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Abstract
We show that geodesic random walks on a complete Finsler manifold of bounded
geometry converge to a diffusion process which is, up to a drift, the Brownian motion
corresponding to a Riemannian metric.
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1 Introduction

Many processes in physics and natural sciences can be described with the help of
random walks and their limit processes, the so-called diffusion processes. A possible
philosophical explanation of this experimentally observed phenomenon is that the
limit of random walks reflects the microscopic nature of the situation: Even fully
deterministic microscopic systems can give rise to erratic seemingly randommotions,
practically indistinguishable from those produced by a stochastic process.

Let us recall one of the first constructions of a random walk which is due to K.
Pearson in 1905 [33]. A more physically motivated approach is in the paper [13] of
Einstein from the same year.
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Fig. 1 50 steps of a Pearson random walk

We start from a point p ∈ R
2, choose a random direction at the tangent space, go for

distance 1 along the straight line starting at this direction, and then repeat the procedure
iteratively. We obtain a stochastic process in which trajectories are piecewise linear
curves, see Fig. 1.

It is natural to renormalize this process as follows: we assume that the steps have
length not 1 but 1/

√
N , and we take N steps in one unit of time. If the procedure of

choosing the random direction is invariant with respect to the isometry group of the
flat R2 which was the case in [13,33], then by the Functional Central Limit Theorem,
the limit of this sequence as N → ∞ exists and is the (flat) Brownian motion, see [8,
Chapter 2].

We see that in order to define such a random walk, one needs two ingredients:
the rule of choosing a random direction at a current position p (i.e. a probability
distribution νp on the space of tangent vectors at the point p) and an analogue of the
notion of a straight line, which describes themotion of a small particle with no external
forces acting upon it.

In many systems in physics and natural sciences, small particles with no external
forces acting upon them move along geodesics of a Finsler metric. We give necessary
definitions in Sect. 2.1. Recall that geodesics are smooth curves and, similar to the
straight lines, the initial point and the initial velocity vector determine the geodesic.
The above definition of the random walk is immediately generalized to this case.
Indeed, starting from a point p of a Finsler manifold (M, F) such that every tangent
space TpM is equipped with a probability measure νp, choose a random vector v in
the tangent space, go the distance F(v)/

√
N along the geodesic starting at p with the
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initial velocity v and then repeat the procedure (if νp is not centered we rescale it as in
Sect. 2.2). We obtain a stochastic process in which trajectories are piecewise geodesic
curves (e.g. they are glued together from geodesic segments).

The present paper studies such geodesic random walks on Finsler manifolds and
their limit diffusion processes, and concentrates on the fundamental question of the
existence anduniqueness of the limit process.Ourmain result is that under assumptions
natural from the viewpoint of Finsler geometry, the limit process exists and is unique.
Moreover, it is a diffusion process in which generator is a non-degenerate elliptic
second-order partial differential operator for which we give a precise formula.

The Riemannian version of our result (recall that Riemannian metrics are Finsler
metrics) was obtained, e.g. by Jørgensen [22].

Geodesic randomwalks on Finsler manifolds and their limit processes are of course
natural topics from the viewpoint of both differential geometry and theory of stochastic
processes. They may have applied interest since Finsler manifolds are used to model
different physical situations with anisotropies at an infinitesimal level, see e.g. [1,2,10,
12,17,20,28,34,45], and may also be used for certain models in information geometry,
see, e.g. [40].

Although Brownian motions and diffusion processes on Finsler manifolds were
discussed in the literature (see, e.g. the books [4,44]), the very basic question of the
existence and uniqueness of the limit process for Finsler geodesic random walks has
not been rigorously treated.

More precisely, the work [44] on Finsler Brownian motions goes in the other direc-
tion: It starts from a stochastic differential equation which is constructed by a Finsler
metric F , a volume form μ, and an extra data u0 ∈ H1

0 (M) on M . It is easy to see
that for a generic Finsler metric, solutions of this stochastic differential equation do
not correspond to a limit process of a sequence of geodesic random walks.

This general approach, in which one starts with an elliptic differential operator (or a
Dirichlet form) in order to construct a diffusion process, is a very popular and powerful
approach to diffusion processes onmetric spaces. It allows in particular to treat the case
of non-smooth background metric structures, see e.g. [18,27,42]. This approach does
not ensure that the resulting stochastic process is the limit process of a sequence of
randomwalks. If the background is almostRiemannian (say,Alexandrovwith bounded
curvature, as in [18] and [27]), the best one can do is to relate random walks on the
Riemannian spaces approximating our metric space to the diffusion process on our
metric space. These results cannot be applied in the Finslerian situation, since Finsler
metrics cannot be approximated by Riemannian metrics. Our results will possibly
allow to extend this group of methods to a Finslerian situation and we plan to do this
in our future works.

Let us now discuss the corresponding results of the book [4], where many differ-
ent approaches of constructing different non-equivalent diffusion processes (on the
manifold or on the tangent bundle to the manifold) by a Finsler metric are suggested.
One of these approaches (see [4, §A2]) is seemingly close to ours and considers the
limit processes of Finsler geodesics random walks (in their case, the distribution νp

is quite special and is canonically constructed by the Finsler metric). Unfortunately
no rigorous proof of convergence is given: it is merely claimed that the limit process
exists and is unique, and referred to [35,36] for methods and technical details.

123



Finsler Geodesic RandomWalks 12449

The references [35,36] are mostly survey papers about geodesic random walks on
Riemannian manifolds. The methods discussed there assume and rely on the special
form of the probability measure νp on tangent spaces. Moreover, it is assumed that
the Riemannian manifold is stochastically complete. The property of stochastic com-
pleteness is a nontrivial property, and examples show that not all complete manifolds
are stochastically complete. In the Riemannian case, there is a number of criteria of
stochastic completeness, see e.g. [19,46]. In particular, if the Ricci curvature of a
complete Riemannian manifold is bounded from below, the manifold is stochastically
complete. In the Finslerian situation, we did not find any relevant works on stochastic
completeness and the claim of [4, Sect. A2] that the methods of [35,36] can easily be
applied in the Finslerian situation looks overoptimistic.

Note that as a by-product, we have proved that every complete Finsler manifold of
bounded geometry (see Definition 2.1) is stochastically complete; that is, the limit
process of Finsler geodesic random walks is stochastically complete in the sense of
[21, Sect. 4.2]. It is interesting to try to relax the assumption of bounded geometry in
this statement, and we plan to do this in future works.

A very successful approach to geodesic random walks and diffusion processes on
Riemannianmanifolds, which allows essential freedom in the choice of the probability
measures νp, is in [22]. Many arguments in [22] are based on the following property
which holds in the Riemannian but not in the Finslerian case: Consider an arc-length
parametrized geodesic segment γ : [0, ε] → M of a (smooth) Riemannian metric.
Take a vector v ∈ Tγ (0)M of length one and its parallel transport vε ∈ Tγ (ε)M along
the geodesic segment. Next, consider the arc-length parametrized geodesics γv and
γvε which start from γ (0) and γ (ε) with the initial vectors v and vε, respectively.
Then the distance between γv(t) and γvε (t) behaves, for ε → 0 and t → 0, as
ε(1+Ct2). In the Euclidean case, the distance does not depend on t at all and is equal
to ε. In the Finslerian situation, this property does not hold for a generic metric and a
straightforward generalization of [22] is not possible.

In this paper, we prove that under the assumptions natural from the viewpoint of
Finsler geometry (everything is smooth, the manifold is complete and has bounded
geometry), the sequence of geodesic random walks converges to a unique diffusion
process, see Theorem 2.1. Moreover, we show that the generator of this diffusion
process is an elliptic operator, and give an integral formula for its coefficients.

As explained above, the generator of the limit diffusion process is a non-degenerate
elliptic operator. If the probability measure νp on each TpM is constructed by F|TpM
(we give examples in Sect. 2.3.2), then this elliptic operator is a natural candidate for
a Beltrami–Laplace operator of the Finsler metric. Note that, different from the Rie-
mannian case, there exist many different Finslerian analogues of the Beltrami–Laplace
operator. We refer to [3], where many different constructions of the Riemannian
Beltrami–Laplace operator are mimicked in the Finslerian setting. In the Rieman-
nian case, they all give the same Beltrami–Laplace operator. In the Finslerian case,
one obtains different operators. Most operators in [3] are linear but there also exist
nonlinear versions of the Finslerian Betrami–Laplace operators, see, e.g. [32,37].

An interesting by-product of our result is that the generator of the limit diffusion
process corresponding to Finsler geodesic random walks coincides, up to first-order
terms (the so-called “drift”), with that of aRiemannian Brownianmotion. This result of
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us explains why it is hard or even impossible to experimentally distinguish a diffusion
process coming from a Riemannian metric from that of coming from a Finsler metric.
See Sect. 2.3.1 for more details.

Naturally, the topic of this paper, and therefore also the methods of the proof,
belong both to differential geometry and to the theory of stochastic processes. The
group of the methods coming from stochastic processes is actually standard for this
type of problems (though nontrivial) and was understood at least in the 70th–80th. The
novelty which allowed to solve this natural and actively attacked problem came from
Finsler geometry, and the key lemma is Lemma 4.5, in which proof uses a nontrivial
and not widely known result of [38, Sect. 15].

2 Setting and Results

2.1 Finsler Manifolds

First, we recall the basic definitions in Finsler geometry. Let M :=Mm be a m-
dimensional manifold, m ≥ 1. Suppose that (x1, . . . , xm) is a local coordinate at
some p ∈ M . Then yi = dxi induces a local coordinate (x1, . . . , xm, y1, . . . , ym) on
T M . For simplicity, for a function H : T M → R, we use the notations Hxi = ∂xi H
and Hyi = ∂yi H .

A smooth Finsler manifold (M, F) is a smooth manifold M together with a contin-
uous function F : T M → R≥0 called the Finsler metric (Finsler function) satisfying
the following conditions:

Regularity: The function F is smooth on T M \ {0}.
Positive Homogeneity: For any (x, y) ∈ TxM and λ ≥ 0, we have F(x, λy) =
λF(x, y).
Strong Convexity: For 0 �= (x, y) ∈ TxM , the fundamental tensor defined by

[g(x,y)]i j :=
(
1

2
F2

)
yi y j

(2.1)

is positive definite.
The indicatrix bundle of (M, F) is defined by

I M = {Y ∈ T M : F(Y ) = 1}.

For any p ∈ M , the fibre IpM of I M is a convex hypersurface in TpM diffeomorphic
to Sm−1.

