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Abstract
This paper is concerned with the behavior of twisted Ruelle zeta functions of compact
hyperbolic manifolds at the origin. Fried proved that for an orthogonal acyclic rep-
resentation of the fundamental group of a compact hyperbolic manifold, the twisted
Ruelle zeta function is holomorphic at s = 0 and its value at s = 0 equals the
Reidemeister torsion. He also established a more general result for orthogonal rep-
resentations, which are not acyclic. The purpose of the present paper is to extend
Fried’s result to arbitrary finite dimensional representations of the fundamental group.
The Reidemeister torsion is replaced by the complex-valued combinatorial torsion
introduced by Cappell and Miller.
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1 Introduction

Let X be a d-dimensional closed, oriented hyperbolic manifold. Then there exists
a discrete torsion free subgroup � ⊂ SO0(d, 1) such that X = �\H

d , where
H

d = SO0(d, 1)/SO(d) is the d-dimensional hyperbolic space. Every γ ∈ � \ {e}
is loxodromic and the �-conjugacy class [γ ] corresponds to a unique closed geodesic
τγ . Let �(γ ) denote the length of τγ . A conjugacy class is called prime if γ is not
a non-trivial power of some other element of �. Let χ : � → GL(Vχ ) be a finite
dimensional complex representation of � and let s ∈ C. Then the Ruelle zeta function
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R(s, χ) is defined by the following Euler product

R(s, χ) :=
∏

[γ ]�=e
[γ ]prime

det
(
Id−χ(γ )e−s�(γ )

)
. (1.1)

The infinite product is absolutely convergent in a certain half plane Re(s) > C and
admits a meromorphic extension to the entire complex plane [11,31]. The Ruelle zeta
function is a dynamical zeta function associated to the geodesic flow on the unit sphere
bundle S(X) of X . There are formal analogies with the zeta functions in number theory
such as the Artin L-function associated to a Galois representation. Analogues to the
role of zeta functions in number theory, one expects that special values of the Ruelle
zeta function provide a connection between the length spectrum of closed geodesics
and geometric and topological invariants of the manifold.

In [10], Fried has established such a connection. To explain his result we need
to introduce some notation. Recall that a representation χ is called acyclic, if the
cohomology H∗(X , Fχ ) of X with coefficients in the flat bundle Fχ → X associated
to χ vanishes. Let χ be an orthogonal acyclic representation. Then Fχ is equipped
with a canonical fiber metric which is compatible with the flat connection. Let �k,χ

be the Laplacian acting in the space �k(X , Fχ ) of Fχ -valued k-forms. Regarded as
operator in the space of L2-forms, it is essentially self-adjoint with a discrete spectrum
Spec(�k,χ ) consisting of eigenvalues λ of finite multiplicity m(λ). Let ζk(s;χ) =∑

λ∈Spec(�k,χ ) m(λ)λ−s be the spectral zeta function of�k,χ [30]. The series converges
absolutely in the half plane Re(s) > d/2 and admits a meromorphic extension to the
complex plane, which is holomorphic at s = 0. Then the Ray–Singer analytic torsion
T RS(X , χ) ∈ R

+ is defined by

log T RS(X , χ) := 1

2

d∑

k=1

(−1)kk
d

ds
ζk(s;χ)

∣∣
s=0, (1.2)

[28]. Now we can state the result of Fried [10, Theorem 1]. He proved that for an
acyclic unitary representation χ the Ruelle zeta function R(s, χ) is holomorphic at
s = 0 and

|R(0, χ)ε| = T RS(X , χ)2, (1.3)

where ε = (−1)d−1 and the absolute value can be removed if d > 2. If χ is not
acyclic, but still orthogonal, R(s, χ) may have a pole or zero at s = 0. Fried [10] has
determined the order of R(s, χ) at s = 0 and the leading coefficient of the Laurent
expansion around s = 0. Let bk(χ) := dim Hk(X , Fχ ). Assume that d = 2n+1. Put

h = 2
n∑

k=0

(n + 1 − k)(−1)kbk(χ).
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Then by [10, Theorem 3], the order of R(s, χ) at s = 0 is h and the leading term of
the Laurent expansion of R(s, χ) at s = 0 is

C(χ) · T RS(X , χ)2sh, (1.4)

where C(χ) is a constant that depends on the Betti numbers bk(χ). In [13, p. 66]
Fried conjectured that (1.3) holds for all compact locally symmetric manifolds X and
acyclic orthogonal bundles over S(X). This conjecture was recently proved by Shen
[29].

Let χ be a unitary acyclic representation of �. Let τ(X , χ) be the Reidemeister
torsion [25,28]. It is defined in terms of a smooth triangulation of X . However, it
is independent of the particular C∞-triangulation. Since χ is acyclic, τ(X , χ) is a
topological invariant, i.e., it does not depend on the metrics on X and in Fρ . By [8,24]
we have T RS(X , χ) = τ(X , χ). Assume that d is odd. Then (1.3) can be restated as

R(0, χ) = τ(X , χ)2. (1.5)

This provides an interesting relation between the length spectrum of closed geodesics
and a secondary topological invariant.

Another class of interesting representations arises in the following way. Let G :=
SO0(d, 1). Let ρ be a finite dimensional complex or real representation of G. Then
ρ|� is a finite dimensional representation of �. In general, ρ|� is not an orthogonal
representation. However, the flat vector bundle Fρ associatedwith ρ|� can be equipped
with a canonical fiber metric which allows the use of methods of harmonic analysis
to study the Laplace operators �k,ρ . Put

R(s, ρ) := R(s, ρ|�).

The behavior of R(s, ρ) at s = 0 has been studied by Wotzke [35]. Let θ : G → G be
the Cartan involution of G with respect to K = SO(d). Let ρθ := ρ ◦ θ . Also denote
by T RS(X , ρ) the analytic torsion of X with respect to ρ|� and an admissible metric
in Fρ . Assume that ρ is irreducible. If ρ � ρθ , then the cohomology H∗(X , Fρ)

vanishes [2, Chapt. VII, Theorem 6.7]. Moreover, in this case Wotzke [35] has proved
that R(s, ρ) is holomorphic at s = 0 and

|R(0, ρ)| = T RS(X , ρ)2. (1.6)

If ρ ∼= ρθ , then R(s, ρ) may have a zero or a pole at s = 0. Wotzke [35] has also
determined the order of R(s, ρ) at s = 0 and the coefficient of the leading term of
the Laurent expansion of R(s, ρ) at s = 0. As in (1.4) the main contribution to the
coefficient is the analytic torsion.

