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Abstract
We introduce the natural notion of (p, q)-harmonic morphisms between Riemannian
manifolds. This unifies several theories that have been studied during the last decades.
We then study the special case when the maps involved are complex-valued. For these
we find a characterisation and provide new non-trivial examples in important cases.
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1 Introduction

The history of harmonic morphisms can be traced back to the pioneering work [7] of
Jacobi from 1848. He studies complex-valued functions pulling back harmonic func-
tions in the complex plane C to harmonic functions in the 3-dimensional Euclidean
space R3. The notion is then generalised to the Riemannian setting in the late 1970s,
independently by Fuglede and Ishihara, see [2] and [6]. This has led to a lively develop-
ment that can be followed both in [1] and at the regularly updated on-line bibliography
[5].

Loubeau and Ou study biharmonic morphisms between Riemannian manifolds,
see [8] and [9]. These are maps pulling back biharmonic functions to biharmonic
functions. In his work [10], Maeta introduces the notion of triharmonic morphisms.
These are mappings pulling back triharmonic functions to triharmonic functions.

Recently, Ghandour and Ou introduce the notion of generalised harmonic mor-
phisms between Riemannian manifolds, see [3] and [4]. These are maps pulling back
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(p, q)-Harmonic Morphisms 11387

harmonic functions to biharmonic functions. They also find a characterisation for these
non-linear objects.

In thisworkweunify the above notions by defining the (p, q)-harmonic morphisms.
These are maps between Riemannian manifolds pulling back q-harmonic functions
to p-harmonic functions. Just as the harmonic morphisms and their above mentioned
variants, they are solutions to an over-determined system of non-linear partial differ-
ential equations. This means that they have no general existence theory. For this reason
it is interesting to develop methods for constructing solutions in particular cases.

In this paperwe focus our attention on complex-valued (p, q)-harmonicmorphisms
from Riemannian manifolds. The aim is to extend the known characterisation to this
case and to manufacture new non-trivial examples to this non-linear problem. The
explicit examples presented here involve rather demanding computations. They were
all tested, by the computer algebra systems Maple and Mathematica, independently.

2 Preliminaries

Let (M, g) be an m-dimensional Riemannian manifold and TCM be the complexifi-
cation of the tangent bundle T M of M . We extend the metric g to a complex-bilinear
form on TCM . Then the gradient∇z of a complex-valued function z : (M, g) → C is
a section of TCM . In this situation, the well-known complex linear Laplace–Beltrami
operator (alt. tension field) τ on (M, g) acts locally on z as follows

τ(z) = div(∇z) =
m∑

i, j=1

1√|g|
∂

∂x j

(
gi j

√|g| ∂z

∂xi

)
.

For two complex-valued functions z, w : (M, g) → C we have the following well-
known relation

τ(z · w) = τ(z) · w + 2 · κ(z, w) + z · τ(w), (2.1)

where the complex bilinear conformality operator κ is given by κ(z, w) = g(∇z,∇w).
Locally this satisfies

κ(z, w) =
m∑

i, j=1

gi j · ∂z

∂xi

∂w

∂x j
.

For the naming of the operator κ , we have the following.

Remark 2.1 Note that for a complex-valued function z = x + i y : (M, g) → C we
have

κ(z, z) = (|∇x |2 − |∇ y|2) + 2i g(∇x,∇ y) = 0

if and only if the two gradients ∇x and ∇ y are orthogonal and of the same length at
every point p ∈ M i.e. z is horizontally conformal, see [1].
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11388 E. Ghandour, S. Gudmundsson

As a direct consequence of the complex linearity and bi-linearity of the operators
τ and κ , respectively, we have the following.

Lemma 2.2 Let (M, g) be a Riemannian manifold and z, w : (M, g) → C be two
complex-valued functions. Then the tension field τ and the conformality operator κ

satisfy

τ(z) = τ(z̄) and κ(z, w) = κ(z̄, w̄). (2.2)

We are now ready to define the complex-valued proper p-harmonic functions, the
main objects of our study.

Definition 2.3 For a positive integer p, the iterated Laplace–Beltrami operator τ p is
given by

τ 0(z) = z and τ p(z) = τ(τ (p−1)(z)).

We say that a complex-valued function z : (M, g) → C is

(a) p-harmonic if τ p(z) = 0, and
(b) proper p-harmonic if τ p(z) = 0 and τ (p−1)(z) does not vanish identically.

We now introduce the natural notion of a (p, q)-harmonic morphism. For (p, q) =
(1, 1) this is the classical case of harmonic morphisms introduced by Fuglede and
Ishihara, in [2] and [6], independently.

Definition 2.4 A map φ : (M, g) → (N , h) between Riemannian manifolds is said
to be a (p, q)-harmonic morphism if, for any q-harmonic function f : U ⊂ N → R,
defined on an open subset U such that φ−1(U ) is not empty, the composition f ◦ φ :
φ−1(U ) ⊂ M → R is p-harmonic.

As an immediate consequence of Definition 2.4 we have the following natural
composition law.

Lemma 2.5 Let φ : (M, g) → (N̄ , h̄) be a (p, r)-harmonic morphism between Rie-
mannian manifolds. If ψ : (N̄ , h̄) → (N , h) is an (r , q)-harmonic morphism then the
composition ψ ◦ φ : (M, g) → (N , h) is a (p, q)-harmonic morphism.

Another useful consequence of Definition 2.4 is the following.

Lemma 2.6 Let φ : (M, g) → (N , h) be a (p, q)-harmonic morphism between Rie-
mannian manifolds. Then φ is a (p, q ′)-harmonic morphism for q > q ′ and is a
(p′, q)-harmonic morphism for p′ > p.

In our Theorem 7.2, we show that a complex-valued (p, q)-harmonic morphism is
a p-harmonic function and for this situation we define the following.

Definition 2.7 A complex-valued (p, q)-harmonic morphism z : (M, g) → C from a
Riemannian manifold is said to be proper if it is proper as a p-harmonic function i.e.
τ p(z) = 0 and τ p−1(z) 	= 0.
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(p, q)-Harmonic Morphisms 11389

3 Complex-Valued (2,q)-Harmonic Morphisms

Throughout this work we assume that z : (M, g) → C is a smooth complex-valued
function on a Riemannian manifold and that f : U → C is differentiable and defined
on an open subsetU ofC containing the image z(M) of z. Further let φ : (M, g) → C

be the composition φ = f ◦ z. For this situation we have the following result that later
will be employed several times. This is easily obtained by using the chain rule.

Lemma 3.1 Let z : (M, g) → C be a complex-valued function on a Riemannian
manifold and F, G : U → C be differentiable functions defined on an open subset U
of C containing the image z(M) of z. Then the tension field τ and the conformality
operator κ satisfy

τ(F(z, z̄)) = ∂ F

∂z
· τ(z) + ∂ F

∂ z̄
· τ(z̄)

+∂2F

∂z2
· κ(z, z) + 2

∂2F

∂z∂ z̄
· κ(z, z̄) + ∂2F

∂ z̄2
· κ(z̄, z̄)

and

κ(F(z, z̄), G(z, z̄)) = ∂ F

∂z
· κ(z, G(z, z̄)) + ∂ F

∂ z̄
· κ(z̄, G(z, z̄)).

