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Abstract
For Riemannian submersions with fibers of basic mean curvature, we compare the
spectrum of the total space with the spectrum of a Schrödinger operator on the base
manifold. Exploiting this concept, we study submersions arising from actions of Lie
groups. In this context, we extend the state-of-the-art results on the bottom of the
spectrum under Riemannian coverings. As an application, we compute the bottom of
the spectrum and the Cheeger constant of connected, amenable Lie groups.
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1 Introduction

The study of the spectrum of the Laplacian on a Riemannian manifold has attracted
much attention over the last years. In order to comprehend its relations with the geom-
etry of the underlying manifold, it is reasonable to investigate its behavior under maps
between Riemannian manifolds that respect the geometry of the manifolds to some
extent. In this paper, we study the behavior of the spectrum under Riemannian sub-
mersions.

The notion of Riemannian submersion was introduced in the 1960s as a tool to
express the geometry of a manifold in terms of the geometry of simpler components,
namely, the base space and the fibers. Of course, by geometry of the fibers, we mean
both their intrinsic and their extrinsic geometry as submanifolds of the total space.
Bearing this in mind, it is natural to describe the spectrum of the total space in terms
of the geometry and the spectrum of the base space and the fibers.
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To set the stage, let p : M2 → M1 be a Riemannian submersion and denote by
Fx := p−1(x) the fiber over x ∈ M1. The spectrum of (the Laplacian on) M2 has been
studied in the case where M2 is closed (that is, compact and without boundary) and the
submersion has totally geodesic, or minimal fibers, or fibers of basic mean curvature
(cf. for example the survey [6]). However, the situation is quite more complicated and
yet unclear if M2 is not closed.

Recently, in [23], extending the result of [10], we established a lower bound for the
bottom of the spectrum λ0(M2) of M2, if the mean curvature of the fibers is bounded
in a certain way.More precisely, according to [23, Theorem 1.1], if the (unnormalized)
mean curvature of the fibers is bounded by ‖H‖ ≤ C ≤ 2

√
λ0(M1), then the bottom

of the spectrum of M2 satisfies

λ0(M2) ≥ (
√

λ0(M1) − C/2)2 + inf
x∈M1

λ0(Fx ).

Moreover, if the equality holds and λ0(M1) /∈ σess(M1) (that is, λ0(M1) is an isolated
point of the spectrum of the Laplacian on M1), then λ0(Fx ) is equal to its infimum
for almost any x ∈ M1. Recall that, in general, λ0(Fx ) is only upper semi-continuous
with respect to x ∈ M1 (cf. [23, Lemma 2.9]).

In the second part of [23], following [4], we studied Riemannian submersions
with closed fibers. In this context, we introduced a Schrödinger operator on M1, with
potential determined by the volume of the fibers, and compared its spectrum with
the spectrum of M2. It should be noticed that if the submersion has fibers of infinite
volume, then we are not able to define that operator, at least in the way we did in [23].

In this paper, motivated by the aforementioned results, we introduce a Schrödinger
operator on the base space of a Riemannian submersion with fibers of basic mean
curvature (see Sect. 2.1) and compare its spectrum with the spectrum of the total
space. To be more specific, let p : M2 → M1 be a Riemannian submersion with fibers
of basic mean curvature, and consider the Schrödinger operator

S = � + 1

4
‖p∗H‖2 − 1

2
div p∗H (1)

on M1, where � is the (non-negative) Laplacian on M1. It is worth to point out that
S is non-negative, that is, λ0(S) ≥ 0. Furthermore, it is evident that S coincides with
the Laplacian, if the submersion has minimal fibers. Our first result relates the bottom
of the spectrum of this operator with the bottom of the spectrum of M2.

Theorem 1.1 Let p : M2 → M1 be a Riemannian submersion with fibers of basic
mean curvature, and consider the Schrödinger operator S as above. Then

λ0(M2) ≥ λ0(S) + inf
x∈M1

λ0(Fx ).

If, in addition, the equality holds and λ0(S) /∈ σess(S), then λ0(Fx ) is almost every-
where equal to its infimum.
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Spectral Estimates for Riemannian Submersions 9953

It should be emphasized that no assumptions on the geometry or the topology of
the manifolds are required in this theorem. In particular, the manifolds do not have
to be complete. This, together with the decomposition principle, allows us to derive
a similar inequality involving the bottoms of the essential spectra, if the fibers are
closed.

It is worth tomention that in some cases, λ0(S) can be estimated in terms of λ0(M1).
For instance, if themean curvature of the fibers is bounded by ‖H‖ ≤ C ≤ 2

√
λ0(M1),

then the bottoms of the spectra satisfy

λ0(S) ≥ (
√

λ0(M1) − C/2)2.

Thus, Theorem 1.1 provides a sharper lower bound for λ0(M2) than [23, Theorem
1.1] in the case where both of them are applicable.

It is noteworthy that if the submersion has closed fibers, then the operator S defined
in (1) coincideswith the Schrödinger operator introduced in [23], and there is a remark-
able relation with the work of Bordoni [5] on Riemannian submersions with fibers of
basic mean curvature. Given such a submersion p : M2 → M1 with M2 closed, Bor-
doni considered the restrictions �c and �0 of the Laplacian acting on lifted functions
and on functions with zero average on any fiber, respectively, and showed in [5, The-
orem 1.6] that the spectrum is written as σ(M2) = σ(�c)∪σ(�0). In this setting, the
spectrum of the operator S coincides with the spectrum of �c. It should be observed
that expressing the latter one as the spectrum of an operator on M1 allows us to relate
it more easily to the spectrum of M1. For Riemannian submersions with closed fibers,
we obtain the following consequence of Theorem 1.1 (compare with [23, Theorem
1.2]), where we denote by λess0 the bottom of the essential spectrum of an operator.

Corollary 1.2 If p : M2 → M1 is a Riemannian submersion with closed fibers of basic
mean curvature, then λ0(M2) = λ0(S) and λess0 (M2) = λess0 (S). In particular, M2 has
discrete spectrum if and only if the spectrum of S is discrete.

This corollary generalizes [4, Theorem 1(ii)], which asserts that if p : M2 → M1
is a Riemannian submersion with closed and minimal fibers, then M1 has discrete
spectrum if and only if M2 has discrete spectrum. This equivalence has been extended
in [23, Corollary 1.4] under the weaker assumption that the fibers are closed and of
bounded mean curvature. Corollary 1.2 characterizes the discreteness of the spectrum
of M2 in terms of S instead of the Laplacian, which, nonetheless, is very natural. More
precisely, for warped products of the formM×ψ F with F closed, this characterization
coincides with [1, Theorem 3.3] of Baider.

If, in addition, the manifolds involved in Corollary 1.2 are complete, then we know
from [23, Theorem1.2] that the spectra and the essential spectra satisfy σ(S) ⊂ σ(M2)

and σess(S) ⊂ σess(M2). This, together with Theorem 1.1 and Corollary 1.2, shows
that it is very reasonable to compare the spectrum of S with the spectrum of M2, if the
submersion has fibers of basic mean curvature.

In the second part of the paper, we study Riemannian principal bundles. To be more
specific, letG be a possibly discrete Lie group acting smoothly, freely and properly on
a Riemannian manifold M2 via isometries, where dimG < dim M2. Such an action
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induces on M1 = M2/G the structure of Riemannian manifold. If G is non-discrete,
the projection p : M2 → M1 is a Riemannian submersion with fibers of basic mean
curvature. We then say that p is a Riemannian submersion arising from the action of
G. The behavior of the spectrum under such submersions has been studied for instance
in [13].

In the case whereG is a discrete group, its action gives rise to a normal Riemannian
covering. In this context, there are various results establishing relations between prop-
erties of the deck transformation group and the behavior of the spectrum. To be more
precise, let q : M2 → M1 be a normal Riemannian covering with deck transformation
group �. Then the bottoms of the spectra satisfy λ0(M2) ≥ λ0(M1) (cf. for instance
[2] and the references therein). Brooks was the first one to investigate when the equal-
ity holds. In [8], he showed that if M1 is closed, then � is amenable if and only if
λ0(M2) = 0. It is apparent that in this setting, we also have that λ0(M1) = 0. In [2],
we proved that if � is amenable, then λ0(M2) = λ0(M1), without any assumptions on
the topology or the geometry ofM1. It was established in [22] that if, in addition, M1 is
complete, then σ(M1) ⊂ σ(M2). Conversely, according to [21], if λ0(M2) = λ0(M1)

and λ0(M1) /∈ σess(M1), then � is amenable.
If G is non-discrete, then from the above discussion, it makes sense to compare

the spectrum of the Laplacian on the total space with the spectrum of the Schrödinger
operator S on the base manifold, defined in (1). Theorem 1.1 implies that λ0(M2) ≥
λ0(S). In the following theorem, we extend the aforementioned results to Riemannian
submersions arising from Lie group actions, where we denote by G0 the connected
component of the identity element of G.