Let τ(X , ρ) be the Reidemeister torsion [25] of X with respect to ρ|� . Assume
that ρ is irreducible and ρ � ρθ . As mentioned above, the cohomology H∗(X , Fρ)

vanishes in this case and therefore, τ(X , ρ) is independent of the metrics on X and in
Fρ . By [25, Theorem 1] we have T RS(X , ρ) = τ(X , ρ). Thus (1.6) can be restated
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as

|R(0, ρ)| = τ(X , ρ)2. (1.7)

This equality has interesting consequences for arithmetic subgroups �. Assume that
there exists a �-invariant lattice Mρ ⊂ Vρ . Let Mρ → X be the associated local
system of free Z-modules of finite rank. The cohomology H∗(X ,Mρ) is a finitely
generated abelian group. If ρ� is acyclic, H∗(X ,Mρ) is a finite abelian group. Denote
by |Hk(X ,Mρ)| the order of Hk(X ,Mρ). By [8, (1.4)], [1, Sect. 2.2], τ(X , ρ) can
be expressed in terms of |Hk(X ,Mρ)|, k = 0, . . . , d. Combined with (1.7) we get

|R(0, ρ)| =
d∏

k=0

|Hk(X ,Mρ)|(−1)k+1
. (1.8)

This is another interesting relation between the length spectrum of X and topological
invariants of X .

For arithmetic subgroups � ⊂ G, representations of G with �-invariant lattices in
the corresponding representation space exist. See [1,20].

The main purpose of this paper is to extend the above results about the behavior
of the Ruelle zeta function at s = 0 to every finite dimensional representation χ of
�. To this end we use a complex version TC(X , χ) of the analytic torsion, which was
introduced byCappell andMiller [7] andwhich is closely related to the refined analytic
torsion of Braverman and Kappeler [3]. It is defined in terms of the flat Laplacians
�

�
k,χ , k = 0, . . . , d, which are obtained by coupling the Laplacian �k on k-forms

to the flat bundle Fχ (see Sect. 2 for its definition). In general, the flat Laplacian

�
�
k,χ is not self-adjoint. However, its principal symbol equals the principal symbol

of a Laplace type operator. Therefore, it has good spectral properties which allows to
carry over most of the results from the self-adjoint case. The Cappell–Miller torsion
TC(X , χ) is defined as an element of the determinant line

TC(X , χ) ∈ det H∗(X , Fχ ) ⊗ (det H∗(X , Fχ ))∗.

For an acyclic representation TC(X , χ) is a complex number and

|TC(X , χ)| = T RS(X , χ)2, (1.9)

where TC(X , χ) is the Ray–Singer analytic torsion with respect to any choice of a
fiber metric in Fχ . Since χ is acyclic, T RS(X , χ) is independent of the choice of the
metric in Fχ .

Let V k
0 be the generalized eigenspace of �

�
k,χ , k = 0, . . . , d, with generalized

eigenvalue 0. Let d∗,�
χ be the coupling of the co-differential d∗

χ : �∗(X) → �∗(X) to

the flat bundle Fχ . Then (V ∗
0 , dχ , d∗,�

χ ) is a double complex in the sense of [7, §6].
Let

T0(X , χ) ∈ det H∗(X , Fχ ) ⊗ (det H∗(X , Fχ ))∗. (1.10)
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be its torsion [7, §6]. We note that TC(X , χ) and T0(X , χ) are both non-zero elements
of the determinant line det H∗(X , Fχ ) ⊗ (det H∗(X , Fχ ))∗. Hence there exists λ ∈ C

with TC(X , χ) = λT0(X , χ). Set

TC(X , χ)

T0(X , χ)
:= λ.

Put

hk := dim V k
0 , k = 0, . . . , d. (1.11)

Furthermore, let d = 2n + 1 and put

h := 2
n∑

k=0

(n + 1 − k)(−1)khk (1.12)

and

C(d, χ) :=
d−1∏

k=0

d−1∏

p=k
p �=n

(2(n − p))(−1)khk . (1.13)

Then our main result is the following theorem.

Theorem 1.1 Let χ be a finite dimensional complex representation of �. Let h be
defined by (1.12). Then the order of the singularity of R(s, χ) at s = 0 is h and

lim
s→0

s−h R(s, χ) = C(d, χ) · T
C(X , χ)

T0(X , χ)
. (1.14)

As above there is a combinatorial formula. Let τcomb(X , χ) ∈ det H∗(X , Fχ )⊗
det H∗(X , F∗

χ ) be the combinatorial torsion defined by Cappell and Miller [7, Sect.
9], which is defined in terms of a triangulation of X , but is independent of the choice
of the triangulation. An equivalent definition is as follows. For a unimodular com-
plex representation ρ of �, one can define a complex valued Reidemeister torsion
τC(X , ρ) ∈ det H∗(X , Fρ) [9, §3]. See also Sect. 6.1. Now let χ∗ be the contragre-
dient representation to χ . The representation χ ⊕ χ∗ is unimodular and therefore, the
complex Reidemeister torsion τC(X , χ ⊕χ∗) ∈ det H∗(X , Fχ ⊕ F∗

χ ) is well defined.
Then by [5] it follows that with respect to the canonical isomorphism

det H∗(X , Fχ ) ⊗ det H∗(X , F∗
χ ) ∼= det H∗(X , Fχ ⊕ F∗

χ )

we have τcomb(X , χ) = ±τC(X , χ ⊕ χ∗). By [7, Theorem 10.1] we have
TC(X , χ) = τcomb(X , χ). Thus we can restate Theorem 1.1 as

lim
s→0

s−h R(s, χ) = C(d, χ) · τcomb(X , χ)

T0(X , χ)
. (1.15)
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If χ is acyclic, then TC(X , χ), T0(X , χ) and τcomb(X , χ) are complex numbers and
on the right hand side of (1.14) and (1.15) appear quotients of complex numbers.

Now we apply Theorem 1.1 to representations of � which are restrictions of
representations of G. Denote by Rep(G) the space of finite dimensional complex
representations of G. Then we have

Corollary 1.2 Let ρ ∈ Rep(G) be irreducible and assume that ρ � ρθ . Then R(s, ρ)

is holomorphic at s = 0 and

R(0, ρ) = C(d, ρ) · T
C(X , ρ)

T0(X , ρ)
. (1.16)

Using (1.6) and (1.9), it follows that

|T0(X , ρ)| = C(d, ρ). (1.17)

Let d = 3. Then H
3 ∼= SL(2, C)/SU(2). For m ∈ N let ρm : SL(2, C) →

SL(Sm(C2)) be the m-th symmetric power of the standard representation of SL(2, C)

on C
2. For a compact, oriented hyperbolic 3-manifold X = �\H

3 and the represen-
tations ρm , m ∈ N, Corollary 1.2 was proved by Park [27, (5.5)]. He also determined
the constant C(3, ρm) and |T0(X , ρm)|. By [27, Prop. 5.1] we have

h0 = 1 and |T0(X , ρm)| = 2, if m is even

h0 = 0 and T0(X , ρm) = 1, if m is odd.
(1.18)

Moreover C(3, ρm) = (−4)h0 . The order h of R(s, ρm) at s = 0 is zero. Thus by
(1.12) we have h1 = 2h0. Note that ρm is acyclic. Let �k,ρm be the usual Laplacian
in �k(X , Fρm ) with respect to the admissible metric in Fρm . Then for m ∈ N even we
have

ker�k,ρm = 0, ker��
k,ρm

�= 0, k = 0, . . . , (1.19)

which shows that for acyclic representations χ , in general, the flat Laplacian �
�
k,χ

need not be invertible.
Againwe can replace TC(X , ρ) in (1.16) by the combinatorial torsion τcomb(X , ρ).