As a direct consequence of Lemma 3.1, we now see that the tension field τ(φ) of
the composition φ = f ◦ z is given by

τ(φ) = ∂ f

∂z
· τ(z) + ∂ f

∂ z̄
· τ(z̄)

+ ∂2 f

∂z2
· κ(z, z) + 2

∂2 f

∂z∂ z̄
· κ(z, z̄) + ∂2 f

∂ z̄2
· κ(z̄, z̄).

(3.1)

For the completeness of our exposition we now state the following. This recovers
the classical result of Fuglede and Ishihara in our special case of complex-valued
functions.

Theorem 3.2 A complex-valued function z : (M, g) → C from a Riemannian mani-
fold is a (1, 1)-harmonic morphism if and only if

κ(z, z) = 0 and τ(z) = 0.

Proof The function z : (M, g) → C is a (1, 1)-harmonic morphism if and only if, for
any harmonic f : U → C defined on an open subset U of C containing the image
z(M) of z, the tension field τ(φ) of the composition φ = f ◦ z vanishes. Since the
function f is assumed to be harmonic we have

τ( f ) = ∂2 f

∂z∂ z̄
= 0.
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11390 E. Ghandour, S. Gudmundsson

It now follows from Lemma 2.2 and Eq. (3.1) that τ(φ) = 0 is equivalent to

κ(z, z) = 0 and τ(z) = 0.


�
Proposition 3.3 Let z : (M, g) → C be a complex-valued (1, q)-harmonic morphism
from a Riemannian manifold. If 1 < q then the function z is constant.

Proof The condition 1 < q implies from (3.1) that both κ(z, z) = 0 and κ(z, z̄) = 0
or equivalently that the function z is constant. 
�

The next result is our fundamental tool for analysing the case of (2, q).

Lemma 3.4 Let z : (M, g) → C be a complex-valued function from a Riemannian
manifold and f : U → C be defined on an open subset U of C containing the image
z(M). Then the 2-tension field τ 2(φ) of the composition φ = f ◦ z satisfies

τ 2(φ)

= τ 2(z) · ∂ f

∂z
+ τ 2(z̄) · ∂ f

∂ z̄

+ [
τ(z)2 + 2 · κ(z, τ (z)) + τ(κ(z, z))

] · ∂2 f

∂z2

+ 2 · [
τ(z)τ (z̄) + κ(z, τ (z̄)) + κ(z̄, τ (z)) + τ(κ(z, z̄))

] · ∂2 f

∂z∂ z̄

+ [
τ(z̄)2 + 2 · κ(z̄, τ (z̄)) + τ(κ(z̄, z̄))

] · ∂2 f

∂ z̄2

+ 2 · [
κ(z, z)τ (z) + κ(z, κ(z, z))

] · ∂3 f

∂z3

+ 2 · [
2 · κ(z, z̄)τ (z) + κ(z, z)τ (z̄)

+ κ(z̄, κ(z, z)) + 2 · κ(z, κ(z, z̄))
] · ∂3 f

∂z2∂ z̄
+ 2 · [

2 · κ(z, z̄)τ (z̄) + κ(z̄, z̄)τ (z)

+ κ(z, κ(z̄, z̄)) + 2 · κ(z̄, κ(z, z̄))
] · ∂3 f

∂z∂ z̄2

+ 2 · [
κ(z̄, z̄)τ (z̄) + κ(z̄, κ(z̄, z̄))

] · ∂3 f

∂ z̄3

+ κ(z, z)2 · ∂4 f

∂z4
+ 4 · κ(z, z)κ(z, z̄) · ∂4 f

∂z3∂ z̄

+ 2 · [
κ(z, z)κ(z̄, z̄) + 2 · κ(z, z̄)2

] · ∂4 f

∂z2∂ z̄2

+ 4 · κ(z̄, z̄)κ(z, z̄) · ∂4 f

∂z∂ z̄3
+ κ(z̄, z̄)2 · ∂4 f

∂ z̄4
.
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Proof Utilising the two basic Eqs. (2.1) and (3.1) we see that the 2-tension field τ 2(φ)

of the composition φ = f ◦ z satisfies

τ 2(φ)

= τ

(
∂ f

∂z

)
· τ(z) + 2 · κ

(
∂ f

∂z
, τ (z)

)
+ ∂ f

∂z
· τ 2(z)

+ τ

(
∂ f

∂ z̄

)
· τ(z̄) + 2 · κ

(
∂ f

∂ z̄
, τ (z̄)

)
+ ∂ f

∂ z̄
· τ 2(z̄)

+ τ

(
∂2 f

∂z2

)
· κ(z, z) + 2 · κ

(
∂2 f

∂z2
, κ(z, z)

)
+ ∂2 f

∂z2
· τ(κ(z, z))

+ 2 · τ

(
∂2 f

∂z∂ z̄

)
· κ(z, z̄) + 4 · κ

(
∂2 f

∂z∂ z̄
, κ(z, z̄)

)
+ 2 · ∂2 f

∂z∂ z̄
· τ(κ(z, z̄))

+ τ

(
∂2 f

∂ z̄2

)
· κ(z̄, z̄) + 2 · κ

(
∂2 f

∂ z̄2
, κ(z̄, z̄)

)
+ ∂2 f

∂ z̄2
· τ(κ(z̄, z̄)).

By applying Lemma 3.1 and reordering the terms we then obtain the stated result. 
�

For later use, we now reformulate Lemma 3.4 and thereby show that the 2-tension
field τ 2(φ) of φ can be presented in terms of the different partial derivatives of f with
coefficients determined by the functions z, z̄ and their various tension fields.

