI2|R, )12

1,1)((n—1)/2
|CK L, Rn+1| = |L(l 1)|1/2 - |L(1,l)|n |L | .

Thus, we see that C~ 2512,,1314 ;, is a standard n-linear bi-parameter shift. The com-

plexity of the shift is ((0,0),...,(0,0), (1, 1),..., (1, 1), G + 1,ip + 1)) with m
zeros. The case of general m and my is analogous. O

Bi-parameter Representation Theorem We set
o = (01,02 € ({0, )% x (10, 1), 07 = (0] )kez,

and denote the expectation over the product probability space by
Es = Es Es, = Eg,Eq, = // dPys, dPg,.
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We also set Dy = D(l) X D%, where Dé is the standard dyadic grid of R% . We use the
notation

Ii+o0; =1 + Z ZikO’ik, I; € D6
k:2=k<e(I;)

Given o = (01,07) and R = I} x I, € Dy we set

R4+o=U1+01)x(Ua+02) and Dy, ={R+o0: R €Dy} =7Dy xDg,.

Theorem 3.19 Suppose that T is an n-linear bi-parameter (wy, wy)-CZO, where w; €
Diniy ;. Then we have

(T(fh ) fn)v fl’H—l)

Cd,n
=CE, Y. > o1 0@ ) Viwo (fis - fa) far),

k=(ky,k>)eN? u=0

where

Vicu,o € {Qk, Stk k). (ki k2))s (QSky,tkaoka)s (S (ks .. k) ko s
defined in D, and if the operator does not depend on ki or ky then that particular
ki =0.

Proof We decompose

(T(flv"'vfn)’fn+1>
=B, Y (T(AR fir-os AR, f)s ARy frt1)

Ry,..., Rut+1
n+1
= > E > (T(AR f1s - AR, f)s ARy frr1)
Jisj2=1 Ry,..s Ryt

4&(11.1l )>e(1.}1) for i1 ji
5(1,.22)>e(1122) for ir# jo

+ E, Rem,,

where Ry, ..., Ryt1 € Dy = Dy, x Dy, for some o = (01, 02) and R; = Ijl X Ijz.
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The Main Terms For ji, j» we let

Ejlsjzya = Z <T(AR1f17 "-3ARnfn)’ ARn+lfn+1)'
R],---,Rn+1
z(1i11)>e(1}l)fori1#jl
CUR)>E(I}) for ia# 2

These are symmetric and we choose to deal with X, := %, ,41 +. After collapsing
the relevant sums we have

So= ) (TERSi Er St AR ER L) Epy Al o),

Rl’--erH»l
L(Ry)=--=L(Rny1)

where £(R;) := (e(l}), z(lf)) for R; = 1} X 1,2.
For R = I' x I? we define

hr=hp @hp, W% =% @h%, hp’=hp @hY and ' =% @by
Using this notation we write

(T(ER fis s ERyy fots A Epp fi) Epy s frst)

_ 0 0 1,0 0,1 n,n+1
- <T(tha . .’hRnfl’hRn)’hR ARlvuerH»l(f]’ LR} fn+1)’

n+l)

n,n+1 _ .+l . .
where AR]werhLI (ftseoos fur1) = ARl’m,Rn+] is defined in (3.9).

We have

+1 n,n+1 n,n+1 n,n+1

A"J’l — s _ s s 2

Riseos Ryt Rises Ryt TARSS AR i + IARS SR AT (3.20)
and
n,n+1 _( n,n+1 _pnntl )+An,n+l

2 2 = 2 2 2 2 2 2 -

LIXIE, L XTE LIXIE L XTE LIXIZ o DT LIXIZ e LT
(3.21)

Then, we further have that the difference of the first two terms in the right hand side
of (3.20) equals

+1 n,n+1 n,n+1 n,n+1
A" — A — A7 + A"
1 2 1 2 1 2 1 2 1 2 1 2
|: Ri,....Ryy1 LIXIE, DX TR0 SR ARES LDy e DX
+1 n,n+1
+ Anin 2 1 2 A 1,72 1y g2 .
11 X1r1+l""’ln+l ><171+l In ><InJrl"“’In ><In+l
(3.22)
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This gives us the decomposition

n,n+1 _ n,n+1
ARpiekyy = L1 )+ Alnlxlj+1 ..... Ihxa2 ) (3.23)
where inside the brackets we have the corresponding term as in (3.21) and (3.22).
The identity (3.23) splits =, into four terms T, = 2! + X2 + 23 + £2.
The Shift Case %) We begin by looking at $!, that is, the term coming from [ -] in
(3.23). Let us further define the abbreviation

._ 0 0 1,0y ;0,1
WR] ..... Rn+1 L (T(th"."hRn—l’hRn)’hR,H.])
> An,n+1 _pmntl _pnntl n,n+1
Ri....Ruy1 AR AT o X2 L) < I L2 T2
(3.24)
so that
! =
o = PRi,....Rns1+
Ry,..., Rn+1

L(Ry)==l(Rpy1)

If R = I' x I is a rectangle and m = (m',m?) € 79 x 7% then we define
I'dm' = I' + m'e(I") and R+m := (I'4m") x (I*4+m?). Notice that if I}! = 1}
for all i, j or Il.2 = IJZ forall i, j then @g, . Rr,,, = 0. Thus, there holds that

1 _ . .
ZG - Z Z (pR+m1 ~~~~~ R+my 41

my,..., mn+1eZd1 x 742 R
1 1 1
(m] ’“"mn+l)7é0’ mn=0

2 2 2
(my..comy  )F0, my =0

o0
= Z Z Z¢R—;—ml,.“,R—§—mn+1'
ky,ky=2 my,...,my 1 €291 x 72 R

max |m}|e(2kl’3,2kl’2], ml=0
2 ky—3 ~Hky—2 2
max |mj|€(2 270 2k, mn+1=0

As in [17] we say that I € D, is k-good for k > 2—and denote this by I €
Dy; good (k)—if I € Dy, satisfies

dd, 1%y > = 2k"2¢0(1). (3.25)

o [(k))
4
Notice that for all I € Df) we have

P({0i : I +0i € Do gooa(k)}) =27
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Next, we consider E, E}, and add goodness to the rectangles R. Recall that E, =
Eo Eq,. We write Dy go0d (k1, k2) := Doy g00d (k1) X Da,y,g00d (k2). There holds that