Using (1.16) we get

R(0, ρ) = C(d, ρ) · τcomb(X , ρ)

T0(X , ρ)
. (1.20)

Since G is a connected semi-simple Lie group and ρ a representation of G, it
follows from [25, Lemma 4.3] that ρ is actually a representation in SL(n, C). Thus
ρ|� and ρ∗|� are unimodular. Moreover, if ρ � ρθ , we have H∗(X , Fχ ⊕ F∗

χ ) = 0.

Thus τcomb(X , ρ) = τC(X , ρ ⊕ ρ∗) ∈ C
∗ and

τC(X , ρ ⊕ ρ∗) = ±τC(X , ρ) · τC(X , ρ∗). (1.21)
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Another case to which Theorem 1.1 can be applied are deformations of unitary
acyclic representations. Let Rep(�, C

m) be the set of all m-dimensional complex rep-
resentations of � equipped with the usual topology. Let Repu0(�, C

m) ⊂ Rep(�, C
m)

be the subset of all unitary acyclic representations (see Sect. 6.2). If d = 3, then by
[14, Theorem 1.1] we have Repu0(�, C

m) �= ∅. Hence there exists a neighborhood V

of Repu0(�, C
m) in Rep(�, C

m) such that��
χ is invertible for all χ ∈ V . In dimensions

> 3 this is not known.
Using Theorem 1.1, we get

Proposition 1.3 Assume that Repu0(�, C
m) �= ∅. There exists an open neighborhood

V of Repu0(�, C
m) in Rep(�, C

m) such that for every χ ∈ V , R(s, χ) is regular at
s = 0 and

R(0, χ) = TC(X , χ).

This proposition was first proved by Spilioti [33] using the odd signature operator [3].
She also discusses the relation with the refined analytic torsion. As above we can also
express R(0, χ) in terms of the combinatorial torsion and by (1.21) we have

R(0, χ) = ±τC(X , ρ) · τC(X , ρ∗). (1.22)

This agrees with (1.7).

2 Coupling Differential Operators to a Flat Bundle

We recall a construction of the flat extension of a differential operator introduced in
[7]. Let X be a smooth manifold and E1 and E2 complex vector bundles over X . Let

D : C∞(X , E1) → C∞(X , E2)

be a differential operator. Let F → X be a flat vector bundle. Then there is a canoni-
cally operator

D�
F : C∞(X , E1 ⊗ F) → C∞(X , E2 ⊗ F)

associated to D, which is defined as follows. Let U ⊂ X be an open subset such that
F |U is trivial. Let s1, . . . , sk ∈ C∞(U , F |U ) be a local frame field of flat sections.
Every section ϕ of (E1 ⊗ F)|U can be written as

ϕ =
k∑

i=1

ψi ⊗ si

for some sections ψ1, . . . , ψk ∈ C∞(U , E1|U ). Then define

D�
F |U : C∞(U , (E1 ⊗ F)|U ) → C∞(U , (E2 ⊗ F)|U )
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by

(D�
F |U )(ϕ) :=

k∑

i=1

D(ψi ) ⊗ si .

Let s′
1, . . . , s

′
k be another local frame field of flat sections of F |U . Then si =∑k

j=1 fi j s′
j , i = 1, . . . , k, with fi j ∈ C∞(U ), and it follows that the transition

functions fi j are constant. Since D is linear, (D�
F |U )(ϕ) is independent of the choice

of the local frame field of flat sections and therefore, D�
F is globally well defined. Let

σ(D) be the principal symbol of D. Then the principal symbol σ(D�
F ) of D�

F is given

by σ(D�
F ) = σ(D)⊗ IdF . Thus if D is elliptic, then D�

F is also an elliptic differential
operator.

As an example consider a Riemannian manifold X and the Laplace operator �p

on p-forms. Let F be a flat bundle over X . Denote by �p(X , F) the space of smooth
F-valued p-forms, i.e., �p(X , F) = C∞(X ,�pT ∗(X) ⊗ F). By the construction
above we obtain the flat Laplacian �

�
p,F : �p(X , F) → �p(X , F). If the flat bundle

is fixed, we will denote the flat Laplacian simply by�
�
p. The flat Laplacian can be also

described as the usual Laplacian. Let dF : �p−1(X , F) → �p(X , F) be the exterior
derivative defined as above. Let � : �p(X) → �n−p(X) denote the Hodge �-operator.
Then the flat extension

d∗,�
F : �p(X , F) → �p−1(X , F)

of the co-differential d∗ : �∗(X) → �p−1(X) is given by

d∗,�
F = (−1)np+n+1(� ⊗ IdF ) ◦ dF ◦ (� ⊗ IdF ).

Then d∗,�
F satisfies d∗,�

F ◦ d∗,�
F = 0 and we have

�
�
F = (dF + d∗,�

F )2.

If we choose a Hermitian fiber metric on F , we can define the usual Laplace operator
�F in �p(X , F), which is defined by

�F = (dF + d∗
F )2 = dFd

∗
F + d∗

FdF ,

which is formally self-adjoint. Now note that d∗,�
F = d∗

F + B, where B is a smooth

homomorphism of vector bundles. Thus it follows that �
�
F = �F + (BdF + dF B).