Lemma 3.5 Let z : (M, g) → C be a complex-valued function from a Riemannian
manifold and f : U → C be defined on an open subset U of C containing the image
z(M). Then the 2-tension field τ 2(φ) of the composition φ = f ◦ z satisfies

τ 2(φ)

= τ 2(z) · ∂ f

∂z
+ τ 2(z̄) · ∂ f

∂ z̄

+ [ 1
2τ

2(z2) − z τ 2(z)
] · ∂2 f

∂z2

+ [
τ 2(zz̄) − z̄τ 2(z) − zτ 2(z̄)

] · ∂2 f

∂z∂ z̄

+ [ 1
2τ

2(z̄2) − z̄τ 2(z̄)
] · ∂2 f

∂ z̄2

+ [ 1
6τ

2(z3) − 1
2 zτ 2(z2) + 1

2 z2τ 2(z)
] · ∂3 f

∂z3

+ [ 1
2τ

2(z2 z̄) − 1
2 z̄τ 2(z2) + zz̄τ 2(z) − zτ 2(zz̄) + 1

2 z2τ 2(z̄)
] · ∂3 f

∂z2∂ z̄

+ [ 1
2τ

2(zz̄2) − 1
2 zτ 2(z̄2) + zz̄τ 2(z̄) − z̄τ 2(zz̄) + 1

2 z̄2τ 2(z)
] · ∂3 f

∂z∂ z̄2

+ [ 1
6τ

2(z̄3) − 1
2 z̄τ 2(z̄2) + 1

2 z̄2τ 2(z̄)
] · ∂3 f

∂ z̄3
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11392 E. Ghandour, S. Gudmundsson

+ [ 1
24τ

2(z4) − 1
6 zτ 2(z3) + 1

4 z2τ 2(z2) − 1
6 z3τ 2(z)

] · ∂4 f

∂z4
+

+ [ 1
6τ

2(z3 z̄) − 1
6 z̄τ 2(z3) + 1

2 zz̄τ 2(z2) − 1
2 zτ 2(z2 z̄) + 1

2 z2τ 2(zz̄)

− 1
6 z3τ 2(z̄) − 1

2 z2 z̄τ 2(z)
] · ∂4 f

∂z3∂ z̄

+ [ 1
4τ

2(z2 z̄2) + 1
4 z̄2τ 2(z2) + 1

4 z2τ 2(z̄2) − 1
2 z̄τ 2(z2 z̄) − 1

2 zz̄2τ 2(z) + zz̄τ 2(zz̄)

− 1
2 z2 z̄τ 2(z̄) − 1

2 zτ 2(z̄2z)
] · ∂4 f

∂z2∂ z̄2

+ [ 1
6τ

2(zz̄3) − 1
6 zτ 2(z̄3) + 1

2 zz̄τ 2(z̄2) − 1
2 z̄τ 2(z̄2z) + 1

2 z̄2τ 2(zz̄)

− 1
6 z3τ 2(z) − 1

2 z̄2zτ 2(z̄)
] · ∂4 f

∂z∂ z̄3

+ [ 1
24τ

2(z̄4) − 1
6 z̄τ 2(z̄3) + 1

4 z̄2τ 2(z̄2) − 1
6 z̄3τ 2(z̄)

] · ∂4 f

∂ z̄4
.

Proof The statement follows directly by inserting the following identities, and their
conjugates, into the formula given in Lemma 3.4. For this see Lemma 2.2.

τ(z)2 + 2 · κ(z, τ (z)) + τ(κ(z, z)) = 1

2
τ 2(z2) − z τ 2(z),

τ (z)τ (z̄) + κ(z, τ (z̄)) + κ(z̄, τ (z)) + τ(κ(z, z̄))

= 1

2

(
τ 2(zz̄) − τ 2(z)z̄ − zτ 2(z̄)

)
,

2 τ(z)κ(z, z) + 2κ(z, κ(z, z)) = 1
6τ

2(z3) − 1
2 zτ 2(z2) + 1

2 z2τ 2(z),

2 κ(z, z̄)τ (z) + κ(z̄, κ(z, z)) + τ(z̄)κ(z, z) + 2 κ(z, κ(z, z̄))

= 1

4
τ 2(z2 z̄) − 1

4
z̄τ 2(z2) + 1

2 zz̄τ 2(z) − 1
2 zτ 2(zz̄) + 1

4
z2τ 2(z̄),

2κ(z, z)κ(z̄, z̄) + 4κ(z, z̄)2

= 1
4τ

2(z2 z̄2) + 1
4 z̄2τ 2(z2) + 1

4 z2τ 2(z̄2) − 1
2 z̄τ 2(z2 z̄)

− 1
2 zz̄2τ 2(z) + zz̄τ 2(zz̄) − 1

2 z2 z̄τ 2(z̄) − 1
2 zτ 2(z̄2z),

4 κ(z, z)κ(z, z̄)

= 1
6τ

2(z3 z̄) − 1
6 z̄τ 2(z3) + 1

2 zz̄τ 2(z2) − 1
2 zτ 2(z2 z̄)

+ 1
2 z2τ 2(zz̄) − 1

6 z3τ 2(z̄) − 1
2 z2 z̄τ 2(z),

κ(z, z)2 = 1
24τ

2(z4) − 1
6 zτ 2(z3) + 1

4 z2τ 2(z2) − 1
6 z3τ 2(z).


�
In their paper [4], the authors introduce the notion of generalised harmonic

morphisms between Riemannian manifolds. These are exactly the (2, 1)-harmonic
morphisms in the sense of our Definition 2.4. They give a characterisation of these
objects between Riemannian manifolds. In general this is rather complicated, see
Theorem 2.2 of [4]. In our context, of complex-valued functions, it is the following.
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(p, q)-Harmonic Morphisms 11393

Theorem 3.6 A complex-valued function z : (M, g) → C from a Riemannian mani-
fold is a (2, 1)-harmonic morphism if and only if

κ(z, z) = 0, τ 2(z) = 0 and τ 2(z2) = 0.

Proof The function z : (M, g) → C is a (2, 1)-harmonic morphism if and only if, for
any harmonic f : U → C defined on an open subset U of C containing the image
z(M) of z, the 2-tension field τ 2(φ) of the composition φ = f ◦ z vanishes. It follows
immediately from Lemma 3.1 that

κ(z, z) = κ(z̄, z̄) = 0.

Since the test function f is assumed to be harmonic we also have

τ( f ) = ∂2 f

∂z∂ z̄
= 0.

This means that the formulae for the 2-tension field τ 2(φ), presented in Lemmas 3.1
and 3.5, simplify considerably. The statement is then a direct consequence of the latter.


�
Remark 3.7 In the case when the Riemannian manifold (M, g) is a surface, i.e. of
dimension 2, then the horizontal conformality of φ : M → C and the Cauchy–
Riemann equations imply harmonicity. That means that in this case no proper (2, 1)-
harmonic morphisms do exist.

In their paper [4] the authors construct the following first known proper (2, 1)-
harmonic morphism. This was basically the only known example before this current
study.

Example 3.8 LetR4 be the standard 4-dimensional Euclidean space andU be the open
subset given by

U = {(x1, x2, x3, x4) ∈ R
4| x21 + x32 + x23 > 0}.

Then z : U → C satisfying z(x) =
√

x21 + x22 + x23 + i x4 is a proper (2, 1)-harmonic
morphism.

Furthermore they introduce several interesting general methods for constructing
solutions to our non-linear (2, 1)-problem fromEuclidean spaces. The following result
is a direct consequence of Corollary 3.1. of [4].

Proposition 3.9 Let (M, g) be a Riemannian manifold and z : M → C be a (2, 1)-
harmonic morphism. Further let f : U → C be a holomorphic function defined on
an open subset of C such that z(M) ⊂ U. Then the composition f ◦ z : M → C is a
(2, 1)-harmonic morphism.

