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Abstract
This paper is concerned with the regularity of solutions to linear and nonlinear
evolution equations extending our findings in Dahlke and Schneider (Anal Appl
17(2):235–291, 2019, Thms. 4.5, 4.9, 4.12, 4.14) to domains of polyhedral type. In
particular, we study the smoothness in the specific scale Br

τ,τ ,
1
τ

= r
d + 1

p of Besov
spaces. The regularity in these spaces determines the approximation order that can be
achieved by adaptive and other nonlinear approximation schemes. We show that for
all cases under consideration the Besov regularity is high enough to justify the use of
adaptive algorithms.

Keywords Parabolic evolution equations · Besov spaces · Kondratiev spaces ·
Adaptive algorithms
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1 Introduction

This paper is concernedwith regularity estimates of the solutions to evolution equations
in nonsmooth domains of polyhedral type D ⊂ R

3, cf. Definition 1. In particular, we
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study linear (ε = 0) and nonlinear (ε > 0) equations of the form

∂

∂t
u + (−1)mL(t, x, Dx )u + εuM = f in [0, T ] × D, (1.1)

with zero initial and Dirichlet boundary conditions, wherem, M ∈ N, and L denotes a
uniformly elliptic operator of order 2m with sufficiently smooth coefficients. Special
attention is paid to the spatial regularity of the solutions to (1.1) in specific nonstandard
smoothness spaces, i.e., in the so-called adaptivity scale of Besov spaces

Br
τ,τ (D),

1

τ
= r

3
+ 1

p
, r > 0. (1.2)

Our investigations are motivated by fundamental questions arising in the context of
the numerical treatment of Eq. (1.1). In particular, we aim at justifying the use of adap-
tive numerical methods for parabolic PDEs. Let us explain these relationships in more
detail: In an adaptive strategy, the choice of the underlying degrees of freedom is not a
priori fixed but depends on the shape of the unknown solution. In particular, additional
degrees of freedom are only spent in regions where the numerical approximation is
still ‘far away’ from the exact solution. Although the basic idea is convincing, adaptive
algorithms are hard to implement, so that beforehand a rigorous mathematical analysis
to justify their use is highly desirable.

Given an adaptive algorithm based on a dictionary for the solution spaces of the
PDE, the best one can expect is an optimal performance in the sense that it realizes the
convergence rate of best N -term approximation schemes, which serves as a benchmark
in this context. Given a dictionary � = {ψλ}λ∈� of functions in a Banach space X ,
the error of best N -term approximation is defined as

σN
(
u; X) = inf


⊂�:#
≤N
inf
cλ

∥
∥∥∥u −
∑

λ∈


cλψλ

∣∣X
∥
∥∥∥ , (1.3)

i.e., as the name suggests we consider the best approximation by linear combinations
of the basic functions consisting of at most N terms. In particular, [23, Thm. 11, p. 586]
implies for τ < p,

σN
(
u; L p(D)

) ≤ C N−s/d‖u|Bs
τ,τ (D)‖, 1

τ
<

s

3
+ 1

p
.

Quite recently, it has turned out that the same interrelations also hold for the very
important and widespread adaptive finite element schemes. In particular, [27, Thm.
2.2] gives direct estimates,

σ FE
N

(
u; L p(D)

) ≤ C N−s/d‖u|Bs
τ,τ (D)‖ ,

where σ FE
N denotes the counterpart to the quantity σN (u; X), which corresponds to

wavelet approximations. It can be seen that the achievable order of adaptive algo-
rithms depends on the regularity of the target function in the specific scale of Besov
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Regularity in Sobolev and Besov Spaces… 11743

spaces (1.2). On the other hand it is the regularity of the solution in the scale of
Sobolev spaces, which encodes information on the convergence order for nonadaptive
(uniform) methods. From this we can draw the following conclusion: adaptivity is
justified, if the Besov regularity of the solution in the Besov scale (1.2) is higher than
its Sobolev smoothness!

For the case of elliptic partial differential equations, a lot of positive results in
this direction are already established [13–19,30,31]. It is well known that if the
domain under consideration, the right-hand side and the coefficients are sufficiently
smooth, then the problem is completely regular [1], and there is no reason why the
Besov smoothness should be higher than the Sobolev regularity. However, on general
Lipschitz domains and in particular in polyhedral domains, the situation changes dra-
matically. On these domains, singularities at the boundary may occur that diminish
the Sobolev regularity of the solution significantly [10,12,28,29,32]. However, the
analysis in the above mentioned papers shows that these boundary singularities do not
influence the Besov regularity too much, so that the use of adaptive algorithms for
elliptic PDEs is completely justified!

In this paper, we study similar questions for evolution equations of the form (1.1)
and of associated semilinear versions. To the best of our knowledge, not so many
results in this direction are available so far. For parabolic equations, first results for
the special case of the heat equation have been reported in [2–4], but for a slightly
different scale of Besov spaces.

Our results show in the linear case ε = 0 that if the right-hand side as well as its time
derivatives are contained in specific Kondratiev spaces, then, for every t ∈ [0, T ] the
spatial Besov smoothness of the solution to (1.1) is always larger than 2m, provided
that some technical conditions on the operator pencils are satisfied, see Theorems 8
and 9. The reader should observe that the results are independent of the shape of the
polyhedral domain, and that the classical Sobolev smoothness is usually limited by
m, see [35]. Therefore, for every t , the spatial Besov regularity is more than twice as
high as the Sobolev smoothness, which of course justifies the use of (spatial) adaptive
algorithms. Moreover, for smooth domains and right-hand sides in L2, the best one
could expect would be smoothness order 2m in the classical Sobolev scale. So, the
Besov smoothness on polyhedral type domains is at least as high as the Sobolev
smoothness on smooth domains.

Afterwards, we generalize this result to nonlinear parabolic equations of the form
(1.1). We show that in a sufficiently small ball containing the solution of the corre-
sponding linear equation, there exists a unique solution to (1.1) possessing the same
Besov smoothness in the scale (1.2). The proof is performed by a technically quite
involved application of the Banach fixed point theorem. The final result is stated in
Theorem 10.

The next natural step is to also study the regularity in time direction. For the linear
parabolic problem (1.1) with ε = 0 we show that the mapping t �→ u(t, ·) is in fact a
Cl -map into the adaptivity scale of Besov spaces, precisely,

u ∈ Cl, 12 ((0, T ), Bα
τ,∞(D)),
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see Theorem 11.
In conclusion, the results presented in this paper imply that for each t ∈ (0, T )

the spatial Besov regularity of the unknown solutions of the problems studied here is
much higher than the Sobolev regularity, which justifies the use of spatial adaptive
algorithms. This corresponds to the classical time-marching schemes such as theRothe
method. We refer, e.g., to the monographs [34,42] for a detailed discussion. Of course,
it would be tempting to employ adaptive strategies in the whole space-time cylinder.
First results in this direction have been reported in [41]. To justify also these schemes,
Besov regularity in the whole space-time cylinder has to be established. This case will
be studied in a forthcoming paper.

Throughout the paperwe use the same notation as in [22], which for the convenience
of the reader is recalled in Appendix 1.

2 Sobolev and Kondratiev Spaces

In this section, we briefly collect the basics concerning weighted and unweighted
Sobolev spaces needed later on. In particular, we put Hm = Wm

2 and denote by H̊m

the closure of test functions in Hm and its dual space by H−m .Moreover, Ck,α , k ∈ N0,
stands for the usualHölder spaceswith exponentα ∈ (0, 1]. The following generalized
version of Sobolev’s embedding theorem for Banach-space valued functions will be
useful, cf. [40, Thm. 1.2.5].

Theorem 1 (Generalized Sobolev’s embedding theorem) Let 1 < p < ∞, m ∈ N,
I ⊂ R be some bounded interval, and X a Banach space. Then

Wm
p (I , X) ↪→ Cm−1,1− 1

p (I , X). (2.1)

Here the Banach-valued Sobolev spaces are endowed with the norm

‖u|Wm
p (I , X)‖p :=

m∑

k=0

‖∂tk u|L p(I , X)‖p with ‖∂tk u|L p(I , X)‖p

:=
∫

I
‖∂tk u(t)|X‖p dt,

whereas for the Hölder spaces we use

‖u|Ck,α(I , X)‖ := ‖u|Ck(I , X)‖ + |u(k)|Cα(I ,X),

where ‖u|Ck(I , X)‖ = ∑k
j=0 maxt∈I ‖u( j)(t)|X‖ and |u(k)|Cα(I ,X) =

sup
s,t∈I ,
s 	=t

‖u(k)(t)−u(k)(s)|X‖
|t−s|α .

We collect some notation for specific Banach-space valued Lebesgue and Sobolev
spaces, which will be used when studying the regularity of solutions of parabolic
PDEs.
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Let 
T := [0, T ] × 
. Then we abbreviate

L p(
T ) := L p([0, T ], L p(
)).

Moreover, we put

Hm,l∗(
T ) := Hl−1([0, T ], H̊m(
)) ∩ Hl([0, T ], H−m(
))

normed by

‖u|Hm,l∗(
T )‖ = ‖u|Hl−1([0, T ], H̊m(
))‖ + ‖u|Hl([0, T ], H−m(
))‖.

2.1 Kondratiev Spaces

In the sequel we work to a great extent with weighted Sobolev spaces, the so-called
Kondratiev spaces Km

p,a(O), defined as the collection of all u ∈ D′(O), which have
m generalized derivatives satisfying

‖u|Km
p,a(O)‖ :=

⎛

⎝
∑

|α|≤m

∫

O
|�(x)|p(|α|−a)|Dα

x u(x)|pdx
⎞

⎠

1/p

< ∞, (2.2)

where a ∈ R, 1 < p < ∞, m ∈ N0, α ∈ N
n
0, and the weight function � : D → [0, 1]

is the smooth distance to the singular set of O, i.e., � is a smooth function and in the
vicinity of the singular set S it is equivalent to the distance to that set. Clearly, if O is
a polygon in R

2 or a polyhedral domain in R
3, then the singular set S consists of the

vertices of the polygon or the vertices and edges of the polyhedra, respectively.
It follows directly from (2.2) that the scale of Kondratiev spaces is monotone in m

and a, i.e.,

Km
p,a(O) ↪→ Km′

p,a(O) and Km
p,a(O) ↪→ Km

p,a′(O), (2.3)

if m′ < m and a′ < a.
Moreover, generalizing the above concept to functions depending on the time t ∈

[0, T ], we define Kondratiev type spaces, denoted by Lq((0, T ),Km
p,a(O)), which

contain all functions u(x, t) such that

‖u|Lq((0, T ),Km
p,a(O))‖

:=
⎛

⎜
⎝
∫

(0,T )

⎛

⎝
∑

|α|≤m

∫

O
|�(x)|p(|α|−a)|Dα

x u(x, t)|pdx
⎞

⎠

q/p

dt

⎞

⎟
⎠

1/q

< ∞, (2.4)

with 0 < q ≤ ∞ and parameters a, p,m as above.
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Fig. 1 Polyhedron

D

Γj

Mk x(i)

ξ

Kondratiev spaces on domains of polyhedral type
For our analysis we make use of several properties of Kondratiev spaces that have

been proved in [20]. Therefore, in our later considerations, wewillmainly be interested
in the case that O is a bounded domain of polyhedral type.

The precise definition below is taken from Maz’ya and Rossmann [36, Def. 4.1.1]
(Fig. 1).

Definition 1 A bounded domain D ⊂ R
3 is defined to be of polyhedral type if the

following holds:

(a) The boundary ∂D consists of smooth (of class C∞) open two-dimensional man-
ifolds 
 j (the faces of D), j = 1, . . . , n, smooth curves Mk (the edges),
k = 1, . . . , l, and vertices x (1), . . . , x (l ′).