Hence the principal symbol σ(�
�
F )(x, ξ) of �

�
F is given by

σ(�
�
F )(x, ξ) = ‖ξ‖2x Id�pT ∗

x (X)⊗Fx , x ∈ X , ξ ∈ Fx . (2.1)
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More generally, let E → X be a Hermitian vector bundle over X . Let ∇ be a
covariant derivative in E which is compatible with the Hermitian metric. We denote
by C∞(X , E) the space of smooth sections of E . Let

�E = ∇∗∇

be the Bochner–Laplace operator associated to the connection ∇ and the Hermitian
fibermetric. Then�E is a second order elliptic differential operator. Its leading symbol
σ(�E ) : π∗E → π∗E , where π is the projection of T ∗X , is given by

σ(�E )(x, ξ) = ‖ξ‖2x · IdEx , x ∈ X , ξ ∈ T ∗
x X . (2.2)

Let F → X be a flat vector bundle and

�
�
E⊗F : C∞(X , E ⊗ F) → C∞(X , E ⊗ F)

the coupling of �E to F . Then the principal symbol of �
�
E⊗F is given by

σ(�
�
E⊗F )(x, ξ) = ‖ξ‖2x · IdEx⊗Fx . (2.3)

3 Regularized Determinants and Analytic Torsion

Let �E be as above. Let

P : C∞(X , E) → C∞(X , E)

be an elliptic second order differential operator which is a perturbation of �E by a
first order differential operator, i.e.,

P = �E + D, (3.1)

where D : C∞(X , E) → C∞(X , E) is a first order differential operator. This implies
that P is an elliptic second order differential operator with leading symbol σ(P)(x, ξ)

given by

σ(P)(x, ξ) := ‖ξ‖2x · IdEx . (3.2)

Though P is not self-adjoint in general, it still has nice spectral properties [30, Chapt.
I, §8]. We recall the basic facts. For I ⊂ [0, 2π ] let

�I = {reiθ : 0 ≤ r < ∞, θ ∈ I }. (3.3)

The following lemma describes the structure of the spectrum of P .
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Lemma 3.1 For every 0 < ε < π/2 there exists R > 0 such that the spectrum of P is
contained in the set DR(0) ∪ �[−ε,ε]. Moreover the spectrum of P is discrete.

Proof The first statement follows from [30, Theorem 9.3]. The discreteness of the
spectrum follows from [30, Theorem 8.4]. ��
For λ ∈ C\spec(P) let Rλ(P) := (P−λ Id)−1 be the resolvent. Given λ0 ∈ spec(P),
let �λ0 be a small circle around λ0 which contains no other points of spec(P). Put

�λ0 = i

2π

∫

�λ0

Rλ(P) dλ. (3.4)

Then �λ0 is the projection onto the root subspace Vλ0 . This is a finite-dimensional
subspace of C∞(X , E) which is invariant under P and there exists N ∈ N such that
(P − λ0 I)NVλ0 = 0. Furthermore, there is a closed complementary subspace V ′

λ0
to

Vλ0 in L2(X , E) which is invariant under the closure P̄ of P in L2 and the restriction
of (P̄ − λ0 I) to V ′

λ0
has a bounded inverse. The algebraic multiplicity m(λ0) of λ0 is

defined as

m(λ0) := dim Vλ0 .

Moreover L2(X , E) is the closure of the algebraic direct sum of finite-dimensional
P-invariant subspaces Vk

L2(X , E) =
⊕

k≥1

Vk (3.5)

such that the restriction of P to Vk has a unique eigenvalue λk , for each k there exists
Nk ∈ N such that (P − λk I)Nk Vk = 0, and |λk | → ∞. In general, the sum (3.5) is
not a sum of mutually orthogonal subspaces. See [23, Sect. 2] for details.

Assume that P is invertible. Recall that an angle θ ∈ [0, 2π) is called an Agmon
angle for P , if there exists ε > 0 such that

spec(P) ∩ �[θ−ε,θ+ε] = ∅. (3.6)

By Lemma 3.1 it is clear that an Agmon angle always exists for P . Choose an Agmon
angle θ for P . Define the complex power P−s

θ , s ∈ C, as in [30, §10]. Let d = dim X .
ForRe(s) > d/2, the complex power P−s

θ is a trace class operator and the zeta function
ζθ (s, P) of P is defined by

ζθ (s, P) := Tr(P−s
θ ), Re(s) >

d

2
. (3.7)

The zeta function admits a meromorphic extension to the entire complex plane which
is holomorphic at s = 0 [30, Theorem 13.1]. Let Rθ := {ρeiθ : ρ ∈ R

+}. Denote
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by logθ (λ) the branch of the logarithm in C \ Rθ with θ < Im logθ < θ + 2π . We
enumerate the eigenvalues of P such that

Re(λ1) ≤ Re(λ2) ≤ · · · ≤ Re(λk) ≤ · · · .

By Lidskii’s theorem [16, Theorem 8.4] if follows that for Re(s) > d/2 we have

ζθ (s, P) = Tr(P−s
θ ) =

∞∑

k=1

m(λk)(λk)
−s
θ , (3.8)

where (λk)
−s
θ = e−s logθ (λk ). We will need a different description of the zeta function

in terms of the heat operator e−t P , which can be defined using the functional calculus
developed in [23, Sect. 2] by

e−t P := i

2π

∫

�

e−tλ2(P1/2 − λ)−1dλ, (3.9)

where � ⊂ C is the same contour as in [23, (2.18)]. As in [23, Lemma 2.4] one can
show that e−t P is an integral operator with a smooth kernel. By [23, Prop. 2.5] it
follows that e−t P is a trace class operator. Using Lidskii’s theorem as above we get

Tr(e−t P ) =
∞∑

k=1

m(λk)e
−tλk . (3.10)

The absolute convergence of the right hand side follows fromWeyl’s law [23, Lemma
2.2]. Assume that there exists δ > 0 such that Re(λk) ≥ δ for all k ∈ N. Then by
(3.10) and Weyl’s law it follows that there exist C, c > 0 such that

|Tr(e−t P )| ≤ Ce−ct (3.11)

for t ≥ 1. Since spec(P) is contained in the half plane Re(s) > 0, we can choose the
Agmon angle as θ = π . Using the asymptotic expansion of Tr(e−t P ) as t → 0, it
follows from (3.8) and (3.11) that

ζ(s, P) = 1

�(s)

∫ ∞

0
Tr(e−t P )t s−1dt

for Re(s) > d/2.
Then the regularized determinant of P is defined by

detθ (P) := exp

(
− d

ds
ζθ (s, P)

∣∣∣
s=0

)
. (3.12)

As shown in [3, 3.10], detθ (P) is independent of θ . Therefore we will denote the
regularized determinant simply by det(P).

123



12512 W. Müller

Assume that the vector bundle E is Z/2Z-graded, i.e., E = E+ ⊕ E− and P
preserves the grading, i.e., assume that with respect to the decomposition

C∞(Y , E) = C∞(Y , E+) ⊕ C∞(Y , E−)

P takes the form

P =
(
P+ 0
0 P−

)
.

Then we define the graded determinant detgr(P) of P by

detgr(P) = det(P+)

det(P−)
. (3.13)

Next we introduce the analytic torsion defined in terms of the non-self-adjoint
operators �

�
p,χ . We use the definition given in [7, Sect. 8]. Recall that the principal

symbol of��
p,χ is given by (2.3). Therefore,��

p,χ satisfies the assumptions of Sect. 3.

Let r > 0 be such that Re(λ) �= r for all generalized eigenvalues λ of �
�
p,χ .