If (M, g) is a Riemannianmanifold, one can naturally endow it with a Finslermetric
by setting F(Y ) := √

g(Y ,Y ), Y ∈ T M . Conversely, a Finsler function corresponds
to some Riemannian metric g if and only if its fundamental tensor gi j defined in (2.1)
depends only on the xi -variables.

The definitions of geodesics and exponential maps can be naturally generalized
to the Finslerian situation. A smooth curve γ : [a, b] → M is a geodesic, if it is a
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stationary point of the energy functional

E[γ ]:=1

2

∫ b

a
F2(γ (t), γ̇ (t)) dt . (2.2)

among all piecewise smooth curves starting at γ (a) and ending at γ (b). It is known
that for any p ∈ M and for any Y ∈ TpM , there exists a unique geodesic γY = γY (t)
such that γ (0) = p and γ̇ (0) = Y . We define the exponential map at p to be

expp : TpM � Y 	→ γY (1) ∈ M (2.3)

for all Y ∈ TpM such that γY (t) is defined for t ∈ [0, 1]. We say (M, F) is forward
complete if for any p ∈ M , the exponential map expp is defined for all Y ∈ TpM .
The manifold (M, F) is geodesically complete, if each geodesic γ can be extended to
a geodesic defined for all t ∈ (−∞,∞).

For a piecewise smooth curve γ : [a, b] → M , its length is defined by

Length(γ ) =
∫ b

a
F(γ (t), γ̇ (t)) dt . (2.4)

The Finsler function F defines the following asymmetric and symmetrized distances
on M :

da(p, q):= inf
{
Length(γ ) : γ is a piecewise smooth curve from p to q

}
,

d(p, q):=max{da(p, q), da(q, p)} (2.5)

By the Hopf–Rinow theorem for Finsler manifolds (see, e.g. [5, Sect. 6.6]), if (M, F)

is forward complete, the metric space (M, d) is complete. For a forward complete
(M, F), every closed ball of (M, d) is compact. The manifold M can be naturally
endowed with the Borel sigma-algebra that makes it a measure space.

Like in the Riemannian case, geodesics of Finsler metrics are local distance mini-
mizing (with respect toda) curves. The formula (2.2) ensures that they are parametrized
proportional to the arc-length parameter. Note, as F is in general not reversible, i.e.
F(x, y) �≡ F(x,−y), the distance function da and geodesics are not reversible either.

We will assume below that the flag and T -curvatures (the definitions are in e.g.
[38]) of our Finsler manifold are uniformly bounded. The flag curvature K can be
thought as a generalization of the Riemannian sectional curvature. The definition
of T -curvature (see [38, Sect. 10.1]) is essentially Finslerian since it vanishes for
Riemannian manifolds.

Within the whole paper, we assume the following set of hypotheses.
Hc: The manifold (M, F) is connected and forward complete.
Hb: The manifold (M, F) has bounded geometry in the following sense:

Definition 2.1 We say a Finsler manifold (M, F) has bounded geometry if the follow-
ings hold:
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1. Uniform ellipticity: There is some constant C > 1 such that for any p ∈ M and
any non-zero u, v ∈ TpM , we have

1

C2 F
2(v) = 1

C2 gv(v, v) ≤ gu(v, v) ≤ C2gv(v, v) = C2F2(v). (2.6)

2. The flag curvature K is bounded uniformly and absolutely by some constant λ > 0,
namely ‖K‖ ≤ λ.

3. The T -curvature is also bounded uniformly and absolutely in the following sense.
For any p ∈ M , any u, v ∈ TpM with F(v) = 1, the T -curvature satisfies

|Tv(u)| ≤ λ{gv(u, u) − [gv(u, v)]2} (2.7)

Note that all objects used in the definition of “bounded geometry” are microlocal:
These objects are functions in both xi and yi coordinates. For an explicitly given
Finsler metric, it is possible to check whether it has bounded geometry. Moreover, if
M is compact, then every smooth Finsler metric on it has bounded geometry.

In this paper, we use the following notations.
We say a function f : M → R vanishes at infinity, if ∀ε > 0, there exists some

compact set Kε ⊂ M such that ‖ f ‖ ≤ ε outside Kε.
We denote the unit discs on T M by

DpM = {Y ∈ TpM : F(Y ) ≤ 1}.

Let d be the symmetrized distance defined by (2.5). We denote the open balls by

Bp(ε) = {q ∈ M : d(p, q) < ε}, ε > 0.

In this paper, B is the space of Borel measurable real valued functions on M , C0 is
the space of continuous real-valued functions vanishing at infinity, C∞ is the space of
smooth functions, C∞

K is the space of smooth functions with compact support. Further-
more, D([0,∞), M) is the collection of right continuous functions γ : [0,∞) → M
with left limits, and C([0,∞), M) is space of continuous functions γ : [0,∞) → M .

2.2 Rescaled Geodesic RandomWalks

Consider a Finsler manifold (M, F) such that each TpM is equippedwith a probability
measure νp. By the mean of νp, we understand the vector μp := ∫

TpM
dνp ∈ TpM .

We are going to modify the sequence of random walks defined in the introduction.
This change is trivial if μp = 0 for every p: the step size is scaled by 1/

√
N . If

μp �= 0, we in addition appropriately shift the probability measure. The following
example demonstrates that without such a modification, the sequence of random walk
does not converge, for N → ∞, to a continuous stochastic process.

We consider R2(x, y) with the standard flat Riemannian metric, so geodesics are
straight lines. Let νp be the rotationally invariant measure on the circle of radius 1
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Fig. 2 The sample paths with N = 100 and N = 10000 and r = 0.05; the path with N = 10000 is close
to the deterministic motion with velocity r

√
N

with centre at the point (r , 0), r ∈ (0, 1), properly normalized. Clearly, μp = r ∂
∂x . In

particular, the probability of the x-coordinate to increase after one jump is higher than
to decrease. By the law of large numbers, the random walk “drifts” deterministically
at the distance r

√
N (which goes to∞ for N → ∞) during one time unit and diffuses

at the distance of order 1 due to the central limit theorem. We clearly see that the
sequence of random walks does not converge for N → ∞ to a continuous stochastic
process, see Fig. 2, where we plotted trajectories of the random walk for 10 units of
time for N = 100 and N = 10000 and r = 0.05.

Although the example is two dimensional and flat, the same phenomenon appears
in all dimensions and in the Finslerian case.

Because of this, we introduce below the family of rescaled random walks (we will
formalize this definition in Sect. 3.2). The N th random walk is constructed using the
measure νN

p which is constructed by νp and N via the formula νN
p (A) := νp(A

√
N +

μp−μp/
√
N ). That is, we obtain νN

p by shifting the measure νp in TpM by the vector

−μp +μp/
√
N and scaling it by 1/

√
N . Such a rescaling guarantees that the drift and

the diffusive components of the randomwalk have the same order and forbid the instant
escape to infinity in the limit. We will call this operation the rescaling of measure.
This operation is a straightforward generalization of the one used in the Riemannian
situation by E. Jørgensen in [22]. His motivation, which is also valid in our situation,
was that for N = 1, the increments of the randomwalk should be distributed according
to “basic” measure νp. Indeed, for N = 1, we have −μp/

√
N + μp/N ≡ 0.

This is not the only possible choice of rescaling. A simpler rescaling operation is
as follows: At every point p, we define ν̃p by centring the basic measure νp. That is,
we shift the measure νp by the vector −μp. This makes the mean of the new measure
equal to 0. Note that some papers on random walks on Finsler metric, for example [4],
assume that both Finsler metric and the measure μp are centrally symmetric on every

123



12454 T. Ma et al.

TpM (the so-called reversible situation), so the measure is automatically centred. Our
choice is justified by the observation that most examples of Finsler metrics appearing
in applications are not reversible. Moreover, if the Finsler geodesic random walk is
used to describe a physical model, the mean of νp does not have to be neglected.
Indeed, microscopic particles cannot make too long jumps because of friction and
collisions, even if the probability of the particle to go in one preferable direction is
higher. Therefore, the particle does not escape to infinity in short time, contrary to
what is suggested by the random walk described in the beginning of this section.

One can easily generalize the rescaling aboveby considering shifts−μp+αμp/
√
N

for some α depending on p. To see this, observe that if we modify νp by shifting it by
βμp, then the rescaled measure will be shifted by (1 + β)μp/

√
N . Thus, results of

our paper can be applied for any α.

2.3 TheMain Result

We will assume that the Finsler manifold (M, F) is connected and forward complete
(Hypothesis Hc) and has bounded geometry (Hypothesis Hb). In addition, we make
the following assumption on the family of measures {νp}.
Hν : We assume that ν = {νp} is a smooth family of probability measures inside
DM := {Y ∈ T M | F(Y ) ≤ 1} in T M or on the F-indicatrices.

In the first case, we require that ν is a smooth m-form on DM such that for every
p, the restriction νp := ν|TpM is a form on the disc DpM := {Y ∈ TpM | F(Y ) ≤ 1}
inducing a probability measure. Similarly, in the second case, ν is a smooth (m − 1)-
form on I M such that for each p ∈ M , the restriction νp := ν|IpM is a probability
measure.

This hypothesis is very natural from the viewpoint of Finsler geometry and covers
many choices that have their natural counterparts in the Riemannian setting; we will
give a few examples in Sect. 2.3.2.

Our main result is the following theorem:

Theorem 2.1 Let Hypotheses Hc, Hb, and Hν be satisfied. Consider a family of
geodesic random walks starting at p0 constructed from (M, F) and {νp}p∈M. Then,
this sequence has a unique weak limit ξ . The process ξ is a diffusion in which generator
is a non-degenerate elliptic differential operator A with smooth coefficients given by

A f (p) = d f (μp) + 1

2

∫
TpM

d2

dt2

∣∣∣∣
t=0

f ◦ γY−μp (t)νp(dY ), f ∈ C∞
K . (2.8)

Here, γY−μp is the geodesic with initial vector Y − μp. In the local coordinates, it
has the following form:

A f (p) = fk

(
μk

p − 1

2

∫
TpM

�k
i j

(
p, y − μp

)
(yi − μi

p)(y
j − μ

j
p) νp(dy)

)

+ 1

2
fi j

∫
TpM

(yi − μi
p)(y

j − μ
j
p) νp(dy),

(2.9)
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where �k
i j are the formal Christoffel symbols of the second kind given by

�k
i j (x, y) = 1

2
gks

(
∂gis
∂x j

+ ∂g js

∂xi
− ∂gi j

∂xs

)
(x, y), y �= 0,

fk = ∂xk f and fi j = ∂2
xi x j f .

Moreover, ξ is stochastically complete.