(b) For every ξ ∈ Mk there exists a neighborhood Uξ and a C∞-diffeomorphism κξ

which maps D ∩ Uξ onto Dξ ∩ B1(0), where Dξ ⊂ R
3 is a dihedron, which in

polar coordinates can be described as

Dξ = K × R, K = {(x1, x2) : 0 < r < ∞, −θ/2 < ϕ < θ/2},

where the opening angle θ of the 2-dimensional wedge K satisfies 0 < θ ≤ 2π .
(c) For every vertex x (i) there exists a neighborhood Ui and a diffeomorphism κi

mapping D ∩Ui onto Ki ∩ B1(0), where Ki is a polyhedral cone with edges and
vertex at the origin.

Remark 1 (i) In the literature many different types of polyhedral domains are con-
sidered. A more general version which coincides with the above definition when
d = 3 is discussed in [20]. Further variants of polyhedral domains can be found
in Babuška and Guo [7], Bacuta et al. [8], and Mazzucato and Nistor [37].

(ii) Let us point out that ‘smooth’ domainswithout edges and/or vertices are admissible
in Definition 1. We discuss this further in Sect. 3.2.

Some properties of Kondratiev spaces
Concerning pointwise multiplication the following results are proven in [20].

Corollary 1 (i) Let m ∈ N, a ≥ 3
p , and either 1 < p < ∞ and m > 3

p or p = 1
and m ≥ 3. Then the Kondratiev space Km

a,p(D) is an algebra with respect to
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pointwise multiplication, i.e., there exists a constant c such that

‖uv|Km
a,p(D)‖ ≤ c‖u|Km

a,p(D)‖ · ‖v|Km
a,p(D)‖

holds for all u, v ∈ Km
a,p(D).

(ii) Let 3
2 < p < ∞, m ∈ N, and a ≥ 3

p − 1. Then there exists a constant c such that

‖uv|Km−1
a−1,p(D)‖ ≤ c‖u|Km+1

a+1,p(D)‖ · ‖v|Km−1
a−1,p(D)‖

holds for all u ∈ Km+1
a+1,p(D) and v ∈ Km−1

a−1,p(D).

Our main tool when investigating the Besov regularity of solutions to the PDEs
will be the following embedding result between Kondratiev and Besov spaces, which
is an extension of [30, Thm. 1]. A proof may be found in [40, Thm. 1.4.12].

Theorem 2 (Embeddings betweenKondratiev andBesov spaces)Let D ⊂ R
3 be some

polyhedral type domain and assume k ∈ N0, 0 < q ≤ ∞. Furthermore, let s, a ∈ R,
γ ∈ N0, and suppose min(s, a) > δ

3γ , where δ denotes the dimension of the singular
set (i.e., δ = 0 if there are only vertex singularities and δ = 1 if there are edge and
vertex singularities). Then there exists some 0 < τ0 ≤ p such that

Wk
q ([0, T ],Kγ

p,a(D)) ∩ Wk
q ([0, T ], Bs

p,∞(D)) ↪→ Wk
q ([0, T ], Bγ

τ,∞(D)) (2.5)

for all τ∗ < τ < τ0, where
1
τ∗ = γ

3 + 1
p .

3 Parabolic PDEs and Operator Pencils

In the sequel we deal with two different parabolic settings, Problems 1 and 2, which
are of general order and defined on domains of polyhedral type according to Definition
1. In particular, Problem 2 is the nonlinear version of Problem 1 and we investigate
the spatial Besov regularity of the solutions of these two problems and to some extent
also the Hölder regularity with respect to the time variable of Problem 1.

3.1 The Fundamental Parabolic Problems

Let D denote some domain of polyhedral type in R
d according to Definition 1 with

faces
 j , j = 1, . . . , n. For 0 < T < ∞ put DT = (0, T ]×D and
 j,T = [0, T ]×
 j .
We will investigate the Besov regularity of the following linear parabolic problem.

Problems 1 (Linear parabolic problem in divergence form) Let m ∈ N. We consider
the following first initial-boundary value problem

⎧
⎪⎨

⎪⎩

∂
∂t u + (−1)mL(t, x, Dx )u = f in DT ,

∂k−1u
∂νk−1

∣∣∣

 j,T

= 0, k = 1, . . . ,m, j = 1, . . . , n,

u
∣∣
t=0 = 0 in D.

⎫
⎪⎬

⎪⎭
(3.1)
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11748 S. Dahlke, C. Schneider

Here f is a function given on DT , ν denotes the exterior normal to 
 j,T , and the
partial differential operator L is given by

L(t, x, Dx ) =
m∑

|α|,|β|=0

Dα
x (aαβ(t, x)Dβ

x ),

whereaαβ are bounded real-valued functions fromC∞(DT )withaαβ = (−1)|α|+|β|aβα .
Furthermore, the operator L is assumed to be uniformly elliptic with respect to
t ∈ [0, T ], i.e.,

∑

|α|,|β|=m

aαβξαξβ ≥ c|ξ |2m for all (t, x) ∈ DT , ξ ∈ R
d . (3.2)

Let us denote by

B(t, u, v) =
∫

D

m∑

|α|,|β|=0

aαβ(t, x)(Dβ
x u)(Dα

x v)dx (3.3)

the time-dependent bilinear form.
Moreover, for simplicity we set

B∂tk
(t, u, v) =

∑

|α|,|β|≤m

∫

D

∂aαβ(t, x)

∂tk
(Dβ

x u)(t, x)(Dα
x v)(t, x)dx . (3.4)

Remark 2 (Assumptions on the time-dependent bilinear form) When dealing with
parabolic problems it will be reasonable to suppose that B(t, ·, ·) satisfies

B(t, u, u) ≥ μ‖u|Hm(D)‖2 (3.5)

for all u ∈ H̊m(D) and a.e. t ∈ [0, T ]. We refer to [40, Rem. 2.3.5] for a detailed
discussion.

It is our intention to also study nonlinear versions of Problem 1. Therefore, we
modify (3.1) as follows.

Problems 2 (Nonlinear parabolic problem in divergence form) Let m, M ∈ N and
ε > 0. We consider the following nonlinear parabolic problem

⎧
⎪⎨

⎪⎩

∂
∂t u + (−1)mL(t, x, Dx )u + εuM = f in DT ,

∂k−1u
∂νk−1

∣∣
∣

 j,T

= 0, k = 1, . . . ,m, j = 1, . . . , n,

u
∣
∣
t=0 = 0 in D.

⎫
⎪⎬

⎪⎭

(3.6)
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Dc

De

Fig. 2 Corner domain Dc (l = 0) and edge domain De (l ′ = 0)

The assumptions on f and the operator L are as in Problem 1. When we establish
Besov regularity results for Problem 2 we interpret (3.6) as a fixed point problem and
show that the regularity estimates for Problem 1 carry over to Problem 2, provided
that ε is sufficiently small.

3.2 Operator Pencils

In order to correctly state the global regularity results in Kondratiev spaces for Prob-
lems 1 and 2, we need to work with operator pencils generated by the corresponding
elliptic problems in the polyhedral type domain D ⊂ R

3.
We briefly recall the basic facts needed in the sequel. For further information on

this subject we refer to [33] and [36, Sects. 2.3, 3.2, 4.1]. On a domain D ⊂ R
3 of

polyhedral type according to Definition 1 we consider the problem

{
Lu = f in D,

∂k−1u
∂νk−1

∣∣∣
∂D

= 0, k = 1, . . . ,m.

}

(3.7)

The singular set S of D then is given by the boundary points M1 ∪ · · · ∪ Ml ∪
{x (1), . . . , x (l ′)}. We do not exclude the cases l = 0 (corner domain) and l ′ = 0 (edge
domain). In the last case, the set S consists only of smooth nonintersecting edges.
Figure 2 gives examples of polyhedral domains without edges or corners, respectively.

The elliptic boundary value problem (3.7) on D generates two types of operator
pencils for the edges Mk and for the vertices x (i) of the domain, respectively.
(1) Operator pencil Aξ (λ) for edge points

The pencils Aξ (λ) for edge points ξ ∈ Mk are defined as follows: According to
Definition 1 there exists a neighborhood Uξ of ξ and a diffeomorphism κξ mapping
D ∩Uξ onto Dξ ∩ B1(0), where Dξ is a dihedron (Fig. 3).

Let 
k± be the faces adjacent to Mk . Then by Dξ we denote the dihedron which is
bounded by the half-planes 
̊k± tangent to 
k± at ξ and the edge Mξ = 
̊k+ ∩ 
̊k− .

123



11750 S. Dahlke, C. Schneider

Fig. 3 Dihedron Dξ x3

Γ̊k+ Γ̊k−

r(x)
x

Mξ

Furthermore, let r , ϕ be polar coordinates in the plane perpendicular to Mξ such that


̊k± =
{
x ∈ R

3 : r > 0, ϕ = ±θξ

2

}
.

We define the operator pencil Aξ (λ) as follows:

Aξ (λ)U (ϕ) = r2m−λL0(0, Dx )u, (3.8)

where u(x) = rλU (ϕ), λ ∈ C, U is a function on Iξ :=
(−θξ

2 ,
θξ

2

)
, and

L0(ξ, Dx ) =
∑

|α|=|β|=m

Dα
x (aαβ(ξ)Dβ

x )

denotes the main part of the differential operator L(x, Dx ) with coefficients frozen at
ξ . This way we obtain in (3.8) a boundary value problem for the function U on the
1-dimensional subdomain Iξ with the complex parameter λ. Obviously, Aξ (λ) is a
polynomial of degree 2m in λ.

The operator Aξ (λ) realizes a continuous mapping

H2m(Iξ ) → L2(Iξ ),

for every λ ∈ C. Furthermore, Aξ (λ) is an isomorphism for all λ ∈ C with the
possible exception of a denumerable set of isolated points, the spectrum of Aξ (λ),
which consists of its eigenvalues with finite algebraic multiplicities: Here a complex
number λ0 is called an eigenvalue of the pencil Aξ (λ) if there exists a nonzero function
U ∈ H2m(Iξ ) such that Aξ (λ0)U = 0. It is known that the ’energy line’ Reλ = m−1

does not contain eigenvalues of the pencil Aξ (λ).We denote by δ
(ξ)
± the largest positive

real numbers such that the strip

m − 1 − δ
(ξ)
− < Reλ < m − 1 + δ

(ξ)
+ (3.9)
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is free of eigenvalues of the pencil Aξ (λ). Furthermore, we put

δ
(k)
± = inf

ξ∈Mk
δ
(ξ)
± , k = 1, . . . , l. (3.10)

For example, concerning theDirichlet problem for thePoisson equation on a domain
D ⊂ R

3 of polyhedral type, the eigenvalues of the pencil Aξ (λ) are given by

λk = kπ/θξ , k = ±1,±2, . . . ,

where θξ is the inner angle at the edge point ξ , cf. [40, Ex. 2.5.2]. Therefore, the first
positive eigenvalue is λ1 = π

θξ
and we obtain δ± = π

θξ
, cf. [40, Ex. 2.5.1].

(2) Operator pencil Ai (λ) for corner points
Let x (i) be a vertex of D. According to Definition 1 there exists a neighborhoodUi

of x (i) and a diffeomorphism κi mapping D ∩Ui onto Ki ∩ B1(0), where

Ki = {x ∈ R
3 : x/|x | ∈ 
i }

is a polyhedral cone with edges and vertex at the origin. W.l.o.g. we may assume that
the Jacobian matrix κ ′

i (x) is equal to the identity matrix at the point x (i). We introduce
spherical coordinates ρ = |x |, ω = x

|x | in Ki and define the operator pencil

Ai (λ)U (ω) = ρ2m−λL0(x
(i), Dx )u, (3.11)

where u(x) = ρλU (ω) and U ∈ H̊m(
i ) is a function on 
i . An eigenvalue of
Ai (λ) is a complex number λ0 such that Ai (λ0)U = 0 for some nonzero function
U ∈ H̊m(
i ). The operator Ai (λ) realizes a continuous mapping

H̊m(
i ) → H−m(
i ).