Theorem 1.3 Let p : M2 → M1 be a Riemannian submersion arising from the action
of a Lie group G. Then

(i) If G is amenable and G0 is unimodular, then λ0(M2) = λ0(S).
(ii) If, in addition, M1 is complete, then σ(S) ⊂ σ(M2).
(iii) Conversely, if λ0(M2) = λ0(S) and λ0(S) /∈ σess(S), then G is amenable and G0

is unimodular.

Recall that there exist connected Lie groups that are amenable but not unimodular
(because any solvable group is amenable), and connected Lie groups that are unimod-
ular but not amenable (since any connected, semisimple Lie group is unimodular).

It is notable that if G is compact, then Corollary 1.2 compares the spectra and the
essential spectra of the operators. Even though Theorem 1.3 is formulated in terms of
spectra, it also provides information about the essential spectra. This follows from the
fact that if G is non-compact, then σ(M2) = σess(M2) (cf. for example [22, Theorem
5.2]).

As in the context of Riemannian coverings, it is plausible to wonder if the assump-
tion λ0(S) /∈ σess(S) can be weakened in Theorem 1.3(iii). We will construct a wide
class of examples demonstrating that this assumption is essential. Namely, let M be
any Riemannian manifold with λ0(M) ∈ σess(M). We will show that there exists
a Riemannian submersion p : M2 → M1 := M with minimal fibers, arising from
the action of a connected, non-unimodular Lie group G, such that λ0(M2) = λ0(M1).
Since the submersion has minimal fibers, it is clear that S coincides with the Laplacian
on M1.
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Spectral Estimates for Riemannian Submersions 9955

In the case where the base manifold is closed, we derive another analog of Brooks’
result, which is slightly different. This is because in Theorem 1.3, we investigate the
validity of λ0(M2) = λ0(S), while the following corollary characterizes the stronger
property λ0(M2) = 0.

Corollary 1.4 Let p : M2 → M1 be a Riemannian submersion arising from the action
of a Lie group G, where M1 is closed. Then G is unimodular and amenable if and
only if λ0(M2) = 0.

Finally, exploiting Theorems 1.1 and 1.3 , we study quotients of Lie groups by
normal subgroups. In this setting,weobtain some relations between themean curvature
of the subgroup and the bottom of the spectrum of the group, the subgroup, and the
quotient.

Theorem 1.5 Let G be a connected Lie group endowedwith a left-invariant metric and
N be a closed (as a subset), connected, normal subgroup of G with mean curvature
H. Then

λ0(G) ≥ λ0(G/N ) + λ0(N ) − 1

4
‖H‖2 + 1

2
tr(ad H).

Moreover, N is unimodular and amenable if and only if

λ0(G) = λ0(G/N ) − 1

4
‖H‖2 + 1

2
tr(ad H).

As an application of this theorem, we compute the bottom of the spectrum and the
Cheeger constant of connected, amenable Lie groups. This extends the result of [20]
in various ways.

Corollary 1.6 Let G be a connected, amenable Lie group endowed with a left-invariant
metric. Then the bottom of its spectrum and its Cheeger constant are given by

λ0(G) = 1

4
h(G)2 = 1

4
max

X∈g,‖X‖=1
(tr(ad X))2.

If G is not unimodular, then the maximum is achieved by the unit vector in the direction
of the mean curvature (in G) of the commutator subgroup [S, S] of the radical S of G.

The paper is organized as follows: In Sect. 2, we discuss some basic properties
of Schrödinger operators, Riemannian submersions and Lie groups. In particular, we
provide a spectral theoretic characterization for connected, amenable, and unimodular
Lie groups, which is well known for simply connected Lie groups. In Sect. 3, we study
Riemannian submersions with fibers of basic mean curvature and prove Theorem 1.1
and Corollary 1.2. In Sect. 4, we focus on submersions arising from Lie group actions
and establish Theorem1.3 andCorollary 1.4. In Sect. 5, we discuss some consequences
of our results to Lie groups and show Theorem 1.5 and Corollary 1.6.
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2 Preliminaries

Throughout this paper, manifolds are assumed to be connected and without boundary,
unless otherwise stated, except for Lie groups. Consider a possibly non-connected
Riemannian manifold M . A Schrödinger operator on M is an operator of the form
S = � + V , where � is the Laplacian on M and V ∈ C∞(M), such that there exists
c ∈ R satisfying

〈S f , f 〉L2(M) ≥ c‖ f ‖2L2(M)

for any f ∈ C∞
c (M). Then the operator

S : C∞
c (M) ⊂ L2(M) → L2(M)

admits a Friedrichs extension, being densely defined, symmetric and bounded from
below. It isworth to point out that ifM is complete, then this operator is essentially self-
adjoint; that is, its closure coincides with its Friedrichs extension (cf. [23, Proposition
2.4]).

The spectrum and the essential spectrum of (the Friedrichs extension of) S are
denoted by σ(S) and σess(S), respectively, and their bottoms (that is, their minimums)
by λ0(S) and λess0 (S), respectively. In the case of the Laplacian (that is, V = 0), we
write σ(M), σess(M) and λ0(M), λess0 (M) for these sets and quantities. We have by
definition that λess0 (S) = +∞ if S has discrete spectrum, which means that σess(S) is
empty. If σess(M) is empty, we say that M has discrete spectrum.

The Rayleigh quotient of a non-zero f ∈ Lipc(M) with respect to S is defined by

RS( f ) :=
∫
M (‖ grad f ‖2 + V f 2)

∫
M f 2

.

The Rayleigh quotient of f with respect to the Laplacian is denoted by R( f ), or by
Rg( f ) if the Riemannian metric g of M is not clear from the context. According to
the next proposition, the bottom of the spectrum of S can be expressed as an infimum
of Rayleigh quotients (cf. for example [21, Sect. 2] and the references therein).

Proposition 2.1 Let S be a Schrödinger operator on a Riemannian manifold M. Then
the bottom of the spectrum of S satisfies

λ0(S) = inf
f
RS( f ),

where the infimum is taken aver all f ∈ C∞
c (M)�{0}, or over all f ∈ Lipc(M)�{0}.

A remarkable property of the essential spectrum of S follows from the decomposi-
tion principle, which states that

σess(S) = σess(S, M � K )
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for any compact domain K of M with smooth boundary. This is well known in the
case where M is complete (compare with [12, Proposition 2.1]), but also holds if M is
non-complete (cf. for instance [3, Theorem A.17]). The next proposition summarizes
the properties of the bottom of the essential spectrum that will be used in the sequel.

Proposition 2.2 Let S be a Schrödinger operator on a Riemannian manifold M and
consider an exhausting sequence (Kn)n∈N of M consisting of compact domains with
smooth boundary. Then the bottom of the essential spectrum of S is given by

λess0 (S) = lim
n

λ0(S, M � Kn).

In particular, there exists ( fn)n∈N ⊂ C∞
c (M)�{0}with supp fn pairwise disjoint, such

that RS( fn) → λess0 (S). Furthermore, for any sequence ( fn)n∈N ⊂ C∞
c (M) � {0}

with supp fn pairwise disjoint, we have that

λess0 (S) ≤ lim inf
n

RS( fn).

Proof The third assertion may be found for example in [23, Proposition 2.2]. From
this and Proposition 2.1, it is not hard to see that

λess0 (S) ≤ lim
n

λ0(S, M � Kn),

while the decomposition principle gives that λ ess
0 (S) = λ ess

0 (S, M � Kn) ≥
λ0(S, M � Kn) for any n ∈ N, as we wished. The proof is completed by the first
part and Proposition 2.1. ��

For λ ∈ R, a sequence ( fn)n∈N ⊂ C∞
c (M)�{0} is called a characteristic sequence

for S and λ if

‖(S − λ) fn‖L2(M)

‖ fn‖L2(M)

→ 0, as n → +∞.

If M is complete, then S is essentially self-adjoint, which allows us to characterize
the spectrum of S in terms of compactly supported smooth functions as follows.

Proposition 2.3 Let S be a Schrödinger operator on a complete Riemannian manifold
M and consider λ ∈ R. Then λ ∈ σ(S) if and only if there is a characteristic sequence
for S and λ.

Assume now that ϕ ∈ C∞(M) is a positive solution of Sϕ = λϕ for some λ ∈ R.
Denote by L2

ϕ(M) the L2-space of M with respect to the measure ϕ2d vol, where d vol
is the volume element of M induced by its Riemannian metric. It is straightforward to
verify that the isometric isomorphismmϕ : L2

ϕ(M) → L2(M), defined bymϕ f = ϕ f ,
intertwines S − λ with the diffusion operator

L := m−1
ϕ ◦ (S − λ) ◦ mϕ = � − 2 grad ln ϕ.
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The operator L is called renormalization of S with respect to ϕ. The Rayleigh quotient
of a non-zero f ∈ C∞

c (M) with respect to L is defined by

RL( f ) :=
〈L f , f 〉L2

ϕ(M)

‖ f ‖2
L2

ϕ(M)

=
∫
M ‖ grad f ‖2ϕ2

∫
M f 2ϕ2

.

Lemma 2.4 For any non-zero f ∈ C∞
c (M) and c ∈ R, we have that

(i) RL( f ) = RS(ϕ f ) − λ,
(ii) ‖(L − c) f ‖L2

ϕ(M) = ‖(S − λ − c)(ϕ f )‖L2(M).