2.3.1 Limit Diffusion as a Riemannian Brownian Motion with Drift

Recall that the Riemannian Brownianmotion is a diffusion processwhich is the limit of
geodesic randomwalks with identically distributed steps. Here, identically distributed
should be understood as follows: the probability measure νp is invariant with respect
to the parallel transport along any curve and is invariant with respect to the standard
action of SO(g) on TpM . Actually, for a generic metric, invariance with respect to
the parallel transport implies SO(g)-invariance.

It is known that the generator of a Riemannian Brownian is proportional to the
Beltrami–Laplace operator of the metric, so its symbol is proportional with a constant
coefficient to the inverse of the Riemannian metric.

By Theorem 2.1, in the Finslerian case, the generator A of the limit process of the
geodesic random walk is a second-order non-degenerate elliptic differential operator
on M . Hence, the symbol σ(A) of A is dual to a Riemannian metric on M which we
denote gA. Then the Beltrami–Laplace operator
A of gA and A has the same symbol.
Hence, A − 
A is just a vector field on M . We call this vector field the drift of A.

In particular, though Finsler metrics are much more complicated than Riemannian
metrics, one almost does not see the difference on the level of diffusion processes
(only first-order terms of generators may be different). This should be the reason why
Finslerian effects related to diffusion were not observed experimentally in physical or
natural science systems, even in those where the free motion of particles corresponds
to geodesics of a certain Finsler metric. See e.g. [15] where in a highly anisotropic
situation (diffusion weighted magnetic resonance imaging of brain), the measurement
returned a Finsler metric which is very close to a Riemannian metric.

This observation may provide additional mathematical tools for natural science and
physics. Indeed, in most cases the probability distributions νp can be “read” from the
description of the model (in fact in many cases, they are generated by the volume
form of the standard flat metric). Empirical observations of diffusions may provide
tools for testing mathematical models of the system in question or determining their
parameters.

2.3.2 Canonical Constructions of Riemannian Metrics

In the Riemannian situation, there is essentially only one canonical (i.e. coordi-
nate invariant) construction of a probability measure on TpM . Indeed, coordinate
invariance of the construction implies that the metric is invariant under the group
SO(g), which implies that in the orthogonal coordinates (y1, . . . , ym) on TpM , it
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is given by φ((y1)2 + · · · + (ym)2) dy1 ∧ · · · ∧ dym . The function φ is the same
for all points p and has the property that it is nonnegative and that the integral∫
Rn φ((y1)2 + · · · + (ym)2) dy1 ∧ · · · ∧ dym = 1.
In the Finslerian situations, there are many natural non-equivalent constructions of

a measure on TpM . Let us recall the following three.

Measure coming from the Lebesgue measure: For any p ∈ M , let ω′
p = dy1 ∧

· · · ∧ dym be a Lebesgue measure on TpM . It is known that it is unique up to
a positive coefficient. We restrict it to the ball DpM (that is, the measure of an
open set U ⊂ TpM it the Lebesgue measure of the intersection DpM ∩ U ), and
normalize it such that it becomes a probability measure.
Measure coming from the fundamental tensor: For any p ∈ M , the fundamental
tensor gi j defines aRiemannianmetric on the compactmanifold IpM .Normalizing
the volume on IpM induced by gi j , we obtain probability measure

νp:= volg
volg(IpM)

. (2.10)

This probability measure is close to the one used in [4, Sect. A2].
Measure coming from the Hilbert form: Denote P+(M), the positive projectivized
tangent bundle. The Hilbert 1-form ω̂ = Fyi dx

i defined on T M \ {0} is actually a
pull back of some 1-formω on P+(M) by the standard projection. It is well known
that ω ∧ (dω)m−1 defines a volume form on P+(M) � I M . Let ip : IpM → I M
be the standard inclusion and π : I M → M be the canonical projection. It is
known (see, e.g. [7]) that there exists a (m − 1)-form αF on I M and a volume
form ωF on M such that αF |IpM is a unique volume form on IpM for each p ∈ M
with

volαF (IpM) = 1,

αF ∧ π∗ωF = ω ∧ (dω)m−1.
(2.11)

Hence, we can take νp:=volαF on IpM .

Each of these measures satisfies the HypothesisHν and is coordinate independently
constructed from F . In the case the Finsler metric is reversible, the dual of the symbol
of the generator corresponding to the first measure gives the Binet–Legendre metric
(see, e.g. [11,31]). The second choice of the measure gives the averaged metric used
in [29,30] (a small modification of the construction leads to the metric from [43]), and
the third choice of measure generates the Finsler Laplacian from [7]. Note that the
Binet–Legendremetric, the averagedmetric, and the Finsler Laplacian from [7] appear
to be effective tools for solving different problems in Finsler geometry; we expect that
other natural choices of the measure νp may also be useful in Finsler geometry.

2.4 Example: Limit Diffusion for a Katok Finsler Metric

Let (S2, g) be the unit sphere endowed with the standard Riemannian metric. Katok
metric is constructed as follows. Let X be the vector field of rotation around the axis
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connecting the north and south poles of the sphere such that g(X , X) < 1. In the the
following spherical coordinate on S

2,

(ψ, θ) 	→ (cos(ψ) cos(θ), sin(ψ) cos(θ), sin(θ)). (2.12)

Then there is some constant |r | < 1 such that

X = r∂ψ .

Now for any p ∈ M , the indicatrix IpM of the constructed Finsler function F is
obtained by shifting the unit sphere SpS2 of g (which is the indicatrix with respect to
g) by X . That is,

IpM :={v + X p : v ∈ TpS
2, g(v, v) = 1}

This yields a well-defined Finsler metric as g(X , X) < 1. This family of metrics
depending on the parameter r was constructed by A. Katok in [24]. It is widely used
in Finsler geometry and in the theory of dynamical system as source of examples and
counterexamples. It has constant flag curvature by [6,16,39], and by [9], any metric of
constant flag curvature on the 2-sphere has geodesic flow conjugate to that of a Katok
metric.

As the measure νp we consider the Lebesgue measure as described in Sect. 2.3.2;
let us calculate the generator of the corresponding diffusion process ξ .

By Theorem 2.1, the diffusion process ξ generated by {νp}p∈M has generator A
such that

A f (p) = d f (X)(p) + 1

2

{
fi j

∫
DpM

(Y i − Xi )(Y j − X j ) νp(dY )

− fk

∫
DpM

�k
i j (p,Y − X) (Y i − Xi )(Y j − X j ) νp(dY )

} (2.13)

where �k
i j are the formal Christoffel symbols of the second kind of (M, F) and f ∈

C∞.
As νp is induced by a Lebesgue measure on TpM � R

m , we also denote this
Lebesgue measure by νp for simplicity. For any p ∈ M , the set

D̂PM :={Y ∈ TpM | Y + X(p) ∈ DpM}

is just the closed unit ball on TpS
2 with respect to g. Since νp is translation invariant,

Equation (2.13) becomes

A f (p) = d f (X)(p) + 1

2

{
fi j

∫
D̂pM

Y iY jνp(dY ) − fk

∫
D̂pM

�k
i j (p, Y ) Y iY j νp(dY )

}

(2.14)
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Note the integrand in the equation above is second-order homogeneous in Y . By
Fubini theorem, for any p ∈ M , there is a finite measure ηp on SpS2 such that for any
integrable second-order homogeneous function h on TpM , we have

∫
D̂pM

h(Y )νp(dY ) =
∫
SpS2

h(Y )ηp(dY ) (2.15)

Because νp is invariant under any orthogonal transformation on TpS
2 with respect to

g, it is clear ηp is a multiple of the canonical angular measuremp on SpS2 with respect

to g. A straight forward computation shows ηp = 1

4π
mp. Hence from (2.14), we get

A f (p) = d f (X)(p) + 1

8π

{
fi j

∫
SpS2

Y iY jm p(dY ) − fk

∫
SpS2

�k
i j (p, Y ) Y iY j m p(dY )

}

(2.16)

Let 
 be the Beltrami–Laplace operator of g, and let �̂k
i j be the Christoffel symbols

of g. A straightforward computation yields

1

8

 f (p) = 1

8π

{
fi j

∫
SpS2

Y iY j m p(dY ) − fk

∫
SpS2

�̂k
i j (p)Y

iY j m p(dY )

}
.

(2.17)

This implies that
1

8

 and A have the same symbol. To compute the drift of A, we

assume without loss of generality that 0 ≤ r < 1. First, we have

(
A − 1

8



)
f (p) = d f (X)(p) + 1

8π
fk

∫
SpS2

�̂k
i j (p)Y

iY j m p(dY )

− 1

8π
fk

∫
SpS2

�k
i j (p,Y ) Y iY j m p(dY ).

(2.18)

Let �t be the flow generated by X , we know from [16, Theorem 1] that if γ (t) is a
geodesic of (S2, g) with

√
g(γ̇ , γ̇ ) = c, then γ̂ (t) = �ct ◦ γ (t) is a geodesic of F

with initial vector γ̂ ′(0) = γ̇ (0) + cX(γ (0)). But in the spherical coordinate given
(2.12), the flow �t simply has the form:

�t (ψ, θ) = (ψ + r t, θ).

Then in this coordinate, we have

d2

dt2

∣∣∣∣
t=0

γ̂ (t) = d2

dt2

∣∣∣∣
t=0

γ (t).
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Fig. 3 (l.) A sample path of the Brownian motion on the standard sphere. (r.) A sample path of the diffusion
with the generator A given by (2.13) with r = 1/2

By the geodesic equation, this is equivalent to

�k
i j (p, γ̂

′(0))(γ̂ ′(0))i (γ̂ ′(0)) j = �̂k
i j (p)(γ

′(0))i (γ ′(0)) j .

Using this and (2.18), a straight forward computation gives

(
A − 1

8



)
= X + 1

4
r2 cos(θ) sin(θ) · r2 cos2(θ) − 2(

1 − r2 cos2(θ)
)2 · ∂θ . (2.19)

This is the drift of the generator A.
On Fig. 3, one clearly sees the difference in the behaviours of the Brownian motion

of the initial round metric on S
2 and of the diffusion process corresponding to the

Katok metric with r = 1/2 due to the drift given in (2.18). Of course, the pictures are
just the pictures of the corresponding geodesic random walks with a sufficiently large
N . Note that the same random seed was used in both pictures.

3 Preliminaries

In this section, we give a short review of the tools in Finsler geometry which will be
used in our proof in later sections and formalize definitions of random geodesic walks
which will allow us to apply the machinery from the theory of stochastic processes.