Furthermore, it is known that Ai (λ) is an isomorphism for all λ ∈ C with the possible
exception of a denumerable set of isolated points. The mentioned enumerable set
consists of eigenvalues with finite algebraic multiplicities.

Moreover, the eigenvalues of Ai (λ) are situated, except for finitely many, outside a
double sector |Reλ| < ε|Imλ| containing the imaginary axis, cf. [33, Thm. 10.1.1]. In
Fig. 4 the situation is illustrated: Outside the yellow area there are only finitely many
eigenvalues of the operator pencil Ai (λ).

Dealing with regularity properties of solutions, we look for the widest strip in the
λ-plane, free of eigenvalues and containing the ‘energy line’ Reλ = m − 3/2, cf.
Assumption 1. From what was outlined above, information on the width of this strip
is obtained from lower estimates for real parts of the eigenvalues situated over the
energy line.

Remark 3 (Operator pencils for parabolic problems) Since we study parabolic PDEs,
where the differential operator L(t, x, Dx ) additionally depends on the time t , we have
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11752 S. Dahlke, C. Schneider

Fig. 4 Eigenvalues of operator
pencil Ai (λ) |Reλ| = ε|Imλ|

Reλ = m − −32

Im

Re

λ0

to work with operator pencils Aξ (λ, t) and Ai (λ, t) in this context. The philosophy is
to fix t ∈ [0, T ] and define the pencils as above: We replace (3.8) by

Aξ (λ, t)U (ϕ) = r2m−λL0(t, 0, Dx )u,

and work with δ
(ξ)
± (t) and δ

(k)
± (t) = infξ∈Mk δ

(ξ)
± (t) in (3.9) and (3.10), respectively.

Moreover, we put

δ
(k)
± = inf

t∈[0,T ] δ
(k)
± (t), k = 1, . . . , l. (3.12)

Similar for Ai (λ, t), where now (3.11) is replaced by

Ai (λ, t)U (ω) = ρ2m−λL0(t, x
(i), Dx )u. (3.13)

4 Regularity Results in Sobolev and Kondratiev Spaces

This section presents regularity results for Problems 1 and 2 in Sobolev andKondratiev
spaces. Theywill form the basis for obtaining regularity results inBesov spaces later on
via suitable embeddings. The results in Sobolev and Kondratiev spaces for Problems
1 and 2 on domains of polyhedral type D ⊂ R

d are essentially new and not published
elsewhere so far: In [22] we restricted our investigations to polyhedral cones K ⊂ R

3

relying on the results from [35].

123



Regularity in Sobolev and Besov Spaces… 11753

However, the extension of the regularity results for Problem 1 to polyhedral type
domains follows from very similar arguments as in [22], which is why wemerely state
the results in Sects. 4.1 and 4.2 and give references for the proofs wherever necessary.
In contrast to this the regularity results for the nonlinear Problem 2 require some
careful adaptations and are carried out in detail in Sect. 4.3.

4.1 Regularity Results in Sobolev Spaces for Problem I

In this subsection, we are concernedwith the Sobolev regularity of theweak solution of
Problem 1.We start with the following lemma, whose proof is similar to [5, Lem. 4.1].

Lemma 1 (Continuity of bilinear form) Assume that for each t ∈ [0, T ], F(t, ·, ·) :
H̊m(D) × H̊m(D) → R is a bilinear map satisfying

|F(t, u, v)| ≤ C‖u|H̊m(D)‖‖v|H̊m(D)‖ (4.1)

for all t ∈ [0, T ] and all u, v ∈ H̊m(D), whereC is a constant independent of u, v, and
t. Assume further that F(·, u, v) is measurable on [0, T ] for each pair u, v ∈ H̊m(D).
Assume that u ∈ Hm,1∗(DT ) satisfies u(0) ≡ 0 and

(∂t u(t), v) + B(t, u(t), v) =
∫ t

0
F(τ, u(τ ), v)dτ (4.2)

for a.e. t ∈ [0, T ] and all v ∈ H̊m(D). Then u ≡ 0 on [0, T ] × D.

Using the spectral method the following regularity result now follows.

Theorem 3 (Sobolev regularitywithout timederivatives)Let f ∈ L2([0, T ], H−m(D)).
Then Problem 1 has a unique weak solution u in the space Hm,1∗(DT ) and the fol-
lowing estimate holds

‖u|Hm,1∗(DT )‖ ≤ C‖ f |L2([0, T ], H−m(D))‖, (4.3)

where C is a constant independent of f and u.

This proof follows [5, Lem. 4.2], which in turn is based on [26, Sect. 7.1.2].
By an application of Theorem 3 and induction we obtain the following regularity

result. The proof is similar to [6, Thm. 2].

Theorem 4 (Sobolev regularity with time derivatives) Let l ∈ N0 and assume that the
right-hand side f of Problem 1 satisfies

f ∈ Hl([0, T ], H−m(D)) and ∂tk f (x, 0) = 0 for k = 0, . . . , l − 1.

Then the weak solution u in the space Hm,1∗(DT ) of Problem 1 in fact belongs to
Hm,l+1∗(DT ), i.e., has derivatives with respect to t up to order l satisfying

∂tk u ∈ Hm,1∗(DT ) for k = 0, . . . , l,
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and

l∑

k=0

‖∂tk u|Hm,1∗(DT )‖ ≤ C
l∑

k=0

‖∂tk f |L2([0, T ], H−m(D))‖,

where C is a constant independent of u and f .

Remark 4 Note that the regularity results for the solution u in [35, Thm. 2.1., Lem. 3.1]
are slightly stronger than the ones obtained in Theorem 4 above (with the cost of also
assuming more regularity on the right-hand side f ). By using similar arguments as in
[5, Lem. 4.3] we are probably able to also show in our context that Theorem 3 can be
strengthened in the sense that if f ∈ L2([0, T ], L2(D)) then the weak solution u of
Problem 1 belongs in fact to L2([0, T ], H̊m) ∩ H1([0, T ], L2(D)). A corresponding
generalization of Theorem 4 should also be possible in the spirit of [5, Thm. 3.1].
However, for our purposes the above results on the Sobolev regularity are sufficient,
so these investigations are postponed for the time being.

4.2 Regularity Results in Kondratiev Spaces for Problem I

Concerning weighted Sobolev regularity of Problem 1 first fundamental results on
polyhedral cones K ⊂ R

3 can be found in [35, Thms. 3.3, 3.4]. In [22] we extended
andgeneralized these results,whichwenowwish to transfer to our settingof polyhedral
type domains D ⊂ R

3.
For our regularity assertions we rely on known results for elliptic equations. There-

fore, we consider first the following Dirichlet problem for elliptic equations

{
Lu = F on D,
∂ku
∂νk

∣
∣

 j

= 0, k = 1, . . . ,m, j = 1, . . . , n,

}

(4.4)

where D ⊂ R
3 is a domain of polyhedral type according to Definition 1 with faces


 j . Moreover, we assume that

L(x, Dx ) =
∑

|α|≤2m

Aα(x)Dα
x

is a uniformly elliptic differential operator of order 2m with smooth coefficients Aα .
We need the following technical assumptions in order to state theKondratiev regularity
of (4.4).

Assumption 1 (Assumptions on operator pencils) Consider the operator pencils
Ai (λ, t), i = 1, . . . , l ′ for the vertices and Aξ (λ, t) with ξ ∈ Mk , k = 1, . . . , l
for the edges of the polyhedral type domain D ⊂ R

3 introduced in Sect. 3.2. For the
elliptic problem (4.4) we may drop t from the notation of the pencils, otherwise (for
our parabolic problems) we assume t ∈ [0, T ] is fixed.
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LetKγ

p,b(D) andKγ ′
p,b′(D) be two Kondratiev spaces, where the singularity set S of

D is given by S = M1 ∪ · · · ∪ Ml ∪ {x (1), . . . , x (l ′)} and weight parameters b, b′ ∈ R.
Then we assume that the closed strip between the lines

Reλ = b + 2m − 3

2
and Reλ = b′ + 2m − 3

2
(4.5)

does not contain eigenvalues of Ai (λ, t). Moreover, b and b′ satisfy

− δ
(k)
− < b + m < δ

(k)
+ , −δ

(k)
− < b′ + m < δ

(k)
+ , k = 1, . . . , l, (4.6)

where δ
(k)
± are defined in (3.10) (replaced by (3.12) for parabolic problems).

Remark 5 If l ′ = 0 we have an edge domain without vertices, cf. Fig. 2. In this case
condition (4.5) is empty.Moreover, if l = 0,we have a corner domainwithout edges, in
which case condition (4.6) is empty. For further remarks and explanations concerning
Assumption 1 we refer to [22, Rem. 3.3].

The following lemma on the regularity of solutions to elliptic boundary value prob-
lems in domains of polyhedral type is taken from [36, Cor. 4.1.10, Thm. 4.1.11]. We
rewrite it for our scale of Kondratiev spaces.

Lemma 2 (Kondratiev regularity for elliptic PDEs) Let D ⊂ R
3 be a domain of

polyhedral type. Moreover, let u ∈ Kγ
2,a+2m(D) be a solution of (4.4), where

F ∈ Kγ−2m
2,a (D) ∩ Kγ ′−2m

2,a′ (D), γ ≥ m, γ ′ ≥ m.

Suppose that Kγ
2,a(D) and Kγ ′

2,a′(D) satisfy Assumption 1. Then u ∈ Kγ ′
2,a′+2m(D)

and

‖u|Kγ ′
2,a′+2m(D)‖ ≤ C‖F |Kγ ′−2m

2,a′ (D)‖,

where C is a constant independent of u and F.

Remark 6 In particular, if in Theorem 4 we use the stronger assumption ∂tk f (t) ∈
L2(D) instead of ∂tk f (t) ∈ H−m(D) for k = 0, . . . , l, then it follows that

∂tk f (t) ∈ L2(D) = K0
2,0(D) ↪→ K−m

2,−m(D), (4.7)

where the latter embedding follows from the corresponding duality assertion, i.e., we
have Km

2,m(D) ↪→ K0
2,0(D) since m ≥ 0. In this case, the solution u of Problem 1

satisfies

∂tk u(t) ∈ H̊m(D) ↪→ K̊m
2,m(D) ↪→ K0

2,a(D), a ≤ m, (4.8)
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where the first embedding is taken from [36, Lem. 3.1.6] and the second embedding
for Kondratiev spaces holds whenever m ≥ a. We additionally require in our consid-
erations that ∂tk u(t) ∈ K0

2,a(D) ↪→ K−m
2,−m(D) which holds for a ≥ −m. From (4.7)

and (4.8) we see that it is possible to take γ = m and a = −m in Lemma 2, i.e., if
f (t) ∈ K−m

2,−m(D) then u(t) ∈ Km
2,m(D). Note that all our arguments with u(t) and

f (t), respectively, hold for a.e. t ∈ [0, T ]. However, since lower order time derivatives
are continuous w.r.t. suitable spaces (but not necessarily the highest one, cf. the proof
of Thm. 11), we will suppress this distinction in the sequel.

Using similar arguments as in [35, Thm. 3.3] we are now able to show the following
regularity result in Kondratiev spaces. The proof follows along the same lines as [22,
Thm. 3.6].

Theorem 5 (Kondratiev regularity A) Let D ⊂ R
3 be a domain of polyhedral type. Let

γ ∈ Nwith γ ≥ 2m and put γm :=
[

γ−1
2m

]
. Furthermore, let a ∈ Rwith a ∈ [−m,m].

Assume that the right-hand side f of Problem 1 satisfies

(i) ∂tk f ∈ L2(DT ) ∩ L2([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D)), k = 0, . . . , γm; ∂tγm+1 f ∈

L2(DT ).
(ii) ∂tk f (x, 0) = 0, k = 0, 1, . . . , γm .