Proof Follows immediately from the definition of L and the fact thatmϕ is an isometric
isomorphism. ��

2.1 Riemannian Submersions

Let M1 and M2 be Riemannian manifolds with dim M1 < dim M2. A surjective
smooth map p : M2 → M1 is called a submersion if its differential is surjective at
any point. The kernel of p∗y is called the vertical space at y ∈ M2, and its orthogonal
complement in TyM2 is called the horizontal space at y. These spaces are denoted
by (TyM2)

v and (TyM2)
h , respectively. It is evident that the fiber Fx := p−1(x)

over x ∈ M1 is a possibly non-connected submanifold of M2 and (TyM2)
v is the

tangent space of Fx at y ∈ Fx . The submersion p is called Riemannian submersion if
the restriction p∗y : (TyM2)

h → Tp(y)M1 is an isometry for any y ∈ M2. For more
details, see [14] or [15].

Given aRiemannian submersion p : M2 → M1, a smoothmap s : U → M2 defined
on an open subset U of M1, is called section if (p ◦ s)(x) = x for any x ∈ U . We
say that a section s : U ⊂ M1 → M2 is extensible if it can be extended to a section
s′ : U ′ ⊂ M1 → M2 with Ū ⊂ U ′.

A vector field Y on M2 is called horizontal (vertical) if Y (y) belongs to the hor-
izontal (vertical, respectively) space at y for any y ∈ M2. It is easily checked that
any vector field Y on M2 can be written as Y = Y h + Y v with Y h horizontal and Y v

vertical. Moreover, any vector field X on M1 has a unique horizontal lift X̃ on M2;
that is, X̃ is horizontal and p∗ X̃ = X . A vector field Y on M2 is called basic if Y = X̃
for some vector field X on M1.

The (unnormalized) mean curvature vector of the fibers is defined by

H(y) :=
k∑

i=1

α(Xi , Xi ),

where α(·, ·) is the second fundamental form of the fiber Fp(y) and {Xi }ki=1 is an
orthonormal basis of (TyM2)

v . It should be observed that H is a horizontal vector
field. We say that the Riemannian submersion p has minimal fibers or fibers of basic
mean curvature if H = 0 or H is basic, respectively.
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We now discuss some basic examples of Riemannian submersions. It is worth to
mention that the manifolds involved in following examples are not assumed to be
compact.

Example 2.5 (i) Thewarpedproduct M2 = M1×ψ F is the productmanifold endowed
with the Riemannian metric gM1 × ψ2gF , where ψ ∈ C∞(M1) is positive. Then
the projection to the first factor p : M2 → M1 is a Riemannian submersion with
fibers of basic mean curvature

H = −k grad ln ψ̃,

where k := dim F . It should be noticed that surfaces of revolution are warped
products of the form R ×ψ S1.

(ii) Another generalization of surfaces of revolution was introduced by Bishop
motivated by a result of Clairaut involving such surfaces. A Riemannian sub-
mersion p : M2 → M1 is called Clairaut submersion if there exists a positive
f ∈ C∞(M2), such that for any geodesic c on M2, the function ( f ◦ c) sin θ is
constant, where θ(t) is the angle between c′(t) and (Tc(t)M2)

h . Bishop proved that
a Riemannian submersion p : M2 → M1 of complete manifolds with connected
fibers is a Clairaut submersion if and only if the fibers are totally umbilical with
mean curvature

H = −k grad ln ψ̃

for some positive ψ ∈ C∞(M1), where k is the dimension of the fiber (cf. for
instance [14, Theorem 1.7]).

(iii) Let G be a Lie group acting smoothly, freely, and properly via isometries on a
Riemannian manifold M2, where dimG < dim M2. Then M1 := M2/G is a Rie-
mannian manifold and the projection p : M2 → M1 is a Riemannian submersion
with fibers of basic mean curvature. In this case, we say that p : M2 → M1 is a
Riemannian submersion arising from the action of a Lie group G.

Given a Riemannian submersion p : M2 → M1, the lift of a function f ∈ C∞(M1)

onM2 is the smooth function f̃ := f ◦ p. The next lemmaprovides a simple expression
for the Laplacian and the gradient of a lifted function.

Lemma 2.6 For any f ∈ C∞(M1) and its lift f̃ on M2, we have that

(i) grad f̃ = g̃rad f ,

(ii) � f̃ = �̃ f + 〈g̃rad f , H〉.
Proof Both statements follow from elementary computations, which may be found
for example in [4, Sect. 2.2]. ��

2.2 Lie Groups

In this subsection, we recall some basic definitions and results about Lie groups, and
discuss some consequences of the Cheeger and Buser inequalities in this setting.

123
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For a Borel subset A of a Riemannian manifold (M, g), we denote the volume
of A by |A|g , or simply by |A| if the Riemannian metric of M is clear from the
context. Similarly, for an m-dimensional submanifold N of M , we denote by |N | the
m-dimensional volume of N . The Cheeger constant of a Riemannian manifold M is
defined by

h(M) := inf
K

|∂K |
|K | ,

where the infimum is taken over all compact domains K of M with smooth boundary.
It is related to the bottom of the spectrum via the Cheeger inequality (cf. [11])

λ0(M) ≥ h(M)2

4
.

Buser [9] established an inverse inequality for completemanifoldswithRicci curvature
bounded from below. In particular, if M is such a manifold, then λ0(M) = 0 if and
only if h(M) = 0. For our purposes, we also need the following lemma from his work,
where Ar stands for the r -tubular neighborhood of a subset A of M .

Lemma 2.7 (Compare with [9, Lemma 7.2]; see also [22, Corollary 6.3]). Let M be
a non-compact, complete Riemannian manifold with Ricci curvature bounded from
below. If h(M) = 0, then for any ε, r > 0, there exists an open, bounded W ⊂ M
such that

|(∂W )r | < ε|W � (∂W )r |.

Throughout this paper, Lie groups are assumed to be non-discrete and possibly
non-connected, unless otherwise stated. A possibly discrete Lie group G is called
amenable if there exists a left-invariant mean on L∞(G); that is, a linear functional
μ : L∞(G) → R such that

ess inf f ≤ μ( f ) ≤ ess sup f and μ( f ◦ Lx ) = μ( f ),

for any f ∈ L∞(G) and x ∈ G, where Lx stands for multiplication from the left with
an element x ∈ G. Here, L∞(G) is considered with respect to the Haar measure. If
G is non-discrete, then its Haar measure is a constant multiple of the volume element
of G induced from a left-invariant metric. If G is discrete, then its Haar measure is a
constant multiple of the counting measure. For more details, see [16].

Lemma 2.8 If N is a normal subgroup of a possibly discrete Lie group G, then G is
amenable if and only if N and G/N are amenable.

It is not hard to verify that abelian and compact Lie groups are amenable. Therefore,
so are compact extensions of solvable groups. As a matter of fact, a connected Lie
group is amenable if and only if it is a compact extension of a solvable group (cf. for
example [19, Lemma 2.2]).
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Let G be a connected Lie group with Lie algebra g. The radical s of g is the largest
solvable ideal of g. The radical S of G is the connected subgroup with Lie algebra s.
Then S is a closed, normal subgroup of G and the quotient G/S is semisimple. In this
case, we have that G is amenable if and only if G/S is compact (cf. [17, p. 724f] and
the references therein).

A Lie group is called unimodular if its Haar measure is also right-invariant. For a
connected Lie group, this property may be reformulated in terms of its Lie algebra as
follows.

Lemma 2.9 [17, Proposition 1.2]. A connected Lie group G is unimodular if and only
if tr(ad X) = 0 for any X in the Lie algebra of G.

It is worth to point out that connected, nilpotent Lie groups are unimodular and
amenable. In addition, compact extensions of connected, unimodular Lie groups are
unimodular (cf. [18, Proposition 8]).

Although the aforementioned properties are group theoretic, they are characterized
by the spectrum of the Lie group according to the next theorem, which is well known
for simply connected Lie groups.

Theorem 2.10 A connected Lie group G is unimodular and amenable if and only if
λ0(G) = 0 for some/any left-invariant metric on G.

Proof We know from [17, Theorem 3.8] that a simply connected Lie group G̃ is uni-
modular and amenable if and only if h(G̃) = 0 with respect to some/any left-invariant
metric. By the Cheeger and Buser inequalities, this gives the assertion for simply con-
nected Lie groups. To show its validity for a connected Lie group G, let q : G̃ → G
be the universal covering of G. It follows from Lemma 2.9 that G̃ is unimodular if
and only if G is unimodular, since their Lie algebras are isomorphic. Furthermore,
π1(G) is abelian and isomorphic to the kernel of q as a Lie group homomorphism.
Therefore, G̃ is an extension ofG by an amenable group, and Lemma 2.8 yields that G̃
is amenable if and only if G is amenable. Taking into account that π1(G) is amenable,
we conclude from [2, Theorem 1.2] that λ0(G̃) = λ0(G). ��

By virtue of Buser’s lemma, we derive the following consequence of the preceding
characterization.