3.1 Finsler Geodesics and Properties of Bounded Geometry

It is well known that stationary points of the energy functional (2.2) are solutions of the
Euler-Lagrange equation which in our situation is equivalent to the following system
of ODEs:
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dxi

dt
= yi , (3.1)

dyk

dt
+ �k

i j (x, y)y
i y j = 0. (3.2)

Here, �k
i j are the formal Christoffel symbols of the 2nd kind:

�k
i j (x, y) = 1

2
gks

(
∂gis
∂x j

+ ∂g js

∂xi
− ∂gi j

∂xs

)
(x, y), y �= 0 (3.3)

It is immediate from (3.3) that for any λ > 0 and y �= 0, we have

�k
i j (x, y) = �k

i j (x, λy). (3.4)

Denote the class of real-valued k-times continuously differentiable real-valued func-
tions on M with compact support by CkK . Suppose f ∈ Ck0K with compact support K f .
For any Y ∈ T M , define fY (t) = f ◦ γY (t), where γY (t) is the geodesic with initial
vector Y as before.

Lemma 3.1 Suppose that f ∈ Ck0K . There exists some constant c such that

∣∣∣∣
(
dk

dtk
fY

)
(t)

∣∣∣∣ ≤ cFk(Y ), ∀k ≤ k0, (3.5)

wherever it is well defined.

Proof First,we show that there is someconstant c such that

∣∣∣∣
(
dk

dtk
fY

)
(0)

∣∣∣∣ ≤ cFk(Y ).

Let X̃ be the geodesic spray on T M , and denote π : T M → M the canonical pro-
jection. The function π∗ f is Ck0 , so (L)k

X̃
(π∗ f ) is continuous on T M \ {0} for any

k ≤ k0. Hence, for some constant c, we have

|(L)k
X̃
(π∗ f )( p̂)| ≤ c, ∀ p̂ ∈ I K f , ∀k ≤ k0.

For any p ∈ M and Y ∈ TpM , we have

(
dk

dtk
fY

)
(0) = (L)k

X̃
(π∗ f )(p,Y ).

In addition, for Y �= 0, let Y ′ = Y

F(Y )
. Using

fY (t) = f ◦ γF(Y )Y ′(t) = fY ′(F(Y )t),
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we get

∣∣∣∣
(
dk

dtk
fY

)
(0)

∣∣∣∣ =
∣∣∣∣
(
dk

dtk
fY ′

)
(0)

∣∣∣∣Fk(Y ).

Then for p ∈ K f and Y �= 0, we have

∣∣∣∣
(
dk

dtk
fY

)
(0)

∣∣∣∣ = (L)k
X̃
(π∗ f )(p,Y ′) · Fk(Y ) ≤ cFk(Y ).

For p /∈ K f , we have f vanishes identically on some neighbourhood of p. Then the
function t 	→ fY (t) is constant near t = 0. For Y = 0, then function fY (t) is also

constant. It follows that

∣∣∣∣
(
dk

dtk
fY

)
(0)

∣∣∣∣ ≤ cFk(Y ).

Next, given any geodesic γY , let Y (t) be its velocity field. We have

F(Y (t)) = F(Y (0)) = F(Y ),∣∣∣∣
(
dk

dtk
fY

)
(t)

∣∣∣∣ =
∣∣∣∣
(
dk

dtk
fY (t)

)
(0)

∣∣∣∣ ≤ cFk(Y (t)) = cFk(Y ).

This completes the proof. ��
The injective radius at p is defined by

injM (p):= inf{r > 0 : expp |Dp(r) is injective}
injM := inf{injM (p) : p ∈ M}

The conjugate radius is defined similarly by

conM (p):= inf{r > 0 : expp |(Dp(r)) is an immersion}
conM := inf{conM (p) : p ∈ M}.

We always have injM (p) ≤ conM (p) for any p ∈ M , see [5, Proposition 8.2.1]. The
conjugate radius and flag curvature are related by the following well-known result, [5,
Proposition 9.5.2].

Proposition 3.2 Suppose (M, F) is a Finsler manifold such that its flag curvature

‖K‖ ≤ λ. Then the conjugate radius is bounded from below by conM ≥ π√
λ
, hence

strictly positive.

3.2 Formal Definition of Rescaled Geodesic RandomWalks

We begin this section by a brief review of the basic definitions in Markov processes
used in this paper. Roughly speaking, a stochastic process is said to be Markovian if
its future states depend only upon the present state, regardless of its past state.
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Definition 3.1 Let (�,F ,P) be a probability space. An M-valued process ξ : � ×
[0,∞) → M is Markovian if for each Borel subset of B of M , for all n ≥ 1,
0 ≤ s1 < · · · < sn < s < t , we have

P(ξt ∈ B|ξs1 , . . . , ξsn , ξs) = P(ξt ∈ B|ξs). (3.6)

The transition probability function for a Markov process is defined by

P(p, s, t, B) = P(ξt ∈ B|ξs = p), ∀p ∈ M, ∀0 ≤ s ≤ t .

We say (ξt )t≥0 is time homogeneous if the following holds.

P(p, s, t, B) = P(p, 0, t − s, B), ∀p ∈ M, ∀0 ≤ s ≤ t .

AllMarkov processes considered in this paper are time homogeneous. A time homoge-
nous Markov process ξ defines a semigroup T = (Tt )t≥0 of linear operators on the
measurable functions B on M by

Tt ( f )(p) = Ep[ f (ξt )], p ∈ M, t ≥ 0.

We say a Markov process ξ is Feller if the semigroup T is a strongly continuous
semigroup of positive contractions on the Banach space C0.

In the introduction, we gave a slightly informal definition of (rescaled) geodesic
random walks. We now give a formal definition.

Let (M, F) be a geodesically complete Finsler manifold. Let {νp}p∈M be a family
of measures such that each νp is a probability measure on TpM . Denote by μp the
mean of νp

μp:=
∫
TpM

Y νp(dY ).

In our setting (Hypothesis Hν), the probability measures are compactly supported so
μp exists and is finite.

Definition 3.2 Let N ≥ 1 and let p0 ∈ M be fixed. A random process (ζ N
k ,Y N

k+1)k≥0
is called a (rescaled) discrete time geodesic random walk on M with initial point p0
and with increments {Y N

k+1}k≥0 compatible with the family {νp}p∈M if

1. the process ζ N
k is M valued, and Y N

k+1 is Tξ N
k
M valued,

2. ζ N
0 = p0,

3. for each k ≥ 0, Law(Y N
k+1) = νN

ζ N
k
where

νN
p (B) =

∫
TpM

IB

(Y − μp√
N

+ μp

N

)
νp(dY ) (3.7)

for any measurable B ⊆ TpM ,
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4. ζ N
k+1 = expζ N

k
(Y N

k+1), k ≥ 0.

Hence, the processes ζ N are defined by the family of measures {νp}p∈M and the
geometry of the exponential mapping expp. The randomwalks are time homogeneous
since the family {νp}p∈M does not depend on k.

In the classical (Euclidean) setting, random walks are processes with independent
increments. In our setting, the independence is understood in the conditional sense, i.e.
the increments Y N

k+1 depend only on the current position ζ N
k and not on the previous

positions and increments. More precisely, we introduce the natural filtration

FN
k := σ {(ζ N

0 ,Y N
1 ), . . . , (ζ N

k−1,Y
N
k )}, k ≥ 1, (3.8)

and say that the increments of ζ N are independent if for each f ∈ Cb(⊕k+1
i=0M,R)

E
[
f (ζ N

0 , . . . , ζ N
k , ζ N

k+1)

∣∣∣FN
k

]
=

∫
T
ζNk

M
f (ζ N

0 , . . . , ζ N
k , expζ N

k
(Y )) νN

ζ N
k

(dY ). (3.9)

It is clear that ζ N is a homogeneous discrete time M-valued Markov chain with the
one-step transition operator

PN f (p) = Ep f (ζ
N
1 ) =

∫
TpM

f
(
expp

(Y − μp√
N

+ μp

N

))
νp(dY ), f ∈ Cb(M,R).

(3.10)

Sincewework in a continuous time setting, it is convenient to transform the discrete
time Markov chain ζ N into a continuous time Markov process. This can be done by a
standard subordination procedure.

Let Q = (Qt )t≥0 be a standard Poisson process independent of {ζ N }. Define a
pseudo-Poisson process

ξ N
t = ζ N

QNt
, t ≥ 0.

Note that the sample paths of ξ N belong to D([0,∞), M). Hence, the Markov
processes ξ N induce probability distributions PN on the path space D([0,∞), M). It
is easy to see that the transition semigroup T N = (T N

t )t≥0 of ξ N
t has the form:

T N
t ( f )(p) = Ep[ f (ξ N

t )] = e−Nt
∞∑
k=0

(Nt)k

k! (PN )k( f )(p), f ∈ B. (3.11)

Finally, we introduce a of family continuous M-valued processes defined by

ξ̂ N
t = expζ N

k

(
N

(
t − k

N

)
Y N
k+1

)
, t ∈

[ k

N
,
k + 1

N

]
, k ≥ 0.
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Since the manifold is geodesically complete, the processes ζ N , ξ N , and ξ̂ N are well
defined for each N ≥ 1. By construction, the processes ξ̂ N have piecewise smooth
sample paths consisting of geodesic segments and induce probability distributions
P̂N on the path space C([0,∞), M) of continuous M-valued functions. These are
the geodesic random walks introduced and discussed in the Introduction, see Fig. 1
there, and in Sect. 2.4, see Fig. 3. Although the processes ξ̂ N are not Markovian,
the convergence of the continuous time processes (ζ N

[Nt])t≥0, (ξ N
t )t≥0 and (ξ̂ N

t )t≥0 is
equivalent, see, e.g. [23, Theorem 17.28]. In the next sections, we will mainly work
with the Markov processes ξ N .

4 Proof of theMain Theorem

In this section, we prove the convergence of the geodesic random walks {ξ N }. We
will assume that the Finsler manifold (M, F) is forward complete and connected
(Hypothesis Hc) and has bounded geometry (Hypothesis Hb) and that the measures
{νp}p∈M satisfy the condition Hν from Sect. 2.3.

4.1 Generators of Geodesic RandomWalks

In this section, we show that the N -scaled geodesic random walks on a complete
Finsler manifold (M, F) with bounded geometry are Feller.

Lemma 4.1 Let Hν hold true and k ≥ 0. For any Ck-smooth function f : T M → R,
the mapping

p →
∫
TpM

f (Y ) νp(dY ) (4.1)

is also Ck-smooth.
This lemma is obvious since each νp is only supported on DpM . Indeed, integral over
a compact set of a function smoothly depending on parameters smoothly depends on
the parameters.

Now, we are ready to show the semigroups {T N } are Feller and give the formula
of the generators.