Furthermore, let Assumption 1 hold for weight parameters b = a + 2m(γm − i),
where i = 0, . . . , γm, and b′ = −m. Then for the weak solution u ∈ Hm,γm+2∗(DT )

of Problem 1 we have

∂tl+1u ∈ L2([0, T ],K2m(γm−l)
2,a+2m(γm−l)(D))

for l = −1, 0, . . . , γm. In particular, for the derivatives ∂tl+1u up to order γm + 1 we
have the a priori estimate

γm∑

l=−1

‖∂tl+1u|L2([0, T ],K2m(γm−l)
2,a+2m(γm−l)(D))‖

�
γm∑

k=0

‖∂tk f |L2([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D))‖ +

γm+1∑

k=0

‖∂tk f |L2(DT )‖, (4.9)

where the constant is independent of u and f .

Remark 7 The existence of the solution u ∈ Hm,γm+2∗(DT ) follows from Theorem 4
using l = γm + 1.

The regularity results obtained in Theorem 5 only hold under certain restrictions on
the parameter a we are able to choose. In particular, we cannot choose γm > 0 if we
have a nonconvex polyhedral type domains D, since there is no suitable a satisfying
all of our requirements in this case. In order to treat nonconvex domains as well, we
impose stronger assumptions on the right-hand side f , requiring that it is arbitrarily
smooth w.r.t. the time. This additional assumption allows for a larger range of a.
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However, as a drawback, these results are hard to apply to nonlinear equations since
the right-hand sides are not taken from a Banach or quasi-Banach space. The proof of
the following theorem is similar to [22, Thm. 3.9] adapted to our setting.

Theorem 6 (Kondratiev regularity B) Let D ⊂ R
3 be a domain of polyhedral type

and η ∈ N with η ≥ 2m. Moreover, let l ∈ N0 and a ∈ R with a ∈ [−m,m]. Assume
that the right-hand side f of Problem 1 satisfies

(i) f ∈⋂∞
l=0 H

l([0, T ], L2(D) ∩ Kη−2m
2,a (D)).

(ii) ∂tl f (x, 0) = 0, l ∈ N0.

Furthermore, let Assumption 1 hold for weight parameters b = a and b′ = −m. Then
for the weak solution u ∈⋂∞

l=0 H
m,l+1∗(DT ) of Problem 1 we have

∂tl u ∈ L2([0, T ],Kη
2,a+2m(D)) for all l ∈ N0.

In particular, for the derivative ∂tl u we have the a priori estimate

l∑

k=0

‖∂tk u|L2([0, T ],Kη
2,a+2m(D))‖

�
l+(η−2m)∑

k=0

‖∂tk f |L2([0, T ],Kη−2m
2,a (D))‖ +

l+1+(η−2m)∑

k=0

‖∂tk f |L2(DT )‖,

where the constant is independent of u and f .

Remark 8 In Theorem 6 compared to Theorem 5 we only require the parameter a
to satisfy a ∈ [−m,m] and −δ

(k)
− < a + m < δ

(k)
+ independent of the regularity

parameter η which can be arbitrarily high. In particular, for the heat equation on a
domain of polyhedral type D (which for simplicity we assume to be a polyhedron
with straight edges and faces where θk denotes the angle at the edge Mk), we have

δ
(k)
± = π

θk
, which leads to the restriction −1 ≤ a < min

(
1, π

θk
− 1
)

. Therefore, even

in the extremal case when θk = 2π we can still take −1 ≤ a < − 1
2 (resulting in

u ∈ L2([0, T ],Kη
a+2(D)) being locally integrable since a + 2 > 0). Then choosing

η arbitrary high, we also cover nonconvex polyhedral type domains with our results
from Theorem 6.

4.3 Regularity Results in Sobolev and Kondratiev Spaces for Problem II

In this subsection, we show that the regularity estimates in Kondratiev and Sobolev
spaces as stated in Theorems 5 and 4, respectively, carry over to Problem 2, provided
that ε is sufficiently small. In order to do this we interpret Problem 2 as a fixed point
problem in the following way.

123



11758 S. Dahlke, C. Schneider

Let D̃ and S be Banach spaces (D̃ and S will be specified in the theorem below)
and let L̃−1 : D̃ → S be the linear operator defined via

L̃u := ∂

∂t
u + (−1)mLu. (4.10)

Problem 2 is equivalent to

L̃u = f − εuM =: Nu,

where N : S → D̃ is a nonlinear operator. If we can show that N maps S into D̃, then
a solution of Problem 2 is a fixed point of the problem

(L̃−1 ◦ N )u = u.

Our aim is to applyBanach’s fixed point theorem,whichwill also guarantee uniqueness
of the solution, if we can show that T := (L̃−1 ◦ N ) : S0 → S0 is a contraction
mapping, i.e., there exists some q ∈ [0, 1) such that

‖T (x) − T (y)|S‖ ≤ q‖x − y|S‖ for all x, y ∈ S0,

where the corresponding subset S0 ⊂ S is a small closed ball with center L̃−1 f (the
solution of the corresponding linear problem) and suitably chosen radius R > 0.

Our main result is stated in the theorem below.

Theorem 7 (Nonlinear Sobolev and Kondratiev regularity) Let L̃ and N be as
described above. Assume the assumptions of Theorem 5 are satisfied and, additionally,
we have γm ≥ 1, m ≥ 2, and a ≥ − 1

2 . Let

D1 :=
γm⋂

k=0

Hk([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D)), D2 := Hγm+1([0, T ], L2(D))

and consider the data space

D̃ := { f ∈ D1 ∩ D2 : ∂tk f (0, ·) = 0, k = 0, . . . , γm}.

Moreover, let

S1 :=
γm+1⋂

k=0

Hk([0, T ],K2m(γm−(k−1))
2,a+2m(γm−(k−1))(D)), S2 := Hm,γm+2∗(DT ),

and consider the solution space S := S1∩S2. Suppose that f ∈ D̃ and put η := ‖ f |D̃‖
and r0 > 1. Moreover, we choose ε > 0 so small that

η2(M−1)‖L̃−1‖2M−1 ≤ 1

cεM
(r0 − 1)

(
1

r0

)2M−1

, if r0‖L̃−1‖η > 1,
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and

‖L̃−1‖ <
r0 − 1

r0

(
1

cεM

)
, if r0‖L̃−1‖η < 1,

where c > 0 denotes the constant in (4.28) resulting from our estimates below. Then
there exists a unique solution u ∈ S0 ⊂ S of Problem 2, where S0 denotes a small
ball around L̃−1 f (the solution of the corresponding linear problem) with radius
R = (r0 − 1)η‖L̃−1‖.

Proof Let u be the solution of the linear problem L̃u = f . From Theorems 5 and 4
we know that L̃−1 : D̃ → S is a bounded operator. If uM ∈ D̃ (this will immediately
follow from our calculations in Step 1 as explained in Step 2 below), the nonlinear
part N satisfies the desired mapping properties, i.e., Nu = f − εuM ∈ D̃ and we can
apply Theorem 5 now with right-hand side Nu.

Step 1: Since

(L̃−1 ◦ N )(v) − (L̃−1 ◦ N )(u)= L̃−1( f −εvM ) − L̃−1( f − εuM )=ε L̃−1(uM − vM )

one sees that L̃−1 ◦ N is a contraction if, and only, if

ε‖L̃−1(uM − vM )|S‖ ≤ q‖u − v|S‖ for some q < 1, (4.11)

where u, v ∈ S0 (meaning u, v ∈ BR(L̃−1 f ) in S). We analyze the resulting condition
with the help of the formula uM − vM = (u − v)

∑M−1
j=0 u jvM−1− j . This together

with Theorem 5 gives

‖L̃−1(uM − vM )|S‖
≤ ‖L̃−1‖‖uM − vM |D̃|

= ‖L̃−1‖
∥∥∥uM − vM |D1 ∩ D2

∥∥∥

= ‖L̃−1‖
(
‖uM − vM |D1‖ + ‖uM − vM |D2‖

)

= ‖L̃−1‖
⎛

⎝

∥∥
∥∥∥∥
(u − v)

M−1∑

j=0

u jvM−1− j |D1

∥∥
∥∥∥∥

+
∥∥
∥∥∥∥
(u − v)

M−1∑

j=0

u jvM−1− j |D2

∥∥
∥∥∥∥

⎞

⎠

� ‖L̃−1‖
( γm∑

k=0

∥∥∥
∥∥∥
∂tk

⎡

⎣(u − v)

M−1∑

j=0

u jvM−1− j

⎤

⎦ |L2([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D))

∥∥∥
∥∥∥

+
γm+1∑

k=0

∥∥∥∥
∥∥
∂tk

⎡

⎣(u − v)

M−1∑

j=0

u jvM−1− j

⎤

⎦ |L2(DT )

∥∥∥∥
∥∥

)
. (4.12)
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Concerning the derivatives, we use Leibniz’s formula twice and we see that

∂tk (u
M − vM ) = ∂tk

⎡

⎣(u − v)

M−1∑

j=0

u jvM−1− j

⎤

⎦

=
k∑

l=0

(
k

l

)
∂tl (u − v) · ∂tk−l

⎛

⎝
M−1∑

j=0

u jvM−1− j

⎞

⎠

=
k∑

l=0

(
k

l

)
∂tl (u − v) ·

⎡

⎣

⎛

⎝
M−1∑

j=0

k−l∑

r=0

(
k − l

r

)
∂tr u

j · ∂tk−l−r v
M−1− j

⎞

⎠

⎤

⎦ .

(4.13)

In order to estimate the terms ∂tr u j and ∂tk−l−r vM−1− j we apply Faà di Bruno’s
formula

∂tr ( f ◦ g) =
∑ r !

k1! . . . kr !6
(
∂tk1+···+kr f ◦ g

) r∏

i=1

(
∂t i g

i !
)ki

, (4.14)

where the sum runs over all r -tuples of nonnegative integers (k1, . . . , kr ) satisfying

1 · k1 + 2 · k2 + · · · + r · kr = r . (4.15)

In particular, from (4.15) we see that kr ≤ 1, where r = 1, . . . , k. Therefore, the
highest derivative ∂tr u appears at most once. We apply the formula to g = u and
f (x) = x j and make use of the embeddings (2.3) and the pointwise multiplier results
from Theorem 1 (i) for k ≤ γm − 1. (Note that the restriction ‘a > d

p ’ for d = 3 in

Theorem 1 (i) is satisfied since in our situation we have a + 2m ≥ m > d
2 from the

assumptions a ∈ [−m,m] and m ≥ 2.) This yields

∥
∥∥∂tr u j |K2m(γm−k)

2,a+2m(γm−k)(D)

∥
∥∥

≤ cr , j

∥
∥∥
∥
∥∥
∥∥
∥

∑

k1+···+kr≤ j,
1·k1+2·k2+···+r ·kr=r

u j−(k1+···+kr )
r∏

i=1

∣
∣∂t i u
∣
∣ki |K2m(γm−k)

2,a+2m(γm−k)(D)

∥
∥∥
∥
∥∥
∥∥
∥

�
∑

k1+···+kr≤ j,
1·k1+2·k2+···+r ·kr=r

∥∥
∥u|K2m(γm−k)

2,a+2m(γm−k)(D)

∥∥
∥
j−(k1+···+kr )

r∏

i=1

∥∥
∥∂t i u|K2m(γm−k)

2,a+2m(γm−k)(D)

∥∥
∥
ki

.