Let �p,r be the spectral projection on the span of the generalized eigenvectors with

eigenvalues with real part less than r . Let��
p,χ,r := (1−�p,r )�

�
p,χ . Let S(p, χ, r) be

the set of all nonzero generalized eigenvalues with real part less than r . Furthermore,
let V p

0 be the generalized eigenspace of �
�
p,χ with generalized eigenvalues 0. Then

(V ∗
0 , d, d∗,�) is double complex in the sense of [7]. Let

T0(X , χ) ∈ (det H∗(X , Fχ )) ⊗ (det H∗(X , Fχ ))∗ (3.14)

be the torsion of the double complex. Then the Cappell–Miller torsion is defined by

TC(X , χ) :=
d∏

p=1

det(��
p,χ,r )

(−1)p+1 p ·
d∏

p=1

( ∏

λ∈S(p,χ,r)

λm(λ)
)(−1)p+1 p · T0(X , χ),

(3.15)

wherem(λ) denotes the algebraic multiplicity of λ. Let�k,0 be the spectral projection
on the generalized eigenspace of �

�
k,χ with generalized eigenvalue 0. Let

(�
�
k,χ )′ := (Id−�k,0)�

�
k,χ . (3.16)

If we choose an Agmon angle we can also write

TC(X , χ) =
d∏

k=1

[
det(��

k,χ )′
](−1)k+1k · T0(X , χ). (3.17)
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If χ is acyclic, i.e., H∗(X , Eχ ) = 0, then T0(X , χ) and TC(X , χ) are complex
numbers.

4 Twisted Ruelle Zeta Functions

In this section we consider compact oriented hyperbolic manifolds of odd dimension
d = 2n + 1 and we recall some basic properties of Ruelle type zeta functions.

To begin with we fix some notation. Let G = SO0(d, 1) and K = SO(d). Then
G/K equipped with the normalized invariant metric is isometric to the d-dimensional
hyperbolic space H

d . Let G = K AN be the standard Iwasawa decomposition. Let
M be the centralizer of A in K . Then M ∼= SO(d − 1). Let K̂ and M̂ be the set of
equivalence classes of irreducible unitary representations of K and M , respectively.

Denote by g, k, m, n, and a the Lie algebras of G, K , M , N , and A, respectively.
Let W (A) ∼= Z/2Z be the Weyl group of (g, a). Let α ∈ a∗ be the unique positive
root of (g, a). Let a+ := {H ∈ a : α(H) > 0}. Put A+ := exp(a+). Let gC := g ⊗ C

and denote by Z(gC) the center of the universal enveloping algebra of gC.
Let� ⊂ G be a discrete, torsion free, co-compact subgroup. Then� acts fixed point

free on H
d . The quotient X = �\H

d is a closed, oriented hyperbolic manifold and
each such manifold is of this form. Given γ ∈ �, we denote by [γ ] the �-conjugacy
class of γ . The set of all conjugacy classes of � will be denoted by C(�). Let γ �= 1.
Then there exist g ∈ G, mγ ∈ M , and aγ ∈ A+ such that

gγ g−1 = mγ aγ . (4.1)

By [34, Lemma 6.6], aγ depends only on γ and mγ is determined up to conjugacy in
M . Let H ∈ a such that α(H) = 1. By definition there exists �(γ ) > 0 such that

aγ = exp (�(γ )H) . (4.2)

Then �(γ ) is the length of the unique closed geodesic in X that corresponds to the
conjugacy class [γ ]. An element γ ∈ �−{e} is called primitive, if it can not be written
as γ = γ k

0 for some γ0 ∈ � and k > 1. For every γ ∈ � − {e} there exist a unique
primitive element γ0 ∈ � and n�(γ ) ∈ N such that γ = γ

n�(γ )
0 . Let χ : � → GL(Vχ )

be a finite dimensional complex representation of � and let s ∈ C. Then the Ruelle
zeta function R(s, χ) is defined by the following Euler product

R(s, χ) :=
∏

[γ ]�=e
[γ ]prime

det
(
Id−χ(γ )e−s�(γ )

)
. (4.3)

In order to verify that the product converges in some half plane, we first recall that
there exists C > 0 such that for all R > 0 we have
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# {[γ ] ∈ C(�) : �(γ ) ≤ R} ≤ Ce(n−1)R (4.4)

[6, (1.31)]. We also need the following auxiliary lemma.

Lemma 4.1 Let χ : � → GL(V ) be a finite dimensional representation of �. There
exist C, c > 0 such that

| tr(χ(γ ))| ≤ Cec�(γ ), ∀γ ∈ � − {e}. (4.5)

For the proof see [31, Lemma 3.3]. It follows from (4.4) and Lemma 4.1 that the
product on the right hand side of (4.3) converges absolutely anduniformly in somehalf-
plane Re(s) > C (see [31, Prop. 3.5]). Furthermore, R(s, χ) admits a meromorphic
extensions to the entire complex plane [31] and satisfies the following functional
equation [32]:

R(s, χ) = R(−s, χ) · exp
(

(−1)n+1 2π(d + 1) vol(Vχ ) vol(X)

vol(Sd)
s

)
. (4.6)

For unitary representations χ , these results were proved by Bunke and Olbrich
[6]. The main technical tool is the Selberg trace formula. For the extension to the
non-unitary case the Selberg trace formula is replaced by a Selberg trace formula for
non-unitary twists, developed in [23]. The proofs are similar except that on has to deal
with non-self-adjoint operators.

There are also expressions of the zeta functions in terms of determinants of certain
elliptic operators. To explain the formulasweneed to recall the definition of the relevant
differential operators. Given τ ∈ K̂ , let Ẽτ → X̃ be the homogeneous vector bundle
associated to τ and let Eτ := �\Ẽτ be the corresponding locally homogeneous vector
bundle over X . Denote by C∞(X , Eτ ) the space of smooth sections of Eτ . There is a
canonical isomorphism

C∞(X , Eτ ) ∼= (C∞(�\G) ⊗ Vτ )
K (4.7)

[21, §1]. Let � ∈ Z(gC) be the Casimir element and denote by R� the right regular
representation of G in C∞(�\G). Then R�(�) acts on the right hand side of (4.7)
and via this isomorphism, defines an operator in C∞(X , Eτ ). We denote the operator
induced by −R�(�) by Aτ .

Denote by ∇̃τ the canonical connection in Ẽτ and let∇τ be the induced connection
in Eτ . Let �τ := (∇τ )∗∇τ be the associated Bochner–Laplace operator acting in
C∞(X , Eτ ) . Let �K ∈ Z(kC) be the Casimir element of K . Assume that τ is
irreducible. Let λτ := τ(�K ) denote the Casimir eigenvalue of τ . Then we have

Aτ := �τ − λτ Id . (4.8)

[21, §1]. Thus Aτ is a formally self-adjoint second order elliptic differential operator.
Let Fχ → X be the flat vector bundle defined by χ . Let
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A�
τ,χ : C∞(X , Eτ ⊗ Fχ ) → C∞(X , Eτ ⊗ Fχ )

be the coupling of Aτ to Fχ .
Denote by R(K ) and R(M) the representation rings of K and M , respectively.