Proposition 4.2 Suppose (M, F) is complete and uniform elliptic. In addition, assume
the measures {νp} satisfy the hypothesis Hν . Then for each N ≥ 1, the family of
operators T N = (T N

t )t≥0 is a conservative Feller semigroup with the generator

AN f = N
(
PN f − f

)
, f ∈ C0. (4.2)

Proof Let N ≥ 1 be fixed. Since by constriction, T N is a strongly continuous semi-
group of a pseudo-Poisson process, its generator has the form (4.2) by Theorem 19.2
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from [23]. It is conservative due to assumptionHc. Let us show that T N
t maps C0 into

itself for t ≥ 0. Since we have

‖PN f ‖ ≤ ‖ f ‖, (4.3)

the series in (3.11) converges uniformly. It suffices to show PN maps C0 into itself.
By Lemma 4.1, the mean value μp is a C∞ vector field. Since the exponential map

for Finsler manifold is at least C1, then PN maps continuous functions into continuous
functions.

For any ε > 0, choose some compact K ⊆ M such that | f (x)| <
ε

2
for x /∈ K .

Fix any p0 ∈ K and define the closed forward balls at p0 for R ≥ 0 by

B+
p0(R):={q ∈ M : da(p0, q) ≤ R}.

Because K is compact, there exists some R0 > 0 such that K ⊂ B+
p0(R) for all

R ≥ R0. By the Hopf–Rinow theorem (see Theorem 6.6.1 of [5]), the forward closed
balls B+

p0(R) are also compact.
For any 0 �= Y ∈ TpM and p ∈ M , the uniform ellipticity condition in Defini-

tion 2.1 gives

F2(−Y ) = g−Y (Y ,Y ) ≤ C2gY (Y ,Y ) = C2F2(Y ). (4.4)

It follows that

da(q, p0) ≤ Cda(p0, q) ≤ CR0, ∀q ∈ K ; (4.5)

da(p, p0) ≥ 1

C
da(p0, p) ≥ R

C
, ∀p ∈ (B+

p0(R))c, ∀R ≥ 0. (4.6)

Let R1:=C(C + 2 + CR0), then ∀p ∈ (B+
p0(R1))

c and ∀q ∈ K , we have

da(p, q) ≥ da(p, p0) − da(q, p0) ≥ R1

C
− CR0 > C + 1 (4.7)

On the other hand, for p ∈ M and Y ∈ DpM , we have

da(p, eNp (Y )) ≤ F

(
1√
N

(Y − (1 − 1/
√
N )μp)

)
≤ F(Y ) + F(−μp) ≤ C + 1.

(4.8)

Hence, ∀Y ∈ DpM and p ∈ (B+
p (R1))

c, we have eNp (Y ) /∈ K . It follows that
∀p ∈ (B+

p (R1))
c:

|PN f (p)| =
∣∣∣∣
∫
TpM

f ◦ eNp (Y ) νp(dY )

∣∣∣∣ ≤ ε

2
. (4.9)
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That is to say ‖PN f ‖ ≤ ε

2
outside the compact set B+

P (R1). We conclude that

PN f ∈ C0. This completes the proof. ��

4.2 Convergence of the Generators of Geodesic RandomWalks

In this section, we prove the generators AN converge on the space C∞
K to some second-

order elliptic operator with smooth coefficients.
Denote

fY−μp (t) = f ◦ γY−μp (t) (4.10)

Proposition 4.3 Let A be the differential operator defined by

A f (p):=d f (μp) + 1

2

∫
TpM

d2

dt2

∣∣∣∣
t=0

fY−μp (t) νp(dY ), f ∈ C2. (4.11)

Then A is a second-order positive definite elliptic operator of smooth coefficients and
for each f ∈ C∞

K

lim
N→∞‖AN f − A f ‖ = 0. (4.12)

Proof The proof follows the steps from [22] in the Riemannian case. By computing
the Taylor expansion of AN f , we show the convergence of the first- and second-order
terms and vanishing of other higher-order terms as N → ∞.

Take any f ∈ C∞
K . We have

AN ( f )(p) = N
(
PN ( f )(p) − f (p)

)

= N
∫
TpM

[
f ◦ γY−(1−1/

√
N )μp

( 1√
N

)
− f (p)

]
νp(dY )

(4.13)

Then for any p ∈ M and Y ∈ DpM , the Taylor expansion of

fY−(1−1/
√
N )μp

(t) = f ◦ γY−(1−1/
√
N )μp

(t) (4.14)

gives

fY−(1−1/
√
N )μp

(
1√
N

)
= f (p) + 1√

N
d f p(Y − (1 − 1/

√
N )μp)

+ 1

2N

d2

dt2

∣∣∣∣
t=0

(
fY−(1−1/

√
N )μp

(t)
)

+ RN (p,Y ).
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Thus, we have

AN f (p) = N
∫
TpM

{
1√
N
d f p(Y − (1 − 1/

√
N )μp)

+ 1

2N

d2

dt2

∣∣∣∣
t=0

( fY−(1−1/
√
N )μp

(t)) + RN (p,Y )

}
νp(dY )

= d f (μp) +
∫
TpM

1

2

d2

dt2

∣∣∣∣
t=0

( fY−(1−1/
√
N )μp

(t)) νp(dY )

+
∫
TpM

N RN (p,Y ) νp(dY ).

(4.15)

Using Lemma 3.1 and Eq. (4.4), for any Y ∈ DpM and p ∈ M , there is some constant
c f > 0 such that

|RN (p,Y )| ≤ 1

N
√
N

sup
t∈[0,1/√N ]

∣∣∣∣ d
3

dt3
fY−(1−1/

√
N )μp

(t)

∣∣∣∣
≤ c f

N
√
N
F3(Y − (1 − 1/

√
N )μp)

≤ c f

N
√
N

(F(Y ) + F(−μp))
3

≤ c f

N
√
N

(C + 1)3.

(4.16)

Clearly, we have from (4.16)

lim
N→∞ sup

p∈M,Y∈DpM
|N RN (p,Y )| = 0. (4.17)

The last term in (4.15) tends to zero, since νp is only supported on DpM .
For the second-order term, in a canonical coordinate of T M , we have

d2

dt2

∣∣∣∣
t=0

( fY−(1−1/
√
N )μp

(t))

= fi j · yi
(
Y − (1 − 1√

N
)μp

)
y j

(
Y − (1 − 1√

N
)μp

)

− fk · �k
i j

(
p,Y − (1 − 1√

N
)μp

)
yi

(
Y − (1 − 1√

N
)μp

)
y j

(
Y − (1 − 1√

N
)μp

)
.

(4.18)

Since the formal Christoffel symbols are bounded on each compact local coordinate,
the right-hand side of (4.18) converges to
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fi j · yi (Y − μp)y
j (Y − μp) − fk · �k

i j (p,Y − μp)y
i (Y − μp)y

j (Y − μp),

as N → ∞ uniformly on DK for each compact chart K ⊆ M , where DK = {Y ∈
DpM : p ∈ K }.

Choose a smooth coordinate on some open U ⊆ M . The chain rule implies A has
the following form in this coordinate.

A f (p) = d f (μp) + 1

2

(
fi j

∫
TpM

yi (Y − μp)y
j (Y − μp) νp(dY )

− fk

∫
TpM

�k
i j (p,Y − μp)y

i (Y − μp)y
j (Y − μp) νp(dY )

)
.

Because f has compact support, we have

lim
n→∞‖AN f − A f ‖ = 0, f ∈ C∞

K . (4.19)

It follows that the symbol of A is

σ(A)(p) = 1

2

∫
TpM

⊗2(Y − μp) νp(dY ). (4.20)

For each p ∈ M , the measure νp is induced by either a smooth non-zero (m−1)-form
on IpM or anm-form TpM (conditionHν). Then σ(A) is positive definite, and hence,
A is a strictly elliptic operator.

In each compact local coordinate, the functions {�k
i j } are bounded and smooth on

T M \ {0}. It follows that A has smooth coefficients. This completes the proof.
��

4.3 Tightness of the Family {�N}

In this section, we prove the family of random walks {ξ N } is tight in D([0,∞), M).
Recall that the symmetrized distance d makes (M, d) a complete separable metric
space, as (M, F) is forward complete and has bounded geometry.

Proposition 4.4 Let the Finsler manifold (M, F) and the family {νp}p∈M satisfy
Assumptions Hc, Hb, and Hν . Then the family of random walks {ξ N }N≥1 is tight
in D([0,∞), M).

Proof The statement follows from the Aldous criteria (Lemma 4.8) and the compact
containment condition (Lemma (4.9)) that will be proven in this section. ��

Our goal consists of obtaining uniform estimates for the oscillation of the random
walks ξ N , see Eq. (4.53). Because M is in general non-compact, the injective radius
lower bound injM can be zero. Since the non-symmetrized distance function da(p, ·) is
smooth only within the injective radius, we work on the tangent bundle T M to bypass

123



Finsler Geodesic RandomWalks 12469

this technical problem. To prepare the proof of Lemma 4.8 as well as Lemma 4.9, for
R ≥ 0, define

Dp(R):={Y ∈ TpM : F(Y ) ≤ R}.

We make the following construction.
The condition K ≤ λ implies that there exists some0 < δc < 1 so that the conjugate

radius conM > δc, see Proposition 3.2. For each p ∈ M , the exponential map expp is
a smooth immersion on Dp(δc) except possibly at 0. Then we can construct a geodesi-
cally complete smooth Finsler function Fp on TpM such that Fp = (expp)

∗(F) on

Dp(
δc
2 ), while Fp is the standard Minkowski metric on TpM \ Dp(1), under any

standard identification TpM � R
m . To distinguish it from the distance functions on

(M, F), we denote the asymmetric and symmetric distance on (TpM, Fp) by d
p
a and

d p, respectively. Note that the injective radius of Fp at 0 ∈ TpM is at least δc
4 .

Now for each p ∈ M , we construct the measures {ν̃q}q∈TpM , so that on Dp(δc/2),
the measures {ν̃q}q∈Dp(δc/2) are the lift of {νo}o∈M by the exponential map expp. In
addition, we require the measures {ν̃q}q∈TpM satisfy the condition Hν .

Then for each p ∈ M and N ≥ 1, we construct an N -scaled geodesic random walk
ξ N ,p on the Finsler manifold (TpM, Fp) starting at 0 ∈ TpM , using the prescribed
measures {ν̃q}q∈TpM as in Sect. 3.2. Note as (TpM, Fp) satisfiesHb andHc, all results
we proved earlier are true for the random walks ξ N ,p.