(4.16)
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For k = γm we use Theorem 1(ii). (Note that in Theorem 1(ii) we require that ’a−1 ≥
d
p − 2’ with d = 3 for the parameter. In our situation below a − 1 has to be replaced

by a, which leads to our restriction a ≥ d
2 − 2 = − 1

2 .) Similar as above we obtain

∥∥
∥∂tr u j |K0

2,a(D)

∥∥
∥

≤ cr , j

∥
∥∥
∥∥
∥∥
∥
∥

∑

k1+···+kr≤ j,
1·k1+2·k2+···+r ·kr=r

u j−(k1+···+kr )
r∏

i=1

∣
∣∂t i u
∣
∣ki |K0

2,a(D)

∥
∥∥
∥∥
∥∥
∥
∥

�
∑

k1+···+kr≤ j,
1·k1+2·k2+···+r ·kr=r

∥
∥∥u|K2

2,a+2(D)

∥
∥∥
j−(k1+···+kr ) ∥∥∥∂tr u|K0

2,a(D)

∥
∥∥
kr

r−1∏

i=1

∥
∥∥∂t i u|K2

2,a+2(D)

∥
∥∥
ki

�
∑

k1+···+kr≤ j,
1·k1+2·k2+···+r ·kr=r

∥∥
∥u|K2mγm

2,a+2mγm
(D)

∥∥
∥
j−(k1+···+kr )

∥∥
∥∂tr u|K2m(γm−r)

2,a+2m(γm−r)(D)

∥∥
∥
kr

r−1∏

i=1

∥∥
∥∂t i u|K2m(γm−i)

2,a+2m(γm−i)(D)

∥∥
∥
ki

. (4.17)

Note that we require γm ≥ 1 in the last step. We proceed similarly for ∂tk−l−r vM−1− j .
Now (4.13) together with (4.16) and (4.17) inserted in (4.12) together with Theorem
1 give

‖L̃−1‖‖uM − vM |D1‖

� ‖L̃−1‖
γm∑

k=0

⎛

⎜
⎝
∫ T

0

∥∥
∥∥∥∥
∂tk

⎡

⎣(u − v)

M−1∑

j=0

u jvM−1− j

⎤

⎦ |K2m(γm−k)
2,a+2m(γm−k)(D)

∥∥
∥∥∥∥

2

dt

⎞

⎟
⎠

1/2

� ‖L̃−1‖
γm∑

k=0

k∑

l=0

M−1∑

j=0

k−l∑

r=0

(∫ T

0

∥∥∥∂tl (u − v)|K2m(γm−k)
2,a+2m(γm−k)(D)

∥∥∥
2

∥∥
∥∂tr u j |K2m(γm−k)

2,a+2m(γm−k)(D)

∥∥
∥
2 ∥∥
∥∂tk−l−r v

M−1− j |K2m(γm−k)
2,a+2m(γm−k)(D)

∥∥
∥
2
dt

)1/2

(4.18)

� ‖L̃−1‖
γm∑

k=0

k∑

l=0

M−1∑

j=0

k−l∑

r=0

(∫ T

0

∥∥∥∂tl (u − v)|K2m(γm−k)
2,a+2m(γm−k)(D)

∥∥∥
2

∑

κ1+···+κr≤ j,
κ1+2κ2+···+rκr=r

∥
∥∥u|K2m(γm−k)

2,a+2m(γm−k)(D)

∥
∥∥
2( j−(κ1+···+κr ))

r∏

i=0

∥
∥∥∂t i u|K2m(γm−i)

2,a+2m(γm−i)(D)

∥
∥∥
2κi
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∑

κ1+···+κk−l−r≤M−1− j,
κ1+2κ2+···+(k−l−r)κk−l−r=k−l−r

∥
∥∥v|K2m(γm−k)

2,a+2m(γm−k)(D)

∥
∥∥
2(M−1− j−(κ1+···+κk−l−r ))

k−l−r∏

i=0

∥∥∥∂t i v|K2m(γm−i)
2,a+2m(γm−i)(D)

∥∥∥
2κi

dt

)1/2

� ‖L̃−1‖
γm∑

k=0

M

(∫ T

0

∥∥∥∂tk (u − v)|K2m(γm−k)
2,a+2m(γm−k)(D)

∥∥∥
2

∑

κ ′
1+···+κ ′

k≤min{M−1,k},
κ ′
k≤1

max
w∈{u,v}

∥∥∥w|K2m(γm−k)
2,a+2m(γm−k)(D)

∥∥∥
2(M−1−(κ ′

1+···+κ ′
k ))

k∏

i=0

max
{∥∥∥∂t i u|K2m(γm−i)

2,a+2m(γm−i)(D)

∥
∥∥ ,
∥
∥∥∂t i v|K2m(γm−i)

2,a+2m(γm−i)(D)

∥
∥∥ , 1
}4κ ′

i
dt

)1/2

(4.19)

� M‖L̃−1‖ ·
∥∥
∥∥∥∥
u − v|

γm+1⋂

k=0

Hk([0, T ],K2m(γm−(k−1))
2,a+2m(γm−(k−1))(D))

∥∥
∥∥∥∥

·

max
w∈{u,v} max

l=0,...,γm
max
( ∥∥
∥∂tlw|L∞([0, T ],K2m(γm−l)

2,a+2m(γm−l)(D))

∥∥
∥ , 1
)2(M−1)

.

(4.20)

We give some explanations concerning the estimate above. In (4.18) the term with
k = γm requires some special care since we have to apply Theorem 1 (ii). In this case,
we calculate

∥
∥∥∥ ∂γm

⎡

⎣(u − v)

⎛

⎝
M−1∑

j=0

u jvM−1− j

⎞

⎠

⎤

⎦ |K0
2,a(D)

∥∥
∥∥∥∥

�
∥∥∥∂γm (u − v)|K0

2,a(D)

∥∥∥
M−1∑

j=0

∥∥∥u jvM−1− j |K2
2,a+2(D)

∥∥∥

+
∥
∥∥u − v|K2

2,a+2(D)

∥
∥∥
M−1∑

j=0

γm∑

r=0

∥
∥∥(∂tr u j )(∂tγm−r vM−1− j )|K0

2,a(D)

∥
∥∥

+
∥
∥∥∥∥∥

γm−1∑

r=1

(
γm

r

)
∂r (u − v)∂γm−r

⎛

⎝
M−1∑

j=0

. . .

⎞

⎠ |K0
2,a(D)

∥
∥∥∥∥∥

.

The lower order derivatives in the last line cause no problems since we can

(again) apply Theorem 1(i) as before. The term
∥∥∥u jvM−1− j |K2

2,a+2(D)

∥∥∥ can

now be further estimated with the help of Theorem 1(i). For the term
∑γm

r=0

123



Regularity in Sobolev and Besov Spaces… 11763

∥∥
∥(∂tr u j )(∂tγm−r vM−1− j )|K0

2,a(D)

∥∥
∥ we again use Theorem 1(ii), then proceed as in

(4.17) and see that the resulting estimate yields (4.18).
Moreover, in (4.19) we use the fact that in the step before we have two sums with

κ1 +· · ·+κr ≤ j and κ1 +· · ·+κk−l−r ≤ M −1− j , i.e., we have k− l different κi ’s
which leads to at most k different κi ’s if l = 0. We allow all combinations of κi ’s and
redefine the κi ’s in the second sum leading to κ ′

1, . . . , κ
′
k with κ ′

1+· · ·+κ ′
k ≤ M−1 and

replace the old conditions κ1+2κ2+rκr ≤ r and κ1+2κ2+(k−l−r)κk−l−r ≤ k−l−r
by the weaker ones κ ′

1 + · · · + κ ′
k ≤ k and κ ′

k ≤ 1. This causes no problems since the
other terms appearing in this step do not depend on κi apart from the product term.
There, the fact that some of the old κi ’s from both sums might coincide is reflected in
the new exponent 4κ ′

i . From Theorem 1 we conclude that

u, v ∈ S ↪→
γm+1⋂

k=0

Hk([0, T ],K2m(γm−(k−1))
2,a+2m(γm−(k−1))(D))

↪→
γm+1⋂

k=1

Ck−1, 12 ([0, T ],K2m(γm−(k−1))
2,a+2m(γm−(k−1))(D))

↪→
γm+1⋂

k=1

Ck−1([0, T ],K2m(γm−(k−1))
2,a+2m(γm−(k−1))(D)) =

γm⋂

l=0

Cl([0, T ],K2m(γm−l)
2,a+2m(γm−l)(D)),

hence, the term involving themaxima,maxw∈{u,v} maxl=0,...,γm max(. . .)M−1 in (4.20)
is bounded by max(R + ‖L̃−1 f |S‖, 1)M−1. Moreover, since u and v are taken from
BR(L̃−1 f ) in S = S1 ∩ S2, we obtain from (4.20),

‖L̃−1‖‖uM − vM |D1‖
≤ c0‖L̃−1‖M max(R + ‖L̃−1 f |S‖, 1)2(M−1)‖u − v|S‖
≤ c2‖L̃−1‖M max(R + ‖L̃−1‖ · ‖ f |D‖, 1)2(M−1)‖u − v|S‖
= c2‖L̃−1‖M max(R + ‖L̃−1‖η, 1)2(M−1)‖u − v|S‖, (4.21)

where we put η := ‖ f |D‖ in the last line, c0 denotes the constant resulting from (4.16)
and (4.20) and c2 = c0c1 with c1 being the constant from the estimates in Theorem 5.

We now turn our attention towards the second term ‖L̃−1‖‖uM −vM |D2‖ in (4.12)
and calculate

‖L̃−1‖‖(uM − vM )|D2‖

= ‖L̃−1‖
∥
∥∥
∥∥
∥
(u − v)

M−1∑

j=0

u jvM−1− j |Hγm+1([0, T ], L2(D))

∥
∥∥
∥∥
∥

= ‖L̃−1‖
γm+1∑

k=0

∥
∥∥
∥∥
∥
∂tk

⎡

⎣(u − v)

M−1∑

j=0

u jvM−1− j

⎤

⎦ |L2(DT )

∥
∥∥
∥∥
∥

= ‖L̃−1‖
γm+1∑

k=0

∥
∥
∥∥
∥

k∑

l=0

(
k

l

)
∂tl (u − v)·

⎡

⎣

⎛

⎝
M−1∑

j=0

k−l∑

r=0

(
k − l

r

)
∂tr u

j · ∂tk−l−r v
M−1− j

⎞

⎠

⎤

⎦ |L2(DT )

∥
∥∥
∥∥
∥
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� ‖L̃−1‖
γm+1∑

k=0

∥
∥
∥∥
∥

k∑

l=0

|∂tl (u − v)|·
⎡

⎣

⎛

⎝
M−1∑

j=0

k−l∑

r=0

|∂tr u j · ∂tk−l−r v
M−1− j |

⎞

⎠

⎤

⎦ |L2(DT )

∥
∥∥
∥∥
∥

,

(4.22)

where we used Leibniz’s formula twice as in (4.13) in the second but last line. Again
Faà di Bruno’s formula, cf. (4.14), is applied in order to estimate the derivatives in
(4.22). We use a special case of the multiplier result from [39, Sect. 4.6.1, Thm. 1(i)],
which tells us that for m > 3

2 we have

‖uv|L2‖ � ‖u|Hm‖ · ‖v|L2‖ (4.23)

(we remark that this is exactly the point where our assumption m ≥ 2 comes into
play). With this we obtain

∥
∥∥∂tr u j |L2(D)

∥
∥∥ ≤ cr , j

∥
∥
∥∥
∥
∥

∑

k1+···+kr≤ j

u j−(k1+···+kr )
r∏

i=1

∣∣∂t i u
∣∣ki |L2(D)

∥
∥
∥∥
∥
∥

�
∑

k1+···+kr≤ j

∥
∥u|Hm(D)

∥
∥ j−(k1+···+kr )

r−1∏

i=1

∥
∥∂t i u|Hm(D)

∥
∥ki ‖∂tr u|L2(D)‖kr .