. . Y . .
EU Z (pR-i-ml ,,,,, R+myy1 — 2 EU Z (pR+m1,...,R+mn+1'
ReD, REDa,good (k1,k2)

Therefore, we have shown that

EoZy =2/C Y o120 ) Quko (fio - f)s fur1),  (3.26)
ki,ka=2

where

(le,kz(fla RN} f}’l)v fn+1>

1
= PRim R+m
Ca)1 2_k1 )(1)2(2_k2 Z Z Loeees n+1
( ) mp,..., m,H_]EZdl xZ% R€Dg good (k1,k2)
max \m}\€(2k1_3,2k1_2], m}1=0

2 ky—3 ~ko—2 2
max \mjle(Z 272 2k2==], mn_H_O

and C is a large enough constant.

Letmy,...,mup1and R = I'' x I? be as in the definition of Ok, .k,- The goodness
of the rectangle R easily implies (we omit the details, see [17]) that (R-m ;) *1:k2) =
R*vk) —: K forall j € {1,...,n + 1}. Recall the definition of PREmy .., REmpy
from (3.24). Therefore, to conclude that Qy, x, is a modified bi-parameter n-linear
shift it remains to prove the normalization

|R|(n+1)/2
K|
(3.27)

(T (KO K l,h“)

0.1 —k —k
. . . . < 1 2
iy e g S 0127 w27

Let us first assume that k; ~ 1 ~ k. Since mll # 0 and m% # 0 for some i and j we
may use the full kernel representation of 7' to have that the left hand side of (3.27) is
less than

n+l1
0
/wa K Gt xte o)l [ Ay, ().
j=1
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Applying the size of the kernel K this is further dominated by

1 n+1

n°, . Dy dx!
/]R("HM (Z" 1_[ Il+m;_(x]) X

lx! o — x| o j=1
j=1nt1 j /=

1 n+1 1

| 2 nda thmm 2 (x7) d? |]l|(n D2|12[0=D/2"
j=1 xn+1 xj ) J

X
R(+Ddy ( Z

Notice that this is the right estimate, since w; (27%) ~ 1 and |K | = |[R%1-%2)| ~ |R| =
112,

Suppose then that k1 and ky are large enough so that we can use the continuity
assumption of the full kernel K. Using the zero integrals of ;1 and /2 there holds
that the left hand side of (3.27) equals

2
‘/( o (K(xn+1,x1,...,xn) — K (g1, X1, .0, X1, (cp1, X37))
n 1

= K (s €)X )+ K (s €)1 Xt (g1 6))

x l_[hR i, GRS G, Congn) (3.28)

where c;i denotes the center of the corresponding cube. Here one can use the continuity
assumption of K which leads to a product of two one-parameter integrals which can
be easily estimated.

What remains is the case that for example k| ~ 1 and k; is large. This is done
similarly as the above two cases using the mixed size and continuity assumption of
K. This concludes the proof of (3.27) and we are done dealing with E, Z;.

The Partial Paraproduct Cases X2 and =2 Next, we look at the symmetric terms
E, X2 and E, =2 . We explicitly consider E, X2 here. Recall that X2 equals

2 : 1,0 0,1
<T(hRI"' hRn I’hRn)’hRn-H)
Rls---aRnJrl
L(R1)="=l(Rn+1)

+1 n,n+1
A , =AY

1y 72 .
{ I ><InJrl """ I)H»lXInJrl I ><In+1 """ I ><I}’t+1

Since the difference A'Illn';i 0o T A’; ':';12 I depends only on the
n+l2 n+17""n+1 n+l20 n+l

cube 1? 1 in the second parameter we can further rewrite this as
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2 0 0
2= | Z: (T @ 1. h)y ® Ly @), hn+l )
Il """ In 1’ I
(IhH=-=(1}, )
1
0 0,1
{H(fj,h | ® ”2 ) (g @ e ! B2

n—1

- 1_[<f/’ L ® |12|> <f"’h17% ® %><fn+l h(;11><12>]

Let us write the summand in (3.29) as ¢, INNIINEE By proceeding in the same way
A

as above with E, E}, we have that

E, 32 =2CEy Y an @7 (Qm(fi, - f)s fur), (3.30)

k=2
where

((Qr[)k(flv LR fn)’ fn+1>

1
I — E E Qg 1] 2.
CCU] (Z_k) I'+my,.. I mpyqq,1
meznthd 1'€Dg, gooa (k)
max |m;|e(2*3,252]  pop
my=0 2

The k-goodness of 7! implies that here (I!'4m;)® = (1")® =: K forall j. There-
fore, to conclude that (Qm)y is a modified partial paraproduct with the paraproduct
component in R% it remains to show that if we fix mj, ..., mp+1 and 1 I as in the
above sum then

®1Lhp®1), h%!

”((T(h (Il_;’_m”+l)><12>)12€'D{,2 ”BMO

® 17 h11+m
N |(n+l)/2 (3.31)

K|

I 4my

Sw (27 ky

We verify the above BMO condition by taking a cube /2 and a function ;> such that
ap =aplp,lap| < 1and [ap =0, and showing that

|(T(h R1,. h11+m L, hn®1), h(11+m " ® ap)|
| |(n+1)/2 (3.32)
— 10

|K | '

I'4m,

< w1275

~
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For a suitably large constant C (so that we can use the continuity assumption of the
kernel below) we split the pairing as

0 0 0 0
<T(h11-§—m1 &® l(Clz)"’ hll_;_mz & 1, ce ’hll-i-mn,l ® 1, hll ® l)a h(ll_;'_m"“) ®6112)
0 0 0 0
+(T(h1|+m1 ®1CI2,hI]+m2®1,...,h11+mn71 ®1,h11 ®1),h(1|+mn+l)®a12>.