Let i : M → K be the inclusion and i∗ : R(K ) → R(M) the induced map of the
representation rings. The Weyl group W (A) acts on R(M) in the canonical way.
Let R±(M) denote the ±1-eigenspaces of the non-trivial element w ∈ W (A). Let
σ ∈ R(M). It follows from the proof of Proposition 1.1 in [6] that there existmτ (σ ) ∈
{−1, 0, 1}, depending on τ ∈ K̂ , which are equal to zero except for finitely many
τ ∈ K̂ , such that

σ =
∑

τ∈K̂
mτ (σ )i∗(τ ), (4.9)

if σ ∈ R+(M), and

σ + wσ =
∑

τ∈K̂
mτ (σ )i∗(τ ), (4.10)

if σ �= wσ . Let

E(σ ) :=
⊕

τ∈K̂
mτ (σ ) �=0

Eτ . (4.11)

Then E(σ ) has a grading

E(σ ) = E+(σ ) ⊕ E−(σ )

defined by the sign of mτ (σ ). Let σ ∈ M̂ . Denote by νσ the highest weight of σ .
Let b be the standard Cartan subalgebra of m [26, Sect. 2]. Let �m be the half-sum of
positive roots of (mC, bC) and �a the half-sum of positive roots of (gC, aC). Put

c(σ ) := −‖�a‖2 − ‖�m‖2 + ‖νσ + �m‖2. (4.12)

We define the operator A�
χ (σ ) acting in C∞(X , E(σ ) ⊗ Fχ ) by

A�
χ (σ ) :=

⊕

τ∈K̂
mτ (σ ) �=0

A�
τ,χ + c(σ ). (4.13)

For p ∈ {0, . . . , d − 1} let σp be the standard representation of M = SO(d − 1) on
�p

R
d−1 ⊗ C. We note that σp is irreducible except when p = n, in which case σn is

the direct sum of the two spin representations σ+
n , σ−

n . Moreover, σ∓
n = wσ±

n . Thus
σn = σ+

n + wσ+
n and

A�
χ (σn) = A�

χ (σ+
n ) ⊕ A�

χ (σ−
n ). (4.14)
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Recall that A�
χ (σp) acts in the space of sections of a graded vector bundle. Then by

[32, Prop. 1.7] we have the following determinant formula.

Proposition 4.2 For every p = 0, . . . , d − 1 we have

R(s, χ) =
d−1∏

p=0

detgr

(
A�

χ (σp) + (s + n − p)2
)(−1)p

× exp

(
−2π(n + 1) dim(Vχ ) vol(X)

vol(Sd)
s

)
,

(4.15)

where vol(Sd) denotes the volume of the d-dimensional unit sphere.

For unitary χ this was proved in [6, Prop. 4.6].

5 Proof of theMain Theorem

To prove Theorem 1.1 we apply Proposition 4.2. Let h = a⊕b be the standard Cartan
subalgebra of g and let e1, . . . , en+1 ∈ h∗

C
be the standard basis [26, Sect. 2]. Thus

e2, . . . , en+1 is a basis of b. Then ρm = ∑n+1
j=2(n + 1 − j)e j and

νσp =
{
e2 + · · · + ep+1, if p ≤ n,

e2 + · · · + e2n+1−p, if p > n,

[17, Chap. IV, §7]. Moreover, |ρ| = n. An explicit computation shows that c(σp) =
−(n− p)2. Let λp be the p-th exterior power of the standard representation of SO(d).
Then for p = 0, . . . , d−1 we have i∗(λp) = σp+σp−1. Put τp := ∑p

k=0(−1)kλp−k .
Then it follows that i∗(τp) = σp, p = 0, . . . , d−1.Using (4.13) and (4.14), we obtain

A�
χ (σp) + (n − p)2 =

p⊕

k=0

A�
λp−k ,χ

=
p⊕

k=0

A�
λk ,χ

. (5.1)

Now recall that A�
λk ,χ

is the coupling of Aλk to Fχ . Furthermore, with respect to the

isomorphism (4.7), Aλk corresponds to the action of−R�(�) on (C∞(�\G)⊗�k
C
d).

By the Lemma of Kuga, this operator corresponds to the Laplacian �k on �k(X). Let
�

�
k,χ be the coupling of �k to Fχ . Then by (5.1) we get

A�
χ (σp) + (n − p)2 =

p⊕

k=0

�
�
k,χ . (5.2)
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Inserting this equality into the alternating product of graded determinants on the right
hand side of (4.15), we obtain

d−1∏

p=0

detgr(A
�
χ (σp) + (s + n − p)2)(−1)p

=
d−1∏

p=0

p∏

k=0

det(��
p−k,χ + s(s + 2(n − p)))(−1)p+k

=
d−1∏

k=0

d−1∏

p=k

det(��
k,χ + s(s + 2(n − p)))(−1)k .

(5.3)

Applying the determinant formula (4.15) together with (5.3), we finally get

R(s;χ) =
d−1∏

k=0

d−1∏

p=k

det(��
k,χ + s(s + 2(n − p)))(−1)k

× exp

(
−2π(n + 1) dim(Vχ ) vol(X)

vol(Sd)
s

)
.

(5.4)

Let hk be the dimension of the generalized eigenspace of �
�
k,χ with eigenvalue

zero.

Lemma 5.1 We have h p = hd−p for p = 0, . . . , d.

Proof Let � : �p(X , Fχ ) → �d−p(X , Fχ ) be the extension of the Hodge �-star oper-
ator, which acts locally as �(ω ⊗ f ) = (�ω) ⊗ f , where ω is a usual p-form and
f a local section of Fχ . Since ��p = �d−p�, it follows from the definition of the

Laplacians coupled to Fχ that ���
p,χ = �

�
d−p,χ �. It follows that for every k ∈ N we

have �(�
�
p,χ )k = (�

�
d−p,χ )k�.This proves the lemma. ��

Denote by h the order of the singularity of R(s, χ) at s = 0.Using (5.4) andLemma5.1
it follows that

h =
n∑

k=0

(d + 1 − k)(−1)khk +
d−1∑

k=n+1

(d − k)(−1)khk =
n∑

k=0

(d + 1 − 2k)(−1)khk .