(4.24)

Similar for ∂tk−l−r vM−1− j . As before, from (4.15) we observe kr ≤ 1, therefore the
highest derivative u(r) appears at most once. Note that since Hm(D) is a multiplication
algebra form > d

2 , we get (4.24) with L2(D) replaced by Hm(D) as well. Now (4.23)
and (4.24) inserted in (4.22) give

‖L̃−1‖‖uM − vM |D2‖

= ‖L̃−1‖
γm+1∑

k=0

(∫ T

0

∥
∥∥∥∥∥
∂tk (u − v)

M−1∑

j=0

u jvM−1− j |L2(D)

∥
∥∥∥∥∥

2

dt

)1/2

� ‖L̃−1‖
γm+1∑

k=0

k∑

l=0

(∫ T

0

∥∥∂tl (u − v)|Hm(D)
∥∥2

M−1∑

j=0

k−l∑

r=0

∥∥
∥∂tr u j · ∂tk−l−r v

M−1− j |L2(D)

∥∥
∥
2
dt

)1/2

� ‖L̃−1‖
γm+1∑

k=0

k∑

l=0

(∫ T

0

{∥∥∂tl (u − v)|Hm(D)
∥∥2

M−1∑

j=0

∑

r=0,
(k−l−r 	=γm+1)∧(r 	=γm+1)

k−l ∥∥
∥∂tr u j |Hm(D)‖2‖∂tk−l−r v

M−1− j |Hm(D)

∥∥
∥
2

+ ‖u − v|Hm(D)‖2‖∂tγm+1u j |L2(D)‖2‖vM−1− j |Hm(D)‖2
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+ ‖u − v|Hm(D)‖2‖u j |Hm(D)‖2‖∂tγm+1vM−1− j |L2(D)‖2
}
dt

)1/2

� ‖L̃−1‖
γm+1∑

k=0

k∑

l=0

(∫ T

0

∥∥∂tl (u − v)|Hm(D)
∥∥2 ·

M−1∑

j=0

k−l∑

r=0

∑

κ1+···+κr≤ j,
κ1+2κ2+···+rκr≤r

∥∥u|Hm(D)
∥∥2( j−(κ1+···+κr ))

{
‖∂tr u|L2(D)‖2κr ∏r−1

i=1

∥∥∂t i u|Hm(D)
∥∥2κi , r = γm + 1,

∏r
i=1

∥∥∂t i u|Hm(D)
∥∥2κi , r 	= γm + 1

}

∑

κ1+···+κk−l−r≤M−1− j,
κ1+2κ2+···+(k−l−r)κk−l−r≤k−l−r

∥∥v|Hm(D)
∥∥2(M−1− j−(κ1+···+κk−l−r ))

{
‖∂tr v|L2(D)‖2κr ∏k−l−r−1

i=1

∥∥∂t i v|Hm(D)
∥∥2κi , k − l − r = γm + 1,

∏l−k−r
i=1

∥∥∂t i v|Hm(D)
∥∥2κi , k − l − r 	= γm + 1

}

dt

)1/2

� ‖L̃−1‖
γm+1∑

k=0

(∫ T

0

∥∥∂tk (u − v)|Hm(D)
∥∥2 ·

M
∑

κ ′
1+···+κ ′

k≤min{M−1,k}
max

w∈{u,v}
∥∥w|Hm(D)

∥∥2(M−1−(κ ′
1+···+κ ′

k ))

{
max(
∥∥∂tkw|L2(D)

∥∥4κ ′
k
∏k−1

i=1

∥∥∂t i w|Hm(D)
∥∥4κ ′

i , 1), k = γm + 1,

max(
∏k

i=1

∥∥∂t iw|Hm(D)
∥∥4κ ′

i , 1), k 	= γm + 1

}

dt

)1/2

� ‖L̃−1‖M‖u − v|Hγm+1([0, T ], Hm(D))‖2 max
w∈{u,v} max

i=0,...,γm
max

(∥∥∂t i w|L∞([0, T ], Hm(D))
∥∥ ,
∥∥∂tγm+1w|L∞([0, T ], L2(D))

∥∥ , 1
)2(M−1)

.

(4.25)

Similar to (4.20) in the calculations above the term k = γm + 1 required some special
care. For the redefinition of the κi ’s in the second but last line in (4.25) we refer to the
explanations given after (4.20). From Theorem 1 we see that

u, v ∈ S ↪→ Hγm+1([0, T ], H̊m(D)) ∩ Hγm+2([0, T ], L2(D))

↪→ Cγm , 12 ([0, T ], H̊m(D)) ∩ Cγm+1, 12 ([0, T ], L2(D))

↪→ Cγm ([0, T ], H̊m(D)) ∩ Cγm+1([0, T ], L2(D)), (4.26)

hence the term maxw∈{u,v} maxm=0,...,l max(. . .)M−1 in (4.25) is bounded. More-
over, since u and v are taken from BR(L̃−1 f ) in S2 = Hm,γm+2∗(DT ) =
Hγm+1([0, T ], H̊m(D))∩Hγm+2([0, T ], H−m(D)), as in (4.21)weobtain from (4.25)
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and (4.26),

‖L̃−1‖‖uM − vM |D2‖ ≤ c3‖L̃−1‖M max(R + ‖L̃−1‖η, 1)2(M−1) · ‖u − v|S‖,
(4.27)

where we put η := ‖ f |D‖ and c3 denotes the constant arising from our estimates
(4.25) and (4.26) above. Now (4.12) together with (4.21) and (4.27) yields

‖L̃−1(uM − vM )|S‖ ≤ ‖L̃−1‖‖(uM − vM )|D̃‖
≤ c‖L̃−1‖M max(R + ‖L̃−1‖η, 1)M−1‖u − v|S‖, (4.28)

where c = c2 + c3. For L̃−1 ◦ N to be a contraction, we therefore require

cε‖L̃−1‖M max(R + ‖L̃−1‖η, 1)2(M−1) < 1,

cf. (4.11). In case of max(R + ‖L̃−1‖η, 1) = 1 this leads to

‖L̃−1‖ <
1

cεM
. (4.29)

On the other hand, if max(R + ‖L̃−1‖η, 1) = R + ‖L̃−1‖η, we choose R = (r0 −
1)η‖L̃−1‖, which gives rise to the condition

cε‖L̃−1‖M(r0‖L̃−1‖η)2(M−1) < 1, i.e., η2(M−1)‖L̃−1‖2M−1

<
1

cεM

(
1

r0

)2(M−1)

. (4.30)

Step 2: The calculations in Step 1 show that uM ∈ D̃: The fact that uM ∈ D1 ∩ D2
follows from the estimate (4.28). In particular, taking v = 0 in (4.28) we get an
estimate from above for ‖uM |D̃‖. The upper bound depends on ‖u|S‖ and several
constants which depend on u but are finite whenever we have u ∈ S, see also (4.20)
and (4.25). The dependence on R in (4.28) comes from the fact that we choose u ∈
BR(L̃−1 f ) in S there. However, the same argument can also be applied to an arbitrary
u ∈ S; this would result in a different constant c̃. In order to have uM ∈ D̃, we
still need to show that Tr

(
∂tk u

M
) = 0, k = 0, . . . , γm . This follows from the same

arguments as in [22, Thm. 4.10]: Since u ∈ S ↪→ Hγm+2([0, T ], H−m(D)) ↪→
Cγm+1([0, T ], H−m(D)) we see that the trace operator Tr

(
∂tk u
) := (∂tk u

)
(0, ·) is

well defined for k = 0, . . . , γm + 1. Using the initial assumption u(0, ·) = 0 in
Problem 2, by density arguments (C∞(DT ) is dense in S) and induction we deduce
that (∂tk u)(0, ·) = 0 for all k = 0, . . . , γm + 1. Moreover, since by Theorem 1

uM ∈ D1 ∩ D2 ↪→ Hγm+1([0, T ], L2(D)) ↪→ Cγm ([0, T ], L2(D)),

we see that the trace operator Tr
(
∂tk u

M
) := (∂tk uM

)
(0, ·) is well defined for k =

0, . . . , γm . By (4.24) below the term ‖ (∂tk uM
)
(0, ·)|L2(D)‖ is estimated from above
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by powers of ‖ (∂tl u
)
(0, ·)|Hm(D)‖, l = 0, . . . , k. Since all these terms are equal to

zero, this shows that uM ∈ D̃.
Step 3: The next step is to show that (L̃−1 ◦ N )(BR(L̃−1 f )) ⊂ BR(L̃−1 f ) in S.

Since (L̃−1 ◦ N )(0) = L̃−1( f − ε0M ) = L̃−1 f , we only need to apply the above
estimate (4.28) with v = 0. This gives

ε‖L̃−1uM |S‖ ≤ cε‖L̃−1‖M max(R + ‖L̃−1‖η, 1)2(M−1)(R + ‖L̃−1‖η)

!≤ R = (r0 − 1)η‖L̃−1‖,

which, in case that max(R + ‖L̃−1‖η, 1) = 1, leads to

‖L̃−1‖ <
r0 − 1

r0

(
1

cεM

)
, (4.31)

whereas for max(R + ‖L̃−1‖η, 1) = R + ‖L̃−1‖η we get

η2(M−1)‖L̃−1‖2M−1 ≤ 1

cεM
(r0 − 1)

(
1

r0

)2M−1

. (4.32)

We see that condition (4.31) implies (4.29). Furthermore, since

(r0 − 1)

(
1

r0

)2M−1

= r0 − 1

r0

(
1

r0

)2(M−1)

<

(
1

r0

)2(M−1)

,

also condition (4.32) implies (4.30). Thus, by applying Banach’s fixed point theorem
in a sufficiently small ball around the solution of the corresponding linear problem,
we obtain a unique solution of Problem 2. ��
Remark 9 The restriction m ≥ 2 in Theorem 7 comes from the fact that we require
s2 = m > d

2 = 3
2 in (4.23). This assumption can probably be weakened, since we

expect the solution to satisfy u ∈ L2([0, T ], Hs(D)) for all s < 3
2 , see also Remark

11 and the explanations given there.
Moreover, the restriction a ≥ − 1

2 in Theorem 7 comes from Theorem 1(ii) that we
applied. Together with the restriction a ∈ [−m,m] we are looking for a ∈ [− 1

2 ,m]
if the domain is a corner domain, e.g., a smooth cone K ⊂ R

3 (subject to some
truncation). For polyhedral coneswith edgesMk , k = 1, . . . , l, we furthermore require
−δ

(k)
− < a + 2m(γm − i) + m < δ

(k)
+ for i = 0, . . . , γm from Theorem 5.

5 Regularity Results in Besov Spaces

With all preliminary work, in this section we finally come to the presentation of the
regularity results in Besov spaces for Problems 1 and 2. For this purpose, we rely
on the results from Sect. 4 on regularity in Sobolev and Kondratiev spaces for the
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respective problems and combine these with the embeddings of Kondratiev spaces
into Besov spaces. It turns out that in all cases studied the Besov regularity is higher
than the Sobolev regularity. This indicates that adaptivity pays off when solving these
problems numerically.

The Sobolev regularity we are working with (e.g., see Theorem 3 for Problem 1)
canonically comes out from the variational formulation of the problem, i.e., we have
spatial Sobolev regularity m if the corresponding differential operator is of order 2m.
We give an outlook on how our results could be improved by using regularity results
in fractional Sobolev spaces instead. It is planned to do further investigations in this
direction in the future.

Moreover,we discuss the role of theweight parametera appearing in ourKondratiev
spaces to some extent.

5.1 Besov Regularity of Problem I

Acombination of Theorem 5 (Kondratiev regularityA) and the embedding in Theorem
2 yields the following Besov regularity of Problem 1.

Theorem 8 (Parabolic Besov regularity A) Let D be a bounded polyhedral domain

in R
3. Let γ ∈ N with γ ≥ 2m and put γm :=

[
γ−1
2m

]
. Furthermore, let a ∈ R with

a ∈ [−m,m]. Assume that the right-hand side f of Problem 1 satisfies

(i) ∂tk f ∈ L2(DT ) ∩ L2([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D)), k = 0, . . . , γm; ∂tγm+1 f ∈

L2(DT ).
(ii) ∂tk f (x, 0) = 0, k = 0, 1, . . . , γm .