Corollary 2.11 Let G be a non-compact, connected, unimodular, and amenable Lie
group endowed with a left-invariant metric. Then for any ε, r > 0, there exists an
open, bounded W ⊂ G such that

|(∂W )r | < ε|W � (∂W )r |.

3 Submersions with Fibers of Basic Mean Curvature

The aim of this section is to prove Theorem 1.1. Let p : M2 → M1 be a Riemannian
submersionwith fibers of basicmean curvature, and consider the Schrödinger operator

S = � + 1

4
‖p∗H‖2 − 1

2
div p∗H
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on M1. As in [4,5,23], the average of a function f ∈ C∞
c (M2) is the smooth function

fav(x) :=
∫

Fx
f

on M1 with gradient given by

〈grad fav(x), X〉 =
∫

Fx
〈grad f − f H , X̃〉 (2)

for any x ∈ M1 and X ∈ TxM1, where X̃ is the horizontal lift of X on Fx . The
push-down of f is the function

h(x) :=
√

( f 2)av(x) =
(∫

Fx
f 2

)1/2

on M1. Then [23, Lemma 3.1] states that h ∈ Lipc(M1). Hence, its gradient is defined
almost everywhere and vanishes (if defined) in points where h is zero.

Proposition 3.1 Let h ∈ Lipc(M1) be the push-down of a function f ∈ C∞
c (M2) with

‖ f ‖L2(M2)
= 1. Then their Rayleigh quotients are related by

R( f ) ≥ RS(h) +
∫

M1

λ0(Fx )h
2(x)dx .

Proof For any x ∈ M1 with h(x) > 0, we readily see from formula (2) that

grad h(x) = 1

2h(x)

∫

Fx
(p∗ grad f 2 − f 2 p∗H)

= 1

h(x)

∫

Fx
f p∗ grad f − 1

2
h(x)p∗H(x).

In view of this, the fact that ‖h‖L2(M1)
= 1, the divergence formula, the Cauchy-

Schwarz inequality and that

1

2
〈 grad h2(x), p∗H(x)〉 =h(x)〈 grad h(x), p∗H(x)〉

=
∫

Fx
f 〈 grad f , H〉 − 1

2
h2(x)‖p∗H(x)‖2

for any x ∈ M1, we compute

RS(h) =
∫

M1

(‖ grad h‖2 + 1

4
‖p∗H‖2h2 − 1

2
h2 div p∗H

)

=
∫

M1

(
1

h2

∥∥∥
∫

Fx
f p∗ grad f

∥∥∥
2 + 1

4
h2‖p∗H‖2 −

∫

Fx
f 〈grad f , H〉

)
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+
∫

M1

(
1

4
h2‖p∗H‖2 + 1

2
〈grad h2, p∗H〉

)

≤
∫

M1

∫

Fx
‖(grad f )h‖2 =

∫

M2

‖(grad f )h‖2. (3)

Since at any point of M2, the tangent space of M2 splits into the orthogonal sum of
the horizontal and the vertical space, it is easily checked that (cf. [23, Formula (6)])

R( f ) =
∫

M2

‖( grad f )h‖2 +
∫

M2

‖( grad f )v‖2

≥
∫

M2

‖( grad f )h‖2 +
∫

M1

λ0(Fx )h
2(x).

The proof is now completed by formula (3) and Proposition 2.1. ��
Proof of Theorem 1.1 FromPropositions 2.1 and 3.1 , it is immediate verify the asserted
inequality. Suppose now that the equality holds. Then there exists ( fn)n∈N ⊂ C∞

c (M2)

with ‖ fn‖L2(M2)
= 1 andR( fn) → λ0(M2), as follows from Proposition 2.1. Denote

by hn ∈ Lipc(M1), the push-down of fn , n ∈ N. Arguing as in the proof of [23,
Theorem 1.1], using Proposition 3.1 instead of [23, Proposition 3.2], we obtain that

RS(hn) → λ0(S) and
∫

M1

(λ0(Fx ) − inf
y∈M1

λ0(Fy))h
2
n(x)dx → 0. (4)

Since λ0(S) /∈ σess(S), we deduce from [21, Proposition 3.5] that after passing to a
subsequence if necessary, we may assume that hn → ϕ in L2(M1) for some function
ϕ ∈ C∞(M1)with Sϕ = λ0(S)ϕ. Then ϕ is positive, by [21, Proposition 3.7]. Arguing
as in the proof of [23, Theorem 1.1], we conclude from (4) that

λ0(Fx ) = inf
y∈M1

λ0(Fy)

for almost any x ∈ M1. ��
Proof of Corollary 1.2 If the submersion has closed fibers of basic mean curvature, then
S is written as follows:

S = � − �
√
V√
V

,

where V (x) is the volume of Fx (cf. [23, Sect. 4]). Thus, we may consider the renor-
malization L of S with respect to

√
V . Then Lemmas 2.4 and 2.6 imply that for any

non-zero f ∈ C∞
c (M1), its lift f̃ ∈ C∞

c (M2) satisfies

R( f̃ ) =
∫
M2

‖ grad f̃ ‖2
∫
M2

f̃ 2
=

∫
M1

‖ grad f ‖2V
∫
M1

f 2V
= RL( f ) = RS( f

√
V ). (5)
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We derive from Proposition 2.1 that λ0(M2) ≤ λ0(S), while the inverse inequality is
a consequence of Theorem 1.1.

About the second statement, choose an exhausting sequence (Kn)n∈N of M1
consisting of compact domains with smooth boundary. Then (p−1(Kn))n∈N is an
exhausting sequence of M2 consisting of compact domains with smooth boundary,
because the submersion has closed fibers. Applying Theorem 1.1 to the restriction of
p : M2 � p−1(Kn) → M1 � Kn over any connected component of M1 � Kn , together
with Proposition 2.2, gives the estimate

λess0 (M2) = lim
n

λ0(M2 � p−1(Kn)) ≥ lim
n

λ0(S, M1 � Kn) = λess0 (S).

From Proposition 2.2, there exists a sequence ( fn)n∈N ⊂ C∞
c (M1)� {0}with supp fn

pairwise disjoint, such that RS( fn) → λess0 (S). It is immediate to verify that the lifts
h̃n of hn := fn/

√
V also have pairwise disjoint supports. Then Proposition 2.2 and

formula (5) yield that

λess0 (M2) ≤ lim inf
n

R(h̃n) = lim inf
n

RS( fn) = λess0 (S),

as we wished. ��
It should be noticed that if the submersion has minimal fibers, then S coincides

with the Laplacian on M1. Therefore, [23, Example 3.3] is an example of a Rieman-
nian submersion p : M2 → M1 with minimal fibers, where M1 is closed and M2 is
complete, such that

0 = λ0(M2) = λ0(S) + inf
x∈Fx

λ0(Fx )

and there is x ∈ M1 with λ0(Fx ) > 0. It is evident that (λ0(S) /∈ σ ess (S), M1)being
closed. Hence, in general, the asserted equality in the second part of Theorem 1.1
holds almost everywhere, but not everywhere.

According to the next lemma, the Schrödinger operator S defined in (1) is always
non-negative. Moreover, it demonstrates that Theorem 1.1 provides a sharper lower
bound forλ0(M2) than [23, Theorem1.1] in the casewhere both of themare applicable.

Lemma 3.2 Let X be a smooth vector field on a Riemannian manifold M. Then the
operator

S = � + 1

4
‖X‖2 − 1

2
div X

is non-negative. Furthermore, if ‖X‖ ≤ C ≤ 2
√

λ0(M), then

λ0(S) ≥ (
√

λ0(M) − C/2)2.
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Proof For any f ∈ C∞
c (M) with ‖ f ‖L2(M) = 1, observe that its Rayleigh quotient is

given by

RS( f ) =
∫

M

(
‖ grad f ‖2 + 1

4
‖X‖2 f 2 + 〈 grad f , f X〉

)

=
∫

M

∥∥∥∥ grad f + f

2
X

∥∥∥∥
2

,

(6)

where we used the divergence formula. From Proposition 2.1, we readily see that S is
non-negative.

Suppose now that ‖X‖ ≤ C ≤ 2
√

λ0(M) and let f ∈ C∞
c (M)with ‖ f ‖L2(M) = 1.

An elementary calculation shows that

RS( f ) ≥
∫

M

(‖ grad f ‖ − | f |
2

‖X‖)2

=
∫

M

(‖ grad f ‖2 + f 2

4
‖X‖2 − ‖ grad f ‖| f |‖X‖)

≥ R( f ) + 1

4

∫

M
f 2‖X‖2 − R( f )1/2

(∫

M
f 2‖X‖2

)1/2

=
(

√
R( f ) − 1

2

(∫

M
f 2‖X‖2

)1/2
)2

. (7)

By the assumption that ‖X‖ ≤ C ≤ 2
√

λ0(M), the fact that ‖ f ‖L2(M) = 1 and
Proposition 2.1, we obtain that

√
R( f ) − 1

2

( ∫

M
f 2‖X‖2

)1/2

≥ √
λ0(M1) − C/2 > 0.