123



11394 E. Ghandour, S. Gudmundsson

Proof It is a classical result that any such holomorphic function f is a (1, 1)-harmonic
morphism. The statement then is a direct concequence of our Lemma 2.5. 
�

The following is a special case of Lemma 2.5, noted already in [4].

Proposition 3.10 Let (M, g) and (N , h) be Riemannian manifolds, f : (M, g) →
(N , h) be a (2, 2)-harmonic morphism and φ : N → C be a (2, 1)-harmonic mor-
phism. Then the composition φ ◦ f : (M, g) → C is a (2, 1)-harmonic morphism.

Remark 3.11 The reader should note that the word ”proper” does not appear in Propo-
sition 3.10. As we will see later, there is a good reason for this.

From the above calculations of the 2-tension field τ 2(φ)we now have the following
result in the case when (p, q) = (2, 2). This should be compared with Theorem 4.1
of [8] and Theorem 3.3 of [9].

Theorem 3.12 A complex-valued function z : (M, g) → C from a Riemannian mani-
fold is a (2, 2)-harmonic morphism if and only if

κ(z, z) = 0, τ 2(z) = 0, τ 2(z2) = 0,

τ 2(zz̄) = 0, τ 2(z2 z̄) = 0.

Proof The function z : (M, g) → C is a (2, 2)-harmonic morphism if and only if, for
any 2-harmonic f : U → C defined on an open subset U of C containing the image
z(M) of z, the 2-tension field τ 2(φ) of the composition φ = f ◦ z vanishes. It follows
directly from Lemma 3.1 that

κ(z, z) = κ(z̄, z̄) = 0.

Since the function f is assumed to be 2-harmonic we also have

τ 2( f ) = ∂4 f

∂z2∂ z̄2
= 0.

This means that the formulae for the 2-tension field τ 2(φ), presented in Lemmas 3.1
and 3.5, simplify considerably. The statement is then an immediate consequence of
the latter. 
�

The next statement follows immediately from Proposition 3.2. of [4].

Proposition 3.13 Let (M, g), (N , h) be Riemannian manifolds, φ : M → C be a
(2, 1)-harmonic morphism and ψ : N → C be a (1, 1)-harmonic morphism. Then
the sum � = φ ⊕ ψ : M × N → C, with

� : (x, y) 
→ φ(x) + ψ(y),

is a (2, 1)-harmonic morphism on the Riemannian product M × N.
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(p, q)-Harmonic Morphisms 11395

4 New (2, 1)-Harmonic Morphisms

In this section we present several new proper complex-valued (2, 1)-harmonic mor-
phisms locally defined on the Euclidean Rn . Example 4.2 shows that such objects can
easily be constructed for any dimension n ≥ 4.

Definition 4.1 For a positive integer p ∈ Z
+ we denote by i p the inversion i p :

R
2p \ {0} → R

2p \ {0} of the unit sphere S2p−1 in R2p satisfying

i p(x) = x

|x |2 .

Let φ : U → C be a function defined locally on an open subset U of R2p \ {0}. Then
by its dual function φ∗ we shall mean the composition φ∗ = φ ◦ i p : U → C.

Example 4.2 Let Rn be the standard n-dimensional Euclidean space of dimension
n ≥ 4 and U be the open subset given by

U = {x ∈ R
n| x21 + x22 + x23 > 0}.

Then the complex-valued function φ : U → C defined by

φ(x) =
√

x21 + x22 + x23 +
n∑

k=4

bk · xk

is a proper (2, 1)-harmonic morphism if and only if the complex coefficients satisfy
the relation

1 + b24 + · · · + b2n = 0.

The same applies to the dual function φ∗ = φ ◦ i p in the case when n = 2p. It should
be noted that, when n = 4, the function φ reduces to Example 2 in [4].

Example 4.3 Let U be the open subset of the standard Euclidean space R4 with U =
{(x1, x2, x3, x4) ∈ R

4| x22 + x23 > 0} and define the function φ : U → C by

φ(x) = x2(1 − |x |2) + 2 x1x3
x22 + x23

+ i · x3(1 − |x |2) − 2 x1x2
x22 + x23

.

Then φ is a proper (2, 1)-harmonic morphism. Furthermore, its dual function φ∗ =
φ ◦ i2 is the proper (2, 1)-harmonic morphism given by

φ∗(x) = 4 x1 · x3 − i x2
x22 + x23

− φ(x).
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Example 4.4 The complex-valued function φ : R4 \ {0} → C satisfying

φ(x) = log
√

x21 + x22 + x23 + x24 + i · arccos
⎛

⎝ x1√
x21 + x22 + x23 + x24

⎞

⎠

is a proper (2, 1)-harmonic morphism. Its dual function φ∗ = φ ◦ i2 is the proper
(2, 1)-harmonic morphism satisfying

φ∗(x) = − log
√

x21 + x22 + x23 + x24 + i · arccos
⎛

⎝ x1√
x21 + x22 + x23 + x24

⎞

⎠ .

Example 4.5 For a positive r ∈ R
+, the well-known local (1, 1)-harmonic morphism

φr : U ⊂ R
4 → C, often called the outer-disc example, is given by

φr (x) =
−(x3 + ir) +

√
x21 + x22 + x23 − r2 + 2ir · x3

x1 − i x2
.

Then the dual map φ∗
r = φr ◦ i2 satisfies

φ∗
r (x) =

√
x21 + x22 + x23 + 2ir · x3 · |x |2 − r2 · |x |4 − (x3 + ir · |x |2)

x1 − i x2
.

This is a proper (2, 1)-harmonic morphism on R
4.

In the above Examples 4.2–4.5 we have seen that the constructed complex-valued
(2, 1)-harmonicmorphismsφ and their dualsφ∗ are all proper. The next three examples
show that this is not true in general, see Remark 3.11.

Example 4.6 For complex numbers a, b, c, d ∈ C with a2 + b2 + c2 + d2 = 0, let
φ : R4 \ {0} → C be the proper (2, 1)-harmonic morphism

φ(x) = a · x1 + b · x2 + c · x3 + d · x4
x21 + x22 + x23 + x24

.

Then its dual function φ∗ = φ ◦ i2 is the globally defined (1, 1)-harmonic morphism
satisfying

φ∗ : (x1, x2, x3, x4) 
→ a · x1 + b · x2 + c · x3 + d · x4.

By Lemma 2.5, this is a (2, 1)-harmonic morphism, but it is not proper.
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Example 4.7 For elements a, b, c, d ∈ C, define the complex-valued function φ : U ⊂
R
4 → C by

φ(x) = a · (x21 + x22 + x23 + x24 ) + b · (x3 + i x4)

x1 + i x2

+ c · (x21 + x22 + x23 + x24 ) + d · (x1 + i x2)

x3 + i x4
.