(3.33)

Let us show that the first term in (3.33) is dominated by e (27%) 11| +D/2| 12| /| K 1|
We have two cases. The case that k ~ 1 is handled with the mixed size and continuity
assumption of K. The case that k is large is handled with the continuity assumption
of K. We show the details for the case k ~ 1. The other case is done similarly (see
also the paragraph containing (3.28)).

We assume that k ~ 1. Since a2 has zero integral the pairing that we are estimating
equals (by definition)

/ (K(xnﬂ,m, e Xn) — K (b, ep), Xy ..,xn))
R®n+Dd
n—1
0 1 1y7,0 1 2 2
< [1 M, DR @G, O ) ey (a2 (o) da.
j=1

The mixed size and continuity property of K implies that the absolute value of the last
integral is dominated by

1 n+1
0 1 1
nd) 1_[ hll-i-m1 (xj) dx
Jj=1

J

/R<n+1>d1 (Z

n 1 1
j=1 |xn+1 - X |>

2
|x; — cp2l 1
+1 1 2 2 2
X w) Licrzye ()1 2(x ) dx”.
/R(n+1)d2 <§ ?:1 lep2 — x12| ( N (c1%) n+

n
=1 lep2 — Xj|)

The integral related to R?! is dominated by |1'|~"=D/2,
Consider the integral related to R%. By first estimating that

2 2
lxyq —cp2l |x —cp2|
+1 1 n+l1 1
e I vl I s T
> it e — x| [z — xi]
with some work we see that the integral over R”*+D% is dominated by
2
|x —cp2| 1
/ / wy | = 5 5 dxf dx?, |
12 Jcre lcp2 —xil ) lepp — xi]42

~ (I 12|d2 ~ ~

2
lcp2 —xil ) e —x pard
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In conclusion, we showed that the first term in (3.33) is dominated by |11 ~(=D/2) 12,
which is the right estimate in the case k ~ 1.

We turn to consider the second term in (3.33). We again split it into two by writing
I = 1(¢p2ye + 1¢ 2 in the second slot. The part with 1 2)c 18 estimated in the same
way as above and then one continues with the part related to 1-,2. This is repeated
until we are only left with the term

0 0
<T(h1|+m ® ICIZ, ey hﬂ%mn_] ® ICIZ, hll ® ICIZ), h(I]“;’mnﬁ—l) ® 6112).
(3.34)
The estimate for this uses the partial kernel representations of 7. Again, we have the
two cases that either k ~ 1 or k is large. These are handled in the same way using

either the size or the continuity of the partial kernels. We consider explicitly the case
that k is large. Using the zero integral of #;1 we have that the above pairing equals

1 1 1 1 1
Kiotppan s Xps oo %) = K1 0.a0 (Xqq, X1s oo Cp1)
R<"+l)dl cr cr2-9; cr c12:9;

x thl+m QPR kg, Oy dats

Taking absolute values and using the continuity of the partial kernel leads to

1
lx, —cpil
C(ICIZ,...,ICIZ,CIIZ) wi n 2 1 1
R+Dd DGt gy — ;]

1 n+1
X n 1 1 nd; 11+m
(Zj:l |xn+1 —xj|> Jj=1

By assumption there holds that C(1¢2, ..., 12, ap2) S |I?| and the integral is
dominated by w Q=511 | +D/2| g 11" This concludes the proof of (3.32) and also
finishes our treatment of E, 32.

The Full Paraproduct 2+ Recall that

(x )dx

-
4
To= ZR TR Uy gy @ 1) 1y @k ) [T,
T1seees n+1 —
Z(R1)=~-=1Z(+Rn+1)
1 2, 1 1
(g o b g )

12,

which equals

Z (TA, ..., 1, hg1 ® 1), 1@ hg2)
R=K!xK?
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n—1

D wf b @ |11§22|><f”“’ |11511| ® hg2).

This is directly a full paraproduct as
(T(L,....Lhg1 @ D), 1 @ hg2) =(T{""(1, ..., 1), hg),

and so we are done with this term. Therefore, we are done with the main terms, and
no more full paraproducts will appear.
The Remainder Rem,, To finish the proof of the bi-parameter representation theorem
it remains to discuss the remainder term Rem,. Some of the weak boundedness type
assumptions are used here—but there is nothing surprising on how they are used and
we do not focus on that. We only explain the structural idea.

An (n + 1)-tuple (I{, ..., I, ) of cubes I;. € D, belongs to Z, if the following
holds: if j is an index such that Z(I]’:) < (I ,i) for all k, then there exists at least one
index ko % j so that £(1 ;:) =01 Iéo)' The remainder term can be written as

n+1

Rem, = ) > Y ATAR fio s AR ) ARy fat)
=1 Iy (R ER 7 28
Z(Ii )>K(1 )forl;éjl
n+l1
+y > > (TR five o ARy fa)s ARy far)
J2=1 I at,..1l ey,

‘3(1,-2)>f(12 ) fori#jp

+ D (TR AR S2)s ARy 1)

(111 n+l)EI‘7
(Uf el )€ Loy

where as usual R; = 1 [1 x I iz. Let us write this as

n+l n+l
Rem, = Z Rem}7 at Z Rem(zf A +Rem?7 .
ni=l1 j2=1

First, we look at the terms Rem(7 i and Rem(r i which are analogous. Consider for
example Rem! ont1- We further divide Zo, into subcollections by specifying the slots
where the smallest cubes are. For example, we consider here the part of the sum with
the tuples (17, ..., I2, ) such that €(/?) > €(I2) = £(I?, ) foralli =1,...,n—1.