The proof is completed by Proposition 2.1 and formula (7). ��
We end this section by discussing the application of Theorem 1.1 and Corollary 1.2

to the submersions described in Examples 2.5.

Example 3.3 (i) Consider the warped product M2 = M1 ×ψ F and the projection to
the first factor p : M2 → M1. In this case, the operator S defined in (1) is written
as follows:

S = � − �ψk/2

ψk/2 ,

and Theorem 1.1 says that

λ0(M2) ≥ λ0(S) + inf
x∈M1

λ0(Fx ) = λ0(S) + λ0(F) inf
x∈M1

ψ−2(x).
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If, in addition, F is closed, thenwededuce fromCorollary 1.2 thatλ0(M2) = λ0(S)

and λess0 (M2) = λess0 (S). In particular, M2 has discrete spectrum if and only if the
spectrum of S is discrete (compare with [1, Theorem 3.3]). It is not difficult to
establish analogous statements for Clairaut submersions.

(ii) Let p : M2 → M1 be a Riemannian submersion arising from the action of a
Lie group G. In view of Theorem 1.1, the bottoms of the spectra are related by
λ0(M2) ≥ λ0(S). According to Corollary 1.2, if G is compact, then λ0(M2) =
λ0(S).

4 Submersions Arising from Lie Group Actions

Throughout this section, we consider a Riemannian submersion p : M2 → M1 arising
from the action of a Lie group G. For convenience of the reader, we provide a brief
outline of the section and the proof of Theorem 1.3.

In Sect. 4.1, we show that identifying the fiber with G along a section of the sub-
mersion gives rise to a smooth family of left-invariant metrics onG. This remark plays
a quite important role in our discussion. More precisely, from this and Theorem 1.1,
we obtain Theorem 1.3(iii).

The other assertions of Theorem 1.3 are first proved in the case where G is con-
nected. If G is compact, then they follow from Corollary 1.2 and [23, Theorem 1.2].
Thus,we have to focus on the casewhereG is non-compact and connected. In Sect. 4.2,
we construct cut-off functions on such G closely related to the open sets W from
Corollary 2.11. In terms of these functions, for a section s : U ⊂ M1 → M2, we
define cut-off functions in p−1(U ) with uniformly (that is, independently from the
corresponding W ) bounded gradient and Laplacian.

We begin Sect. 4.3 with the proposition that establishes this auxiliary result. The
main idea is that given an f ∈ C∞

c (M1), we may write it as a sum of functions
supported in domains admitting sections. Using cut-off functions as above, we are
able to pull up these functions, and for suitable choices of W , the sum of these pulled
up functions coincides with the lift of f in a relatively large part of its support. In the
rest of its support, its gradient and its Laplacian are bounded independently from W .

The proof of Theorem 1.3 is completed after observing that such a submersion p
is expressed as the composition of the submersion arising from the action of G0 with
the covering arising from the action of G/G0.

4.1 InducedMetrics on the Lie Group

Let p : M2 → M1 be a Riemannian submersion arising from the action of a (possibly
non-connected) Lie group G. Given a section s : U ⊂ M1 → M2, it is easily checked
that themap : G×U → p−1(U ) defined by(x, y) := xs(y) is a diffeomorphism,
and so is its restriction y := (·, y) : G → Fy . Denote by gs(y) the metric induced
on G via y , that is, the pullback via y of the restriction of the metric of M2 on Fy .
It is straightforward to see that the metric gs(y) depends only on s(y) and not on the
behavior of s in a neighborhood of y.
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Proposition 4.1 Let s : U ⊂ M1 → M2 be a section. Then the Riemannian metric
gs(y) is left-invariant and depends smoothly on y ∈ U.

Proof For x1, x2 ∈ G, it is immediate to verify that

x1y(x2) = x1x2s(y) = y(x1x2),

and therefore, x1∗y∗ = y∗Lx1∗. Bearing in mind that G acts on M2 via isometries,
given x ∈ G and X , Y ∈ TeG, where e is the neutral element ofG, it is now elementary
to compute

gs(y)(Lx∗X , Lx∗Y )(x) = 〈y∗Lx∗X ,y∗Lx∗Y 〉y(x) = 〈x∗y∗X , x∗y∗Y 〉xy(e)

= 〈y∗X ,y∗Y 〉y(e) = gs(y)(X ,Y )(e),

which yields that the induced metric on G is left-invariant.
Choose a left-invariant frame field {Xi }ki=1 on G. After endowing G with a left-

invariant metric and G ×U with the product metric, it is evident that the projection to
the first factor q : G ×U → G is a Riemannian submersion. Consider the horizontal
lift X̃i of Xi on G ×U . Notice that {X̃i }ki=1 is a G-invariant, smooth frame field, and
hence, so is {∗ X̃i }ki=1. Then for y ∈ U and x ∈ G, we deduce that

gs(y)(Xi , X j )(x) = gs(y)(Xi , X j )(e) = 〈∗ X̃i ,∗ X̃ j 〉s(y).

Since 〈∗ X̃i ,∗ X̃ j 〉z is a smooth function (with respect to z) in p−1(U ), so is its
composition with s, as we wished. ��
Corollary 4.2 Let s : U ⊂ M1 → M2 be a section and fix a left-invariant metric g on
G. Then there exists Vs ∈ C∞(U ) such that for any y ∈ U, the volume element of the
induced metric satisfies

dvolgs(y) = Vs(y)dvolg.

Proof Follows immediately from Proposition 4.1 and the local expression of the vol-
ume element. ��

For y ∈ M1 and z1, z2 ∈ Fy , consider the diffeomorphisms i : G → Fy defined
by i (x) = xzi , and the induced metrics gi := gzi on G, i = 1, 2. Because G acts
transitively on Fy , there exists x0 ∈ G such that x0z1 = z2. Then it is apparent that

2(x) = xz2 = xx0z1 = (1 ◦ Rx0)(x).

In particular, if G is unimodular, then we have that

dvolg2 = ∗
2(dvolFy ) = R∗

x0(
∗
1(dvolFy )) = R∗

x0(dvolg1) = dvolg1 , (8)

where d volFy is the volume element of Fy with respect to the inducedmetric fromM2.
This implies that the function Vs from Corollary 4.2 is independent from the section
s and can be defined globally.
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Corollary 4.3 Suppose that G is unimodular and fix a left-invariant metric g on G.
Then there exists V ∈ C∞(M1) such that for any section s : U ⊂ M1 → M2 and
y ∈ U, the volume element of the induced metric satisfies

dvolgs(y) = V (y)dvolg.

Moreover, the gradient of V is given by

grad V = −V p∗H .

Proof The existence of the function V is a consequence of Corollary 4.2 and formula
(8). About the second statement, let y ∈ M1 and s : U ⊂ M1 → M2 be a section
defined in a neighborhood U of y that is horizontal at y, which means that s∗TyM1
is the horizontal space of M2 at s(y). Let X ∈ TyM1 and c : (−ε, ε) → M1 be a
smooth curve with c(0) = y and c′(0) = X . Denote by F : (−ε, ε) × G → M2 the
smooth variation of the isometric immersion F(0, ·) : (G, gs(y)) → M2 defined by
F(t, x) = xs(c(t)), and observe that its variational vector field is the horizontal lift
X̃ of X on Fy . The asserted equality follows now from the first variational formula.��

It is well known that if p : M2 → M1 is a Riemannian submersion and M2 is
complete, then so is M1. According to the next corollary, if the submersion arises
from the action of a Lie group, the converse implication is also true.

Corollary 4.4 Let p : M2 → M1 be a Riemannian submersion arising from the action
of a Lie group G. If M1 is complete, then M2 is complete.

Proof Fix a left-invariant metric g on G and let (zn)n∈N ⊂ M2 be a Cauchy sequence.
Then (p(zn))n∈N is a Cauchy sequence in M1, and hence, p(zn) → y for some
y ∈ M1. Let s : U ⊂ M1 → M2 be a section defined in a neighborhood U of y, and
consider the corresponding diffeomorphism  : G × U → M2, as in the beginning
of this subsection. Without loss of generality, we may assume that zn ∈ p−1(U ) for
any n ∈ N. Writing zn = (xn, p(zn)), it remains to prove that (xn)n∈N converges.
Given a precompact neighborhood Uy of y with Ūy ⊂ U , it is simple to see that for
any sufficiently small ε > 0, there is n0 ∈ N, such that for any n,m ≥ n0, there
exists a smooth curve cn,m from zn to zm of length less than ε, with image contained in
p−1(Uy). Denoting by q : G ×U → G the projection to the first factor, it is clear that
ĉn,m := q ◦ −1 ◦ cn,m is a smooth curve from xn to xm . Since Uy is precompact, we
derive from Proposition 4.1 that there exists C > 0 such that �g(ĉn,m) ≤ C�(cn,m) for
any n,m ≥ n0, where �(·) stands for the length of a curve. This shows that (xn)n∈N is
Cauchy in (G, g) and, thus, converges. ��

4.2 Cut-Off Functions

The aim of this subsection is to construct some special functions on the Lie group that
will be used in the sequel to obtain cut-off functions onM2. Throughout this subsection,
we consider a non-compact, connected Lie group G endowed with a left-invariant
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metric. Given r > 0, choose a sequence (xn)n∈N ⊂ G such that d(xn, xm) ≥ r for
any n �= m and the open balls B(xn, r) cover G.