Then φ is a proper (2, 1)-harmonic morphism and its dual φ∗ = φ ◦ i2 is the holomor-
phic function

φ∗(x) = d · (x1 + i x2)2 + c · (x1 + i x2) + b · (x3 + i x4)2 + a · (x3 + i x4)

(x1 + i x2) · (x3 + i x4)
.

This is clearly a (2, 1)-harmonic morphism which is not proper.

Example 4.8 Define the complex-valued function φ : R4 \ {0} → C by

φ(x) = cos

(
x1 + i x2

x21 + x22 + x23 + x24

)
+ i · sin

(
x3 + i x4

x21 + x22 + x23 + x24

)
.

Then φ is a proper (2, 1)-harmonic morphism and its dual satisfying

φ∗(x) = φ ◦ i2(x) = cos(x1 + i x2) + i · sin(x3 + i x4)

is holomorphic and hence a (2, 1)-harmonic morphism, but not proper as it is a (1, 1)-
harmonic morphism.

5 A Generalised ConstructionMethod

Themain purpose of this section is to proveTheorem5.2which is awide generalisation
of Proposition 3.13.

Lemma 5.1 Let (M, g), (N , h) be Riemannian manifolds and φ : M → C, ψ : N →
C be two horizontally conformal functions. Let U be an open subset of C2 such that
φ(M)×ψ(N ) ⊂ U and f : U → C be a holomorphic function. Then the composition
� : M × N → C with �(x, y) = f (φ(x), ψ(y)) is horizontally conformal on the
Riemannian product space M × N.
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Proof Let BM and BN be local orthonormal frames for the tangent bundles T M and
T N , respectively. Then

κ(�,�) =
∑

X∈BM

(∂ f

∂φ
· X(φ)

)2 +
∑

Y∈BN

( ∂ f

∂ψ
· Y (ψ)

)2

= (∂ f

∂φ

)2 · κ(φ, φ) + ( ∂ f

∂ψ

)2 · κ(ψ,ψ)

= 0.


�
Theorem 5.2 Let U, V be open subsets of R

m and R
n, respectively. Let φ : U → C

be a (2, 1)-harmonic morphism and ψ : V → C be a (1, 1)-harmonic morphism.
Let W be an open subset of C

2 such that φ(U ) × ψ(V ) ⊂ W and f : W → C

be a holomorphic function. Then the composition � : U × V → C with �(x, y) =
f (φ(x), ψ(y)) is a (2, 1)-harmonic morphism.

Proof It follows from Lemma 5.1 that � is horizontally conformal i.e. κ(�,�) = 0.
For the tension field τ(�) of � we have

τ(�) =
m∑

k=1

∂2

∂x2k
( f (φ(x), ψ(y))) +

n∑

r=1

∂2

∂ y2r
( f (φ(x), ψ(y)))

=
m∑

k=1

∂

∂xk

(
∂ f

∂φ
· ∂φ

∂xk

)
+

n∑

r=1

∂

∂ yr

(
∂ f

∂ψ
· ∂ψ

∂ yr

)

=
m∑

k=1

(
∂2 f

∂φ2 ·
(

∂φ

∂xk

)2

+ ∂ f

∂φ
· ∂2φ

∂x2k

)
+

n∑

r=1

(
∂2 f

∂ψ2 ·
(

∂ψ

∂ yr

)2

+ ∂ f

∂ψ
· ∂2ψ

∂ y2r

)

= ∂2 f

∂φ2 · κ(φ, φ) + ∂ f

∂φ
· τ(φ) + ∂2 f

∂ψ2 · κ(ψ,ψ) + ∂ f

∂ψ
· τ(ψ)

= ∂ f

∂φ
· τ(φ).

With this at hand, we can now calculate the 2-tension field τ 2(�) of � as follows.

τ 2(�) = τ

(
∂ f

∂φ
· τ(φ)

)

= τ

(
∂ f

∂φ

)
· τ(φ) + 2 · κ

(
∂ f

∂φ
, τ(φ)

)
+ ∂ f

∂φ
· τ 2(φ)

= τ(φ) ·
( m∑

k=1

∂2

∂x2k

(
∂ f

∂φ

)
+

n∑

r=1

∂2

∂ y2r

(
∂ f

∂φ

))

+2 ·
( m∑

k=1

∂

∂xk

(
∂ f

∂φ

)
· ∂

∂xk
(τ (φ)) +

n∑

r=1

∂

∂ yr

(
∂ f

∂φ

)
· ∂

∂ yr
(τ (φ))

)
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= τ(φ) ·
( m∑

k=1

∂

∂xk

(
∂2 f

∂φ2 · ∂φ

∂xk

)
+

n∑

r=1

∂

∂ yr

(
∂2 f

∂ψ∂φ
· ∂ψ

∂ yr

))

+ 2 ·
m∑

k=1

∂2 f

∂φ2 · ∂φ

∂xk
· ∂

∂xk
(τ (φ))

= τ(φ) ·
m∑

k=1

(∂3 f

∂φ3 · ( ∂φ

∂xk

)2 + ∂2 f

∂φ2 · ∂2φ

∂x2k

)

+τ(φ) ·
n∑

r=1

( ∂3 f

∂ψ2∂φ
· ( ∂ψ

∂ yr

)2 + ∂2 f

∂ψ∂φ
· ∂2ψ

∂ y2k

)

+2 · ∂2 f

∂φ2 · κ(φ, τ (φ))

= τ(φ) ·
(∂3 f

∂φ3 · κ(φ, φ) + ∂3 f

∂ψ2∂φ
· κ(ψ,ψ) + ∂2 f

∂ψ∂φ
· τ(ψ)

)

+ ∂2 f

∂φ2 · (2 · κ(φ, τ (φ)) + τ(φ)2)

= 0.

For the tension field τ(�2) of �2 we have

τ(�2) = 2 · � · τ(�) + 2 · κ(�,�) = 2 · � · τ(�).

Hence the bi-tension field τ 2(�2) of �2 satisfies

τ 2(�2) = 2 · τ(� · τ(�))

= 2 · (τ (�)2 + 2 · κ(�, τ(�)) + � · τ 2(�))

= 2 ·
(∂ f

∂φ

)2 · τ(φ)2 + 4 · κ(�,
∂�

∂φ
· τ(φ))

= 2 ·
(∂ f

∂φ

)2 · τ(φ)2 + 4 ·
m∑

k=1

∂�

∂xk
· ∂

∂xk

(∂ f

∂φ
· τ(φ)

)

+ 4 ·
n∑

r=1

∂�

∂ yr
· ∂

∂ yr

(∂ f

∂φ
· τ(φ)

)

= 2 ·
(∂ f

∂φ

)2 · τ(φ)2

+ 4 ·
m∑

k=1

∂φ

∂xk
· ∂ f

∂φ
·
(∂2 f

∂φ2 · ∂φ

∂xk
· τ(φ) + ∂ f

∂φ
· ∂

∂xk
(τ (φ))

)

+ 4 ·
n∑

r=1

∂ψ

∂ yr
· ∂ f

∂ψ
·
( ∂2 f

∂ψ∂φ
· ∂ψ

∂ yr
· τ(φ) + ∂ f

∂φ
· ∂

∂ yr
(τ (φ))

)
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= 2 ·
(∂ f

∂φ

)2 · τ(φ)2 + 4 · ∂ f

∂φ
· ∂2 f

∂φ2 · τ(φ) · κ(φ, φ)

+ 4 ·
(∂ f

∂φ

)2 · κ(φ, τ (φ)) + 4 · ∂ f

∂ψ
· ∂2 f

∂ψ∂φ
· τ(φ) · κ(ψ,ψ)

= 2 ·
(∂ f

∂φ

)2
(τ (φ)2 + 2 · κ(φ, τ (φ)))

= 0.