Lemma 4.5 There exists some δ0 > 0 so that for each δ ∈ (0, δ0), there exists a family
of functions { f δ

p}p∈M such that

1. Each f δ
p is a function on TpM with 0 ≤ f δ

p ≤ 1 such that f δ
p(0) = 1 and

f δ
p(q) = 0 if q /∈ Dp(δ).

2. Denote AN ,p the generator associated to ξ N ,p, then there exists a constant C̃(δ) >

0 such that

sup
N≥1

sup
p∈M

sup
q∈TpM

∣∣∣AN ,p f
δ
p(q)

∣∣∣ ≤ C̃(δ). (4.21)

Proof The general scheme to prove this lemma is as follows. We construct the family
of functions { f δ

p} using the distance functions d p
a (0, ·) on (TpM, Fp). The Hessian

comparison theorem from [38, Sect. 15.1] applied to Finsler manifolds with bounded
flag and T -curvature suggests that the distance functions have uniformly bounded
Hessians. This fact applied to the Taylor expansion of f δ

p implies that the family of
functions we constructed satisfies the conditions listed in the Lemma.

For δc ∈ (0, 1) chosen above, C > 0 and λ > 0 from Definition 2.1, let 0 <

δ0 < min{ δc
4(C+1) ,

π

2
√

λ
}. Fix any p ∈ M , and denote d p

a (0, ·) the distance function for
(TpM, Fp) from 0 ∈ TpM . Because the injective radius for Fp at 0 is at least δc

4 , the
distance function d p

a (0, ·) is smooth on the open set Dp(δ) \ {0} for each 0 < δ < δ0.
Fix any δ ∈ (0, δ0). Let ψδ : R → R be a smooth function with compact support

contained in [− δ
2 ,

δ
2 ]. Further suppose 0 ≤ ψδ ≤ 1 and ψδ ≡ 1 on I1 = [− δ

4 ,
δ
4 ]. For

123



12470 T. Ma et al.

each p ∈ M , the function

f δ
p(q) := ψδ ◦ d p

a (0, q), q ∈ TpM . (4.22)

is smooth on TpM and satisfies condition 1.
To prove condition 2, for anyq ∈ (TpM, Fp), let μ̃q be themean of ν̃q . An argument

similar to Proposition 4.2 shows that for any q ∈ TpM

AN ,p f
δ
p(q) = N

[ ∫
Tq (TpM)

f δ
p ◦ γY−(1−1/

√
N )μ̃q

( 1√
N

)
ν̃q(dY ) − f δ

p(q)
]
. (4.23)

Note {ν̃q}q∈TpM satisfies Hν , so we only need to integrate over Y ∈ Tq(TpM) with
Fp(Y ) ≤ 1.

To simplify the notations, define for Y ∈ Tq(TpM)

hN (Y )(t) := da
(
0, γY−(1−1/

√
N )μq

(t)
)
, (4.24)

hδ
N (Y )(t) := ψδ ◦ hN (Y )(t) = f δ

p ◦ γY−(1−1/
√
N )μq

(t), t ≥ 0. (4.25)

By Taylor theorem, there exist functions {tN } with

tN : Tq(TpM) →
(
0,

1√
N

)
(4.26)

such that

hδ
N (Y )

( 1√
N

)
= f δ

p(q) + d f δ
p(q)

(Y − μ̃q√
N

+ 1

N
μ̃q

)
+ 1

2N

d2

dt2

∣∣∣∣
t=tN (Y )

(
hδ
N (Y )(t)

)
.

(4.27)

Using Eqs. (4.23) and (4.27), we get

AN f δ
p(q) = N

∫
Tq (TpM)

[
d f δ

p(q)

(
Y − μ̃q√

N
+ 1

N
μ̃q

)

+ 1

2N

d2

dt2

∣∣∣∣
t=tN (Y )

(
hδ
N (Y )(t)

) ]
ν̃q(dY )

= d f δ
p(q)(μ̃q) + 1

2

∫
Tq (TpM)

d2

dt2

∣∣∣∣
t=tN (Y )

(
hδ
N (Y )(t)

)
ν̃q(dY ). (4.28)

Weneed to show that the equation above is uniformly bounded for all p ∈ M ,q ∈ TpM
and N ≥ 1.

First, we show for each 0 < δ < δ0,

sup
p∈M

sup
q∈TpM

|d f δ
p(q)(μ̃q)| < ∞. (4.29)
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Clearly, if d p
a (0, q) ≤ δ

4 or d p
a (0, q) ≥ δ

2 , we have

d f δ
p(q)(μ̃q) = 0.

For any q ∈ TpM such that δ
4 ≤ da(0, q) ≤ δ

2 , the Finlser metric Fp|Tq (TpM) and
the measure ν̃q are the pull backs of F and {νo}o∈M by expp, respectively. Thus,
Fp(μ̃q) < 1 and Fp(−μ̃q) ≤ C . It follows that

|μ̃q(d
p
a (0, ·))| ≤ C if

δ

4
≤ d p

a (0, q) ≤ δ

2
.

The function d p
a (0, ·) is smooth at q For q ∈ TpM with δ

4 ≤ da(0, q) ≤ δ
2 . Hence,

Eq. (4.29) holds by the chain rule.
Now it suffices to prove that the integrand in (4.28) is uniformly bounded for all

Y ∈ Tq(TpM), q ∈ TpM , p ∈ M and N ≥ 1. By the construction of ψδ , for the case

d p
a

(
0, γY−(1−1/

√
N )μ̃q

(tN (Y ))
)

≥ δ

2
or d p

a

(
0, γY−(1−1/

√
N )μ̃q

(tN (Y ))
)

≤ δ

4
,

(4.30)

we have

d2

dt2

∣∣∣∣
t=tN (Y )

hδ
N (Y )(t) = 0. (4.31)

For the case

δ

4
≤ d p

a
(
0, γY−(1−1/

√
N )μ̃q

(tN (Y ))
) ≤ δ

2
, (4.32)

the function hN (Y )(t) is smooth on some interval containing t = tN (Y ), because
d p
a (0, ·) is smooth on Dp(δ) \ {0}. Since ψδ is in C∞

K , it is sufficient to show that the
first and second derivatives hN (Y )(t) with respect to t are uniformly bounded.

To simplify the notations, we denote by∇ρ := ∇d p
a (0, ·) the Finsler gradient, see,

e.g. [38, Eq. (3.14) in Sect. 3.2]. Following [38, Sect. 15.1], let us define

ĝ:=g̃∇ρ, rN (Y ):=d p
a

(
0, γY−(1−1/

√
N )μ̃q

(tN )
)
,

γ̇N := d

dt

∣∣∣
t=tN (Y )

γY−(1−1/
√
N )μ̃q

(t), Y⊥:=γ̇N − ĝ(γ̇N ,∇ρ)∇ρ.

Here g̃ is the fundamental tensor of Fp.
Because expp is an isometric immersion on Dp(δ), on (TpM, Fp), we also have

the uniform elliptic conditions

1

C2 g̃v(v, v) ≤ g̃u(v, v) ≤ C2 g̃v(v, v), (4.33)
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for any 0 �= u, v ∈ Tq(TpM) with q ∈ Dp(δ). It follows that for all Y ∈ Tq(TpM)

with Fp(Y ) ≤ 1, q ∈ Dp(δ), we have

Fp(γ̇N ) = Fp

(
Y − (1 − 1/

√
N )μ̃q

)
≤ C + 1,

Fp(−γ̇N ) ≤ C + 1.

This implies that for all Y ∈ Tq(TpM) with Fp(Y ) ≤ 1,

∣∣∣ d
dt

∣∣∣
t=tN (Y )

hN (Y )(t)
∣∣∣ ≤ C + 1,

if (4.32) holds.
The second derivative of hN (Y )(t) can be estimated by the Hessian comparison

theorem (see Sect. 15.1 of [38]), using the bounded curvature conditions in Defini-
tion 2.1. Note that (Dp(δ), Fp) also has flag curvature and T -curvature bounded by
|K | ≤ λ and |T | ≤ λ, because expp restricted to (Dp(δ), Fp) is an isometric immer-

sion. Since the injective radius of Fp at 0 is at least δc
4 > δ, the Hessian comparison

theorem implies

(√
λ · cot(√λ · r(Y )) − λ

)
ĝ(Y⊥,Y⊥) ≤ d2

dt2

∣∣∣∣
t=tN (Y )

hN (Y (t)), (4.34)

d2

dt2

∣∣∣
t=tN (Y )

hN (Y (t)) ≤
(√

λ · coth(√λ · r(Y )) + λ
)
ĝ(Y⊥,Y⊥). (4.35)

Using the fact ĝ(∇ρ,∇ρ) = F2
p(∇ρ) = 1 on Dp(δ) \ {0}, we get

ĝ(Y⊥,Y⊥) =
∣∣∣ĝ(γ̇N , γ̇N ) − ĝ2(γ̇N ,∇ρ)

∣∣∣ . (4.36)

If x ∈ Dp(δ), for any tangent vectors Y1,Y2 ∈ Tx (TpM) with Y1 �= 0, the
fundamental inequality in Finsler geometry (see 1.2.16 of [5]) and the inequality
Fp(Y2) ≤ CFp(−Y2) give

|g̃Y1(Y1,Y2)| ≤ CFp(Y1)Fp(Y2). (4.37)

Substituting this into (4.36) and using uniform ellipticity, for Y such that Fp(Y ) ≤ 1
and (4.32) holds, we obtain

ĝ(Y⊥,Y⊥) ≤ Cg̃γ̇N (γ̇N , γ̇N ) + C2F2
p(γ̇N )

≤ 2C2F2
p

(
Y −

(
1 − 1√

N

)
μ̃q

)

≤ 2C2(C + 1)2.
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Since δ
4 ≤ rN (Y ) ≤ δ

2 and δ < π

2
√

λ
, we have for all N ≥ 1:

0 ≤ cot(
√

λ · rN (Y )) ≤ coth(
√

λ · rN (Y )). (4.38)

Then for all N ≥ 1 and Y with Fp(Y ) ≤ 1, we have the estimate:

∣∣∣∣ d
2

dt2

∣∣∣
t=tN (Y )

hN (Y (t))

∣∣∣∣ ≤
(√

λ · coth(δ
√

λ

4
) + λ

)
ĝ(Y⊥,Y⊥), (4.39)

≤ 2C2(C + 1)2
(√

λ · coth(δ
√

λ

4
) + λ

)
. (4.40)

This shows the second derivative of hN (Y )(t) evaluated at t = tN (Y ) is also
uniformly and absolutely bounded, if (4.32) holds true. Then there exists some C̃(δ) >

0 such that condition 2 holds. This completes the proof. ��
The family of functions { f δ

p} will be used now to estimate the first exit time from
a δ-ball of the geodesic random walk ξ N .