Lemma 4.5 There exists n(r) ∈ N such that any x ∈ G lies in at most n(r) of the balls
B(xn, 2r), with n ∈ N.

Proof Let x ∈ G and set Ex := {n ∈ N : x ∈ B(xn, 2r)}. Notice that for n ∈ Ex , we
have that B(xn, r/2) ⊂ B(x, 5r/2) and the balls B(xn, r/2) are disjoint. Bearing in
mind that G is a homogeneous space, we compute

|B(x, 5r/2)| ≥
∑

n∈Ex

|B(xn, r/2)| = |Ex ||B(x, r/2)|,

where |Ex | is the cardinality of Ex . Since the Ricci curvature of G is bounded from
below (say by (k − 1)C , where k is the dimension of G), the Bishop-Gromov volume
comparison theorem gives the estimate

|Ex | ≤ |B(x, 5r/2)|
|B(x, r/2)| ≤ |B5r/2|

|Br/2| =: n(r),

where Bρ is a ball of radius ρ in the k-dimensional space form of sectional curvature
C . ��

Fix ψe ∈ C∞
c (G) with 0 ≤ ψe ≤ 1, suppψe ⊂ B(e, 3r/2) and ψe = 1 in B(e, r).

For n ∈ N, the functionψn := ψe ◦L−1
xn satisfies 0 ≤ ψn ≤ 1, suppψn ⊂ B(xn, 3r/2)

and ψn = 1 in B(xn, r). We know from Lemma 4.5 that the cover {B(xn, 3r/2)}n∈N
is locally finite, which implies that the function ψ := ∑

n∈N ψn is well defined and
smooth. It is evident that ψ ≥ 1, G being covered by the balls B(xn, r). The smooth
partition of unity on G consisting of the functions ζn := ψn/ψ with n ∈ N is called
a partition of unity corresponding to r . Clearly, any point of G lies in at most n(r) of
the supports of ζn , where n(r) is the constant from Lemma 4.5. The cut-off function
corresponding to a subset E of N is defined by

χE :=
∑

n∈E
ζn .

Let p : M2 → M1 be a Riemannian submersion arising from the action of a non-
compact, connectedLie groupG. Consider a relatively compact, opendomainU ⊂ M1
that admits an extensible section s : U → M2, and the corresponding diffeomorphism
 : G × U → p−1(U ) defined by (x, y) := xs(y). For a function f : G → R, we
denote by fs : p−1(U ) → R the function satisfying

fs((x, y)) := f (x)

for any x ∈ G and y ∈ U . Given a left-invariant metric on G and r > 0, we consider
a partition of unity on G corresponding to r and the functions χE for E ⊂ N.
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Lemma 4.6 Let s : U → M2 be an extensible section defined on a precompact domain
U of M1. Then there exists a constant C independent from E ⊂ N, such that

|�(χE )s(z)| ≤ C and ‖ grad(χE )s(z)‖ ≤ C

for any z ∈ p−1(U ).

Proof SinceU is precompact and s is extensible, it is easily checked that the Laplacian
and the gradient of (ψe)s are bounded. Since (ψn)s(z) = (ψe)s(x−1

n z) for any n ∈ N

and z ∈ p−1(U ), we obtain uniform estimates for the Laplacian and the gradient of
(ψn)s for all n ∈ N. Then Lemma 4.5 yields a uniform bound for the Laplacian and the
gradient of the functions

∑
n∈E (ψn)s for all subsets E ⊂ N. The proof is completed

after observing that

(χE )s =
∑

n∈E (ψn)s∑
n∈N(ψn)s

and that
∑

n∈N(ψn)s ≥ 1. ��
The purpose of considering this partition of unity becomes more clear in the next

proposition, where we combine this constructionwith Corollary 2.11 in the case where
G is unimodular and amenable.

Proposition 4.7 Let G be a non-compact, connected, unimodular and amenable Lie
group endowed with a left-invariant metric. Consider r > 0 and a partition of unity
{ζn}n∈N corresponding to r/2. Then for any ε > 0, there exists an open, bounded
W ⊂ G and a finite E ⊂ N, such that χE = 1 in W � (∂W )r , suppχE ⊂ Wr/2 and

|(∂W )2r | < ε|W � (∂W )2r |.

Proof Asa consequence ofCorollary 2.11, for any ε > 0, there exists an open, bounded
W ⊂ G such that the desired inequality for the volumes holds. Consider the finite set
E := {n ∈ N : xn ∈ W � (∂W )r/4}. It is elementary to verify that if x ∈ W � (∂W )r ,
then n ∈ E for any n ∈ Nwith x ∈ B(xn, 3r/4), and therefore, χE = 1 inW �(∂W )r .
From the fact that supp ζn ⊂ B(xn, 3r/4), it follows that suppχE ⊂ Wr/2. ��

4.3 Pulling Up

Suppose now that G is unimodular and let V be the function from Corollary 4.3. A
straightforward calculation shows that

S = � + 1

4
‖p∗H‖2 − 1

2
div p∗H = � − �

√
V√
V

.

This allows us to consider the renormalization

L = m−1√
V

◦ S ◦ m√
V = � − grad ln V = � + p∗H
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of S with respect to
√
V , where we used again Corollary 4.3. According to Lemma 2.6,

the Laplacian of the lift f̃ of any f ∈ C∞(M1) is given by

� f̃ = L̃ f . (9)

Proposition 4.8 Let p : M2 → M1 be a Riemannian submersion arising from the
action of a non-compact, connected, unimodular, and amenable Lie group G. Then
for any λ ∈ R, ε > 0 and f ∈ C∞

c (M1) � {0}, there exists h ∈ C∞
c (M2) � {0}, such

that

‖(� − λ)h‖2
L2(M2)

‖h‖2
L2(M2)

≤
‖(L − λ) f ‖2

L2√
V

(M1)

‖ f ‖2
L2√

V
(M1)

+ ε.

Proof Cover supp f with finitelymany open, precompact domainsUi that admit exten-
sible sections si : Ui → M2, i = 1, . . . , k, and choose non-negative ϕi ∈ C∞

c (Ui )

with
∑k

i=1 ϕi = 1 in supp f . Denote by xi j : Ui ∩Uj → G the transitionmaps defined
by s j (y) = xi j (y)si (y) for all y ∈ Ui ∩ Uj , and by i : G × Ui → p−1(Ui ) the
diffeomorphisms defined by i (x, y) = xsi (y).

Fix a left-invariantmetric g onG. SinceUi is precompact and si is extensible, notice
that there exists r > 0 such that xi j (Ui ∩Uj ) ⊂ Bg(e, r) for any i, j = 1, . . . , k. Let
{ζn}n∈N be a partition of unity on G corresponding to r/2, as in Sect. 4.2. For a finite
subset E of N, consider the compactly supported, smooth function

hi := (χE )si ϕ̃i f̃

in p−1(Ui ), i = 1, . . . , k. Setting h = ∑k
i=1 hi , we derive from Lemma 4.6 that there

exists a constant C independent from E , such that |(�−λ)h(z)| ≤ C for any z ∈ M2.
We know from Proposition 4.7 that for any ε > 0, there exists an open, bounded

W ⊂ G and a finite E ⊂ N, such that χE = 1 in W � (∂W )r , suppχE ⊂ Wr/2 and

|W ′
0|g

|W0|g <

‖ f ‖2
L2√

V
(M1)

C2
∫
supp f V

, (10)

whereW0 := W � (∂W )2r ,W ′
0 := (∂W )2r and tubular neighborhoods are considered

with respect to the background metric g. Denote by Wi (y) and W ′
i (y) the images of

W0 and W ′
0 via i (·, y), respectively. Bearing in mind that

i (x, y) =  j (xx ji (y), y)

for any y ∈ Ui ∩ Uj and x ∈ G, it is not difficult to see that h(z) = f̃ (z) for any
z ∈ Wi (y) and that supp h ∩ Fy ⊂ Wi (y) ∪ W ′

i (y) for any y ∈ Ui , i = 1, . . . , k. In
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view of Corollary 4.3, it is now simple to compute

‖h‖2L2(M2)
=

k∑

i=1

∫

M2

ϕ̃i h
2 ≥

k∑

i=1

∫

Ui

∫

Wi (y)
ϕ̃i h

2dy

=
k∑

i=1

∫

Ui

ϕi (y) f
2(y)|W0|gsi (y)dy

= |W0|g
k∑

i=1

∫

Ui

ϕi f
2V = |W0|‖ f ‖2

L2√
V

(M1)
.

Furthermore, it is apparent that

‖(� − λ)h‖2L2(M2)
=

k∑

i=1

∫

M2

ϕ̃i ((� − λ)h)2

=
k∑

i=1

∫

Ui

∫

Wi (y)
ϕ̃i ((� − λ)h)2dy

+
k∑

i=1

∫

Ui

∫

W ′
i (y)

ϕ̃i ((� − λ)h)2dy.