By collapsing the relevant sums of martingale differences the term we are dealing with
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can be written as

Y (TERfioeo Ery fats ENAT f), ARy fugt). (3.35)

Ry,..., Rn+1
L(R)=L(R})

In the first parameter there is only one martingale difference and in the second param-
eter there are two (in the general case at least two). Thus, the strategy is that we will
write this in terms of model operators that have a modified shift or a paraproduct
structure in the first parameter and a standard shift structure in the second parameter.
We omit the details.

Finally, we consider Remg. This is also divided into several cases by specifying the
places of the smallest cubes in both parameters. For example, for notational conve-
nience we take the part where £(1}) = £(I}, ) < £(I')and €(1}) = €(I%)) < £(I})
foralli =2, ..., n. Notice that in general the places and the number of the smallest
cubes do not need to be the same in both parameters. After collapsing the relevant
sums of martingale differences the term we are looking at is

Eo Y AT(AR 1, ERyfa s ERy Su)s ARy ft1)- (3.36)

Ry,..., Rn+]
L(R)=L(R;)

Here we have two (in the general case at least two) martingale differences in each
parameter so this will be written in terms of standard bi-parameter n-linear shifts. We
omit the details. This completes the proof. O
Corollaries We indicate some corollaries—we start with the most basic unweighted
boundedness on the Banach range of exponents.

Proposition 3.37 Let p; € (1,00), j = 1,...,n+ 1, be such that anH I/pj =1

j=1
Suppose that Qy, is a modified n-linear bi-parameter shift. Then the estimate

n+1

HQk(f1s s f)s fur))l S ViV [T 110
j=I1

holds.
Suppose that (QS)i.; is a modified/standard shift (here k € {1,2,...} andi =
(i1, -+, in41)). Then the estimate

n+1

(@SN (fr oo fu)e S ) S VET 151,00

j=1
holds.

Proof We only prove the statement for the operator Q. This essentially contains the
proof for (QS).;.
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We assume Qy has the explicit form

=

(Qu(fis o fu)s fos) =y Y akwy | [ 1450 h%,) Hf,,h,llx,z

K Ri,..Ruy1 Jj=1
RM=
n n
—H(fj,h(,)}x,z Y+ [T h%y ) | (Fatts Ry
j=1 ' j=1

Using the notation (3.13) there holds that

n n+1 n
[T 0% = D> T1Pkis,GomDgay, Gama) fi. b ).
j=1 my,my=1 j:]

We do the same decomposition with the other three terms inside the bracket [ - |. This

splits [ - ] into a sum over m1, mo € {1, ...,n + 1}. Then, we notice that all the terms
in the sum with m; = n + 1 or my = n + 1 cancel out. Thus, we get a splitting
of (Ox(f1,.--, fn), fn+1) into a sum over my, my € {1, ..., n}. All the terms with

different m and m, are estimated separately.

In what follows—for notational convenience—we will focus on the case m; =
my =t m € {1,...,n}, and we define Dkl’kl(j,m)l)fd’kz(j,m) =: Dk (j, m).
The term in the splitting of (Qx(f1, ..., fu), fa+1) corresponding to m = m| = my
can be written as the sum

4

D Ui(fis s fa)s far),

i=1

where

U1(fis oo f)s T = D0 aK<R>1‘[ Di k(jsm) fjs W W fats ARy )s

and U, Uz and Uy are defined similarly just by replacing h%j, je{l,...,n}, by

K0 s K0 and hY , respectively.
1;:+1 12 11 I:%+1 R”“. p Y
Wlth some direct calculations it can be shown that for all i € {1, ..., 4} we have

n 1/2
Ui (St oo o)y fatt)] s/]_[ij <Z|MPK,<k11,k21>fm|2> Sp fat1-
j=1 K

J#m
(3.38)
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From here the estimate can be finished by Holder’s inequality, the Fefferman—Stein
inequality and square function estimates, see Lemma 2.4. O

Next, we look at the modified partial paraproducts. We will use the well known
one-parameter H'-BMO duality estimate

1/2
> larbi| < llapllsvo (Z b2 | ”) , (3.39)
1

L!

where the cubes I are in some dyadic grid.
Proposition 3.40 Let p; € (1,00), j = 1.....n+ 1, be such that Y-"*11/p; = 1.
Suppose (Qm )k is a modified n-linear parnal paraproduct Then the estimate

n+1

QT (f1 v fds Fur ) SVE T 151l
j=1
holds.
Proof We assume that ((Qm)r(f1, ..., fu), fus1) has the form

n

142 1 g2
0 K K
2 2 “K.ap n<fj’h1}®|1(2|> H<ff’ Iy ®|K2|> Ut Byt i)

1 1 =
K 11 """ In+1 j=1 j=1

aH®=k"

We decompose

n+l n

[1{788, © H82) = 5 [ (Do Gomsy = 155)

j=1 m=1 j=1

and similarly with the other term inside the bracket [ - ]. Notice that the terms with
m = n + 1 cancel out. Thus, we get a decomposition of ((Qm)(f1, ..., fu), fus1)
into a sum over m € {1, ..., n}. The terms with different m are estimated separately.

Fix one m. The term from the decomposition of ((Qm)x(f1, ..., fn), fu+1) related
tom is

2
D AU f)s Far),
i=1

where (U1(f1, ..., fu), fa+1) equals

3 Z aK(,)]"[< 1 o) F7. 1 |K2)fn+1, 1k} (34D
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and (Ua(f1, ..., fa), fa+1) is defined similarly just be replacing h(l)1, j=1,...,n,
J

with 29,
In+l
We consider U] first. From the one-parameter H'-BMO duality estimate (3.39) we

have that, with fixed K' and 111, el Ian, the sum over K2 of the absolute value of

the summand in (3.41) is dominated by

1/2
|Ir}+1|(n+l)/2 0 21y /
T/R Z(]‘[( by e £y @ S Ny | 5

o

"D 21 . 0 2 0
- |K1|n /]Rdz U M DKl’kl(],m)fj’h1}>]<SD2AK1’k1fn+lyh[r:H)l.