For each p ∈ M , N ≥ 1, and δ > 0, define the following stopping times for the
random walk ξ N on M and ξ N ,p on TpM :

τ N ,δ:= inf{t > 0 : d(ξ N
t , p) > δ}, (4.41)

τ N ,δ
p := inf{t > 0 : d p(ξ

N ,p
t , 0) > δ}, 0 ∈ TpM . (4.42)

Now we compare the exit time probabilities of the δ-balls for ξ N
t and ξ

N ,p
t for suffi-

ciently large N .

Lemma 4.6 For any p ∈ M, N ≥ 1, and δ such that 0 < δ < δ0 and
2(C+1)√

N
< δc

4 , we

have

Pp(τ
N ,δ ≤ t) ≤ P0(τ

N ,δ
p ≤ t), ∀t ≥ 0. (4.43)

Proof The geodesic random walks ξ N ,p and ξ N are constructed by randomizing the
time of the discrete Markov processes ζ N ,p and ζ N using a Poisson process, respec-
tively. Hence, it suffices to show for each pair (N , δ) satisfies the condition in the
lemma, the following holds

P0

(
max
j≤k

d p
(
0, ζ N ,p

j

)
≤ δ

)
≤ Pp

(
max
j≤k

d(p, ζ N
j ) ≤ δ

)
, ∀p ∈ M, ∀δ < δ0, k ≥ 0.

(4.44)

For r > 0, define the closed δ-balls of the symmetrized distances on TpM and M ,
respectively:

B p
0 (r) = {y ∈ TpM : d p(0, y) ≤ r},

Bp(r) = {q ∈ M : d(p, q) ≤ r}.
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Because δ < δ0 < δc
4(C+1) , we have B p

0 (δ) ⊂ Dp(δc/2). Hence, expp maps

(B p
0 (δ), Fp) inside (Bp(δ), F) by an isometric immersion. Now for each k ≥ 0, define

the following Borel sub-probability measures on B p
0 (δ) and Bp(δ), respectively.

θ0k (Ê) = P0

(
ζ
N ,p
j ∈ B p

0 (δ), 1 ≤ j ≤ k − 1, ζ
N ,p
k ∈ Ê

)
, ∀Ê ∈ B(B p

0 (δ));
θk(E) = Pp

(
ζ N
j ∈ Bp(δ), 1 ≤ j ≤ k − 1, ζ N

k ∈ E
)

, ∀E ∈ B(Bp(δ)).

Let θ p
k :=

(
expp |B p

0 (δ)

)
∗ θ0k . For integers N such that 2(C+1)√

N
< δc

4 , we claim θ
p
k ≤ θk

for all k ≥ 0.
We prove the claim by induction. As for k = 0, we have θ00 (Ê) = 1Ê (0) and

θ0(E) = 1E (p). Since expp(0) = p, this claim holds for k = 0. For simplicity, we
denote

eNp := expp
(Y − μp√

N
+ 1

N
μp

)
. (4.45)

For any q ∈ B p
0 (δ) and Y ∈ Tq(TpM) with Fp(Y ) ≤ 1, the condition 2(C+1)√

N
< δc

4

implies the N -scaled geodesic segment γ (t) = expq(te
N
q (Y )) for t ∈ [0, 1] of Fp is

mapped by expp to a geodesic segment on (M, F). Also note for q ∈ B p
0 (δ), the mean

is preserved under expp by

(d expp(q))∗(μ̃q) = μexpp(q).

Hence, for any q ∈ B p
0 (δ) and Y ∈ Tq(TpM) with Fp(Y ) ≤ 1, we get

expp
(
eNq (Y )

)
= eNexpp(q)

(
(d expp(q))∗(Y )

)
. (4.46)

For each N ≥ 1, let Po(x, ·) and P(y, ·) be the one-step transition probabilities of
ζ N ,p and ζ N , respectively. For q ∈ B p

0 (δ), set q1 = expp(q). Since ν̃q is the pull back

of νq1 by (d expp(q)), then (4.46) implies for any Borel set Ê ⊂ B p
0 (δ), we have

Po(q, Ê) = ν̃q

((
eNq

)−1
(Ê)

)
≤ νq1

((
eNq1

)−1
(expp(Ê))

)
= P(q1, expp(Ê)).

(4.47)

The inequality in the previous formula appears because the exponential map expp
restricted to B p

0 (δ) is not necessarily injective.
In particular, for any Borel E ⊂ Bp(δ), we get

P(q1, E) ≥ Po(q, (expp)
−1(E) ∩ B p

0 (δ)). (4.48)
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By the Markov property, we have for all k ≥ 1

θok (Ê) =
∫
B p
0 (δ)

Po(y, Ê)θok−1(dy), ∀Ê ∈ B(B p
0 (δ));

θk(E) =
∫
Bp(δ)

P(x, E)θk−1(dx), ∀E ∈ B(Bp(δ)).

Hence, we have the following chain of inequalities:

θk(E) =
∫
Bp(δ)

P(x, E)θk−1(dx)

≥
∫
Bp(δ)

P(x, E)θ
p
k−1(dx)

=
∫
B p
0 (δ)

P(expp(y), E)θok−1(dy)

≥
∫
B p
0 (δ)

Po(y, (expp)
−1(E) ∩ B p

0 (δ))θok−1(dy)

= θ
p
k (E).

where the first inequality comes for the induction assumption, and the second inequal-
ity is due to (4.48).

In particular, for all k ≥ 0, the inequality

θok (B p
0 (δ)) = θ

p
k (Bp(δ)) ≤ θk(Bp(δ))

implies (4.44) holds. This completes the proof. ��
Next, we prove the following estimate on the first exit times of ξ N from δ-balls on M .

Lemma 4.7 For each δ > 0, there is C(δ) > 0 such that for all t ≥ 0

sup
p∈M

sup
N≥1

Pp(τ
N ,δ ≤ t) ≤ C(δ)t . (4.49)

In particular,

sup
p∈M

sup
N≥1

Epe
−τ N ,δ

< 1. (4.50)

Proof We adapt ideas from [26] by Kunita. The proof is divided into two steps. First,
we consider the exit times for the lifted random walks ξ N ,p, and we show

sup
p∈M

sup
N≥1

P0(τ
N ,δ
p ≤ t) ≤ C̃(δ)t, (4.51)
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where 0 ∈ TpM and C̃(δ) > 0 is the constant defined in Lemma 4.5. Next we use
Lemma 4.6 and (4.51) to prove (4.49), and (4.50) directly follows from (4.49).

It suffices to show (4.51) for sufficiently small δ. For any δ ∈ (0, δ0) and p ∈ M ,
let { f δ

p} be the family of functions constructed in Lemma 4.5. Using 0 ≤ f δ
p ≤ 1 and

f δ
p(0) = 1, we have

P0(τ
N ,δ
p ≤ t) = 1 − P0(τ

N ,δ
p > t)

≤ 1 − E0

[
I(τ N ,δ

p > t) f δ
p (ξ

N ,p(τ N ,δ
p ∧ t))

]
,

= 1 − E0

[(
1 − I(τ N ,δ

p ≤ t)
)
f δ
p

(
ξ N ,p(τ N ,δ

p ∧ t)
)]

= f δ
p (0) − E0 f

δ
p

(
ξ N ,p(τ N ,δ

p ∧ t)
)

+ E0

[
I(τ N ,δ

p ≤ t) f δ
p

(
ξ N ,p(τ N ,δ

p ∧ t)
)]

= f δ
p (0) − E0 f

δ
p

(
ξ N ,p(τ N ,δ

p ∧ t)
)

+ E0

[
I(τ N ,δ

p ≤ t) f δ
p

(
ξ N ,p(τ N ,δ

p )
)]

.

Here, the notation a∧b := min{a, b} is standard in the theory of stochastic processes.
Taking into account that f δ

p

(
ξ N ,p

(
τ
N ,δ
p

))
= 0 and applying the Dynkin formula to

above, we obtain

P0(τ
N ,δ
p ≤ t) ≤ −E0

∫ τ
N ,δ
p ∧t

0
AN ,p f

δ
p (ξ

N ,p
s ) ds ≤ sup

N≥1
‖AN ,p f

δ
p‖ · t = C̃(δ)t, ∀p ∈ M .

Let N0 be the smallest positive integer such that
2(C + 1)√

N0
<

δc

4
. For N ≤ N0, we

have always have

Pp(τ
N ,δ ≤ t) ≤ P(Q(Nt) > 0) ≤ Nt ≤ N0t . (4.52)

This together with Lemma 4.6 proves the inequality (4.49) by setting C(δ) =
max{C̃(δ), N0}.

Furthermore, for t∗ = 1

2C(δ)
> 0

Epe
−τ N ,δ = EpI(τ

N ,δ ≤ t∗)e−τ N ,δ + EpI(τ
N ,δ > t∗)e−τ N ,δ

≤ Pp(τ
N ,δ ≤ t∗) + e−t∗

(
1 − Pp(τ

N ,δ ≤ t∗)
)

= e−t∗ + (1 − e−t∗)Pp(τ
N ,δ ≤ t∗).

Note that due to (4.49), we have Pp(τ
N ,δ ≤ t∗) ≤ C(δ)t∗ ≤ 1

2
. Hence we obtain

Epe
−τ N ,δ ≤ e−t∗ + 1 − e−t∗

2
= 1 + e−t∗

2
< 1.

This proves the second inequality of the lemma. ��
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Now we are ready to show the Aldous criteria hold in our situation.

Lemma 4.8 (Aldous criteria) For any initial point p ∈ M, any T > 0, δ > 0, and
any (FN )-stopping times 0 ≤ τ ≤ T , we have

lim
s→0

lim sup
N→∞

sup
τ

sup
h∈[0,s]

Pp

(
d(ξ N

τ , ξ N
τ+h) > δ

)
= 0 (4.53)

Proof Let δ, s > 0 be fixed. For each N ≥ 1, p ∈ M , h ∈ [0, s] and a stopping time
τ , we have

Pp

(
d(ξ N

τ , ξ N
τ+h) > δ

)
= Ep

[
I

(
d(ξ N

τ , ξ N
τ+h) > δ)

)]
,

= Ep

[
E

[
I

(
d(ξ N

τ , ξ N
τ+h) > δ)

)
|FN

τ

]]
,

= Ep

[
P

(
d(ξ N

τ , ξ N
τ+h) > δ|FN

τ

)]
.