The conclusion follows from Theorem 3.6. 
�
Example 5.3 We have already seen that the complex-valued function φ : R4\{0} → C

satisfying

φ(x) = log
√

x21 + x22 + x23 + x24 + i · arccos
⎛

⎝ x1√
x21 + x22 + x23 + x24

⎞

⎠

is a proper (2, 1)-harmonic morphism. It is clear that the holomorphic function ψ :
R
4 → C satisfying

ψ(x) = log(x5 + i x6) · sin(x7 + i x8)

is a (1, 1) harmonic morphism. Calculations confirm that � : U ⊂ R
8 → C given by

� = f (φ,ψ) = φ · ψ is a proper (2, 1)-harmonic morphism.

6 Complex-Valued (3,q)-Harmonic Morphisms

In this section we present a formula for the 3-tension field τ 3(φ), of the composition
φ = f ◦ z. It turns out that, just as in the case of (2, q), horizontal conformality,
i.e. κ(z, z) = 0, is a necessary condition. Elementary but rather tedious calculations
provide the following useful result.

Lemma 6.1 Let z : (M, g) → C be a horizontally conformal complex-valued function
from a Riemannian manifold and f : U → C be defined on an open subset U of C
containing the image z(M). Then the 3-tension field τ 3(φ) of the composition φ = f ◦z
satisfies

τ 3(φ) = τ 3(z) · ∂ f

∂z
+ τ 3(z̄) · ∂ f

∂ z̄

+
[
1
2τ

3(z2) − zτ 3(z)
]

· ∂2 f

∂z2
+

[
τ 3(zz̄) − z̄τ 3(z) − zτ 3(z̄)

]
· ∂2 f

∂z∂ z̄

+
[
1
2τ

3(z̄2) − z̄τ 3(z̄)
]

· ∂2 f

∂ z̄2

+
[
1
6τ

3(z3) − 1
2 zτ 3(z2) + 1

2 z2τ 3(z)
]

· ∂3 f

∂z3
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+
[
1
2τ

3(z2 z̄) − 1
2 z̄τ 3(z2) − zτ 3(zz̄) + zz̄τ 3(z) + 1

2 z2τ 3(z̄)
]

· ∂3 f

∂z2∂ z̄

+
[
1
2τ

3(zz̄2) − z̄τ 3(zz̄) + 1
2 z̄2τ 3(z) − 1

2 zτ 3(z̄2) + zz̄τ 3(z̄)
]

· ∂3 f

∂z∂ z̄2

+
[
1
6τ

3(z̄3) − 1
2 z̄τ 3(z̄2) + 1

2 z̄2τ 3(z̄)
]

· ∂3 f

∂ z̄3

+
[
1
6τ

3(z3 z̄) − 1
6 z̄τ 3(z3) − 1

2 zτ 3(z2 z̄) + 1
2 zz̄τ 3(z2)

+ 1
2 z2τ 3(zz̄) − 1

2 z2 z̄τ 3(z) − 1
6 z3τ 3(z̄)

]
· ∂4 f

∂z3∂ z̄

+
[
1
4τ

3(z2 z̄2) − 1
2 z̄τ 3(z2 z̄) + 1

4 z̄2τ 3(z2) − 1
2 zτ 3(z̄2z) + zz̄τ 3(zz̄)

− 1
2 zz̄2τ 3(z) + 1

4 z2τ 3(z̄2) − 1
2 z2 z̄τ 3(z̄)

]
· ∂4 f

∂z2∂ z̄2

+
[
1
6τ

3(zz̄3) − 1
2 z̄τ 3(z̄2z) + 1

2 z̄2τ 3(zz̄) − 1
6 z̄3τ 3(z) − 1

6 zτ 3(z̄3) + 1
2 zz̄τ 3(z̄2)

− 1
2 zz̄2τ 3(z̄)

]
· ∂4 f

∂z∂ z̄3

+
[

1
12τ

3(z3 z̄2) − 1
6 z̄τ 3(z3 z̄) + 1

12 z̄2τ 3(z3) − 1
4 zτ 3(z2 z̄2) + 1

2 zz̄τ 3(z2 z̄)

− 1
4 zz̄2τ 3(z2) + 1

4 z2τ 3(zz̄2) − 1
2 z2 z̄τ 3(zz̄) + 1

4 z2 z̄2τ 3(z) − 1
12 z3τ 3(z̄2)

+ 1
6 z3 z̄τ 3(z̄)

]
· ∂5 f

∂z3∂ z̄2

+
[

1
12τ

3(z2 z̄3) − 1
4 z̄τ 3(z2 z̄2) + 1

4 z̄2τ 3(z2 z̄)

− 1
12 z̄3τ 3(z2) − 1

6 zτ 3(zz̄3) + 1
2 zz̄τ 3(zz̄2) − 1

2 zz̄2τ 3(zz̄) + 1
6 zz̄3τ 3(z)

+ 1
12 z2τ 3(z̄3) − 1

4 z2 z̄τ 3(z̄2) + 1
4 z2 z̄2τ 3(z̄)

]
· ∂5 f

∂z2∂ z̄3

+ 8 κ(z, z̄)3 · ∂6 f

∂z3∂ z̄3
.

Theorem 6.2 A complex-valued function z : (M, g) → C from a Riemannian mani-
fold is a (3, 1)-harmonic morphism if and only if

κ(z, z) = 0,

τ 3(z) = 0, τ 3(z2) = 0, τ 3(z3) = 0.

Proof The method used here is exactly the same as that we have employed in the proof
of Theorem 3.6 employing the fact that f is harmonic i.e.

τ( f ) = ∂2 f

∂z∂ z̄
= 0.