The sum of this over K and I, ..., I,:H such that (1})(") = K!is less than

i 12 12
/R T M v g | Do Py f)? D (Spalgi g fur)

i=1 1 1

Jm K K

(3.42)

Notice that the square function related to f;,1 is just the bi-parameter square function
Sp. To finish the estimate it remains to use the Fefferman—Stein inequality and square
function estimates, see Lemma 2.4.

The second term |(Uz(f1, ..., fu), fa+1)| satisfies the same upper bound (3.42),
and can therefore be estimated in the same way. The proof is concluded. O

The above, together with known estimates for standard operators, directly leads
to Banach range boundedness of n-linear bi-parameter (wi, w;)-CZOs with w; €
Diniq/;. We do not push this further in this paper. For state-of-the-art estimates
with genuinely multilinear weights (in the full multilinear range) see [31]. There
we recorded some of the estimates with Dini; using the above representation theorem
and the decomposition of modified operators in terms of standard operators.

We are unable to perform the estimates of [31] with the regularity Dini 1 However,
the linear case is special: the weighted estimates of linear modified model operators
with a bound depending on the square root of the complexity are easy. Notice that in
principle we have already done all the necessary work. For example, if we want to
estimate || Qk f || L» (w), we study the unweighted pairings (Qy f, g). Then, we proceed
as in the linear case of Proposition 3.37. Depending on the form of the shift this leads
us to terms corresponding to (3.38) such as

12
/(Z|MPK,(k11,kzl)f|2) Spg.
K
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By Holder’s inequality this is less than

1/2
" (Z |MPK,<k.1,k2nf|2) 15Dl L1 1"
K

L (w)

SRR ILran gl Ly v

Proposition 3.43 For every p € (1, o0) and bi-parameter A, weight w we have

10k Fllraw S Vivkall £l -

For completeness, we record the corresponding result for CZOs. Again, for multilinear
weighted estimates with the optimal weight classes see [31].

Corollary3.44 Let p; € (1,00), j = 1.....n+ 1, be such that Y *] 1/p; = 1.
Suppose that T is an n-linear bi-parameter (w1, @3)-CZ0, where w; € Diniy ;. Then
we have the Banach range estimate

n+l1

UT s s ) S T IS (3.45)

j=1
In the linear case n = 1 we have the weighted estimate

IT ey S I Lraw) (3.46)

whenever p € (1, 00) and w € A, is a bi-parameter weight.

4 Commutator Estimates

The basic form of a commutator is [b, T']: f +— bTf — T (bf). We are interested in
various iterated versions in the multi-parameter setting and with mild kernel regularity.

For a bi-parameter weight w € A(R% x R%) and a locally integrable function b
we define the weighted product BMO norm

1

2

”b”BMOpmd(w) — sup sup 1 Z |<b, ]’lR>|2 , (41)
D o |w@ H (),
RCQ

where the supremum is over all dyadic grids D' on R% and D = D! x D?, and over all
open sets 2 C RY := R% x R% for which 0 < w(£2) < 0o. The following theorem,
which is the two-weight Bloom version of [9], was proved in [29] with w; (1) = t%:.
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Theorem 4.2 Suppose that T; is a one-parameter w;-CZO, where w; € Diniz/,.
Let b: R — C, p € (1,00), u,A € Ap(Rd) be bi-parameter weights and
v = ul/PrA7P e Ay(R?) be the associated bi-parameter Bloom weight. Then we
have

LT, [T, D1 e uy—Lr ) S I1DIBMOpoa (1) -

Proof Let 1611BMOproa(v) = 1. We need to e.g. bound [[[Qk,, [Qk,, P11 f || Lr (1) for one-
parameter modified shifts (which have a similar definition as in the bi-parameter case).
It seems non-trivial to fully exploit the operators Q here and we content on splitting
the operators to standard shifts and bounding

ki ko
> WSk Sk PN e
J1=0j2=0
and other similar terms, where S, j, is a linear one-parameter shift on R% of complex-

ity (k;, ji). Reaching Dini; would require replacing this step with a sharper estimate.
On page 11 of [29] it is recorded that

I0Su1, 015 [Sus,va PN fllLr oy S (14 max(uy, v1))(1 +max(u2, v2)) || fll e (w)-

Interestingly, this part of the argument can be improved: there actually holds that

ISuyvs [Suzovns BIL ey < (1 4+ max(uy, v1)) Y2 (1 4+ max(uz, v2) Y2 £l Lr (-
“4.3)

We will get back to this after completing the proof. Therefore, we have
ki ko
D Sk i [k BULFllrgy S (kDY + k)21 £l Lr -
J1=0 j>=0

Handling the other terms of the shift expansion of [ Oy, , [ Ok, b]] similarly, we get

IQkys [Qkys I ey S (1 + k)21 4 k) fll e oy

Controlling commutators like [ Ok, , [, b]] similarly we get the claim.