(5.5)

Let (��
k,χ )′ be the operator defined by (3.16).We note that for s ∈ C, |s| � 1, there

is a common Agmon angle for the operator (�
�
k,χ )′ + s(s + 2(n − p)). Therefore, in

order to study the limit of det((��
k,χ )′ + s(s + 2(n − p))) as s → 0, we can use one

and the same Agmon angle.
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If p �= n, we get

lim
s→0

s−hk det(��
k,χ + s(s + 2(n − p))) = lim

s→0

[
det((��

k,χ )′ + s(s + 2(n − p))

× (s(s + 2(n − p)))hk

shk

]

= (2(n − p))hk · det((��
k,χ )′).

(5.6)

For p = n we get a similar formula

lim
s→0

s−2hk det(��
k,χ + s2) = lim

s→0
det((��

k,χ )′ + s2) = det((��
k,χ )′). (5.7)

Let

C(d, χ) :=
d−1∏

k=0

d−1∏

p=k
p �=n

(2(n − p))(−1)khk . (5.8)

Using (5.5), (5.6) and (5.7) we get

lim
s→0

s−h R(s; χ) =
d−1∏

k=0

d−1∏

p=k
p �=n

lim
s→0

[
s−hk det(��

k,χ + s(s + 2(n − p)))
](−1)k

×
n∏

k=0

lim
s→0

[
s−2hk det(��

k,χ + s2)
](−1)k

= C(d, χ) ·
d−1∏

k=0

det((��
k,χ )′)(d−k)(−1)k = C(d, χ) ·

d∏

k=1

det((��
k,χ )′)k(−1)k+1

.

(5.9)

For the last equalitywe used that��
k,χ

∼= �
�
d−k,χ . Let T0(X , χ) be the torsion (3.14) of

the double complex (V ∗
0 , d, d∗,�) and TC(X , χ) the Cappell–Miller torsion defined

by (3.15). We note that TC(X , χ) and T0(X , χ) are both non-zero elements of the
determinant line det H∗(X , Fχ ) ⊗ (det H∗(X , Fχ ))∗. Hence there exists λ ∈ C with
TC(X , χ) = λT0(X , χ). Set

TC(X , χ)

T0(X , χ)
:= λ.

If we combine this convention with the definition of the Cappell–Miller torsion (3.17),
then (5.9) implies Theorem 1.1.
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6 Acyclic Representations

In this sectionwe assume thatχ is acyclic. Then TC(X , χ), T0(X , χ) and τcomb(X , χ)

are complex numbers and the right hand side of (1.14) is the quotient of the two
complex numbers. Besides the Cappell–Miller torsion we need another version of a
complex analytic torsion for arbitrary flat vector bundles Fχ . This is the refined analytic
torsion T ran(X , χ) ∈ det(H∗(X , Fχ )) introduced by Braverman and Kappeler [4].
The definition is based on the consideration of the odd signature operator Bχ [3, 2.1].
It is defined as follows. Let

α : �∗(X , Fχ ) → �∗(X , Fχ )

be the chirality operator defined by

α(ω) := in+1(−1)k(k+1)/2�ω, ω ∈ �k(M, Fχ ).

Let ∇χ be the flat connection in Fχ . Then the odd signature operator is defined as

Bχ := α∇χ + ∇χα. (6.1)

It leaves the even subspace �ev(X , Fχ ) invariant. Let Bev,χ be the restriction of Bχ

to �ev(X , Fχ ). Then T ran(X , χ) ∈ det(H∗(X , Fχ )) is defined in terms of Bev,χ . If
χ is acyclic, then T ran(X , χ) is a complex number. In [5], Braverman and Kappeler
determined the relation between the Cappell–Miller torsion and the refined analytic
torsion. Let η(B) be the eta-invariant of Bev,χ . In general, Bχ is not self-adjoint and
therefore, η(B) is in general not real. Furthermore, let η0 be the eta-invariant of the
trivial line bundle. Then by Proposition 4.2 and Theorem 5.1 of [5] it follows that

TC(X , χ) = ±T ran(X , χ)2 · e2π i(η(B)−dim(χ)η0). (6.2)

On the other hand, it follows from [4, Theorem 1.9] that

|T ran(X , χ)| = T RS(X , χ) · eπ Im(η(B)). (6.3)

Combining (6.2) and (6.3), we obtain (1.9).

6.1 Restriction of Representations of the Underlying Lie Group

The first case that we consider are representations which are restrictions to � of
representations of G.

Let ρ : G → GL(Vρ) be a finite dimensional real ( resp. complex) representation
of G. Denote by Fρ → X the flat vector bundle associated to ρ|� . Let Ẽρ → G/K
be the homogeneous vector bundle associated to ρ|K . By [18, Part I, Prop. 3.3] there
is a canonical isomorphism
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Fρ
∼= �\Ẽρ. (6.4)

Let g = k ⊕ p be the Cartan decomposition of g. By [18, Part I, Lemma 3.1], there
exists an inner product 〈·, ·〉 in Vρ such that

(1) 〈τ(Y )u, v〉 = − 〈u, τ (Y )v〉 for all Y ∈ k, u, v ∈ Vτ

(2) 〈τ(Y )u, v〉 = 〈u, τ (Y )v〉 for all Y ∈ p, u, v ∈ Vτ .

Such an inner product is called admissible. It is unique up to scaling. Fix an admissible
inner product. Sinceρ|K is unitarywith respect to this inner product, it induces ametric
in �\Ẽτ and by (6.4) also in Fρ . Denote by T RS(X , ρ) the Ray–Singer analytic
torsion of (X , Fρ) with respect to the metric on X and the metric in Fρ . Denote by
θ : G → G the Cartan involution. Let ρθ := ρ ◦ θ . Assume that ρ is irreducible and
ρ � ρθ . Then H∗(X , Fρ) = 0 [2, Chap. VII, Theorem 6.7]. Thus ρ|� is acyclic. In
this case T RS(X , ρ) is independent of the metrics on X and in Fρ [25, Corollary 2.7].
Let Rρ(s) := R(s, ρ)R(s, ρθ ). Then by [35, Theorem 8.13] Rρ(s) is holomorphic at
s = 0 and

Rρ(0) = T RS(X , ρ)4. (6.5)

Furthermore, from the discussions in [35, Sect. 9.1] follows that both R(s, ρ) and
R(s, ρθ ) are holomorphic at s = 0 and R(0, ρθ ) = R(0, ρ). Thus it follows that

|R(0, ρ)| = T RS(X , ρ)2. (6.6)

Hence R(s, ρ) is regular at s = 0 and R(0, ρ) �= 0. Applying Theorem 1.1 we obtain
Corollary 1.2.