�
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Table 1 φ : U ⊂ R
6 \ {0} → C

φ(x) (p, q)

φ11(x) = (x1 + i x2) + (x3 + i x4) + (x5 + i x6) (1, 1)

φ12(x) =
√

x21 + x22 + x23 + i x4 + (x5 + i x6) (2, 1)

φ13(x) =
√

x21 + x22 + x23 + x24 + x25 + i x6 (3, 1)

φ∗
11(x) = φ11 ◦ i3(x) (3, 1)

φ∗
12(x) = φ12 ◦ i3(x) (3, 1)

φ∗
13(x) = φ13 ◦ i3(x) (3, 1)

Table 2 φ : U ⊂ R
6 \ {0} → C

φ(x) (p, q)

φ21(x) = log
√

x21 + x22 + i arccos( x1√
x21+x22

) (1, 1)

φ22(x) = log
√

x21 + · · · + x24 + i arccos( x1√
x21+···+x24

) (2, 1)

φ23(x) = log
√

x21 + · · · + x26 + i arccos( x1√
x21+···+x26

) (3, 1)

φ∗
21(x) = φ21 ◦ i3(x) (3, 1)

φ∗
22(x) = φ22 ◦ i3(x) (3, 1)

φ∗
23(x) = φ23 ◦ i3(x) (3, 1)

Example 6.3 Let φ : R6 \ {0} → C be the (1, 1)-harmonic morphism given by

φ(x) = (x1 + i x2)(x3 + i x4) + sin(x5 + i x6).

Then calculations show that its dual map φ∗ = φ ◦ i3 : R6 \ {0} → C is a proper
(3, 1)-harmonic morphism.

In the Tables 1 and 2 we give several new examples of (3, 1)-harmonic morphisms
defined on the appropriate open subsets U of R6. They are proper if and only if the
stated p is 3 and not proper otherwise.

Theorem 6.4 A complex-valued function z : (M, g) → C from a Riemannian mani-
fold is a (3, 2)-harmonic morphism if and only if

κ(z, z) = 0,

τ 3(z) = 0, τ 3(z2) = 0, τ 3(z3) = 0,

τ 3(zz̄) = 0, τ 3(z2 z̄) = 0, τ 3(z3 z̄) = 0.
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Proof The statement follows easily from the fact that κ(z, z) = κ(z̄, z̄) = 0,
Lemma 6.1 and

τ 2( f ) = ∂4 f

∂z2∂ z̄2
= 0,

since f is assumed to be a general 2-harmonic function. 
�
Our next result gives a characterisation in the complex-valued (3, 3)-case. This

recovers a particular case of Corollary 6.2 of the interesting work [10] of Maeta.

Theorem 6.5 A complex-valued function z : (M, g) → C from a Riemannian mani-
fold is a (3, 3)-harmonic morphism if and only if

κ(z, z) = 0,

τ 3(z) = 0, τ 3(z2) = 0, τ 3(z3) = 0,

τ 3(zz̄) = 0, τ 3(z2 z̄) = 0, τ 3(z3 z̄) = 0,

τ 3(z2 z̄2) = 0, τ 3(z3 z̄2) = 0.

Proof Here we use exactly the same method as above, utilising Lemma 6.1 and the
fact that in this case we have

τ 3( f ) = ∂6 f

∂z3∂ z̄3
= 0.


�

7 Complex-Valued (p,q)-Harmonic Morphisms

In this section we investigate the p-tension field τ p(φ) of the composition φ = f ◦ z
and derive several consequences from the condition τ p(φ) = 0 i.e. of φ being p-
harmonic. It turns out that τ p(φ) takes the following form

τ p(φ) =
∑

1≤ j+k≤2p

cp
jk · ∂ j+k f

∂z j∂ z̄k
,

where the coefficients cp
jk : U → C are differentiable functions involving various

tension fields and conformality operators of the functions z and z̄ and independent of
f .
We have already presented the tension fields τ(φ), τ 2(φ) and τ 3(φ) of φ. When

calculating the 4-tension field τ 4(φ) a clear pattern comes to light. These calculations
are far too extensive to be presented here. For the p-tension field τ p(φ) we have the
following result.

Lemma 7.1 Let z : (M, g) → C be a complex-valued function from a Riemannian
manifold and f : U → C be defined on an open subset U of C containing the image
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z(M). Then for p ≥ 2 the p-tension field τ p(φ) of the composition φ = f ◦ z is of
the form

τ p(φ) =
∑

1≤ j+k≤2p

cp
jk · ∂ j+k f

∂z j∂ z̄k
.

The coefficients cp
jk : U → C are differentiable functions, independent of f , involving

various tension fields and conformality operators of the functions z and z̄. Furthermore,
they are symmetric with respect to complex conjugation i.e. cp

jk = c̄ p
k j and

c10 = τ p(z), c01 = τ p(z̄), c2p,0 = κ(z, z)p, c0,2p = κ(z̄, z̄)p.

This leads to the following general result which should be compared with Theo-
rems 3.2, 3.6, 3.12, 6.2, 6.4 and 6.5 above.

Theorem 7.2 A complex-valued function z : (M, g) → C from a Riemannian mani-
fold is a (p, q)-harmonic morphism if and only if

κ(z, z) = 0,

τ p(z) = 0, τ p(z2) = 0, · · · , τ p(z p) = 0,

τ p(zz̄) = 0, τ p(z2 z̄) = 0, · · · , τ p(z p z̄) = 0,

τ p(z2 z̄2) = 0, τ p(z3 z̄2) = 0, · · · , τ p(z p z̄2) = 0,
...

τ p(zq−1 z̄q−1) = 0, τ p(zq z̄q−1) = 0, · · · , τ p(z p z̄q−1) = 0.

Proof The function z : (M, g) → C is a (p, q)-harmonic morphism if and only if, for
any q-harmonic function f : U → C defined on an open subset U of C containing
the image z(M) of z, the p-tension field τ p(φ) of the composition φ = f ◦ z vanishes.
Since the function f is assumed to be q-harmonic we know that

τ q( f ) = ∂2q f

∂zq∂ z̄q
= 0.

According to Lemma 7.1 we also have

τ p(z) = τ p(z̄) = 0 and κ(z, z) = κ(z̄, z̄) = 0.

If we now plug these indentities into the expression for τ p(φ) this simplifies consid-
erably to

τ p(φ) =
∑

0≤ j,k≤p
2≤ j+k≤2p

cp
jk · ∂ j+k f

∂z j∂ z̄k
,

123



(p, q)-Harmonic Morphisms 11405

Table 3 φ : U ⊂ R
8 \ {0} → C

φ(x) (p, q)

φ31(x) = (x1 + i x2) + (x3 + i x4) + (x5 + i x6) + (x7 + i x8) (1, 1)

φ32(x) =
√

x21 + x22 + x23 + i x4 + (x5 + i x6) + (x7 + i x8) (2, 1)

φ33(x) =
√

x21 + x22 + x23 + x24 + x25 + i x6 + (x7 + i x8) (3, 1)

φ34(x) =
√

x21 + x22 + x23 + x24 + x25 + x26 + x27 + i x8) (4, 1)

φ∗
31(x) = φ31 ◦ i4(x) (4, 1)

φ∗
32(x) = φ32 ◦ i4(x) (4, 1)

φ∗
33(x) = φ33 ◦ i4(x) (4, 1)

φ∗
34(x) = φ34 ◦ i4(x) (4, 1)

where cp
pp = 2p · κ(z, z̄)p. Hard work then shows that the remaining coefficients

satisfy

cp
jk =

∑

0≤r≤ j
0≤s≤k

(−1) j−r+k−s 1

j !
1

k!
(

j

r

)(
k

s

)
z j−r z̄k−sτ p(zr z̄s).