Furthermore, let Assumption 1 hold for weight parameters b = a + 2m(γm − i),
where i = 0, . . . , γm, and b′ = −m. Then for the weak solution u ∈ Hm,γm+2∗(DT )

of Problem 1, we have

u ∈ L2([0, T ], Bα
τ,∞(D)) for all 0 < α < min

(
γ,

3

δ
m

)
, (5.1)

where 1
2 < 1

τ
< α

d + 1
2 and δ denotes the dimension of the singular set of D. In

particular, for any α satisfying (5.1) and τ as above, we have the a priori estimate

‖u|L2([0, T ], Bα
τ,∞(D))‖ �

γm∑

k=0

‖∂tk f |L2([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D))‖

+
γm+1∑

k=0

‖∂tk f |L2(DT )‖.

Proof According to Theorem 5 by our assumptions we know u ∈ L2([0, T ],
K2m(γm+1)

2,a+2m(γm+1)(D)). Together with Theorem 2 (choosing k = 0) we obtain

u ∈ L2([0, T ],K2m(γm+1)
2,a+2m(γm+1)(D)) ∩ Hm,γm+2∗(DT )
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↪→ L2([0, T ],K2m(γm+1)
2,a+2m(γm+1)(D)) ∩ L2([0, T ], Hm(D))

↪→ L2([0, T ],K2m(γm+1)
2,a+2m(γm+1)(D)) ∩ L2([0, T ], Bm

2,∞(D))

↪→ L2([0, T ],Kα
2,a+2m(γm+1)(D) ∩ Bm

2,∞(D)) ↪→ L2([0, T ], Bα
τ,∞(D)),

where in the third step we use the fact that 2m(γm + 1) ≥ 2m
( γ
2m − 1 + 1

) =
γ and choose α ≤ γ . Moreover, the condition on a from Theorem 2 yields
m =min(m, a + 2m(γm + 1)) > δ

3α. Therefore, the upper bound for α is α <

min
(
γ, 3

δ
m
)
. Concerning the restriction on τ , Theorem 2 with τ0 = 2 gives

1
2 < 1

τ
< 1

τ∗ = α
3 + 1

2 . This completes the proof. ��
Remark 10 (The parameter a) We discuss the role of the weight parameter in our
Kondratiev spaces: Note that on the one hand we require a + 2m(γm + 1) > 0 in
order to apply the embedding from Theorem 2. Since we assume a ∈ [−m,m] this is
always true. On the other hand it should be expected that the derivatives of the solution
u have singularities near the boundary of the polyhedral domain. Thus, looking at the
highest derivative of u(t) ∈ K2m(γm+1)

2,a+2m(γm+1)(D) we see that we require

∑

|α|=2m(γm+1)

∫

D
ρ−ap(x)|∂αu(t, x)|pdx < ∞,

hence, if a < 0 the derivatives of the solution umight be unbounded near the boundary
of D. From this it follows that the range −m < a < 0 is the most interesting for our
considerations.

Remark 11 The above theorem relies on the fact that Problem 1 has a weak solu-
tion u ∈ Hm,γm+2∗(DT ) = Hγm+1([0, T ], H̊m(D)) ∩ Hγm+2([0, T ], H−m(D)) ↪→
L2([0, T ], Hm(D)), cf. Theorem 4. We strongly believe that (in good agreement with
the elliptic case) this result can be improved by studying the regularity of Problem 1
in fractional Sobolev spaces Hs(D). In this case (assuming that the weak solution of
Problem 1 satisfies u ∈ L2([0, T ], Hs(D)) for some s > 0) under the assumptions of
Theorem 8, using Theorem 5 and Theorem 2 (with k = 0), we would obtain

u ∈ L2([0, T ],Kα
2,a′(D)) ∩ L2([0, T ], Hs(D)) ↪→ L2([0, T ], Bα

τ,∞(D)), (5.2)

where a′ = a + 2m(γm + 1) ≥ a + 2m and again 1
2 < 1

τ
< α

3 + 1
2 but the restriction

on α now reads as

α <
3

δ
min(s, a′). (5.3)

For general Lipschitz domains D ⊂ R
3 we expect that the solution of Problem 1 (for

m = 1) is contained in Hs(D) for all s < 3
2 (as in the elliptic case, cf. [32]). This

would lead to α < 9
2 when δ = 1. For convex domains it probably even holds that

s = 2 (for the heat equation this was already proven in [45]). First results in this
direction can be found in [21].
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Alternatively, we combine Theorem 6 (Kondratiev regularity B) and Theorem 2.
This leads to the following regularity result in Besov spaces.

Theorem 9 (Parabolic Besov regularity B) Let D be a bounded polyhedral domain in
R
3. Let γ ∈ N with γ ≥ 2m. Moreover, let a ∈ R with a ∈ [−m,m]. Assume that the

right-hand side f of Problem 1 satisfies

(i) f ∈⋂∞
l=0 H

l([0, T ], L2(D) ∩ Kγ−2m
2,a (D)).

(ii) ∂tl f (x, 0) = 0, l ∈ N0.

Furthermore, let Assumption 1 hold for weight parameters b = a and b′ = −m. Then
for the weak solution

⋂∞
l=0 u ∈ Hm,l+1∗(DT ) of Problem 1, we have

u ∈ L2([0, T ], Bα
τ,∞(D)) for all 0 < α < min

(
γ,

3

δ
m

)
, (5.4)

where 1
2 < 1

τ
< α

3 + 1
2 and δ denotes the dimension of the singular set of D. In

particular, for any α satisfying (5.4) and τ as above, we have the a priori estimate

‖u|L2([0, T ], Bα
τ,∞(D))‖ �

γ−2m∑

k=0

‖∂tk f |L2([0, T ],Kγ−2m
2,a (D))‖

+
(γ−2m)+1∑

k=0

‖∂tk f |L2(DT )‖.

Proof According to Theorem 6 by our assumptions we know u ∈ L2([0, T ],
Kγ

2,a+2m(D)). Together with Theorem 2 (choosing k = 0) we obtain

u ∈L2([0, T ],Kγ
2,a+2m(D)) ∩ Hm,1∗(DT )

↪→ L2([0, T ],Kγ
2,a+2m(D)) ∩ L2([0, T ], Hm(D))

↪→ L2([0, T ],Kγ
2,a+2m(D)) ∩ L2([0, T ], Bm

2,∞(D))

↪→ L2([0, T ],Kα
2,a+2m(D) ∩ Bm

2,∞(D)) ↪→ L2([0, T ], Bα
τ,∞(D)),

where α ≤ γ in the second to last line. Moreover, the condition on the parameter ’a’
from Theorem 2 yields m = min(m, a + 2m) > δ

3α. Therefore, the upper bound for
α is α < min

(
γ, 3

δ
m
)
. Concerning the restriction on τ , Theorem 2 with τ0 = 2 gives

1
2 < 1

τ
< 1

τ∗ = α
3 + 1

2 . This finishes the proof. ��

Remark 12 It might not be obvious at first glance that Assumption 1 is satisfied with
the parameter restrictions in Theorems 8 and 9. For a discussion on this subject we
refer to [22, Rem. 3.8, Ex 4.8], where thismatter was discussed in detail and exemplary
illustrated for the heat equation. We do not want to repeat the arguments here.

123



Regularity in Sobolev and Besov Spaces… 11771

Fig. 5 Nonlinear solution in B0

L̃−1f . . . linear solution

R = CC̃(r0 − 1)‖L̃−1‖η

B0 ⊂ L2((0, T ),Bα
τ,∞(D))

. . . solution space

5.2 Besov Regularity of Problem II

Concerning the Besov regularity of Problem 2, we proceed in the same way as before
for Problem 1: Combining Theorem 7 (Nonlinear Sobolev and Kondratiev regularity)
with the embeddings from Theorem 2 we derive the following result.

Theorem 10 (Nonlinear Besov regularity) Let the assumptions of Theorems 7 and 5
be satisfied. In particular, as in Theorem 7 for η := ‖ f |D̃‖ and r0 > 1, we choose
ε > 0 so small that

η2(M−1)‖L̃−1‖2M−1 ≤ 1

cεM
(r0 − 1)

(
1

r0

)2M−1

, if r0‖L̃−1‖η > 1, (5.5)

and

‖L̃−1‖ <
r0 − 1

r0

(
1

cεM

)
, if r0‖L̃−1‖η < 1. (5.6)

Then there exists a solution u of Problem 2, which satisfies u ∈ B0 ⊂ B,

B := L2([0, T ], Bα
τ,∞(D)),

for all 0 < α < min
( 3

δ
m, γ
)
, where δ denotes the dimension of the singular set of D,

1
2 < 1

τ
< α

3 + 1
2 , and B0 is a small ball around L̃−1 f (the solution of the corresponding

linear problem) with radius R = CC̃(r0 − 1)η‖L̃−1‖ (Fig. 5).

Proof This is a consequence of the regularity results in Kondratiev and Sobolev spaces
from Theorem 7. To be more precise, Theorem 7 establishes the existence of a fixed
point u in

S0 ⊂ S:=
γm+1⋂

k=0

Hk([0, T ],K2m(γm−(k−1))
2,a+2m(γm−(k−1))(D)) ∩ Hm,γm+2∗(DT )

↪→
γm+1⋂

k=0

Hk([0, T ],K2m(γm−(k−1))
2,a+2m(γm−(k−1))(D))
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∩ Hγm+1([0, T ], Hm(D)) ∩ Hγm+2([0, T ], H−m(D))

↪→ L2([0, T ],K2m(γm+1)
2,a+2m(γm+1)(K ) ∩ Hm(D)) =: S̃.

This together with the embedding results for Besov spaces from Theorem 2 (choosing
k = 0) completes the proof, in particular, we calculate for the solution (cf. the proof
of Theorem 8)

‖u − L̃−1 f |L2([0, T ], Bα
τ,∞(D))‖

≤ C‖u − L̃−1 f |L2([0, T ],K2m(γm+1)
2,a+2m(γm+1)(D) ∩ Hm(D))‖

= C‖u − L̃−1 f |S̃‖ ≤ CC̃‖u − L̃−1 f |S‖ ≤ CC̃(r0 − 1)η‖L̃−1‖. (5.7)

Furthermore, it can be seen from (5.7) that new constants C and C̃ appear when
considering the radius R around the linear solution where the problem can be solved
compared to Theorem 7. ��

Remark 13 A few words concerning the parameters appearing in Theorem 10 (and
also Theorem 7) seem to be in order. Usually, the operator norm ‖L̃−1‖ as well as ε

are fixed; but we can change η and r0 according to our needs. From this we deduce that
by choosing η small enough the condition (5.6) can always be satisfied. Moreover, it
is easy to see that the smaller the nonlinear perturbation ε > 0 is, the larger we can
choose the radius R of the ball B0 where the solution of Problem 2 is unique.

5.3 Hölder–Besov Regularity of Problem I

So far we have not exploited the fact that Theorem 5 (Kondratiev regularity A) not
only provides regularity properties of the solution u of Problem 1 but also of its partial
derivatives ∂tk u. We use this fact in combination with Theorem 1 in order to obtain
some mixed Hölder–Besov regularity results on the whole space-time cylinder DT .

For parabolic SPDEs, results in this direction have been obtained in [9]. However,
for SPDEs, the time regularity is limited in nature. This is caused by the nonsmooth
character of the driving processes. Typically, Hölder regularity C0,β can be obtained,
but not more. In contrast to this, it is well known that deterministic parabolic PDEs
are smoothing in time. Therefore, in the deterministic case considered here, higher
regularity results in time can be obtained compared to the probabilistic setting.