By virtue of Corollary 4.3 and formula (9), we deduce that

k∑

i=1

∫

Ui

∫

Wi (y)
ϕ̃i ((� − λ)h)2dy =

k∑

i=1

∫

Ui

∫

Wi (y)
ϕ̃i ((� − λ) f̃ )2dy

=
k∑

i=1

∫

Ui

ϕi (y)((L − λ) f (y))2|W0|gsi (y)dy

= |W0|g
∫

M1

((L − λ) f )2V

= |W0|g‖(L − λ) f ‖2
L2√

V
(M1)

.

Finally, Corollary 4.3 implies that

k∑

i=1

∫

Ui

∫

W ′
i (y)

ϕ̃i ((� − λ)h)2 ≤C2
k∑

i=1

∫

supp f ∩Ui

ϕi (y)|W ′
0|gsi (y)dy

=C2|W ′
0|g

∫

supp f
V .
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From the above estimates, we conclude that

‖(� − λ)h‖2
L2(M2)

‖h‖2
L2(M2)

≤
‖(L − λ) f ‖2

L2√
V

(M1)

‖ f ‖2
L2√

V
(M1)

+ |W ′
0|g

|W0|g
C2

∫
supp f V

‖ f ‖2
L2√

V
(M1)

,

which, together with (10), completes the proof. ��
Similarly, exploiting the second inequality of Lemma 4.6, it is not hard to show the

following:

Proposition 4.9 Let p : M2 → M1 be a Riemannian submersion arising from the
action of a non-compact, connected, unimodular, and amenable Lie group G. Then
for any ε > 0 and f ∈ C∞

c (M1) � {0}, there exists h ∈ C∞
c (M2) � {0} such that

R(h) ≤ RL( f ) + ε.

Before proceeding to the proof of Theorem 1.3, we establish a part of it in the case
where G is a connected Lie group.

Proposition 4.10 Let p : M2 → M1 be a Riemannian submersion arising from the
action of a connected Lie group G. If G is unimodular and amenable, then the bottoms
of the spectra satisfy λ0(M2) = λ0(S). If, in addition, M1 is complete, then σ(S) ⊂
σ(M2).

Proof According to Corollary 1.2, if G is compact, then λ0(M2) = λ0(S). If, in
addition, M1 is complete, then Corollary 4.4 asserts that so is M2, and the second
statement is a consequence of [23, Theorem 1.2].

Suppose now that G is non-compact, unimodular, and amenable. Then for any
ε > 0, there exists a non-zero f ∈ C∞

c (M1) such that RS( f ) < λ0(S) + ε/2, by
Proposition 2.1. From Propositions 2.4 and 4.9 , it follows that there exists a non-zero
h ∈ C∞

c (M2) with

R(h) ≤ RL( f /
√
V ) + ε/2 = RS( f ) + ε/2 < λ0(S) + ε.

The proof of the first assertion is completed by Proposition 2.1, ε > 0 being arbitrary.
Assume now that, in addition, M1 is complete and notice that M2 is also complete,

from Corollary 4.4. Then Proposition 2.3 yields that for any λ ∈ σ(S), there exists a
characteristic sequence ( fn)n∈N for S andλ. In viewof Proposition 4.8 andLemma2.4,
for any n ∈ N, there exists hn ∈ C∞

c (M2) � {0} satisfying

‖(� − λ)hn‖2L2(M2)

‖hn‖2L2(M2)

≤
‖(L − λ)( fn/

√
V )‖2

L2√
V

(M1)

‖ fn/
√
V ‖2

L2√
V

(M1)

+ 1

n

=
‖(S − λ) fn‖2L2(M1)

‖ fn‖2L2(M1)

+ 1

n
→ 0,
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as n → +∞. That is, (hn)n∈N is a characteristic sequence for � (on M2) and λ, and
hence, λ ∈ σ(M2), from Proposition 2.3. ��

Consider now a Riemannian submersion p : M2 → M1 arising from the action of
a Lie group G. Denote by p1 : M2 → M the Riemannian submersion arising from the
action of the connected component G0 of G. Then the action of G on M2 descends
to a properly discontinuous action of G/G0 on M , which gives rise to a Riemannian
covering p2 : M → M1, and the original submersion is decomposed as p = p2 ◦ p1.
It is immediate to verify that the Schrödinger operator

SM := � + 1

4
‖p1∗H‖2 − 1

2
div p1∗H

on M , defined as in (1), is the lift of the corresponding Schrödinger operator S on M1.

Proof of Theorem 1.3 Write p = p2 ◦ p1 as above, and suppose that G is amenable
and G0 is unimodular. Then Lemma 2.8 states that G0 and G/G0 are also amenable.
From Proposition 4.10 and [2, Theorem 1.2], we obtain that

λ0(M2) = λ0(SM ) = λ0(S).

If, in addition, M1 is complete, then so is M , and the spectra are related by

σ(S) ⊂ σ(SM ) ⊂ σ(M2),

where the first inclusion follows from [22, Corollaries 4.21 and 4.22] and the second
one from Proposition 4.10.

Conversely, assume that λ0(M2) = λ0(S) /∈ σess(S). By virtue of Theorem 1.1,
we have that λ0(Fx ) = 0 for almost any x ∈ M1. Recall that Fx is isometric to
G endowed with a left-invariant metric, from Lemma 4.1. Taking into account that
λ0(G) = λ0(G0), we derive from Theorem 2.10 that G0 is unimodular and amenable.
Moreover, Theorem 1.1 and [2, Theorem 1.1] show that

λ0(M2) ≥ λ0(SM ) ≥ λ0(S),

and thus, λ0(SM ) = λ0(S). Since λ0(S) /∈ σess(S), we conclude from [21, Theorem
1.2] that p2 is an amenable covering, or equivalently, G/G0 is amenable. The proof
is completed by Lemma 2.8. ��
Proof of Corollary 1.4 Suppose first that G is unimodular and amenable, and fix a left-
invariant metric on G. By formula (6), it is easily checked that RS(

√
V ) = 0 for

the positive V ∈ C∞(M1) from Corollary 4.3, which together with Theorem 1.3,
Proposition 2.1 and Lemma 3.2, implies that λ0(M2) = λ0(S) = 0.

Conversely, assume that λ0(M2) = 0 and write p = p2 ◦ p1 as above. We readily
see fromTheorem 1.1 that λ0(S) = 0. ThenG is amenable andG0 is unimodular, from
Theorem 1.3, because λ0(S) /∈ σess(S), M1 being closed.We know fromCorollary 4.3
that there exists V ∈ C∞(M) with p1∗H = − grad ln V , such that for any section

123



Spectral Estimates for Riemannian Submersions 9975

s : U ⊂ M → M2, the volume elements of the induced metrics on G0 (and on G)
satisfy

dvolgs(y) = V (y)dvolg,

where g is a fixed left-invariant metric on G.
Observe that there exists a positive ϕ ∈ C∞(M1) with Sϕ = 0, from [21, Propo-

sition 3.7] and the fact that λ0(S) = 0 /∈ σess(S). Then RS(ϕ) = 0, which together
with formula (6), gives that p∗H = −2 grad ln ϕ. It is now clear that V is a constant
multiple of the lift ϕ̃2 of ϕ2 on M , and in particular, G/G0-invariant.

Given z ∈ M2 and x ∈ G, using formula (8), the definition and theG/G0-invariance
of V , we compute

R∗
x (d vol gz ) =d vol gxz = V (p1(xz))d vol g = V ([x]p1(z))d vol g

=V (p1(z))d vol g = d vol gz ,

where [x] stands for the class of x in G/G0. Therefore, gz is a left-invariant metric on
G with right-invariant volume element, which means that G is unimodular. ��

We end this section with a class of examples demonstrating that the assumption
λ0(S) /∈ σess(S) in Theorem 1.3(iii) cannot be dropped, even if the manifolds are
complete and the fibers are minimal.

Example 4.11 Let G be the simply connected Lie group with Lie algebra spanned by
two vectors X ,Y such that [X ,Y ] = Y . Given c > 0, define the left-invariant metric
gc on G by gc(X , X) = c−1, gc(X ,Y ) = 0 and gc(Y ,Y ) = c. It is obvious that

〈∇X1X2, X3〉 = 1

2
(〈[X1, X2], X3〉 − 〈[X2, X3], X1〉 + 〈[X3, X1], X2〉)

for any left-invariant vector fields X1, X2, X3 on G, where the inner products are with
respect to gc and ∇ stands for the Levi-Civita connection of gc. From this, it is easy
to see that (G, gc) has constant sectional curvature −c. Thus, (G, gc) is isometric to
the 2-dimensional space form of sectional curvature −c, and in particular, the bottom
of its spectrum is given by

λ0(G, gc) = c2

4
. (11)

Bearing in mind that G is solvable, observe that G is not unimodular, from Theo-
rem 2.10.