Next we briefly recall the definition of the complex Reidemeister torsion [9]. Let
V be C-vector space of dimension m. Let v = (v1, . . . , vm) and w = (w1, . . . , wm)

be two basis of V . Let T = (ti j ) be the matrix of the change of basis from v to w, i.e.,
wi = ∑

j ti jv j . Put [w/v] := det(T ). Let

C∗ : 0 → C0 δ0−→ C1 δ1−→ · · · δn−2−−→ Cn−1 δn−1−−→ Cn → 0

be a co-chain complex of finite dimensional complex vector spaces. We assume that
C∗ is acyclic. Let Zq = ker(δq) and Bq := Im(δq−1) ⊂ Cq . Let cq be a preferred
base ofCq . Choose a basis bq for Bq , q = 0, . . . , n, and let b̃q+1 be an independent set
in Cq such that δq(b̃q+1) = bq+1. Then (bq , b̃q+1) is a basis of Cq and [bq , b̃q+1/cq ]
depends only on bq and bq+1. Therefore, we denote it by [bq , bq+1/cq ]. Then the
complex Reidemeister torsion τC(C∗) ∈ C of the co-chain complex C∗ is defined by

τC(C∗) :=
n∏

q=0

[bq , bq+1/cq ](−1)q . (6.7)
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Let K be a C∞-triangulation of X and K̃ the lift of K to a triangulation of the
universal covering H

d of X . Then Cq(K̃ , C) is a module over the complex group
algebra C[�]. Now let ρ be an acyclic representation of � in SL(N , C). Let

Cq(K , ρ) := Cq(K̃ , C) ⊗C[�] C
N

be the twisted co-chain group and

C∗(K , ρ) : 0 → C0(K , ρ)
∂ρ−→ C1(K , ρ)

∂ρ−→ · · · ∂ρ−→ Cd(K , ρ) → 0

the corresponding co-chain complex. Then C∗(K , ρ) is acyclic. Let e1, . . . , erq be

a preferred basis of Cq(K̃ , C) as a C[�]-module consisting of the duals of lifts of
q-simplexes and let v1, . . . , vN be a basis of C

N . Then {ei ⊗v j : i = 1, . . . , rq , j =
1, . . . , N } is a preferred basis of Cq(K , ρ). Now consider the complex-valued Rei-
demeister torsion τC(C∗(K , ρ)). Since ρ is a representation in SL(N , C), a different
choice of the preferred basis {ei } leads at most to a sign change of τC(C∗(K , ρ)).
If v′ is a different basis of C

N , then τC(C∗(K , ρ)) changes by [v′/v]χ(X). Hence, if
χ(X) = 0, τC(C∗(K , ρ)) is well defined as an element of C

∗/{±1}. Since every two
smooth triangulations of X admit a common subdivision, it follows from [22] that
τC(C∗(K , ρ)) is independent of the smooth triangulation K . Put

τC(X , ρ) := τC(C∗(K , ρ)). (6.8)

This is the complex valued Reidemeister torsion of X and ρ. If ρ is not acyclic, then
the same construction gives an element τC(X , ρ) ∈ det H∗(X , Fρ) [9].

6.2 Deformations of Acyclic Unitary Representations

Let Rep(�, C
m) be the set of allm-dimensional complex representations of�. It is well

known that Rep(�, C
m) has a natural structure of a complex algebraic variety [3, 13.6].

Recall that χ ∈ Rep(�, C
m) is called acyclic, if H∗(X , Fχ ) = 0, where Fχ → X

is the flat vector bundle associated to χ . Denote by Rep0(�, C
m) ⊂ Rep(�, C

m)

the subset of all acyclic representations. A representation χ ∈ Rep(�, C
m) is called

unitary, if there exists a Hermitian scalar product 〈·, ·〉 on C
m which is preserved by

all maps χ(γ ), γ ∈ �. Let Repu0(�, C
m) ⊂ Rep0(�, C

m) be the subset of all unitary
acyclic representations. By [14, Theorem 1.1] we get

Proposition 6.1 For every compact hyperbolic 3-manifold �\H
3, we have Repu0

(�, C
m) �= ∅.

For d > 3 it is not known if a d-dimensional compact oriented hyperbolic man-
ifold �\H

d admits a unitary flat bundle. Assume that Repu0(�, C
m) �= ∅. Let

χ ∈ Repu0(�, C
m). For such a representation the flat Laplacian �

�
k,χ equals the

usual Laplace operator �k,χ and TC(X , χ) = T RS(X , χ)2. Moreover, hk = 0,
k = 0, . . . , d, which implies h = 0 and T0(X , χ) = 1. Thus R(s, χ) is regular
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at s = 0 and from Theorem 1.1 we recover Fried’s result [10]

R(0, χ) = T RS(X , χ)2. (6.9)

We equip Rep(�, C
m) with the topology obtained from its structure as complex

algebraic variety. The complement of the singular set is a complex manifold. LetW ⊂
Rep(�, C

m)be the connected component ofRep(�, C
m)which containsRepu0(�, C

m).
Let χ0 ∈ W be a unitary acyclic representation and let E0 be the associated flat vector
bundle. By [15, Prop. 4.5] every vector bundles Eχ , χ ∈ W , is isomorphic to E0.
Thus the flat connection on Eχ , which is induced by the trivial connection on X̃ ×C

m ,
corresponds to a flat connection ∇χ on E0. Now recall that

��
χ = (dχ + d∗,�

χ )2,

where

d∗,�
χ

∣∣
�p(X ,Eχ )

= (−1)p(� ⊗ Id)dχ (� ⊗ Id).

Via the isomorphism Eχ
∼= E0, the operator dχ + d∗,�

χ corresponds to the operator

D�
χ := ∇χ + ∇∗,�

χ : �∗(X , E0) → �∗(X , E0),

where

∇∗,�
χ = (−1)p(� ⊗ Id)∇χ (� ⊗ Id).

Let ∇0 be the unitary flat connection on E0. Let C(E0) denote the space of connec-
tions on E0. Recall that C(E0) can be identified with �1(X ,End(E0)) by associating
to a connection ∇ ∈ C(E0) the 1-form ∇ − ∇0 ∈ �1(X ,End(E0)). We equip
C(E0) with the C0-topology defined by the sup-norm ‖ω‖sup := maxx∈X |ω(x)|,
ω ∈ �1(X ,End(E0)), where | · | denotes the natural norm on �1(T ∗X) ⊗ E0. Since
E0 is acyclic, D0 := ∇0 +∇∗

0 is invertible. If ‖∇χ −∇0‖ � 1 it follows as in [3, Prop

6.8] that D�
χ is invertible and hence �

�
χ = (D�

χ )2 is invertible too. Thus we get

Lemma 6.2 There exists an open neighborhood V ⊂ W ofRepu0(�, C
m) such that��

χ

is invertible for all χ ∈ V .

Let χ ∈ V . Then we have hk = dim(�
�
k,χ ) = 0, k = 0, . . . , d, and therefore the

order h of R(s, χ) at s = 0 vanishes. Also C(d, χ) = 1 and T0(X , χ) = 1. Thus by
Theorem 1.1 we obtain Proposition 1.3.
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