We return to (4.3) now. Decompositions are very involved in the bi-commutator
case, and we prefer to give the idea of the improvement (4.3) by studying the simpler
one-parameter situation [b, S; ;], where

Sij=Y. > ak{f -hidhy

K 1O=y=K
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is a one-parameter shift on R and b € BMO(v);

1 |(b, hi)l
lIbliBMO) = b)1| ~ sup sup < 0.
v v(lo) ZD (

sup /|
ICRd cube V(I) D IeD ")1
I1Cly

Here we only have use for the expression on the right-hand side, which is the analogue
of the bi-parameter definition (4.1). However, it is customary to define things as on

the left-hand side in this one-parameter situation. The equivalence follows from the
weighted John—Nirenberg [34]

12
|b— (D)l ~  sup ( /I by 1*v~ ) . VEA.
ICR“ cube U(I) / ICR4 cube v(l)

Of course, one-parameter commutators [b, T'] can be handled even with Dinig, but
e.g. sparse domination proofs [25,26] are restricted to one-parameter, unlike these
decompositions. To get started, we define the one-parameter paraproducts (with some
implicit dyadic grid)

ALb, f) =) AIbALf, Ax(b, f) =) AbE[f and As(b, f) =) EibAsf.
1 1 1

By writing b = ) ;Arb and f = Y ; A;f, and collapsing sums such as
1Y, ;c; Asf = E;f, we formally have

bf = ZAle1f+ZA1bAJf+ZA1bAJf ZAk(b -
1CJ JCI k=1

We now decompose the commutator as follows

(b, Sij1f =bSijf = Sij(bf)

2 2
= ZAk(b, Sijf)— Zsi,j(Ak(lL ) +[A30, Si i f) — Si j(Az(b, f))].

k=1 k=1

We have the well-known fact that [|Ax (b, Hlizroy S I10IIBMow Il fllLrw for k =
1, 2—this can be seen by using the weighted H !-BMO duality [37] (witha; = (b, hj))

, (4.4)
L)

(Z'b" ”')1/2

> larllbrl S @ lsmow)
1
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where

D=

1 laj|?
ltapllBMOW) = sup | ——
v loeD U(I()) ;D <\))]
I1Cly

Combining this with the well-known estimate [|.S; ; fllLrw) S IIfllLrw) forall w e
A it follows that

2 2
D A, i)=Y Si i (Akb, )

k=1 k=1

S lIblisBMow I fllLe o) -
LP(A)

The complexity dependence is coming from the remaining term

A3(b, Si i f) = Sij(Asb, Y=Y > [bhy— (B)larsk (f, hidhy.

K 1O=yj)=K
There are many ways to bound this, but the following way based on the H'-BMO

duality—and executed in the particular way that we do below—gives the best depen-
dence that we are aware of:

A3, Si i f) — Si.j(A3(b, ) ILrey < (14 max(i, 1))Y?bIsmow)ll £l (-

We write

(byg — (b1 =)y — (b)k] = [b)1 — (b)k].

where we further write

(byy— (b)k = Y, (Arb)y= Y (b,hr)(hL)s,

JCLCK JCLCK

and similarly for (b); — (b)x. We dualize and e.g. look at

o> D e kel slarsk I R E )

K 1O=jl)=k JCLCK

=Y > U@L DT lank U R g )
K

LCK 1O=y=Kg
L(L)>2774(K) JCL
2, 1/2
1L
§||b||BMo<V)Z/ > P D akl(f Rl k)l v,
K ° LCK 1O—gh—g
L(L)>277E(K) JCL
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where we used the weighted H'-BMO duality. Here

1
> |am||<f,h1>||<g,h1>|s—/ |AK,,-f|/|AK,,,~g|,
K| Jk L

1O=y=Kg
JCL

and we can bound

1/2

S/ X wscimitscen | v
K

LCK
(L)>277 0(K)

<7 Y [ Ak sk 00
K

1/2 1/2
<j'? (Z |MAK,if|2) <Z |MAK,jg|2>

K Lol N K LGP

:1/2
SN e gollgl o ga-ry-

We are done with the one-parameter case—the desired bi-parameter case can now be
done completely similarly by tweaking the proof in [29] using the above idea. O

Remark 4.5 The previous way to use the H'-BMO duality was to look at

S AehILITE T a8 B
K

LCK [1O=yW=g
L(L)=2""¢(K) JcL

where/ =0, ..., j — 1is fixed, and to apply the H'-BMO duality to the whole K, L
summation. With / fixed this yields a uniform estimate, and there is also a curious
“extra’ cancellation present—we can even bound

1
Y larskl(f Rl k)l Sﬁ/ |AK,if|/ g,
1O—jh—g K L
JCL

that is, forget the Ak ; from g. Then it remains to sum over / which yields the depen-
dence j instead of j!/2. The way in our proof above is more efficient and we see that
we utilize all of the cancellation as well.

Remark 4.6 An interesting question is can we have « = 1 instead of « = 3/2 by
somehow more carefully exploiting the operators Q;—this would appear to be the
optimal result theoretically obtainable by the current methods.

We also note that it is certainly possible to handle higher order commutators, such
as, [T, [T2, [b, T5]11.
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We will continue with more multi-parameter commutator estimates — the difference
to the above is that now even the singular integrals are allowed to be multi-parameter.

For a weight w on R? := R% x R% we say that a locally integrable function
b: R? — C belongs to the weighted little BMO space bmo (w) if

1
b = b— (b ,
el = sup — /R b — (B)g| < oo

where the supremum is over rectangles R = I'' x 1> ¢ R?. If w = 1 we denote the
unweighted little BMO space by bmo. There holds that

16]lbmo(w) ~ max ( esssup [|b(x1, -)[IBMOw(x1,))s €8 sup [|b(-, x2) IBMOw(-,x2)) | »
x1eR91 xoeR®2

4.7

see [19]. Here BMO(w(x1, -)) and BMO(w(:, x2)) are the one-parameter weighted
BMO spaces. For example,

1
1b(x1, )lIBMOw(x,)) = S}lzp L] /12 [b(x1, y2) — (b(x1, -)) 2| dy2,

where the supremum is over cubes 12 C R%.

The following theorem was proved in [28] with w; () = ¢%. The first order case
[b, T] appeared before in [19]. See also [29] for the optimality of the space bmo(v 1/ my
in the case by = --- = b,, = b.