The rest follows by the same method as applied in the proof of Theorem 3.12. 
�
Remark 7.3 In the paper [10], Maeta presents his interesting Conjecture 7.6. In our
language his statement is: ”A (p, p)-harmonic morphism is characterized as a special
horizontally weakly conformal 2p-harmonic map.”

In our Theorem 7.2 we study the special case of complex-valued (p, p)-harmonic
morphisms. We obtain a characterisation of these objects and show that they are both
horizontally conformal and 2p-harmonic, as Maeta suggests. But additionally, they
must satisfy several rather non-trivial conditions. They can therefore rightly be said
to be ”special horizontally weakly conformal 2p-harmonic maps” (Table 3).

We conclude this section by presenting further examples. They suggest that one
should be able to produce (p, 1)-harmonicmorphisms for any positive integer p ∈ Z

+.
The question marks ’?’ in Table 4 tell us that the calculations needed, in those cases,
were too heavy for the tools available to us.

Remark 7.4 In the process of obtaining Lemma 7.1, it is easily seen that every (p, q)-
harmonic morphism is constant in the cases when p < q. This is due to the fact that
in these cases we have

cp
2p,0 = κ(z, z) = 0 and cp

pp = κ(z, z̄) = 0.

The reader should compare this with Proposition 3.3.
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Table 4 φ : U ⊂ R
8 \ {0} → C

φ(x) (p, q)

φ41(x) = log
√

x21 + x22 + i arccos( x1√
x21+x22

) (1, 1)

φ42(x) = log
√

x21 + · · · + x24 + i arccos( x1√
x21+···+x24

) (2, 1)

φ43(x) = log
√

x21 + · · · + x26 + i arccos( x1√
x21+···+x26

) (3, 1)

φ44(x) = log
√

x21 + · · · + x28 + i arccos( x1√
x21+···+x28

) (4, 1)

φ∗
41(x) = φ41 ◦ i4(x) (4, 1)

φ∗
42(x) = φ42 ◦ i4(x) ?

φ∗
43(x) = φ43 ◦ i4(x) ?

φ∗
44(x) = φ44 ◦ i4(x) ?

Example 7.5 Let φ : R8 → C be the holomorphic (1, 1)-harmonic morphism defined
by

φ(x) = (x1 + i x2 + x3 + i x4) + sin(x5 + i x6 + x7 + i x8).

Then its dual map φ∗ = φ ◦ i4 : R8 \ {0} → C is a proper (4, 1)-harmonic morphism.

8 The Inversion About the Unit Sphere S2p−1 inRRR2p

In this section we investigate the inversion i p : R2p \ {0} → R
2p \ {0} about the unit

sphere S2p−1 in R2p.

Theorem 8.1 Let i p : R2p \ {0} → R
2p \ {0} be the inversion about the unit sphere

S2p−1 in R
2p given by

i p = (F1, . . . , F2p) : x 
→ (x1, . . . , x2p)

|x |2 .

Then the map i p is horizontally conformal and p-harmonic.

Proof The fact that i p is conformal is classic, but we prove it here for the reader’s
convenience. For 1 ≤ j, k ≤ 2p the conformality operator κ satisfies

κ(Fj , Fk) =
2p∑

s=1

∂ Fj

∂xs
· ∂ Fk

∂xs

=
2p∑

s=1

(δ js |x |2 − 2 x j xs)

|x |4 · (δks |x |2 − 2 xk xs)

|x |4
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=
2p∑

s=1

(δ jsδks |x |4 − 2 δ js xk xs |x |2 − 2 δks x j xs |x |2 + 4x j xk x2s )

|x |8

= δ jk |x |4 − 2|x |2x j xk − 2|x |2xk x j + 4x j xk |x |2
|x |8

= δ jk

|x |4 .

The fact that the map i p is proper p-harmonic is a direct consequence of the fol-
lowing repeated application of Lemma 8.2.

τ(i p) = 2(2 − 2p)

|x |2 · i p,

τ 2(i p) = 2(2 − 2p)4(4 − 2p)

|x |4 · i p

...

τ p(i p) = 2(2 − 2p)4(4 − 2p) · · · 2p(2p − 2p)

|x |2p
· i p = 0.


�

Lemma 8.2 For a positive integer n ∈ Z
+ let the map φ : Rp \ {0} → R

p \ {0} be
given by

φ = (φ1, . . . , φp) : x 
→ (x1, . . . , x p)

|x |n .

Then the tension field τ(φ) of φ satisfies

τ(φ) = n(n − p)

|x |n+2 · φ.

Proof First we notice that

∂

∂x j
|x |n = n x j |x |n−2.

Applying this several times we then get

∂φk

∂x j
= δ jk |x |n − nxk x j |x |n−2

|x |2n
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and

∂2φk

∂x2j
= 1

|x |2n+2

(δ jknx j |x |n−2 − δ jknx j |x |n−2

|x |2n+2

− nxk |x |n−2 + n(n − 2)xk x2j |x |n−4

|x |2n+2

− 2n(δ jk |x |n − nxk x j |x |n−2|x |2n)x j

|x |2n+2

)
.

This means that for the tension field τ(φk) we yield

τ(φk)

= −npxk |x |3n−2 − n(n − 2)xk |x |3n−2 − 2nxk |x |3n−2 + 2n2xk |x |3n−2

|x |4n

= (2n2 − 2n − n(n − 2) − np)
xk

|x |n+2

= n(n − p)
xk

|x |n+2 .


�

9 Two Conjectures

Weconclude thisworkwith twoconjectures that have come to ourmindswhileworking
on this project.

Conjecture 9.1 Let p ∈ Z
+ be a positive integer and i p = (F1, F2, . . . , F2p) : R2p \

{0} → R
2p \ {0} be the inversion about the unit sphere S2p−1 in R

2p. Then z :
R
2p \ {0} → C with

z = a1F1 + a2F2 · · · + a2p F2p

is a complex-valued (p, p)-harmonic morphism for any element a ∈ C
2p.

Our rather extensive computer calculations show that this Conjectu 9.1 is true in the
cases when p = 1, 2, 3, 4, but the statement seems to be difficult to prove in general.

No proper (2, 1)-harmonic morphism is known to exist from the three dimensional
Euclidean space R3, not even locally. For this we have the following.

Conjecture 9.2 Let p ≥ 2 and φ : U → C be a complex-valued (p, 1)-harmonic
morphism defined locally on the standard Euclidean space R2p−1. Then φ is a (1, 1)-
harmonic morphism i.e. τ(φ) = 0.
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