The strong Markov property of ξ N yields

Ep

[
P

(
d(ξ N

τ , ξ N
τ+h) > δ|FN

τ

)]
= EpPξ N

τ

(
d(ξ N

0 , ξ N
h ) > δ

)
≤ Ep

[
sup
q∈M

Pq (τ
N ,δ ≤ h)

]
.

Thus by Lemma 4.7, we have

Pp

(
d(ξ N

τ , ξ N
τ+h) > δ

)
≤ C(δ)h ≤ C(δ)s. (4.54)

Taking supremums and letting s → 0, we obtain the limit in Eq. (4.53). ��
Next we show the family of processes {ξ N } has compact containment property as

follows.

Lemma 4.9 (compact containment condition) For any ε > 0, T ≥ 0 and p ∈ M
there is a compact neighbourhood Kε(p) ⊆ M of p such that

inf
N

Pp

(
ξ N
t ∈ Kε(p), t ∈ [0, T ]

)
≥ 1 − ε. (4.55)

Proof Let us define the following sequence of exit times

τ N
0 :=0,

τ N
k := inf

{
s > τ N

k−1 : d
(

ξ N
s , ξ N

τ N
k−1

)
> 1

}
, k ≥ 1,

(as usual, we set inf ∅ = +∞).
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By Lemma 4.7, there exists some constant c1 ∈ (0, 1) such that

sup
p∈M

sup
N

Epe
−τ N

1 = sup
p∈M

sup
N

Epe
−τ N ,δ1 ≤ c1 < 1

Then for k ≥ 1 and ∀N ≥ 1, the strong Markov property yields

Epe
−τ N

k = Ep
[
e−τ N

k−1 · eτ N
k−1−τ N

k
]
,

= Ep

[
e−τ N

k−1 · E[
eτ N

k−1−τ N
k |FN

τ N
k−1

]]
,

= Ep

[
e−τ N

k−1 · Eξ N
τNk−1

e−τ N
1

]
,

≤ c1 · Epe
−τ N

k−1 ≤ ck1.

For any ε > 0 and T ≥ 0, define

kε:=
⌈
ln ε − T

ln c1

⌉
. (4.56)

Then the exponential Markov inequality gives ∀p ∈ M , ∀N ≥ 1:

Pp

(
τ N
kε

≤ T
)

= Pp

(
e−τ N

kε ≥ e−T
)

≤ eTEpe
−τ N

kε ≤ eT ckε

1 ≤ ε. (4.57)

By construction and the triangle inequality, we have that for each k ≥ 1, each N ≥ 1

d

(
ξ N
τ N
k

, ξ N
τ N
k−1

)
≤ 1 + sup

N
sup
p

d(p, ζ N
1 ). (4.58)

We estimate the last term:

d(p, ζ N
1 ) ≤ sup

Y∈DpM
d
(
p, expp

(Y − μp√
N

+ μp

N

))
(4.59)

≤ sup
Y∈DpM

C√
N

· F
(
Y −

(
1 − 1√

N

)
μp

)
(4.60)

≤ C(C + 1). (4.61)

Thus, we have for k ≥ 1

d
(
ξ N
0 , ξ N

τ N
k

)
≤ k

(
1 + C(C + 1)

)
. (4.62)

Now for p ∈ M , ε > 0, and kε defined as in Eq. (4.56), consider the closed ball

Kp(ε):={q ∈ M : d(p, q) ≤ R(ε, T )}, (4.63)
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with radius

R(ε, T ) = kε(1 + C(C + 1)) + 1. (4.64)

Then Kp(ε) is closed and forward bounded; hence, it is compact by Hopf–Rinow
theorem.

Eventually we get that ∀p ∈ M and N ≥ 1:

Pp

(
ξ N
t /∈ Kp(ε) for some t ≤ T

)

≤ Pp

(
τ N
kε

≤ T
)

+ Pp

(
ξ N
t /∈ Kp(ε) for some t ≤ T , τ N

kε
> T

)
≤ ε,

(4.65)

since the last summand is equal to zero by construction of the set Kp(ε). This finishes
the proof of compact containment condition. ��
So far,we have proved the sequence {ξ N } satisfies bothAldous criteria and the compact
containment condition. Thus, this sequence is tight. It is well-known tightness implies
being relatively compact. Thus, any subsequence of {ξ N } has a further subsequence
converging weakly to some process ξ on M .

We close this section by showing any limit process of {ξ N } has continuous paths
almost surely.

Proposition 4.10 Any limit point ξ of geodesic random walks {ξ N } is a.s. continuous.
Proof The uniform elliptic condition implies that the jump sizes of the geodesic ran-
dom walks ξ N converge to zero uniformly as N → ∞, since

d(ξ N
t−, ξ N

t ) ≤ C + 1√
N

, ∀t ∈ [0,∞). (4.66)

Hence, the statement follows immediately from Theorem 3.10.2 of [14]. ��

4.4 Convergence of Geodesic RandomWalks

In this section, we give the proof of Theorem 2.1. We already know the sequence {ξ N }
is relatively compact. To show the weak convergence, it remains to prove all limit
points of {ξ N } have the same law. This is achieved by showing that any limit point of
this sequence is a solution to a well-posed martingale problem.

We first need the following lemma. Recall that A defined in (2.8) is the limit of the
generators AN .

Lemma 4.11 For any p ∈ M, any limit point ξ of {ξ N } and any f ∈ C∞
K , we have

f (ξt ) − f (p) −
∫ t

0
A f (ξs) ds, ∀t ≥ 0, (4.67)

is a martingale.
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Proof It suffices to show that for any l ≥ 1, any h1, . . . , hl ∈ Cb(M), any 0 ≤ s ≤ t ,
s1, . . . , sl ∈ [s, t], and any f ∈ C∞

K , the following holds.

E
[(

f (ξt ) − f (ξs) −
∫ t

s
A f (ξr ) dr

) l∏
j=1

h j (ξs j )
]

= 0. (4.68)

Since ξ N is a Markov process for all N ≥ 1, it follows for all 0 ≤ s ≤ t that

f (ξ N
t ) − f (ξ N

s ) −
∫ t

s
AN f (ξ N

r ) dr

is a martingale. Hence, for each N ≥ 1

E
[(

f (ξ N
t ) − f (ξ N

s ) −
∫ t

s
AN f (ξ N

r ) dr
) l∏

j=1

h j (ξ
N
s j )

]
= 0. (4.69)

Separate the formula (4.68) into two terms, and let {ξ Nk } be a subsequence converg-
ing weakly to ξ . Since ξ has continuous paths almost surely, the finite dimensional
distributions of ξ Nk always converge weakly to those of ξ (Theorem 3.7.8 of [14]).
Thus, we have

E
[(

f (ξt ) − f (ξs)
) l∏

j=1

h j (ξs j )
]

= lim
Nk→∞E

[(
f (ξ Nk

t ) − f (ξ Nk
s )

) l∏
j=1

h j (ξ
Nk
s j )

]
.

(4.70)

Furthermore,

E
[ ∫ t

s
ANk f (ξ

Nk
r ) dr ·

l∏
j=1

h j

(
ξ Nk
s j

) ]
= E

[ ∫ t

s
A f (ξ Nk

r ) dr ·
l∏

j=1

h j

(
ξ Nk
s j

) ]

+ E
[ ∫ t

s
(ANk − A) f (ξ Nk

r ) dr ·
l∏

j=1

h j

(
ξ Nk
s j

) ]

(4.71)

and the latter summand vanishes as Nk → ∞ because the functions h j are bounded
and by Proposition 4.3

lim
N→∞‖(ANk − A) f ‖ = 0, ∀ f ∈ C∞

K .

To treat the first term, since x 	→ A f (x) is continuous and bounded, we have for each
r ∈ [s, t]
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lim
Nk→∞E

[
A f (ξ Nk

r ) ·
l∏

j=1

h j

(
ξ Nk
s j

) ]
= E

[
A f (ξr ) ·

l∏
j=1

h j (ξs j )
]
. (4.72)

Thus, by Fubini’s and Lebesgue’s theorems, we get

lim
N→∞E

[ ∫ t

s
A f (ξ N

r ) dr ·
l∏

j=1

h j (ξ
N
s j )

]
=

∫ t

s
lim

N→∞E
[
A f (ξ N

r ) ·
l∏

j=1

h j (ξ
N
s j )

]
dr

= E
[ ∫ t

s
A f (ξr ) dr ·

l∏
j=1

h j (ξs j )
]
.

(4.73)

and (4.68) is established. ��
Proposition 4.12 The martingale problem (4.67) has a unique solution which is
stochastically complete. Hence, the sequence {ξ N } converges weakly.
Proof The well-posedness follows from the well-posedness of the martingale problem
in R

m . Indeed, in any chart U , the generator A is a second-order strongly elliptic
operator with smooth coefficients. We can extend the generator on Uc such that its
coefficients are uniformly Lipschitz. Then the martingale problem is well posed, e.g.
by Theorem 5.1.4 in [41]. By Theorem 4.6.1 of [14], the stopped martingale is also
well posed for any initial distribution. The localized solutions in countablymany charts
can glued together by Lemma 4.6.5 and Theorem 4.6.6 in [14], see also Sect. 4.11 in
[25]. ��

In summary, we have shown the sequence {ξ N } converges weakly to some process
ξ on M which is a solution to a well-posed martingale problem. This completes the
proof of Theorem 2.1.

Eventually let us also prove, since it is an important and useful property, that the
limit process is Feller.

Proposition 4.13 The limit process ξ is Feller, i.e. its semigroup preserves C0(M).

Proof In any chart, ξ is a non-degenerate diffusion with smooth coefficients; hence,
its semigroup maps C0(M) to C(M).

Denote (Tt )t≥0 the semigroup of ξ as usual. Let f ∈ C0(M), t > 0 and ε > 0 be
fixed. Choose a compact set Cε such that | f (x)| ≤ ε for x /∈ Cε. Define R(ε, t) as in
(4.64) in Lemma 4.9. By this lemma, for any p ∈ M such that d(p,Cε) > R(ε, t),
we have

|Ep f (ξt )| ≤ Ep| f (ξt )|I(τ R ≤ t) + Ep| f (ξt )|I(τ R > t)

≤ ‖ f ‖ · Pp(τ
R ≤ t) + ε ≤ (‖ f ‖ + 1)ε.

(4.74)

Thus, (Tt )( f ) vanishes at infinity for f ∈ C0. As ξ is a limit point of {ξ N }, Lemma 4.7
implies

sup
p∈M

Pp(d(p, ξt ) > δ) ≤ C(δ)t, ∀δ > 0, ∀t ≥ 0.
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The strong continuity of the semigroup (Tt ) follows. ��
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