Theorem4.8 Let p € (1,00), u,A € A, be bi-parameter weights and v :=
w'/Pr=1P Suppose that T is a bi-parameter (w1, @3)-CZO and m € N. Then we
have

m
b, -2, [b1, TN+ - Mlr ey S 1_[ 15i llomow1/m)
i=1

if one of the following conditions holds:

(1) T is paraproduct free and w; € Diniy 211;
(2) m = 1and w; € Diniz);
(3) w; € Dinij;41.

Proof The proof is similar in spirit to that of Theorem 4.2. We use Lemma 3.11 and
estimates for the commutators of the usual bi-parameter model operators. If we use
the bounds from [28] directly, we e.g. immediately get

Wb, - - - (b2, [D1, Oy 11+ - MLpy— L2 ()

m
4.9)
S (U4 kD) (1 + k) (1 + max(ky k)™ T T 15 lpmogut/m)-

i=1
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Similarly, we can read an estimate for all the other model operators from [28]. This
gives us the result under the higher regularity assumption (3). Indeed, when using the
estimate (4.9) in connection with the representation theorem one ends up with the
series

DY 1@ w27 (1 + k) (1 + ko) (1 + max (k. ko)™
k1=0 k=0

We split this into two according to whether k1 < kp or k1 > k> and, for example, there
holds that

o oo o
Do +k) Y @)U+ k)" S D 017+ k)llw2Ibini,,
k1=0 ky=k k1=0

S ot IDini; o2 | Diniyey; -

The first order case m = 1 with the desired regularity (assumption (2)) follows as
the papers [1,2,19] dealing with commutators of the form [T, [T>, . .. [b, T¢]]], where
each T; can be multi-parameter, include the proof of the first order case with the H'-
BMO duality strategy. And this strategy can be improved to give the additional square
root save as in Theorem 4.2.

For m > 2 the new square root save becomes tricky. The paper [28] is not at all
based on the H'-BMO duality strategy on which this save is based on (see the proof
of Theorem 4.2). We can improve the strategy of [28] for shifts. Thus, we are able to
make the square root save for paraproduct free 7 (assumption (1)). By this we mean
that (both partial and full) paraproducts in the dyadic representation of 7' vanish, which
could also be stated in terms of (both partial and full) “7'1 = 0” type conditions. The
reader can think of convolution form SIOs.

We start considering [b2, [b1, S;]], where i = (i1,12), i; = (i}, iz) and S; is a
standard bi-parameter shift of complexity i. The reductions in pages 23 and 24 of [28]
(Sect. 5.1) give that we only need to bound the key term

U fe) =" > ak kg [b1) R — (b1 RB2) R, — (b2) R (S BRy)(E s),s
K Ri,R»

()
R;" =K

where as usual K = K! x K% and R; = I} X IJZ.
We write

(iR, = bi) Ry = [bi)Ry — (bi) g1 2] + Ubi) g1 12 — (bi) K]
+Ubidk = bidgr 21 + Ui g1z — (bid Ry 1-

This splits U b1.b2 into 16 different terms U,Z]l’,l;ﬁz, where m; € {1, ..., 4} tells which
one of the above terms we have for b;. These can be handled quite similarly, but there
are some variations in the arguments. We will handle two representative ones.
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We begin by looking at the term

(U357 F.8) =3 Y arrirlb) g2 = (b1 KIB2)R,
K Ri,R»

R('f) K

= b2dgrs 2 IF S iRy )(8s Py)-

Write
b — Bk = Y (Bpbige
7CL2CK?
(4.10)
- b, K @ hpa )
2 Zz 2< |K1| - -
I}CL2CK
and
1,2
B)ry — b2 p = D (Bpbpdp= Y (bz,hU@' |>(hu)
1'crick! 1'cLick! It

12
Writing (bl, % ® hLz) fRdl (b1, hLZ)z |K1 and similarly for (bz, hijt ® ”2') we

arrive at

/dZ S Kb kg2l by, kgL
R L= L1><L2CK
QLy>2" 1((1(1)

1K1 112
> |aK,R|,Rz(f,hR1>(g,th>|mm-
R}il):R;iz):K 1
RiCL
The last line can be dominated by
1 2 Lk
[L"|{M AK,i1f>L',1(|AK,izg|)KW1L2

We have now reached the term

11 _
[ 0akagheis X (gl
Re F [K* ok
E(L2)>2_i12£(K2)
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Do b hp LM Ak -
L]CK11
oLYHY>27 ek

Recall that with fixed x we have b(-, x2) € BMO(v!/2(-, x)), see (4.7). By weighted
H'-BMO duality we now have that

ST b2 hp i ) ILHMP Ak iy £ (x2)
LICl(ll
(LhH>27rekh

5 ||b2||bm0(v1/2) /

R4
1/2

> IpDUMPAK Fpa)® | v o x)dy
L‘cKl]
(LYHY>2"1¢k Y

< D102 lomoqiy K UM MP Ak i, f - v %) g1 1 (x2).

The term (i})1/2||b2||bmo(ul/z) is fine and we do not drag it along in the following
estimates. We are left with the task of bounding

/Rd Z('AK,ingKlKl Z |<bl»hL2>2||L2|_1/21L2
K

chlgz
2L)>27"T0(K?)
MY M 'M?Ag i, f 0.

We now put the fRdz inside and get the term
/d LM (M M? Ak f -0 = I MY (M MP A, f 01 ) 2.
R%2

Then, we are left with

/d E (|IAk,iglh Kk 1k E (b1, hy2)2||L|1?
R4
K

L2c1<22
0(L2)>2"Te(k?)

(M M'M?*Ag i, f -0 2.
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By weighted H'-BMO duality we have analogously as above that

Yo M IR M M M Ak f v
chKz2
(L>2""Te(k?)