Let M be a Riemannian manifold with λ0(M) ∈ σess(M). For a positive function
ψ ∈ C∞(M), endow the product manifold M2 := M×G with the Riemannian metric
g(y, x) = gM (y) × gψ(y)(x). It is evident that G acts smoothly, freely, and properly
via isometries on M2, and the Riemannian submersion arising from this action is the
projection to the first factor p : M2 → M . It is noteworthy that p has minimal fibers,
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since the volume element of gc does not depend on c. Hence, the operator S defined
as in (1) coincides with the Laplacian on M .

By Proposition 2.2, there exists a sequence ( fn)n∈N ⊂ C∞
c (M) � {0} such that

R( fn) → λess0 (M) = λ0(M) and supp fn ⊂ Un for some precompact, open domains
Un with Ūn pairwise disjoint. Clearly, we may choose a positive ψ ∈ C∞(M) with
ψ = cn < 1/n in Un for any n ∈ N. Then p−1(Un) is isometric to the Riemannian
product Un × G, where G is endowed with the Riemannian metricgcn . In view of
Proposition 2.1 and formula (11), it follows that for any n ∈ N, there exists hn ∈
C∞
c (G) � {0} with Rgcn (hn) < 1/(4n2). Setting h̃n(y, x) = hn(x) and f̃n(y, x) =
fn(y), we have that h̃n f̃n ∈ C∞

c (M2) and a straightforward calculation implies that

R(h̃n f̃n) = Rgcn (hn) + R( fn) → λ0(M),

as n → +∞. From this, together with Theorem 1.1 and Proposition 2.1, we deduce
that λ0(M2) = λ0(M) = λ0(S), while G is not unimodular.

5 Bottom of Spectrum of Lie Groups

In this section, we discuss some applications of our results to Lie groups. We begin
by establishing Theorem 1.5.

Proof of Theorem 1.5 Clearly, the projection p : G → G/N is the Riemannian sub-
mersion arising from the (left) action of N on G, and the fiber over p(z) is written as
is Fp(z) = Nz = zN for any z ∈ G, N being normal. Since multiplication Lx from
the left with an element x ∈ G maps isometrically Fp(z) to Fp(xz) for any z ∈ G, it
is evident that the mean curvature H of the fibers is left-invariant, and so is p∗H on
G/N . Then the operator S on G/N defined as in (1) is of the form S = � + c for
some c ∈ R, and the bottom of its spectrum is λ0(S) = λ0(G/N ) + c.

To determine this constant, let {Xi }mi=1 be an orthonormal basis of TeG with {Xi }ki=1
spanning TeN . Considering the left-invariant extension of Xi (also denoted by Xi ), it
is easily checked that

‖H‖2 =
k∑

i=1

〈∇Xi Xi , H〉 = −
k∑

i=1

〈∇Xi H , Xi 〉

= −
m∑

i=1

〈∇Xi H , Xi 〉 +
m∑

i=k+1

〈∇Xi H , Xi 〉

=
m∑

i=1

〈[H , Xi ], Xi 〉 +
m∑

i=k+1

〈∇p∗Xi p∗H , p∗Xi 〉

= tr ( ad H) + div p∗H ,

(12)
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and the operator S is written as follows:

S = � − 1

4
‖H‖2 + 1

2
tr(ad H).

The first statement follows from Theorem 1.1, after noticing that λ0(Fy) = λ0(N )

for any y ∈ G/N , Fy being isometric to N . If N is unimodular and amenable,
then Theorem 1.3 establishes the asserted equality. Conversely, as a consequence
of Theorem 1.1, if

λ0(G) = λ0(G/N ) − 1

4
‖H‖2 + 1

2
tr(ad H),

then the infimum of λ0(Fy) with y ∈ G/N is zero. Then λ0(N ) = 0, since Fy is
isometric to N (endowed with the induced left-invariant metric from G) and Theo-
rem 2.10 yields that N is unimodular and amenable. ��

It is worth to point out that in the above setting, the assumption λ0(S) /∈ σess(S)

involved in Theorem 1.3(iii) is not satisfied in general. Indeed, ifG/N is non-compact,
then σ(S) = σess(S), S being invariant under multiplication from the left with ele-
ments of G/N (cf. for instance [22, Theorem 5.2]). However, the conclusion of
Theorem 1.3(iii) holds because the fibers are isometric.

Corollary 5.1 Let G be a connected, unimodular, and amenable Lie group endowed
with a left-invariant metric and N be a closed (as a subset), connected, normal sub-
group of G with mean curvature H. Then

λ0(G/N ) = 1

4
‖H‖2.

In particular, G/N is also unimodular (and amenable) if and only if N is minimal.

Proof Since G is unimodular, we obtain from Lemma 2.9 that tr(ad H) = 0 and that
N is also unimodular. According to Lemma 2.8, since G is amenable, so are N and
G/N . The proof is completed by Theorems 1.5 and 2.10 . ��

Recall that, in general, the quotient of a unimodular and amenable Lie group does
not have to be unimodular. The next example demonstrates this fact.

Example 5.2 Let G be the simply connected, solvable Lie group with Lie algebra g
generated by X ,Y , Z satisfying [X ,Y ] = Y , [X , Z ] = −Z and [Y , Z ] = 0. It is
obvious that tr(ad X ′) = 0 for any X ′ ∈ g, and we deduce from Lemma 2.9 that G is
unimodular. Let N be the closed (as a subset), connected, normal subgroup of G with
Lie algebra the ideal generated by Z . Denoting by p : G → G/N the projection, it is
elementary to verify that tr(ad p∗X) = 1. We conclude from Lemma 2.9 that G/N is
not unimodular, while G is unimodular and amenable.

Before proceeding to the proof of Corollary 1.6, we need some auxiliary results.
The next proposition provides a standard way of estimating the Cheeger constant of a
Riemannian manifold.
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Proposition 5.3 Let X be a smooth vector field on a Riemannian manifold M with
‖X‖ ≤ 1 and div X ≥ c for some c ∈ R. Then the Cheeger constant of M is bounded
by h(M) ≥ c.

Proof Using the divergence formula, for any compact domain K of M with smooth
boundary, we compute

c|K | ≤
∫

K
div X =

∫

∂K
〈X , ν〉 ≤ |∂K |,

where ν is the outward pointing unit normal to ∂K . ��
Corollary 5.4 Let G be a connected Lie group endowed with a left-invariant metric.
Then the Cheeger constant of G satisfies

h(G) ≥ max
X∈g,‖X‖=1

tr(ad X).

Proof A straightforward calculation shows that tr(ad X) = − div X for any X ∈ g,
and the assertion is a consequence of Proposition 5.3. ��
Proposition 5.5 Let G be a connected, amenable Lie group endowed with a left-
invariant metric. Suppose that its radical S is not abelian and denote by H the mean
curvature (in G) of the commutator subgroup [S, S]. Then

λ0(G) = 1

4
‖H‖2 = 1

4
tr(ad H).

Proof Consider the universal covering q : S̃ → S. Since S̃ is simply connected and
solvable, it is known that its commutator subgroup [S̃, S̃] is closed (as a subset of S̃)
and nilpotent (cf. for instance [17, Proposition 1.6] and the references therein). This
yields that the commutator subgroup N := [S, S] = q([S̃, S̃]) is a connected, closed
(as a subset), normal, and nilpotent subgroup of G. Since connected, nilpotent groups
are unimodular and amenable, Theorem 2.10 gives that

λ0(G) = λ0(G/N ) − 1

4
‖H‖2 + 1

2
tr(ad H).

Bearing in mind that G is a compact extension of S, it is evident that G/N is
a compact extension of the abelian group S/N . In particular, G/N is unimodular
and amenable, and hence, λ0(G/N ) = 0, from Theorem 2.10. Let {Xi }mi=1 be an
orthonormal basis of gwith {Xi }ki=1 spanning the Lie algebra of N . Then formula (12)
yields that

‖H‖2 = tr(ad H) − tr(ad p∗H).

We derive from Lemma 2.9 that tr(ad p∗H) = 0, G/N being unimodular, as we
wished. ��

123



Spectral Estimates for Riemannian Submersions 9979

Proof of Corollary 1.6 IfG is unimodular, then the statement follows from Lemma 2.9,
Theorem 2.10 and the Cheeger inequality. Suppose now that G is not unimodular and
observe that S is not abelian, since G is a compact extension of S. It follows from
Theorem 2.10 that λ0(G) > 0, and thus, the mean curvature (in G) H of the commu-
tator subgroup N := [S, S] of the radical S of G is non-zero, from Proposition 5.5. In
view of Corollary 5.4, Proposition 5.5 and the Cheeger inequality, we conclude that

1

4
h(G)2 ≥ 1

4
(tr(ad H0))

2 = 1

4
tr(ad H) = λ0(G) ≥ 1

4
h(G)2,

where H0 := ‖H‖−1H . ��
According to [7], if the Cheeger constant coincides with the exponential volume

growth, then the equality holds in the Cheeger inequality. However, this fails in Corol-
lary 1.6, since there exist unimodular and amenable Lie groups of exponential volume
growth (cf. [20, p. 1525] and the references therein).
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