Theorem 11 (Hölder–Besov regularity) Let D be a bounded polyhedral domain in

R
3. Moreover, let γ ∈ N with γ ≥ 4m + 1 and put γm :=

[
γ−1
2m

]
. Furthermore, let

a ∈ R with a ∈ [−m,m]. Assume that the right-hand side f of Problem 1 satisfies

(i) ∂tk f ∈ L2(DT ) ∩ L2([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D)), k = 0, . . . , γm, ∂tγm+1 f ∈

L2(DT ).
(ii) ∂tk f (x, 0) = 0, k = 0, 1, . . . , γm .
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Let Assumption1hold forweight parameters b = a+2m(γm−i), where i = 0, . . . , γm
and b′ = −m. Then for the solution u ∈ Hm,γm+2∗

2 (DT ) of Problem 1, we have

u ∈ Cγm−2, 12 ([0, T ], Bη
τ,∞(D)) for all 0 < η < min

(
3

δ
, 4

)
m,

where 1
2 < 1

τ
<

η
3 + 1

2 and δ denotes the dimension of the singular set of D. In
particular, we have the a priori estimate

‖u|Cγm−2, 12 ([0, T ], Bη
τ,∞(D))‖ �

γm∑

k=0

‖∂tk f |L2([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D))‖

+
γm+1∑

k=0

‖∂tk f |L2(DT )‖,

where the constant is independent of u and f .

Proof Theorems 5 and 4 show together with Theorems 2 and 1, that under the given
assumptions on the initial data f , we have for k ≤ γm − 2,

u ∈ Hk+1([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D)) ∩ Hγm+1([0, T ], Hm(D))

↪→ Hk+1([0, T ],K2m(γm−k)
2,a+2m(γm−k)(K ) ∩ Hm(D))

↪→ Ck, 12 ([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D) ∩ Hm(D))

↪→ Ck, 12 ([0, T ],Kη

2,a+2m(γm−k)(D) ∩ Hm(D)) ↪→ Ck, 12 ([0, T ], Bη
τ,∞(D)),

where in the third step we require η ≤ 2m(γm − k) and by Theorem 2 we get the
additional restriction m = min(m, a + 2m(γm − k)) ≥ δ

3η, i.e., η < 3
δ
m. Therefore,

the upper bound on η reads as η < min
( 3

δ
m, 2m(γm − k)

)
since k ≤ γm − 2, which

for k = γm − 2 yields η < min
( 3

δ
, 4
)
m. ��

Remark 14 (i) For γ ≥ 2m + 1 and k = γm − 1 we have η ≤ min
( 3

δ
, 2
)
m in the

theorem above. For γ ≥ 2m and k = γm we get η = 0.
(ii) From the proof of Theorem 11 above it can be seen that the solution satisfies

u ∈ Ck, 12 ([0, T ],K2m(γm−k)
2,a+2m(γm−k)(D)), implying that for high regularity in time,

which is displayed by the parameter k, we have less spatial regularity in terms of
2m(γm − k).
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A Appendix

A.1 Preliminaries

We collect some notation used throughout the paper. As usual, we denote by N the
set of all natural numbers, N0 = N ∪ {0}, and R

d , d ∈ N, the d-dimensional real
Euclidean space with |x |, for x ∈ R

d , denoting the Euclidean norm of x . By Z
d we

denote the lattice of all points inRd with integer components. For a ∈ R, let [a] denote
its integer part.

Moreover, c stands for a generic positive constant which is independent of the main
parameters, but its value may change from line to line. The expression A � B means
that A ≤ c B. If A � B and B � A, then we write A ∼ B.

Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the
natural embedding is bounded. By supp f we denote the support of the function f .
For a domain 
 ⊂ R

d and r ∈ N ∪ {∞} we write Cr (
) for the space of all real-
valued r -times continuously differentiable functions, whereas C(
) is the space of
bounded uniformly continuous functions, and D(
) for the set of test functions, i.e.,
the collection of all infinitely differentiable functions with compact support contained
in 
. Moreover, L1

loc(
) denotes the space of locally integrable functions on 
.
For a multi-index α = (α1, . . . , αd) ∈ N

d
0 with |α| := α1 + · · · + αd = r , r ∈ N0,

and an r -times differentiable function u : 
 → R, we write

D(α)u = ∂ |α|

∂xα1
1 . . . ∂xαd

d

u

for the corresponding classical partial derivative as well as u(k) := D(k)u in the one-
dimensional case. Hence, the space Cr (
) is normed by

‖u|Cr (
)‖ := max|α|≤r
sup
x∈


|D(α)u(x)| < ∞.

Moreover, S(Rd) denotes the Schwartz space of rapidly decreasing functions. The
set of distributions on 
 will be denoted by D′(
), whereas S ′(Rd) denotes the set
of tempered distributions on Rd . The terms distribution and generalized function will
be used synonymously. For the application of a distribution u ∈ D′(
) to a test
function ϕ ∈ D(
) we write (u, ϕ). The same notation will be used if u ∈ S ′(Rd)

and ϕ ∈ S(Rd) (and also for the inner product in L2(
)). For u ∈ D′(
) and a multi-
index α = (α1, . . . , αd) ∈ N

d
0 , wewrite D

αu for the α-th generalized or distributional
derivative of u with respect to x = (x1, . . . , xd) ∈ 
, i.e., Dαu is a distribution on 
,
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uniquely determined by the formula

(Dαu, ϕ) := (−1)|α|(u, D(α)ϕ), ϕ ∈ D(
).

In particular, if u ∈ L1
loc(
) and there exists a function v ∈ L1

loc(
) such that

∫




v(x)ϕ(x)dx = (−1)|α|
∫




u(x)D(α)ϕ(x)dx for all ϕ ∈ D(
),

we say that v is the α-th weak derivative of u andwrite Dαu = v. We also use the nota-

tion ∂k

∂xkj
u := Dβu aswell as ∂xkj

:= Dβu, for somemulti-index β = (0, . . . , k, . . . , 0)

with β j = k, k ∈ N. Furthermore, for m ∈ N0, we write Dmu for any (generalized)
m-th order derivative of u, where D0u := u and Du := D1u. Sometimes we shall use
subscripts such as Dm

x or Dm
t to emphasize that we only take derivatives with respect

to x = (x1, . . . , xd) ∈ 
 or t ∈ R.

Besov Spaces

Due to the different contextsBesov spaces arose from they canbedefined/characterized
in several ways, e.g., via higher order differences, the Fourier-analytic approach or
decompositions with suitable building blocks, cf. [43,44] and the references therein.
Under certain restrictions on the parameters these different approaches might even
coincide. Throughout this paper, we rely on the characterization of Besov spaces
via wavelet decompositions and refer in this context to [11,38]. Let us briefly recall
the concept: Wavelets are specific orthonormal bases for L2(R) that are obtained by
dilating, translating, and scaling one fixed function, the so-called mother wavelet ψ .
The mother wavelet is usually constructed by means of a so-called multiresolution
analysis, that is, a sequence {Vj } j∈Z of shift-invariant, closed subspaces of L2(R)

whose union is dense in L2 while their intersection is trivial. Moreover, all the spaces
are related via dyadic dilation, and the space V0 is spanned by the translates of one
fixed function φ, called the generator. In her fundamental work [24,25] I. Daubechies
has shown that there exist families of compactly supported wavelets. By taking tensor
products, a compactly supported orthonormal basis for L2(R

d) can be constructed.
Let φ be a father wavelet of tensor product type on R

d and let � ′ = {ψi : i =
1, . . . , 2d − 1} be the set containing the corresponding multivariate mother wavelets
such that, for a given r ∈ N and some N > 0 the following localization, smoothness,
and vanishing moment conditions hold. For all ψ ∈ � ′,

supp φ, supp ψ ⊂ [−N , N ]d , (A.1)

φ, ψ ∈ Cr (Rd), (A.2)
∫

Rd
xαψ(x)dx = 0 for all α ∈ N

d
0 with |α| ≤ r . (A.3)
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We refer again to [24,25] for a detailed discussion. The set of all dyadic cubes in R
d

with measure at most 1 is denoted by

D+ :=
{
I ⊂ R

d : I = 2− j ([0, 1]d + k), j ∈ N0, k ∈ Z
d
}

and we set D j := {I ∈ D+ : |I | = 2− jd}. For the dyadic shifts and dilations of the
father wavelet and the corresponding wavelets we use the abbreviations

φk(x) := φ(x − k), ψI (x) := 2 jd/2ψ(2 j x − k) for j ∈ N0, k ∈ Z
d , ψ ∈ � ′.(A.4)

It follows that
{
φk, ψI : k ∈ Z

d , I ∈ D+, ψ ∈ � ′}

is an orthonormal basis in L2(R
d). Denote by Q(I ) some dyadic cube (of minimal

size) such that supp ψI ⊂ Q(I ) for every ψ ∈ � ′. Then, we clearly have Q(I ) =
2− j k + 2− j Q for some dyadic cube Q. Put �′ = D+ × � ′. Then, every function
f ∈ L2(R

d) can be written as

f =
∑

k∈Zd

〈 f , φk〉φk +
∑

(I ,ψ)∈�′
〈 f , ψI 〉ψI .

It will be convenient to include φ into the set � ′. We use the notation φI := 0 for
|I | < 1, φI = φ(· − k) for I = k + [0, 1]d , and can simply write

f =
∑

(I ,ψ)∈�

〈 f , ψI 〉ψI , � = D+ × �, � = � ′ ∪ {φ}.

We describe Besov spaces on Rd by decay properties of the wavelet coefficients, if
the parameters fulfill certain conditions.

Theorem A.1 (Wavelet decomposition of Besov spaces) Let 0 < p, q < ∞, and
s > max {0, d(1/p − 1)}. Choose r ∈ N such that r > s and construct a wavelet
Riesz basis as described above. Then a function f ∈ L p(R

d) belongs to the Besov
space Bs

p,q(R
d) if, and only if,

f =
∑

k∈Zd

〈 f , φk〉φk +
∑

(I ,ψ)∈�′
〈 f , ψI 〉ψI (A.5)

(convergence in S ′(Rd)) with

‖ f |Bs
p,q(R

d)‖ ∼
⎛

⎝
∑

k∈Zd

|〈 f , φk〉|p
⎞

⎠

1/p

+
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⎛

⎜
⎝

∞∑

j=0

2
j
(
s+d( 12− 1

p )
)
q

⎛

⎝
∑

(I ,ψ)∈D j×� ′
|〈 f , ψI 〉|p

⎞

⎠

q/p
⎞

⎟
⎠

1/q

< ∞.

(A.6)

Remark A.1 In particular, for our adaptivity scale (1.2), i.e., Bs
τ,τ (R

d) with s =
d
(
1
τ

− 1
p

)
, we see that the quasi-norm (A.6) becomes

‖ f |Bs
τ,τ (R

d)‖ ∼
⎛

⎝
∑

k∈Zd

|〈 f , φk〉|τ
⎞

⎠

1/τ

+
⎛

⎝
∞∑

j=0

2
jd
(
1
2−1

p

)
τ
∑

(I ,ψ)∈D j×� ′
|〈 f , ψI 〉|τ

⎞

⎠

1/τ

.

Corresponding function spaces on domains O ⊂ R
d can be introduced via restric-

tion, i.e.,

Bs
p,q(O) =

{
f ∈ D′(O) : ∃g ∈ Bs

p,q(R
d), g
∣∣O = f

}
,

‖ f |Bs
p,q(O)‖ = inf

g|O= f
‖ f |Bs

p,q(R
d)‖.

Alternative (different or equivalent) versions of this definition can be found, depending
on possible additional properties of the distributions g (most often their support). We
refer to [44] for details and references.

Remark A.2 We remark that the Besov (and Kondratiev) spaces we are working with
are defined in the setting of distributions, i.e., as subsets of D′(O), and therefore
may contain ‘functions’ which take complex values. However, when considering the
fundamental parabolic problems, we restrict ourselves to the real-valued setting: We
assume the coefficients of the differential operator L to be real-valued as well as the
right-hand side f , therefore, the solutions are real-valued as well.
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