< (i12)1/2||b1||bm0(v1/2) /Rd IKZMZM](MIMZAK,i]f . v1/2)v1/2.
)

1/2

Forgetting the factor (i f) 1611lbmo(v1/2)> Which is as desired, we are then left with

/d D Akig)klkM* M (M M? Ak, f - v/
R
K

< / oMM M M Ak, f 07 MM Ak g0
R4
K

1 1 1
Writing v2 = 1% A% - A~ 7 we bound this with

1/2
'l (Z[M2M1(M1M2AKJ1 f- vl/z)]2>
K

Lp(ul/ZAI/Z)

multiplied by

1/2
<Z[M1M2AK,i2g]2>
K

L”/(Xl_”/)

It remains to use square function bounds together with the Fefferman—Stein inequality.
For the more complicated term with the function f the key thing to notice is that first
w1232 € A, and then that vP/2 /2312 = 1. We have controlled (U;'A;bzf, g).

The bound for (U172 f g) follows by handling the other similar terms U,’,’,ll’,}i,%z.

There is a slight variation in the argument needed, for example, in the following term

U2 Fo8) =" D ak. R kLB R = (b1) 12 11(B2) R,
K Ri,R>

R;ij):l(

= b2 grs 2 ICf s Ry )85 Pgy)-
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We expand the differences of averages as

[b1) R, = (b1) g1y 21UD2) R, — (D2) g1 2]

-y X hU1®|12|>(hU1> (2 @ =

LCU'cK!' I CVIck!

Ny,

15

The key difference to the above term Ué’ ‘4’}’2 is that we need to further split this into

two by comparing whether we have V! ¢ U! or U! C V. The related two terms are
handled symmetrically. The absolute value of the one coming from “V! ¢ U!” can
be written as

L], X ¥

U cK1
L(uh>2” ’21(1(‘)
o b kg GNU T (o, By )i () [V
vicuy!
(V=272 4k
12(x2) 1,2(y2)
> > |aK‘R1,R2<f,hR.><g,hR2>||21—2| |212| :
(111)01'):(121)05):,(1 (Ilz)(i%>=(122)(i§>=,<z 2 2

1 1
Hcv

The last line can be dominated by

| 12(x2)
(akia SRV Y0 (18knghvig =5 )
(122)0‘%):1(2
Using the weighted H'-BMO duality as above we have
1,1/2 )
Lo X e GollV I8k izl dra
a2

VICUII
ovhH=2"2¢k"h

< (1) 2102 llmo i) U N Z (M M? Ak 1pg - ') 1 g2

Forgetting the factor (izl)l/ 2|by lbmo(v1/2y We have reached the term

LS 08kasie X 1g X Menhgnlio'2
2K

(12D =x? Ulck!
LUYH>2""2¢(k"

(M'M*Ag g v gz
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which—after using the H L.BMO duality—produces (izl)l/ 2|16y lbmo(v1/2y multiplied
by

/d D Ak kM MM M Ak j,g - v )11k
R
K

Similarly as with Ué’ ‘4’b2, this term is under control. The term with U! C V! is
symmetric, and so we are also done with U lb 11,bz_
This ends our treatment of U ”l'bz, since the above arguments showcased the

only major difference between the various terms U,l,y,ll’f,’ﬁz. Thus, we are done with
[b2, [b1, Si]1]. By Lemma 3.11 we conclude that

2
b2, (61, Oky o MlLr(y—Lry S (1 + k1) (1 + ko) (1 + max(ky, k2)) ]_[ 15i lbmovi/2)-

i=1

By handling the higher order commutators similarly, we get the claim related to
assumption (1). We omit these details. O

Remark 4.11 The new square root save from the H'-BMO arguments reduces the
required regularity from m + 1 to m/2 4 1. In these higher order commutators this
is more significant than the save that could theoretically be obtained by not using
Lemma 3.11. This could change the +1 to +1/2.

Theorem 4.2 involves only one-parameter CZOs in its estimate

ILT1, [ T2, D1 e (uy—Lr ) S I1DIIBMOproa(v) s

while the basic estimate

1D, T Lrgoy—rr) S 181bmo)

of Theorem 4.8 involves a bi-parameter CZO T'. A joint generalization—considered
in the unweighted case in [36]—is an estimate for

[T, [T2, ...[6, TiI I Lr - LP (1) »

where each 7; can be a completely general m-parameter CZO. Then the appearing
BMO norm is some suitable combination of little BMO and product BMO. See [1,2]
for a fully satisfactory Bloom type upper estimate in this generality —however, only for
CZOs with the standard kernel regularity. The general case of [1,2] is hard to digest,
but let us formulate a model theorem of this type with mild kernel regularity.

Theorem 4.12 Let R? = H?:l R% be a product space of four parameters and let
T = {11,15}, where I = {1,2} and I, = {3, 4}, be a partition of the parameter
space {1, 2,3, 4}. Suppose that T; is a bi-parameter (w1 i, w2,;)-CZO on njeI,- RY,
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where wj ; € Dinizs. Let b: RY - C, pe(l,00), u,r € Ap(Rd) be 4-parameter
weights and v = /P x=1/P be the associated Bloom weight. Then we have

ILT1, [T2, b1 2P - L2y S 1PllbmoZ (1)
Here bmo” (v) is the following weighted little product BMO space:

”b”bmoz(v) = sup ”b”BMOgmd(V)’
it

where u = (u,~)i2:1 is such that u; € Z; and BMogmd(v) is the natural weighted
bi-parameter product BMO space on the parameters u. For example,

121l gp003 () = sup  [16(, x2, 5 X4) BMOprog (v(-,x2,-,x4))
prod X2 eR% X4 eR%

where the last weighted product BMO norm is defined in (4.1).

The proof is again a combination of Lemma 3.11 with the known estimates for the
commutators of standard model operators [1,2]. However, there is again the additional
square root save. There are no new significant challenges with this, which was not
the case with Theorem 4.8 above, since these references are completely based on the
H'-BMO strategy. In this regard the situation is closer to that of Theorem 4.2.
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